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Abstract

This paper develops a beam pattern design procedure for general multidimensional
irregular sonar arrays that incorporates the not well understood effects of array geom-
etry into the design process. The procedure is implemented by generating a 4'penalty

function ' in a spectral covariance ' inction form. Processing the penalty function causes
beam pattern high sidelobes to be penalized and the main lobe to be emphasized. This
is accomplished by forming the penalty function in terms of an isotropic noise field of
specified strength modified with a finite sector of low coherent energy and stabilized with
incoherent sensor noise. By inputting the penalty function into a minimum variance
beamformer, the beam pattern and aperture weights arc calculated based on the given
array geometry. The beamformer used is Capon's Maximum Likelihood Method. The
array used to test the procedure is located on a sixty degree sector of a cylindrical sur-
face. The procedure is implemented by two different methods, each with some desirable
characteristics. One method suppresses sidelobes directly by the placement of nulls. The
other method suppresses sidelobes indirectly by the enhancement of the main lobe with
anti-nulls. Both methods are evaluated in terms of a sensitivity factor which constrains
the maximum white noise array gain.\ Results show that both methods result in sidelobe
levels that range from 20 to 35 dB lo r compared to a conventional beam pattern with - N

uniform aperture weighting and that th design procedure is applicable to beam patterns
steered to both true broadside and to off, broadside directions.

Thesis Supervisor: Dr. Arthur B. Baggeroer
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Chapter 1

Introduction

1.1 Background

The problem of beamforming with multidimensional arrays is a very important prob-

lem with numerous applications, yet it is not well understood. Whereas one dimensional,

equally spaced arrays have many formulations and solutions based on extensive temporal

analysis, arrays with added dimensions and nonuniform spacing introduce unique prob-

lems and possibilities which have no direct temporal equivalent.[1] In terms of the bearing

estimation problem which is addressed in this investigation conventional beamforming

can be described as the shading or windowing of array sensor data to obtain a desirable

directional scan pattern, or beam pattern. One dimensional windows are numerous and

well documented.[2] In two dimensional and higher dimensional cases, fewer windows are

available.[3] The majority of the multidimensional windows are based either on a perfect

circular based symmetric geometry (a perfect sphere or cylinder) or on the extension of

one dimensional windows to higher dimensions which routinely requires uniformly sam-

pled apertures. [4,5] Unfortunately, all multidimensional arrays are not completely circular

and/or do not have regular sensor spacing. The impact of array geometry, particularly in

three dimensions, on the spectral estimation and bearing estimation problems is not well

understood.J6] Therefore, the purpose of this investigation is to develop a beam pattern

design procedure that can be used on general multidimensional irregular arrays which

includes the effects of the array geometry. The design procedure uses a data-adaptive,
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minimum variance method that can be applied to arrays with nonuniform spacing. The

minimum variance procedure is Capon's High lesolution Frequency Wavenumber Esti-

mation Method more commonly known as the Maximum Likelihood Method (MLM).[7j

The test array, which has proposed applications in an undersea environment, consists of

a three dimensional sonar array located on an arc of a cylindrical surface. The primary

objective is to design beam patterns by processing array data with the MLM beamformer.

The source of array data is the design tool and is contained in a special spectral covariance

matrix termed a "penalty function." Generation of the penalty function is the important

issue of the design procedure and is the focus of this investigation.

1.2 Objectives

As previously stated, the primary objective is to develop a beam pattern design pro-

cedure using an MLM beamformer that can be used on irregular arrays where traditional

aperture shadings are not applicable. This primary objective results in two issues:

* can the MLM beamformer be effectively used in a design :ole?

* can the MLM beamformer control sidelobes?

Both of these issues are examined using the penalty function concept. Selection of the

proper penalty function results in a beam pattern with low sidelobes when compared

to a conventional beam pattern generated from a uniform aperture shading. Different

penalty functions result in beam patterns with different sidelobes. The selection of dif-

ferent penalty functions gives the designer control over the procedure. In applying this

procedure the designer obtains a qualitative perception of the array's performance in

terms of the array geometry and element spacing which aids in the design process.

To aid in the analysis and the evaluation of the primary objective, quantitative mea-

sures of array performance in terms familiar to conventional beamforming are included.

The two performance measures relied upon are directivity index and sensitivity ratio.

Sensitivity ratio is a relative measure of white noise array gain or array sensitivity. The

quantitative measure used to describe the penalty function in terms of array performance

is the minimum eigenvalue of the penalty function. One additional aid is a comparison of
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the shading obtained by tile design procedure with the aperture shading resulting from a

I)olph-Chebyshev design for a uniform rectangular array. The quantitative performance

measures and Dolph-Chebyshev comparison study enable an analysis and evaluation based

on proven conventional methods and parameters.

The array application used in this investigation deals with a large array composed of

2W0 elements in a three dimensional sound field. Arrays with a large number of elements

(as is the case here) lead to computationally complex and time intensive array processing

requirements; therefore, a significant issue concerns obtaining an implementation which

reduces or limits the computational complexity and processing times. In order to limit

the processing requirements, the aspects of directional (baffled) hydrophones or sensors,

array structural shading and the estimation process of the spectral covariance matrix are

not considered. The array structure is transparent to sound fron any direction and the

spectral covariance matrix is assumed to be available. The procedure is based on a plane

wave development. Since the MLM requires a matrix inverse, even the use of these sim-

plifications still leads to a time intensive process. In an effort to further reduce processing

times, the investigation highlights a comparison of two matrix solution methods:

" Gaussian elimination

" a Toelitz bordering approach based on Levinson's method.[8]

1.3 Overview

The remainder of this paper is divided into three chapters and two appendices.

Chapter 2 describes the problem and is broken into four additional sections.

" Section 2.1 describes the array geometry.

* Section 2.2 defines the signal model, develops the spectral covariance matrix and

its properties, reviews conventional beamforming and MLM beamforming, defines

array gain and develops the spatial scanning problem.

" Section 2.3 develops the penalty function.
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* Section 2.4 develops and defines the bearnformer performance measures.

Chapter 3 contains the beaniforming design results. Tile design results are split into

three ;ections.

" Section 3.1 includes beamformer verification results which are useful as points of

comparison.

" Section 3.2 contains extensive results on broadside beam pattern designs.

" Section 3.3 contains results of steered beam pattern designs.

Chapter 4 contains a summary.

Appendix A contains timing data resuiting from the investigation of the Gaussian

elimination and Toeplitz bord .ring matrix solution methods.

Finally, appendix B contains a comparison of the aperture shading design results with

the traditional Dolph-Chebyshev design procedure.
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Chapter 2

Problem Development

2.1 Array Geometry

The array used in this investigation has proposed applications on submersible bodies.

It is located on a 60 degree arc of a cylindrical surface. The array is shown in figure 2-1

and is to be operationally oriented as depicted. The array has intrinsic structure but is

neither linear nor circular. The array is to be applied in a manner which reduces the

problem to processing only the half space on the same side of the cylinder on which the

array is located.

The array consists of 200 elements arranged in ten rows (or lines) of twenty elements

each. Considered separately, each line of twenty elements is identical. The array is

symmetric about the x and z axes for the coordinate system defined in figure 2-2. This

structure leads to some important results when considering the spectral covariance matrix.

The design wavelength is defined as the wavelength (A) that determines the element

spacing. All of the work performed in the investigation of this array is accomplished at the

design wavelength; therefore, design wavelength and A are interchangeable. The element

spacing is specified to be one quarter of the design wavelength or A/4. All dimensions of

the array (including the cylinder radius) are related in terms of the design wavelength.

The structure of the array can be compared to a simpler two dimensional planar array.

This comparison is valuable because uniform planar arrays are well documented. In order

to prove this comparison is justified to first order, the extent the actual three dill, i-Ional

13



Figure 2-1: Array Geometry

.

0.25A H 2.15A y z

_ x
0.223A

3 =.228A L 4.75A

Figure 2-2: Array Coordinate System and Dimensions
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array deviates from a true uniform planar array must be determined. If the array is

considered to be a structure of ten 20 element line arrays , then the length (L) of the line

arrays is 4.75A. If the angular separation of the line arrays is uniform and the arc length

of this angular separation is approximately linear and equal to A/4, then the relationship

between R and A can be determined by equating the arc length of the 60 degree sector to

the arc length enscribed by the 10 line arrays. This results in

7r A
-R = 9- (2.1)3 4

or

R= 27A (2.2)
47r

By applying some simple trigonometry, the planar height (H) of the array as projected

onto the x-z plane is equal to the radius R, or 2.15A. The maximum deflection of the array

(or a measure of the curvature from the x-z plane) is approximately equal to 0.288A. The

projected vertical spacing in the array center is equal to 0.25A and is approximately equal

to 0.223A at the array top or bottom. A pictorial explanation of these dimensions is

illustrated in figure 2-2. The projected array has uniform spacing along the axial (or z)

axis and nonuniform spacing in the x direction (although the spacing is nearly uniform.)

Therefore, the three dimensional array can be approximated by a uniform rectangular

array if the effects of curvature are neglected. The rectangular array approximation

is better in the axial direction; therefore, the expectation is that design results in the

axial direction will more closely resemble results of the uniform rectangular array. The

rectangular array comparison provides a reasonable model which is useful in establishing

an intuitive feel for the expected performance of the test array.

2.2 Array Processing Approach

2.2.1 Signal Model

One purpose of an array and its associated processor is to provide an estimate of

the directional spectrum of a space/time stochastic process. The directional spectrum

15



information is contained in the frequency wavenumber function. To understand the ar-

ray processing system the signal model must first be defined. The space/time stochastic

processes being considered are assumed to be temporally wide sense stationary (defined

in reference [9]) and spatially homogeneous (defined in reference [1].) The wide sense

stationarity assumption implies that disjoint frequency bands are uncorrelated. The spa-

tial homogeneity assumption implies that disjoint wavenumber bands or directions are

uncorrelated, i. e. no correlated multipaths. Both the wide sense stationarity and spatial

homogeneity assumptions are not universally valid in the ocean environment, but can be

closely approximated in practice by proper choices of time and space scales. Although

time domain analysis is not addressed in this study and the actual physical dimensions of

the array are not known, the wide sense stationarity and spatial homogeneity assumptions

are presumed to be valid based on anticipated time and spatial scales. The space/time

stochastic processes are represented in a Stieltjes integral form [10] as

x(t, z) = f f ei(2 rft-kz)dX(fk) (2.3)

where t is the time argument, z is the vector representing the spatial position and k is

the three dimensional wavenumber vector.' For the wide sense stationary and spatially

homogeneous processes considered, X(f, k) defines a Fourier transform representation for

a plane wave of frequency f and wavenumber vector k. Thus x(t, z) is composed of a

superposition of plane waves X(f, k).[1] For the three dimensional ocean environment, f

and k must satisfy the dispersion relation

IkI = 27rf/c (2.4)

Equation 2.4 results from the three dimensional wave equation where c is the speed of

sound in water. This dispersion relation corresponds to free space propagation. The

space/time covariance function K(t, t-r, z, z-Az) is the cross correlation of the stochastic

process at times t and t - r and spatial positions z and z - Az. All processes are assumed

'Lower case letters are used to depict temporal representations while upper case letters depict transform
representations. Similarly, upper case bold face letters represent matrices and lower case bold face letters
represent vectors.
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to be zero mean stochastic processes. K,(t, t - T, z, z - Az) is determined by

K,(t,t - r,z,z - Az) = E[x(t,z)X*(t - r,z - Az)] (2.5)

where * denotes complex conjugate and E represents the ensemble expectation operator.

The frequency domain representation of the space/time covariance function is the spectral

covariance function S:(f, z,z - Az) which is defined as

S7(f,z,z - Az) f K2 (t,t - r,z,z - Az)e-j 2lrfdr (2.6)

S (f, z, z - Az) represents the cross spectra between positions (corresponding to array

elements) z and z - Az. The frequency wavenumber representation of the space/time

stochastic process, called the frequency wavenumber function P(f, k), is defined as

P(f, k) = f S(f, z,z - Az)ejk' Zd(Az) (2.7)

Since f and IkI are related by equation 2.4, fixing f reduces the problem to determining

the direction of propagation of IkI. This is the approach used throughout this study; f

is fixed and then the half spare in which the array resides is scanned to determine the

direction of propagation parameterized in terms of an bearing in azimuth and an elevation

angle. The estimate of the direction of propagation or directional spectrum, embedded in

the function P(f, k), is the desired output of the array processor.

2.2.2 Spectral Covariance Matrix

An examination of the spectral covariance matrix is included at this point because it

aids in the understanding of the beamforming procedure and also reveals some pertinent

characteristics of the matrix operations which are encountered.

The spectral covariance matrix can be decomposed into two components, one coherent

and one incoherent, by setting (dropping arguments for brevity) 2

S -a= ddt + ~Q (2.8)

2t represents complex conjugate transpose

17



where

ejk..z]

d =(2.9)

eik'.ZN

is the geometric phase or direction vector of a plane wave signal propagating with wavenum-

ber vector k, and signal strength o. Q represents the normalized (trace Q =N) noise

cross spectral density matrix of element outputs with noise strength OaN. If the noise

consists solely of uncorrelated components, then Q reduces to the identity matrix I.

The coherent input places the restrictions on f and k. found in equation 2.4. The

coherent input used in this study consists of plane waves which are modeled at time t and

position z as

x(t,z) = a(f)ei(2 ,ft - k z) (2.10)

where a(f) is a frequency dependent amplitude function. The coherent component of the

spectral covariance matrix resulting from the plane wave input (determined by applying

equations 2.5 and 2.6) is

4ddt = 4e - ;k .'Azi,.  V i, (2.11)

where as is frequency dependent and Azij = zi - zj corresponds to the vector difference

between the ith and jth elements. The exponential argument k, - Azi, represents the

phase delay due to propagation of the plane wave between the ith and jth elements.

The first observation deals with the structure of a matrix formed by equation 2.8.

Matrices of this form are Hermitian symmetric or simply Hermitian. A Hermitian matrix

is defined by S = St. The second observation results after examining equation 2.11.

The coherent input is dependent only on the difference in element positions. This spatial

homogeneity leads to an embedded Toeplitz structure. A Toeplitz matrix is defined as a

matrix whose ijth element s(i, j) is a function of (i-j) and thus has identical elements along

the main diagonal and each of the subdiagonals. (Reference [11] contains an excellent

summary of Hermitian and Toeplitz matrix properties.) To fully see the structure of

the matrix formed by equation 2.11 for the test array, consider an element identification

schem. ° where the elements are numbered consecutively along each successive row (or line)

starting at the array top. This numbering scheme is shown in figure 2-3. The spectral

18



1 X--X--X-----X--X--X --X--X---X-- --)(--X------X2(

21 X X X X X X XXX X X X GO> ( X~ 1

61 X XX XX X XXX X X X X X -X-X-X)<-Y 80
81 X X X X X X X X X XX X XXX X X X X 100

101 X XX XX XX XX XX X XX X XX X 120

121 X X X X X X X X X X X X "X X X X X X X X 140

141 )< X) )( )( )< X( )<X( X )( X )( )< X-> 160
161 X )( x x x ) )( ) X )( X X X X ( X 1 80
81 X X X X X X X X X X X X)( X X> X 200

181 180

Figure 2-3: Element Numbering Scheme

covariance matrix resulting from this numbering scheme is shown in figure 2-4 where the

matrix is partitioned to indicate specific sub-matrices. Each skj,z corresponds to the cross

spectral covariance of the kth element with the Ith element. Each sub-matrix corresponds

to the spectral covariance formed between elements located in two of the line arrays. The

main diagonal of sub-matrices is the result of forming the spectral covariance of each line

array with itself; the main diagonal sub-matrices are all identical because each line array

is identical and the coherent input is perfectly correlated.

S. can also be represented as a two level matrix where to the first order level

SI,1 S1 ,2 ... S1,10

S 2,1 S2,2S:: =(2.12)

S10,1 S 1 0 ,1 0

Each sub-matrix S, is the cross covariance between the ith and jth line arrays and

is defined in figure 2-4 by each partition. For example S 1 ,2 is the sub-matrix in the

partitioned first row and second column of figure 2-4 and is formed from the line array

with elements 1 through 20 and the line array with elements 21 through 40. The spectral

covariance matrix has several distinctive characteristics.

" S, is NxN (or 200x200 for the test array.)

" Each sub-matrix, S,, is Toeplitz and Hermitian

" S., to the first order level, is Hermitian but not Toeplitz because of the vertical

19
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structure of the array. However, the main diagonal is a constant (to the first order

level.)

* The addition of the incoherent term will not change the embedded Toeplitz structure

of the sub-matrices.

Matrices with the form of S, are frequently classified as a two level matrices. Ref-

erences [12] and [13] include a complete discussion on the classification of matrices in

this manner. S, in this case is classified as a Hermitian-Toeplitz two level matrix, but

by permuting corresponding rows and columns, the matrix can be transformed into a

Toeplitz-Hermitian two level matrix where the first level is Toeplitz and the second level

sub-matrices are Hermitian. This is important because there currently exist efficient and

documented algorithms which can invert a Toeplitz-Hermitian two level matrix.[13] As is

shown later the spectral covariance matrix needs to be inverted. Details of the matrix

inversion selection process are included in Appendix A. (This selection process played a

very important role in this investigation; the time intensive inversion process had a direct

relationship to the processing time.)

2.2.3 MLM Development

In the context of this investigation array processing and beamforming are synony-

mous. There is much literature on beamforming, both conventional and data adaptive.

Complete reviews of processing methods are readily available.[14] Since the purpose of this

study is to develop a beam pattern design procedure that can be applied to nonuniform

multidimensional arrays, the choice of usable methods is limited to the MLM beamformer.

The procedure can be more accurateiy described as a minimum variance, distortionless

processor (sometimes referred to as MVDP).[6] From this point on, the beamformer will

be referred to as the MVDP because it more accurately describes the processor. What

follows is a development of conventional beamrforming and the MVDP.

w(f kT) is the aperture weighting function with the processor steered to kT. 3 For the

sampled aperture consisting of an N element array, the i t h component of w is the complex

'The development is the same as used in reference [1].
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conjugate of the i t h element's weighting (wf)

w(f I kT) w (2.13)

The aperture weighting function, or weighting vector, can also be considered to be an n-

dimensional taper or shading function for an n-dimensional array. It should be observed

that w is dependent on the steer direction and can be complex. The scanning vector

e(kT) steered to kT is defined as

_[ kr.l]

e(kT) - : (2.14)

ejkT ZN

where again zi is the ith element's position vector of an N element array. The scanning

vector can be interpreted as the plane wave phase delays which must be applied to the

array elements to steer the array in the direction of kT. The scanning vector also has an

interpretation of being a replica field or the field at the array produced by a source at

some position in the water column.

The output of the array beam steered to kT is defined in conventional beamforming

as N

Y(f,kT) = wtX= Zwi(fIkT)X(f, zi) (2.15)

This system architecture is depicted in figure 2-5. The array response pattern V(f, k~kT)

is given by
N

I(f,klkT) = wte Zwi(fIkT)ejk*' i  (2.16)
ti1

and represents the response of the array (steered in the direction of kT) over the aperture

to a plane wave signal. If k is fixed and the function W (f, k~kT) is evaluated over a spatial

region, then the beam pattern B is obtained where

B(f,O,OlkT) = W(f,kkT)k=_._a(O) (2.17)

where A is the wavelength and a(O, 4) is a unit vector specified in a spherical geometry.
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Figure 2-5: System Architecture for a 200 Element Array

Because P(f, k) is a measure of power, this leads to a representation of the response of

the array as a function of two array sensor locations. This will result in a second moment

representation for the array output and requires a second moment input. The array input

is the spectral covariance function S,(f, zi, zj) as defined by equation 2.6. The output of

the beam steered to kT is the power density spectrum Sy(fIkT) and is given by

Sv(fIkT) = w'(f kT)SZ(f, z,, zi)w(f.kT) (2.18)

Sy(f kT), as defined by equation 2.18, is the output of a conventional beamformer and

is the estimate of P(f, k) with the array steered to kT. The MVDP is obtained by

minimizing the response of equation 2.18 (minimum variance) subject to unity gain in the

look direction (distortionless response.) The MVDP solutions are [1,7,151

WMVDP(fIkT) S;le(kT) (2.19)
et(kT)SZie(kT)

WMVDP(f,klkT) - et(k)SZle(kT) (2.20)
et(kT)SX-1 e(kT)

1SYt,MVDP(flkT) =et(kr)S _'e(kT) (2.21)
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The MVDP method adaptively finds different aperture weightings for different input signal

fields such that sidelobes are adjusted to reject interfering coherent noise sources and

the incoherent noise. This method is optimum in the sense that it minimizes the array

response over the aperture of the noise field (the input signal not in the beam) by design

and application of a spatial filter. This spatial filter estimates the power in a plane wave

propagating with frequency f and wavenumber vector kT in the presence of interfering

plane waves and sensor noise.[16] To fully define the directional spectrum, the signal field

must be scanned over the appropriate angular space (which, for this study, is the half space

in which the test array is located.) If only uncorrelated noise is present, then uniform

weighting with the conventional beamformer is optimal.

2.2.4 Array Gain

Array gain is the improvement in signal to noise ratio due to beamforming. This is

a result of finite beam widths rejecting noise and signals not in the beam. Ideally, for the

signal of interest, signal rejection is small while the noise rejection is large resulting in a

large array gain. The array gain as such is defined as

G WtdJ2  (2.22)

GWtQW

which is simply the ratio of the signal response to the noise response. In the context of

the MVDP processor, the optimum array gain is [1,17]

Gpe = etQ-le (2.23)

For the case of spatially white or sensor noise with omnidirectional sensors, the array gain

becomes the white noise gain or

G w lwidJ2 < N (2.24)
wtw -

where N is the number of sensors. Equality occurs when the processor is perfectly matched

and there is uniform weighting. The processor is defined to be perfectly matched to the

signal directional characteristics when e = d where d is defined by equation 2.9.[17]

Mismatch occurs whenever e d and may, for example, be caused by non-plane wave
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propagation, errors associated with the sensors, sampling, quantization, and steering off

of the signal direction. Wh.n the errors due to mismatch are uncorrelated, the sensitivity

(Sm) of the array gain due to signal mismatch is related to G, by [18]

1
- (2.25)Gw

Used in this context, S or G, is a measure of robustness. Using WMVDP calculated

in equation 2.19 for a perfectly matched processor with S, = I, G, equals N and the

beamformer is robust. (WMVDP for this case is a normalized, uniform weighting.) Any

deviation from N indicates a degradation in berniformer robustness.

One additional expression for the array gain which turns out to be useful relates G in

terms of eigenvalues and eigenvectors of Q. The expression is

N Idtvi12  (2.26)
GEZ Ai

where A, and vi are the eigenvalues and eigenvectors, respectively.[181 This expression

shows that G is dominated by small ratios of Idtv I 2/p j. This effect is not well understood

because when A1 is small, dtv, is usually small also.

2.2.5 Spatial Scanning

The remaining feature to be specified is the spatial scanning problem. The spa-

tial field, as previously defined, is the half space in which the array is located. To fully

define the directional spectrum, the spatial field must be scanned or sampled. Equa-

tion 2.14 defines the method yet does not answer the question, "how finely must this field

be sampled?" The spatial sampling interval is defined in terms of Nyquist's sampling

requirements. This requires sampling at one half the natural beam width of the array

which is equivalent to sampling at twice the highest frequency of the field or spatially at

A/2. Three factors must be considered when determining the sampling requirements.

1. As described in reference [19], finer sampling results in a visual display with signifi-

cantly more content. This additional content is valuable when evaluating hard copy

or video outputs of the directional spectrum.
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2. If the natural beam width is determined by assuming the array is approximately

rectangular, then error will be introduced into the values obtained.

3. The MVDP beamformer is susceptible to serious signal suppression effects due to

signals arriving form directions between the processor beams. Minimizing this effect

requires more c!osely spaced scan directions.[17]

Consideration of these three factors leads to the selection of a scanning increment of

1/4 the natural beam width (BW). Verifying this is the proper decision requires the

evaluation of 1/2 and 1/8 BW scanning increments. There is one additional consideration

when determining the proper scanning increment; it involves the computational burden.

To illustrate this, the natural beam width of the array must be determined.

For the test array, BW is resolved into two directions called elevation (also known

as depression/elevation or D/E) and azimuth. These directions arise naturally when

anticipating an operational scenario; elevation is an angular measure off of a horizontal

plane (+90 degrees to -90 degrees) and azimuth is an angular measure fore and aft of a

vertical plane through the center of the array (0 degrees forward to 180 degrees aft). To

determine BW the assumption that the array is approximately uniform and rectangular

is applied. BW for a uniform rectangular array in the x direction is [20]

BW, A (2.27)

For the azimuthal direction, Laimuth = 4.75A and

BWazimuth = 0.067r 12 (2.28)

This leads to . zimuthal scanning increment of 3 degrees. In elevation (where the

rectangular array approximation is least valid), Leivation . 2.15A and

BWelevation = 0.1487r ; 262 (2.29)
3

Th's leads to a scanning increment in elevation of 6Z degrees.

The scanning increment is implemented using uniform angular separation. The scan-

ning system is best described using a global coordinate system of latitude and longitude
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scan pattern L. I L

1/8 BW 54 118 6372
1/4 BW 27 59 1593
1/2 BW 14 30 420

Table 2.1: Summary of Computational Requirements for Different Scan Patterns

where latitude corresponds to azimuth and longitude corresponds to elevation. The pro-

cedure implementing the spatial sampling is to choose La latitudes separated by the az-

imuthal scanning increment. Then along each latitude, Le longitudes are chosen separated

by the elevation scanning increment. The total number of scans, L, is

L-- LeLa (2.30)

Steers in azimuth (latitude) to 00 and 1800 are independent of the elevation angle. To

eliminate duplicate scans and place a scanning direction at 900 azimuth, a 3' offset is

incorporated at 00 and 1800 azimuth. This pattern results in La = 59. To place a

scanning direction at 00, a 31" offset is incorporated at +900 and -90' elevation; this

results in L, = 27. Therefore, the total number of scans is L = 1593. The scanning

pattern as projected onto a plane surface is shown in figure 2-6.

Now consider the computational requirements of this scanning pattern. To define

the directional spectrum equation 2.21 must be calculated L times, once for each scan

direction. For an N element array, equation 2.21 represents an N by N system of equations.

Solving an N by N system of equations L times is a time intensive process. Likewise, to

determine the beam pattern, equation 2.20 must be calculated L times. Fork.unately, the

N by N system of equations only needs to be bolved once for the array steer direction.

Table 2.1 lists the scanning requirements for 1/8 BW, 1/4 BW and 1/2 BW scanning

patterns. Based on these computational requirements the desire is to sample the spatial

field at the fewest number of points consistent with adequate beamformer performance.

The scanning pattern used is not ideal. The algorithm implementing this pattern is

very simple; with simple modifications 1/2 BW and 1/8 BW scanning patterns can be

tested. However, the use of uniform angular scanning as implemented does not translate
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Figure 2-6: Projected Scanning Vector Locations. Every other scanning increment in
elevation and azimuth is shown. The shading illustrates the variability in azimuth of the
spatial separation between scan directions relative to the spatial separation at broadside
resulting from the uniforiii angular scanning implementation.
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into uniform spatial scanning. Whereas the spatial scanning is uniform in azimuth, the

scanning in elevation is not spatially uniform, particularly in regions close to 00 and

1800 in azimuth where the sampling in elevation is very dense. Figure 2-6 illustrates

the differences in spatial scanning increment in elevation relative to the broadside spatial

scanning increment. If this method of scanning is to be practically implemented, the

optimum way is to rotate the pattern 900 and limit the elevation scanning region to the

prime elevation angles of ±60 where no structural shading occurs. This results in fairly

uniform spatial scanning, but over a limited spatial region.

In summarizing the spatial scanning problem, a simple method that suits the purposes

of the idealized synthetic investigation of the test array is presented. The scanning pattern

occurs in uniform angular increments of 30 with 59 steers in azimuth and 6W° with 27
3

steers in elevation for a total of 1593 steers. The spatial increment corresponds to 1/4

BW scanning. The simple scanning method is easily modified to allow the use of different

scanning increments, but does not provide uniform spatial sampling.

2.3 Beam Pattern Design Method

In attempting to design beam patterns, the objective is to reduce the sidelobe levels

compared to sidelobe levels characteristic of traditional shading methods. The beam

pattern design procedure is implemented by the use of a "penalty function," so named

because the function penalizes beam pattern lobes in regions of high directional intensity

while enhancing the lobes in regions of low directional intensity. To understand this

function, the actual processes undertaken by the MVDP beamformer must be understood

in a qualitative manner.

The MVDP beamformer designs optimum beam patterns by minimizing the energy in

the beam subject to the constraint of unity gain in the scan direction. The beam energy

is represented as

S(f kT) f P(f, k)IW12dk (2.31)

which is interpreted as the integral over all wavenumber space of the frequency wavenum-

ber function weighted by the square magnitude of the array response pattern (or beam
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Figure 2-7: Null Placement Effects. For a source (solid line) incident at some k, the
MVDP beamformer optimally places a null in the array response pattern (dashed line) in
the direction of the source incident at k.

pattern). The MVDP beanformer designs array response patterns based on the frequency

wavenumber fit'tion of the incident field in order to minimize the beam energy. If a dis-

crete source not propagating in the look direction is incident (resulting in large P(f,k)

for that direction), then IN 2 is reduced to minimize the beam energy. The MVDP beam-

former optimally places nulls in the directions of off-look direction sources.[15] This null

placement effect is illustrated in figure 2-7. If diffused directional sources are located in a

finite sector, then a lower array response occurs in the direction of the sector. However,

the placement of deep nulls results in higher overall sidelobe levels which increases the

effects of sensor noise, the other source term which contributes to total beam energy.

Conversely, minimizing the effects of sensor noise by lowering overall sidelobe levels re-

duces the effects of nulls and increases the beam energy from off-look direction sources.

The effects due to discrete directional sources and sensor noise are compromised until the

minimum beam energy is obtained.

Since the desired effect is a reduction in sidelobe levels, the primary component of

the penalty function consists of a field of diffuse directional sources of varying intensity.

The field of directional sources is modeled similarly to isotropic noise which is directional

noise incident uniformly from all directions with uniform intensity. The penalty function

directional source component consists of a modified isotropic noise field, incident uniformly

from all directions but with nonuniform intensity. In terms of equation 2.31, the penalty

function (defined by P(f, k)) in the directions of beam pattern sidelobes has high intensity
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while in the direction of the beam pattern main lobe, has low intensity relative to the high

intensity region. A three dimensional mesh representation of the penalty function is shown

in figure 2-8. In regions of high intensity, [W12 is reduced. In regions of low intensity, [1W 12

can be large because the weighted integrated response is small. If the depressed sector of

low intensiy dir~ctional -ourccs iz ccntcrcd about the stccr direction and envompases an

area equivalent to the main beam region, the main beam of the resulting array response

pattern will be large (supported by the unity gain constraint in the look direction) relative

to the sidelobe region which is suppressed due to the uniformly distributed high intensity

sources located in that region. The net effect is the desired result: a beam pattern

with suppressed sidelobes. Figure 2-9 shows an overhead view of the penalty function

centered about the steer direction. (The penalty function is always centered about the

steer direction.) As shown, the penalty function consists of three regions.

1. The center region, defined by width in elevation (AO,) and width in azimuth (Ao,),

represents the low intensity region

2. The transition region, defined by width in elevation (AOt) and width in azimuth

(Aot), serves as the interface between low and high intensity regions

3. The surrounding background region of high intensity

The issues pertinent to penalty function design are the shapes and widths of the center and

transition regions, the amount of stabilization, and effects of the steer direction. Several

of these parameters are discussed now; others are addressed in a later section.

The method used to input the penalty function into the array processor must take the

form of a spectral covariance matrix. Using the same concepts as found in equations 2.8

and 2.11, the penalty function PF is defined as

PF = I+SN (2.32)

where orv is the sensor noise strength serving as a stabilization factor and SN is the

directional component representing a modified isotropic noise field in terms of a sum

of plane waves. The plane waves model this directional field at one half the ranning
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increment. SN is defined as

7r- 7r 200 200

S. j jS(f, 0, ) Z e a(9q)-AZ (2.33)
=00=0 i=ij=:1

where S(f,0, ) is a spatial weighting function acting on the plane waves and a,(0, €) is

a unit directional vector defining the direction of propagation. Ei=0 Er=0 represents the

sum over the scanning space consisting of the half space in which the array is located. SN

is simply the sum of plane waves spatially weighted to form the distinct sectors shown

in figure 2-9. A two dimensional cross section of S(f, 0, q) is shown in figure 2-10. This

illustrates the regions of high and low intensity. Two methods implementing the penalty

function are now examined.

2.3.1 Method A

Method A uses the direct application of null placement to reduce beam pattern

sidelobes. The high intensity directional noise field is formed with unit intensity while

the low intensity region is formed with zero intensity (or no directional field). The sensor

noise is then used to stabilize the process. The resulting directional noise field causes

the sidelobes to be suppressed while the main lobe level is maintained by the unity gain

constraint.

Referring to figure 2-10, method A is implemented by setting Smaz(f, 0, 0) 1 and

Ap = 1. In terms of equation 2.33, this requires

SA,center(f, ,0?) = 0 (2.34)

(0-0)2 (__-__0)

SA,traition(f, 0, -0) = ezp[- ( ]e0p[- 2- (2.35)

SA,background(f, 0, 0) 1 (2.36)

This produces fiat center and background regions interfaced by a Gaussian shaped tran-

sition region. 0, and 4o are the directions representing the appropriate center/transition

region boundary. For a fixed number of increments in the transition region, the region

dimensions and roll off's can be controlled by adjusting the variance (a2 for elevation and

0' for azimuth) of the Gaussian function.
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2.3.2 Method B

Method B uses the opposite of null placement to reduce sidelobes. Instead of placing

nulls in the sidelobe region, anti-nulls are placed in the main lobe region. This is accom-

plished by forming the high intensity region with zero intensity (no directional sources)

while forming the low intensity region with negative intensity sources. The low intensity

region still has lower intensity relative to the high intensity region. The effect of sidelobe

suppression is indirectly accomplished with method B. The negative intensity (or low in-

tensity) region can support very large main beam levels since the integrated beam energy

from equation 2.31 is small. This effectively enhances the main lobe. The sidelobes are

suppressed when the unity gain constraint scales the large main lobe. The sensor noise is

again used to stabilize the process; however, greater stabilization is required for method

B than is required for method A.

Referring to figure 2-10, method B is implemented by setting Saz(f, 0,) = 0 and

Ap - 1. In terms of equation 2.33, this requires

SB,center(f, , ) -1 (2.37)

SB,transition(f, 6, ) = -exp[- (0 - 0o)2 2 2 (2.382o ]ezp[- 2 2 (2.38)

SB,background(f, , €) = 0 (2.39)

The region shapes and dimensions are controlled in the same manner as in method A.

In order to discuss the other issues, quantitative measures which enable an evaluation

of those relevant issues must be determined. In particular, measures are needed to evaluate

the effects of region widths and the amount of stabilization required.

2.4 Beamformer Performance Measures

2.4.1 Eigenvalues

Equation 2.21 requires that some specific restrictions be placed on the spectral covari-

ance matrix of the penalty function. The most significant requirement is that S. must be

invertible. For a meaningful problem, this is ensured by requiring S. be positive definite.
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The approach taken to ensure this requirement is satisfied centers around the eigenvalues

of S1.

In section 2.2.2, it was determined that S,, is Hermitian which results in some special

eigenvalue properties. All eigenvalues in this investigation are calculated using the Hermi-

tian matrix routines available in the EISPACK eigensystem package.[21] Since eigenvalues

of Hermitian systems are always real [22], a simple characterization of S. is obtained. This

simple characterization has physical interpretation which is now pursued.

Consider the eigenvalue problem

Svi = Aiv, (2.40)

where A, is the tth eigenvalue and vi is the eigenvector corresponding to Ai. S. can be

characterized as a measure of the energy of the received signals (similar to the eigenvalue

interpretation of array gain.) This leads to an energy interpretation of eigenvalues where Ai

is a measure of the energy projected in the direction of vi. Small Ai represent eigenvectors

with low intensity. Low energy levels are associated with eigenvectors corresponding to the

low intensity region of the penalty function. Again, this is consistent with the eigenvalue

representation of array gain where small eigenvalues correspond to components with less

noise.[17] Since Sr must be positive definite, the smallest eigenvalue, Amin, must satisfy

Ami, > 0 (2.41)

Intuitively, a penalty function with finite (and positive) energy throughout the scanning

space as measured at the sensor is specified since negative or zero energy systems do not

possess physical interpretations in the ocean environment.

With this interpretation for Sz, positive definite matrices can easily be generated. The

value of Ain is controlled by the stability factor. By generating a fixed coherent field by

equation 2.33, Amin is varied by adjusting ok2 in equation 2.32.

While the requirement of equation 2.41 is essential, Am.i, must also be considered

jointly with A,,a, the maximum eigenvalue. In particular, the ratio of A,.a/Amin is very

important. This ratio characterizes the dynamic range of S,. A large dynamic range

places more demands on the beamformer than a small dynamic range; therefore, dynamic

range is an important issue when considering beamformer performance. Dynamic range
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is applied in the area of array sensitivity and superdirectivity and is considered in the

next section.

2.4.2 Sensitivity Ratio

The robustness constraint used in the investigation incorporates the principles associ-

ated with the white noise array gain. S, related to Gw by equation 2.25, is a measure of

sensitivity to uncorrelated tolerance errors.[17] To ensure robust beamformer performance

a constraint is applied to S,.[18] The robustness constraint is applied to prevent superdi-

rective performance. Superdirective performance is undesirable because a superdirective

array is very sensitive to sensor noise and uncorrelated mismatch errors. Superdirectivity

is characterized by extremely low values of G,,.

The actual constraint applied couples G, to a parameter called the array sensitivity

ratio 77 which is defined as

q/- Nwtw (2.42)

Equation 2.42 is derived by substituting for WMVDP (as defined in equation 2.19) into

equation 2.24. After some matrix manipulation (since Sz is Hermitian, then S. 1 is also

Hermitian), the result is
GwMVDP- etS-'dj2

GeMVDP (2.43)

Calculating wtw yields
ww etS- 2 e

(etSz'e)2 (2.44)

For the perfectly matched beamformer,

W,MVDP (2.45)

Comparing to equation 2.25, it follows that the magnitude squared of the element weight-

ing vector is a measure of beamformer sensitivity (or robustness.) Since Gw is always less

than or equal to N, equation 2.42 is the ratio of the uniformly weighted Gw to GwMVDP

or simply a measure of how far the MVDP beamformer white noise gain deviates from

N. If w represents a uniformly weighted aperture, then t equals 1 and the beamformer is

robust. As the beamformer becomes less robust, 17 increases and the array becom-' more

sensitive.
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The sensitivity ratio as defined in equation 2.42 is a very convenient measure of beam-

former sensitivity since w is available. But qj must be related to superdirective array

performance. Experience shows that superdirectivity occurs at sensitivity ratios in the

range of 2.5 to 3.0; this leads to the constraint

ij < 2.5 (2.46)

The value of t7 is controlled by varying the dynamic range of S.. The addition of a' to the

diagonal elements of S. adds a 2 to each eigenvalue and does not alter the eigenvectors.[18]

Therefore, the inherent structure of the spectral covariance matrix is not changed. If

Amn << 1, then adjusting Ami, does not significantly affect Am,,, thus controlling the

dynamic range. Large dynamic ranges lead to superdirective array performance; therefore,

tj is controlled by limiting the dynamic range of S2 .

2.4.3 Directivity Index

Until this point, the analysis of the array performance has been limited to an ideal

ocean; one that has a perfectly coherent signal in incoherent noise. To examine the effects

in a more realistic ocean environment, the requirement of incoherent noise is relaxed and

the case of isotropic nose is considered.

Directivity index is defined as the array gain of a perfectly coherent signal in isotropic

noise. Array gain can also be defined as the ratio, in decibel units, of the signal to noise

ratio of an array to the signal to noise ratio of a single element. The directivity index is

obtained by assuming a perfectly coherent signal which has cross correlation coefficients

between pairs of array elements of

(P'),,j = 1 Vi,j (2.47)

and isotropic noise with cross correlation coefficients

(in(),, i -=sin( lz, - z,) (2.48)

where zi is, as before, the position of the ith element. Isotropic noise is defined as having

the noise power per unit solid angle constant in all directions. Reference (1] describes it as
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the superposition of plane waves propagating from all directions with uniform statistical

level. Isotropic noise is commonly proposed as a first order model for ambient sea noise.

Under these assumptions, the directivity index (DI) can be calculated by

Ei, Ej Pj (2.49)

where wi is the weight of the i t h element.[23] DI for a uniform rectangular array with

dimensions corresponding to the test array is approximately 18 dB.[20]

Use of DI is an attempt to obtain a performance measure based on a "more" realistic

ocean than previously considered. Since "real" ocean noise is directional in both the

horizontal and vertical and ocean multipaths cause reduced signal coherence, the use of

DI has practical limitations. However, DI is commonly used and is useful as a more

realistic measure of beamformer performance in the real ocean.
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Chapter 3

Beamforming Results

0.1 Preliminaries

Three preliminary issues must be resolved before the analysis of beam pattern designs

can proceed. To aid in beam pattern analysis, a visual output is necessary. The relevant

outputs used ir this study are contour plots of the spatially scanned output, the beam

pattern and the square magnitude and phase of the element weights. The contour plots

are generated from a uniform grid of points. For the array output and beam pattern

contours, the grid is 27 by 59. For the element weight contours, the grid is 10 by 20.

Since the element weights are complex, it is convenient to plot the square magnitude of

the weights and a corrected phase. The square magnitude of the weights are scaled to a

maximum value of 1 (or 0 dB). The corrected phase (4Pj) of the ith element has the effect

of the propagation delay across the array removed. This is calculated iy

2 r
= - 27r (3.1)

A

where Oi is the element's actual phase, ar is the scan direction, and zi is the element's

position vector. All four plots have axes correspond ag to the angular position in the

spatially scanned half space. For the magnitude and phase plots, these axes relate the

element positions in terms of their location in the scanning field.

The next issue is the verification of the beamforming algorithm. The test used to

verify proper operation is a plane wave incident at 00 elevation ar 1 90' azimuth (true
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broadside case) in the presence of sensor noise only. For this test the expected results
are a sensitivity ratio of 1 (i. e. GwMVDP = N = 200) and a uniform weighting vector.

The MVDP beamformer results are as expected with DI = 39.2. The array output for

this plane wave case is shown in figure 3-1. Observe that the array output correctly

detects the plane wave. Figure 3-1 is also useful in that it provides some insight into the

azimuthal and elevational resolution of the array processor. The beam pattern resulting

from the plane wave input is the conventional beam pattern steered to 0' elevation and 900

azimuth; this is shown in figure 3-2. In figure 3-2, observe that there is unity gain in the

scan direction as required in the MVDP derivation. Also, observe the first sidelobes (in

both elevation and azimuth) are at -13 dB which is as expected for a uniformly weighted

rectangular array. The second sidelobes in azimuth at -18 dB also correlate well with the

rectangular array approximation. These two plots are useful as points of comparison for

the broadside results. Results are also included for steered patterns, in particular, patterns

steered to 0' elevation and 1020 azimuth. For comparison purposes in anticipation of the

steered results, the conventional beam pattern steered to 0' elevation and 1020 azimuth

is included in figure 3-3.

The last issue concerns the sufficiency of 1/4 BW scanning. When a simple penalty

function, set up to ensure directions between scanning increments are present, is input to

the beamformer for the cases of 1/8 BW, 1/4 BW and 1/2 BW scanning, no observable

effects due to incident plane waves between scan directions are present. Visually, the

finer the scanning increment, the better (qualitatively) the output appears which is as

expected. These results confirm the sufficiency of BW scanning.

3.2 Broadside Results

The analysis of this investigation centers on a systematic evaluation of the effects of

different penalty functions on beamformer performance (as measured by the sensitivity

ratio and directivity index) and beam pattern structure. The parameters specifying the

penalty function are listed in table 3.1 and are identified in chapter 2.3. The center region

widths are easily defined; they are simply the widths of the plateau. The transition regio,
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parameter symbol

minimum eigenvalue Amin
center region width elevation AO,

azimuth Aq0

transition region width elevation AOt
azimuth Aot

Table 3.1: Penalty Function Parameters

widths are more difficult to define. The widths are controlled by varying 0' and in

equation 2.38. From this, AOt and Aot are defined in terms of the 3 dB down points

along the major axes. All region widths are measured in degrees. The investigation

concentrates on penalty functions centered about 00 elevation and 90' azimuth; the bulk

of the results come from the study of the broadside case. This scan direction is used for

several reasons. First, patterns produced are symmetric and are very easy to analyze.

A shift off of this scan direction produces very asymmetric patterns; these patterns are

difficult to analyze. Second, this scan direction produces patterns that can be intuitively

compared to a uniform rectangular array steered to broadside. Finally, it is easier to

control the array output for method B penalty functions with the symmetric patterns.

Since the two methods investigated have different behavior and characteristics, they will

be addressed separately.

3.2.1 Method A

The first parameter to be resolved for both methods is the selection of Amim or more

specifically, the selection of the dynamic range of PF. From section 2.4.1, the larger

Amin can be correlated with larger values of ao. The more the N~ term dominates in

equation 2.32, the closer the penalty function resembles a sensor noise only case. This

leads to the conventional beam pattern. Intuitively, the most i:-teresting cases are for

small Amin or a large dynamic range. Experience gained from working with method A

penalty functions shows that this method has very predictable performance with respect

to dynamic range. For the penalty function parameters investigated with method A, the

dynamic range which leads to a sensitivity ratio of approximately 2 is on the order of 104
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minimum eigenvalue ( min,) ]dynamic range

1•10 - 3  1.1 _ 104

2.10 - 3  5.6- 103

3- 10- 3  3.7- 103
5-•10 - 3  2.2.103

Table 3.2: Minimum Eigenvalues and Associated Dynamic Ranges Tested for Method A
Penalty Functions

with a corresponding Ami, on the order of 10 - 3 . For purposes of comparison, Amin for

method A is restricted to the values listed in table 3.2.

With a dynamic range established, 15 cases are used to explore the effects of transition

and center region widths on method A penalty functions. These 15 cases are summarized

in table 3.3. Cases 1A through 5A examine the effects of center region width in azimuth.

The best results in terms of DI and first sidelobe level occur with case 2A. For this case the

first sidelobe level in azimuth is approximately -24.9 dB and in elevation is approximately

-22.8 dB with DI = 37.9 and tj = 2.09. For all cases 1A through 5A, changing A'O

has no effect on the first sidelobe level in elevation. Cases 6A through 11A examine the

effects of center region width in elevation. Widths beyond 52.50 cause the first sidelobe

to disappear. This results in wider main beam widths; therefore, cases beyond 52.50 are

not considered. The best results occur with case 11A. The resulting first sidelobe level

in azimuth is approximately -32.9 dB and in elevation is approximately -36.2 dB with

DI = 37.4 and q = 1.62. The eigenvalue performance characteristics for case 11A in

terms of ql and DI are shown in figure 3-4. As opposed to cases 1A through 5A, changing

AO, significantly affects first sidelobe levels in azimuth where up to 8 dB differences are

observed. This implies a partial coupling between azimuth and elevation first sidelobe

levels. Using case 11A as the comparison point, cases 12A and 13A examine the effects

of transition region width in azimuth while cases 14A and 15A examine the effects of

transition region width in elevation. Transition region width appears to serve as a fine

tuner in defining an effective method A penalty function width. The best results occur

for case 11A; therefore, the array output, beam pattern, square magnitude and corrected

phase for the elements weights are shown in figures 3-5 through 3-8. Figure 3-5 is Lie array
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case1A915 15 16. 1.

IA 15 15 16.2 16.2
2A 15 22.5 16.2 16.2
3A 15 30 16.2 16.2
4A 15 37.5 16.2 16.2

5A 15 45 16.2 16.2
6A 7.5 22.5 16.2 16.2

7A 22.5 22.5 16.2 16.2

8A 30 22.5 16.2 16.2

9A 37.5 22.5 16.2 16.2

10A 45 22.5 16.2 16.2
11A 52.5 22.5 16.2 16.2
12A 52.5 122.5 16.2 11.7
13A 52.5 22.5 16.2 21.0
14A 52.5 22.5 8.8 16.2

15A 52.5 22.5 28.6 16.2
all widths in degrees

Table 3.3: Method A Case Study Summary

processor's representation of the penalty function. Figure 3-6 has significantly reduced

sidelobes compared to the conventional beam pattern shown in figure 3-2. The weights,

as defined in figures 3-7 and 3-8, do not possess a structure that is readily identified with

a conventional weighting.

Based on the method A performance results, the penalty function design process for

method A is summarized by the following rules:

2.4 37.7

2.2 -'-'37.65

~ 2-37.6

2-1
. 1 8 . 3 7 .6 -

1.0

1.6 . 37.55

1.4 I 1 1. .. 37.5'
103 10-2 10-3 10-2

smallest eigenvalue smallest eigenvalue

Figure 3-4: Eigenvalue Performance Results for Case 11A
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* Selection of center region width is the most critical parameter choice and should be

on the order of the width of the main beam of the conventional beam pattern.

* Center region widths in directions with a large aperture should be selected first since

these widths appear to be uncoupled with directions with short apertures.

* The transition region widths should be selected to fine tune the effective penalty

function width to yield a smooth transition over a region less than the width of the

center region.

* Select a dynamic range that prevents superdirective performance. Large dynamic

ranges (but still not superdirective) usually result in lower first sidelobe levels, wider

main beams, and smaller DI, so some trade off may be desired in the selection of

dynamic range.

Using these guidelines, a significant reduction in sidelobe levels can be achieved using the

method A penalty function design process.

3.2.2 Method B

As was the case for method A, the dynamic range for method B penalty functions must

first be established. This issue is not as easily addressed for method B as it is for method

A. Although the most interesting cases are still for small \..i, method B penalty functions

exhibit unpredictable behavior in such a way that dynamic range must be considered as

a separate issue for each case. Therefore to cover the majority of possibilities, the values

of Arni, listed in table 3.4 are considered. These values of Amnin correspond to dynamic

ranges varying from 106 to 101.

The effects of transition and center region widths for method B penalty functions

are explored in 13 cases which are summarized in table 3.5. Cases 4B and 5B have

performance characteristics in terms of q and DI versus A ..m similar to method A; all

are superdirective at large values of dynamic range. The remaining cases have different

performance characteristics. These cases can not be driven superdirective even for very

large dynamic ranges. In fact, these cases exhibit a stable performance region where no

gain in sidelobe reduction is achieved with increasing dynamic range. The performance
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inininiurn eigenvalue (Ami) dynamic range

10 - 6  9.5 • 10

10 - 5  9.5 10 4

10 - 4  9.5- 10 3

10 - 3  9.5. 102

10-2 9.5. 101

10- 1  9.5. 10°

Table 3.4: Minimum Eigenvalues and Associated Dynamic Ranges Tested for Method B
Penalty Functions

results for case 9B (this case displays the best results of all 13 cas-s) are shown in figure

3-9. Observe the stable operating region for A,,, < 10- 3 .

Cases 1B through 5B examine the effects of Ao,. For cases 4B and 5B, A0, is too

wide causing the first sidelobes to be emphasized in addition to the main lobe. This is

the cause of the superdirective performance results. Case 3B results in the best sidelobe

control with first sidelobe level in azimuth equal to -49.7 dB, first sidelobe level in elevation

equal to -17.3 dB, Ami, 10- 4 , t = 1.6, and DI = 34.6 dB. No effects are observed on

sidelobe levels in elevation for cases 1B through 5B.

Cases 6B through 8B examine the effects of AO,. All cases produce first sidelobe levels

within 1 dB of each other, the best being case 7B with a first sidelobe level in elevation of

-18 dB. Sidelobe levels in elevation are ge,,erally insensitive to method B penalty function

parameter adjustment.

1.8 40 1 0 I

.o 1.6- 38

1.4- 36

o 1.2- _34

10-6 10-3  100 10-, 1(-3 100

smallest eigenvalue smallest cigenvalue

Figure 3-9: Eigenvalue Performance Results for Case 9B
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ease AOt [ Ao1

113 15 15 16.2 16.2

2B 15 22.5 16.2 16.2
3B 15 30 16.2 16.2
4B 15 37.5 16.2 16.2

5B 15 45 16.2 16.2

6B 7.5 22.5 16.2 16.2

7B 22.5 22.5 16.2 16.2

8B 30 22.5 16.2 16.2
9B 22.5 30 16.2 16.2

10B 22.5 30 16.2 11.7
llB 22.5 30 16.2 21.0

12B 22.5 30 8.8 16.2

13B 22.5 30 22.6 16.2
tall widths in degrees

Table 3.5: Method B Case Study Summary

Case 9B represents the best results of the center region width study and is used as the

comparison case for the transition region width study. Cases 10B through 13B investigate

the transiLion region width issue. Transition region effects for method B are similar to

those effects for method A; transition region width serves as fine tuning for the effective

penalty function width.

Case 9B represents the best results for all 15 cases. The array output, beam pattern,

square magnitude and corrected phase of the element weights are shown in figures 3-10

through 3-13. Figure 3-10 shows the array processor's interpretation of the method B

penalty function. The beam pattern in figure 3-11 has significantly reduced sidelobes in

azimuth compared to the conventional beam pattern found in figure 3-2, but has only

minor improvements in sidelobe levels in elevation. The element weights shown in figures

3-12 and 3-13 have a structure similar to conventional weights: high in the middle and

tapering towards the ends.

The method B investigation also revcaled several important issues characteristic of the

method B penalty function. One, the beamformer tends to emphasize edges; in particular,

the edges corresponding to the transition region. If the center region is wide enough. the

5-1
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edges are located in the vicinity of the first sidelobe of the conventional beam pattern.

This it shown in figure 3-14, the case 5B array output. This results in the superdirective

beam pattern found in figure 3-15. More significantly, the element weights appear to have

a threshold where the structure changes suddenly to a significantly different shape. This

is shown in figures 3-16 and 3-17.

The penalty function design process for method B is summarized by the following

rules.

" Select a center region width on the order of the width of the main beam of the

conventional beam pattern.

" Selection of the center region width involves a trade off against the array aperture.

For those directions with large apertures (azimuth), the full main beam width should

be used. For those directions with short apertures (elevation), the center region

width must be limited to something less than the main beam width due to the wide

main beam and low sensitivity to parameter adjustment.

" Select transition region widths to fine tune the effective penalty function width and

to yield a smooth transition over a region less than the width of the center region.

" Select the smallest possible dynamic range that is located in a stable operating region

if a stable region exists. Other 7 e, choose the largest dynamic range consistent with

superdirectivity and DI considerations.

Using these guidelines for method B designs, a significant reduction in levels can be

achieved with the more notable results occurring in directions of large array aperture.

3.3 Steered Results

The problem encountered with steered penalty functions is the introduction of asym-

metry into the problem. This asymmetry has very little effect on method A and has

very significant effects on method B. Only limited results are presented here; a single case

steered to 0' elevation and 102* azimuth is illustrated. The intent is to only provide an

intuitive feel for steered penalty function performance.
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3.3.1 Method A

Virtually no effects due to steers are encountered. When the case 9A penalty function

is steered to 0' elevation and 1020 azimuth, no distortion of the penalty function in terms

of the array output is observed. This is shown in figure 3-18. The really nice feature of the

method A procedure is that steering the penalty function has essentially no effect on the

sidelobe levels compared to the broadside case. This is shown in figure 3-19. Again, this

beam pattern has significantly better sidelobe levels than the steered conventional beam

pattern found in figure 3-3. The square magnitude and corrected phase of the element

weights for the steered case 9A are shown in figures 3-20 and 3-21. Again, the aperture

weights are not characteristic of any traditional shading.

3.3.2 Method B

The effects of asymmetry on the method B penalty function are manifested in the

concept of edge detections. The asymmetry causes the edges in directions of shorter

apertures to be more emphasized which causes a significant sidelobe to be placed in the

location of the short aperture edge. This is observed when case 9B is steered to 0* elevation

and 1020 azimuth; the array is superdirective in this case. As the penalty function center

region is made wider and as the array is steered further off broadside, the asymmetry

effects become more pronounced. (If the center region is too wide, a threshold effect

is again observed where the weights suddenly change character into a dumbbell shape.)

The placement of significant sidelobes at the locations of edges is similar to that which is

observed for the broadside case 5B. This effect is illustrated by observing the array output

and beam patterns for case 5B in figures 3-14 and 3-15 where both edges are emphasized

instead of just one edge in the direction of short aperture as is found in the steered case

9B.

Based on these observations, the method B penalty function procedure for steered

patterns must be modified. The key is to reduce the center reg- ,. width to a point where

the beamformer cannot distinguish one edge from the other; rather than two nulls in

the array output, there appears just one center null. If AO, is reduced to 0', then more

reasonable results are obtained. The array output, beam pattern and square n ,,,, de
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and corrected phase of tile element weights for the zero center region width steered to

0' elevation and 102' azimuth are shown in figures 3-22 through 3-25. Although these

results are not as good as the broadside case, the beam pattern still has reduced sidelobes

compared to the steered conventional beam pattern. Better performance may be obtained

if some small center region width is inserted.
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Chapter 4

Summary and Conclusions

This investigation features a systematic procedure to design beam patterns for a

general multidimensional irregular array, an area where little previous work has been

accomplished. The procedure uses a "penalty function" input to an MVDP beamformer.

The proper penalty function penalizes high sidelobes and encourages the main lobe. Two

different methods of penalty function design are investigated. Method A achieves sidelobe

reduction by placing nulls throughout the scanning space encompassing the entire sidelobe

region. This method is characterized by fully defining the scanning region; this leads

to very predictable and stable performance. Method B achieves sidelobe reduction by

emphasizing the main lobe. This is achieved by placing anti-nulls in the main beam

region. Method B is cLaracterized by a sparsely defined scanning region; this leads to

sometimes unpredictable and unstable performance. The design procedure is a four step

process:

1. Determine the main lobe beam width for the conventional beam pattern. The main

lobe width is best defined in terms of the angular separation between the first nulls.

2. Select the center region width based on the main lobe beam width and the design

method (A or B).

3. Fine tune the effective penalty function width by selecting an appropriate transition

region width.
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Figure 4-1: Plot of First Sidelobe versus Center Region Width, Method A. Conventional
main lobe widths in terms of angular separation between first nulls are approximately 24'
in azimuth and 500 in elevation.

4. Stabilize the beamformer by the addition of a sensor noise term in such a way to

prevent superdirective performance.

Selection of the center region width is the critical step. There is an optimum center region

width with respect to the resultant first sidelobe level. This is illustrated for both methods

as applied to the array used throughout the investigation; these results are shown in figures

4-1 and 4-2. The figures show that a minimum in sidelobe level occurs for each direction

except in elevation for method A where increasing the center region width eliminates the

first sidelobe.

Methods A and B each have distinctive characteristics. The character of each method

must be evaluated when considering which method to apply.

* Method A has roughly equivalent sidelobe performance in elevation and azimuth.

Method B performance in azimuth is significantly better than performance in ele-

vation.

" In terms of first sidelobe level overall performance in elevation is better with method

A; overall performance in azimuth is better with method B.

* Method A results in a narrower main lobe compared to method B which results in

better DI performance for method A.
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Figure 4-2: Plot of First Sidelobe versus Center Region Width, Method B. Conventional

main lobe widths in terms of angular separation between first nulls are approximately 240
in azimuth and 50' in elevation.

" Method A superdirective performance is characterized by high sidelobes in the un-

observed k space. Method B superdirective performance is characterized by high

sidelobes in the observable k space.

" Method A is easily steered; the method B procedure must be modified when steered.

" For method A, azimuth performance is partially coupled to elevation performance.

For method B, azimuth performance and elevation performance are uncoupled.

" Method B has stable operating regions where performance is independent of penalty

function dynamic range.

" The method B procedure has a threshold effect where the aperture weights suddenly

change character from shapes with one global maximum to shapes with two or more

local maximum.

The investigation is notably sparse of results for steered arrays; however, with the

use of some simple cases, significant sidelobe reduction is achieved for the examined case.

Only the effects of steers in azimuth are investigated because of the insensitivity found in

elevation. Considering the case presented, the gencral requirements for steered penalty

functions are illustrated.
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Additional investigation into several aspects not examined are warranted. Method A

is the design method of choice, however, it would be beneficial to obtain sidelobe reduction

in azimuth comparable to that found in method B. One proposal to achieve these levels

would be the incorporation of a two level background region which more heavily penalizes

sidelobes in azimuth.

Finally, one major issue which has been only surficially addressed concerns the robust-

ness or sensitivity of the design procedure in terms of the uncertainty in the amplitudes

and phases of the response. This issue is not i.,'! understood and yet is so important

when characterizing the performance of multidimensional arrays. Further work on this

robustness issue is required and is the next step in refining the "penalty function" design

procedure.

77



Appendix A

Spectral Covariance Matrix

Inversion

When considering an MLM beamforming approach, the problem of solving a large

system of equations quickly arises. At the outset of this undertaking, it was hoped ex-

ploiting the embedded Toeplitz structure of the spectral covariance matrix would lead to

significant savings in computational time. What follows are the results of the investigation

into Toeplitz matrix inversion techniques.

Consider the matrix problem

Ax = b (A.1)

where A and b are known. The standard matrix solution method which solves any nonsin-

gular system is Gaussian elimination.J24] The method is well documented and numerous

algorithms are readily available which efficiently incorporate the method, particularly the

LINPACK routines.[12] The problem with this method is that it is generally the slowest

of the standard methods. For an n by n real matrix, the number of multiplications for the

Gaussian elimination method is proportional to n3 . A Toeplitz inversion method using

a more efficient bordering method was developed by Levinson with the number of multi-

plications proportional to n2 .[8] The goal was to incorporate these savings into the more

complicated structure of the spectral covariance matrix.

The multidimensional beamforming problem produces a more complicated matrix
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scanning pattern [ method time(sec)

aggregate pattern Gaussian elimination 4400
Toeplitz 4950

single scan Gaussian elimination 265
Toeplitz 160

Table A.1: Computational Times for Matrix Solution Methods

structure as discussed in chapter 2.2.2. Two level Toeplitz matrix solution methods suit-

able for this complicated matrix structure have been developed.[25,13] The method used

is from the Toeplitz Package Users Guide.[13] The number of multiplications for a real

matrix with this method is approximately 2M 3 L 2 . For the particular array structure,

M = 10 and L 20. This represents a factor of 10 savings from the Gaussian elimination

method with n 200. Even with the overhead resulting from the permutations required

to obtain the proper structure for input into the Toeplitz algorithm, a significant savings

is expected. Two factors have not been accounted for up to this point. One, the matrices

are complex. Two, the system of equations needs to be solved 1593 times.

The two methods were tested against each other with a 1600 scanning direction pat-

tern, where 1600 vice 1593 scanning directions were used to accommodate permutations

of the right hand side of equation A.1, consistent with the permutation of A. The tim-

ing results were obtained on a Digital Microvax II computer system. The run times for

all scanning directions and for just one scanning direction are summarized in table A.1.

Although the actual beamforming was performed on an Alliant FX40 computer system,

the time performances for both methods were similar. 1

The superior performance of the Gaussian elimination method for the full problem can

be attributed to the LU decompositon method used. Considering the single run times,

the full Toeplitz procedure is dependent on b and must be repeated for each new right

hand side vector. Only a portion of the Gaussian elimination procedure is dependent on

b. The matrix decomposition need only be accomplished once while the back substitution

using the different right hand side vectors can be applied to the same decomposition.

'No individual run times were examined on the Alliant, only aggregate times. The Alliant times were
approximately 65 times faster than the Microvax.
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In conclusion, the Toeplitz method is more efficient when the matrix problem only

requires a few right hand side vectors; Gaussian elimination is more efficient when a large

number of right hand sides must be evaluated.
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Appendix B

Dolph-Chebyshev Weights

Aperture weights have been presented for method A and method B penalty functions.

As previously noted, method A aperture weights have no apparent special structure, but

method B aperture weights have a structure which may be compared to a conventional

weight. Since the MVDP beamformer is optimum in the minimum variance sense, a

useful comparison might be made with Dolph-Chebyshev weights which are optimum in

the relationship between minor lobe level and main lobe width. Using the procedures

outlined in reference [26], the aperture weighting for a uniform rectangular array can be

calculated with input parameters o side-lobe height in both azimuth and elevation. The

results for -60 dB side-lobes in azimuth and -22 dB side-lobes in elevation are shown in

figure B-1. The Dolph-Chebyshev aperture weights in figure B-1 are remarkably similar

to the aperture weights for case 9B in figure 3-12, particularly away from the edges of

the array. Furthermore, the side lobe levels for the case 9B beam pattern in figure 3-

11 can be characterized by -60 dB in azimuth and -22 dB in elevation. Based on these

results, method B penalty function aperture weights can be favorably compared to Dolph-

Chebyshev aperture weights.
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Figure B-1: Dolph-Chebyshev square magnitude element weights
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