[note techn

AD-A223 686

Data Link Test and
Analysis System/ATCRBS
Transponder Test System

Technical Reference

John Van Dongen

May 1990
DOT/FAA/CT-TN90/7

This document is available to the U.S. public
through the National Technical Information:
Service, Springfield, Virginia 22161,

DTIC
o SJ?%’“

US Department of Transportotion
Federal Aviation Administration

I R O -

Technical Center
Atiantic City Internationai Airport, N.J. 0840%

te technica

NOTICE

This document is disseminated under the sponsorship
of the U.S. Department of Transportation in the interest of
information exchange. The United States Government
assumes no liability for the contents or use thereof.

The United States Government does not endorse
products or manufacturers. Trade or manufacturers'
names appear herein solely because they are considered
essential to the objective of this report.

Technical Report Documentation Page

1. Report No. 2. Government Accession No.

DOT/FAA/CT-TN90/7

3. Recipient's Catalog No.

4. Title ond Subntie

DATA LINK TEST AND ANALYSIS SYSTEM/ATCRBS
TRANSPONDER TEST SYSTEM TECHNICAL REFERENCE

5. Report Date

May 1990

6. Performing Organizetion Code

ACD-320

7. Author's}

John Van Dongen

8. Performing Organization Report No.

DOT/FAA/CT-TN90/7

9. Performing Orgonization Name and Address

Federal Aviation Administration
Technical Center
Atlantic City International Airport, N.J. 08405

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

T2001F

¥2. Sponsoring Agency Name and Address
U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City International Airport, N.J. 08405

13. Type of Report and Period Covered

Technical Note

14. Sponsoring Agency Code

15. Supplementary Notes

\16. Abstract

\T&is document is reference material for personnel using or making software changes
to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar
,Beacon System (ATCRBS) transponder testing and data collection,

S~

'%his is one of a series of documents to be published on DATAS,

I‘: Key Weords

ransponder (testing of) Ff-#)
~Data Link,)

>Data Link Test and Analysis System

[SDATAS, ¢, .

,‘v‘a i 1 ‘\‘,’n ':3 oot Tl

18. Distribution Statement

This document is available to the U.S.
public through the National Technical
Information Service, Springfield, Va. 22161

Y
19. Security Classif. (of this repert)

UNCLASSIFIED

2. Security lc‘th this pege)
UNCLASSIFIED .-

2). No. of Pages 22, Price

152

.

Form DOT F 1700.7 (8-72)

Reproduction of completed poge authorized

TABLE OF CONTENTS

EXECUTIVE SUMMARY
INTRODUCTION

Background
DESCRIPTION OF EQUIPMENT

Hardware
Software

ATCRBS GENERAL DESCRIPTION

Interrogation
Side-Lobe Suppression
Reply

SYSTEM USER'S GUIDE

ATCRBS Transponder Field Testing
System Start-up
Data Collection Procedure
Main Menu
Test Options Menu
Transponder Test Screen
Test Summaries
Parameter Modification

Test Sequence Files
General Description
Test Numbers
SEQ - Test Sequence File Editor
Calling the SEQ Editor
Reading Files
Editing Files
Writing Files

BIBLIOGRAPHY
APPENDIXES
A - ATCRBS Field Test Functions

B - Sequence File Editor Functions
C - ATCRBS Field Tests

Page

vii

Acocession Yor

NTIS GRARI ?‘-
DTIC TAB 0
Unannounced O

Justification |

By

| Distribution/
Avallability Codes
fAvail and/or
Dist Special

vl

",Anja

Figure

10

11

12

13

14
15
16
17
18
19
20
21

22

LIST OF ILLUSTRATIONS

DATAS

ATCRBS

ATCRBS Interrogation
ATCRBS Antenna Patterns
ATCRBS Reply

Screen #1

PC System Activation
Test Options Menu
Transponder Test Screen

Transponder Test Screen with Field Test
in Progress

Transponder Test Screen with Field Test
Complete

Test Summary Menu Screen

Summary Menu Screen "Multiple Summaries"”
Selected

Test Summary Page

Parameter Modification Menus, Screen #1
Interrogation Parameter Menu

Test Parameter Menu

SEQ Display #1, File Access

SEQ Display #2, Example File Display
SEQ Display #4, Edit Screen

SEQ Display #3, Test List

SEQ Display #1, File Access in Write Mode

iv

10

11

12

13

14

15

17

18

18

20

21

22

25

25

26

28

28

Table
1

2

LIST OF TABLES

Interrogation Parameters

ATCRBS Transponder Tests

Page
21

24

EXECUTIVE SUMMARY

This document provides reference material for persons using the
Data Link Test and Analysis System (DATAS) for testing Air
Traffic Control Radar Beacon System (ATCRBS) transponders.

Included in this document is a brief overall description of the
DATAS, a brief description of the ATCRBS, a thorough description
of how to operate the DATAS ATCRBS transponder analysis system
(User Guide), a detailed description of the DATAS ATCRBS
transponder analysis programs, and a thorough description of each
of the transponder field tests.

vii

INTRODUCTION

BACKGROQUND.

Since the beginning of the federal operation of the air traffic
control (ATC) system in 1936, the amount of air traffic has
increased dramatically. 1In 1981 the Federal Aviation
Administration (FAA) assessed their current status and it was
predicted that by the year 2000 air traffic would double. Faced
with this situation, the FAA conceived the National Airspace
System (NAS) Plan. The NAS Plan included replacing the entire
existing air traffic system with new automated and computer
enhanced systems. These systems included an Advanced Automation
System (AAS) that will provide computer assistance to air traffic
controllers, increased reliability via a digital data 1link
between ground senso:.'s and aircraft which will be provided by a
Secondary Surveillance Radar (SSR) known as the Mode Select
Beacon System (Mode §S), which will replace the current Air
Traffic Control Radar Beacon System (ATCRBS). Delivery of the
Mode S sensors will be in the 1990's.

The FAA Technical Center has a major role in the implementation
of the NAS Plan. Many of the systems are being designed and/or
tested at the Center. From the design and integration of such
complex systems spawns the growth of small test systems such as
the Data Link Test and Analysis System (DATAS).

The DATAS was originally conceived at the Technical Center by
members of the Data Link project whose responsibilities include
verification of Data Link systems reliability, interface
protocols and system capacities. The DATAS was designed and
fabricated at the FAA Technical Center to provide such test and
analysis capabilities.

DATAS is capable of testing all components of the Data Link
system. These components include: ATCRBS and Mode S
transponders, avionics Data Link processors (ADLP), and all Data
Link system interfaces. It will also provide the capability of
Mode S sensor simulation and 1030 and 1090 megahertz (MHz) radio
frequency (RF) environment analysis for all beacon transmissions
including Traffic Alert and Collision Avoidance Systems (TCAS).
Th= DATAS has the capability of RF signal analysis within the
frequency range of 950 to 1200 MHz.

This document accompanies the completion of the first phase of
the development of the DATAS, the ATCRBS transponder test
system. Certain sections of this document are intended to provide
unfamiliar users of the system with enough information to perform
data collection operations. Other sections provide detailed
information on the system software in order to make software
maintenance easy and to aid development of future DATAS services.

1

DESCRIPTION OF EQUIPMENT

HARDWARE.

Figure 1 shows a very general block diagram of the DATAS in the
ATCRBS transponder field data collection configuration. This
diagram displays the full system. Some of the components shown
are optional since they are not required when the system is used
strictly for data collection purposes, but are used for data
analysis functions.

Physically, the system consists of three racks: the RF unit, the
DATAS hardware section (digital components), and the computer
rack (each of which is approximately 19 inches x 12 inches x 19
inches), a dish antenna (which is approximately 50 inches in
diameter), and, at minimum, one video display terminal.

The Motorola 68020 computer uses a Motorola MVME 135A central
processing unit (CPU). This processor card consists of a 68020
32-bit microprocessor operating at 20 MHz. There is 4 megabytes
of on-board random access memory (RAM). The card also contains a
68881 floating point coprocessor. The memory management unit has
been disabled because there is too much overhead involved for
some of the memory input/output (I/0) functions that the system
will be required to perform with the Mode S testing functions.

The computer contains an MVMES0 card for timing functions. The
card provides up to 1 microsecond resolution.

The computer system uses a WYSE 75 (or compatible) terminal and
any centronix interface printer. The lab system for software
development uses a Fujitsu M304X series printer. The terminal is
required to operate the system, but the printer is only required
if the user wishes to obtain hardcopies of the transponder test
summaries in data collection situations.

The DATAS may also contain an optional data presentation
subsystem for data storage, data reduction, and report
generation. The presentation subsystem is actually an independent
personal computer (PC) system that plugs into the Versa Module
Extended (VME) Bus rack and interfaces to the VMEbus. A Xycom
XVME-682 VMEbus PC advanced Technology (AT) processor module is
used for this purpose. This subsystem requires its own graphics
display terminal. Optional peripherals include a floppy disk
drive and a Hewlett Packard (HP) Laser Jet II printer or
equivalent.

IVYNINUDL D4

—;7

===
oo &

WAILNINY BBV

SV.ILVA 1

W3 LSASENS
NOILVLNIS3Nd
viva

IHO0T A

IVNINNEL 30AM

W3LSAS
431NdWOO

02089 VIOHOLOW

UHANINS RINOCUALNERD

snNa 3INA

$

Qyvd
30V3H3ALNI

4

AERS

J4VMQAUVH
Sviva

SAS

Av

y

L1INN 44

SOFTWARE.

The Motorola computer systems were used for the software
development of the DATAS. The operating system of the DATAS is
Motorola VERSADOS, version 4.6. VERSADOS operates on the various
CPU boards and systems offered by Motorola. VERSADOS is a real-
time operating system that offers the facilities to operate in a
real-time domain.

The DATAS programs were written in C language, except for a few
of the 1lower 1level interrupt handling functions which were
written in assembly language. The compiler used was the Alcyon
C68 C compiler.

ATCRBS GENERAL DESCRIPTION

The ATCRBS is a secondary surveillance radar system that was
designed to provide ATC with more information about aircraft
within controlled areas. It 1is a cooperative system that
consists of a ground-based rotating directional antenna,
interrogator/receiver, signal processing equipment, and active
aircraft transponders (figure 2). In operation, an interrogation
pulse group is transmitted from the directional antenna and
triggers each airborne transponder 1located in the directional
main beam as the antenna rotates or scans by the aircraft.
Measurement of the round-trip transmit time (the interrogation
followed by the reply) determines the range; the mean direction
of the interrogator antenna during aircraft replies determines
the azimuth of the replying aircraft. This range/azimuth
information is used to track the 1location of aircraft within
controlled areas.

The ground-based interrogations are very specific, rigidly
controlled RF pulse groups (code trains) transmitted by the
ground equipment (on 1030 MHz) to interrogate all aircraft in
the area of coverage. When the aircraft transponder receives an
interrogation, it responds with a coded reply pulse train back to
the ground station on a different frequency (1090 MHz). This
reply contains the aircraft identity selected by the pilot, or,
when the aircraft is properly equipped, contains the aircraft
altitude (figure 2). The ground-based equipment can then
automatically decode the information and determine the aircraft
range, azimuth, identity, and altitude. Discrete aircraft
emergency codes are also provided in the ATCRBS system.

ERROGATION. .
The basic interrogation consists of pulse pairs (Pl and P3)
which are transmitted by the rotating directional antenna,
normally at a repetition rate of several hundred pairs per

4

ATCRBS

Identification Code

ﬁjb:’

Mode A Q12 n fitnaan eee 308
"“3 | I 20.3 us |
ﬁ Altitude
Mode C - n ace s see 001
2 us ' | 203us |

FIGURE 2. ATCRBS

second (figure 3). These pulses are nominally of equal amplitude
and are separated by time intervals dependant on the use of the
mode of interrogation. The primary Modes of interest are Mode 3/A
(identity) and Mode C (altitude). Other modes such as Mode 4 are
not used in the civil ATC system and will not be considered. The
time interval or separation between Pl and F3 in Mode 3/A is
nominally 8 microseconds. The aircraft transponder decodes this
time interval as an "identity" interrogation and responds with
the aircraft beacon code selected by the pilot. A time interval
of 21 microseconds between Pl and P3 is decoded as an altitude
interrogation (Mode C) and requests the transponder to reply with
the aircraft's barometric altitude.

SIDE-LOBE SUPPRESSION.

A side-lobe suppression mechanism is required to prevent the
transponder from replying to interrogation signals that do not
originate from the main beam of the directional antenna. Side
lobes from a directional antenna radiate in various directions
(figure 4). These side lobes do not affect the transponders thet
are distant because their range is much less than that of the
main beam. However, when the transponder is near the radar, it
may detect side lobes at nearly all azimuth angles. Without side
lobe suppression, an aircraft near the radar might appear as a
circle around the antenna on the controllers screen since it
responds to interrogations at varying azimuths.

To facilitate side lobe suppression, a P2 pulse is transmitted 2
microseconds following the Pl pulse (figure 3). This pulse is
transmitted omnidirectionally, roughly superimposed on the side-
lobe radiated area (figure 4). When the transponder detects the
Pl pulse 9 decibels (dB) (or more) stronger than the P2, it must
be in the main beam and will reply. If the P2 pulse detected is
equal or greater in strength than the Pl pulse, the transponder
will initiate suppression and not reply to the interrogation.

REPLY.

When the proper interrogation is detected, the transponder
generates and transmits a reply pulse train encoded with either
the aircraft's identity or pressure altitude, depending on the
mode of the interrogation. The reply consists of 2 framing
pulses (Fl1 and F2) spaced 20.3 microseconds apart; 12 data pulses
and 1 special purpose pulse position (X pulse), all spaced 1in
increments of 1.45 microseconds from the first framing pulse; and
a special position identification pulse (SPI) spaced 4.35
microseconds after the F2 framing pulse (figure 5).

In the case of the Mode 3/A interrogation, aircraft identity is
encoded in the ABCD pulses providing a capability of 4,096
discrete codes in the reply. For Mode C, the aircraft altitude is

MODE 3/A nn I

Nw

FIGURE 3. ATCRBS INTERROGATION

MAIN BEAM .

S‘I%YIONM.

ANTENNA o 1 AND P}
o Q08 LOM n

RADWATION

FIGURE 4. ATCRBS ANTENNA PATTERNS

e AT N

M (ARSI A 1 A A]
/LN § T e 0 N II it It wasr 1]
JuJud) () FRAMNS §

(" n n

N & A e A ¢4 as 1 ® B . » "»w

FIGURE 5. ATCRBS REPLY

encoded in these same pulses, providing altitude capability from
-1,000 to +126,700 feet in 100-foot increments.

The X pulse position indicated in the reply is used exclusively
by the 'military in this country. The SPI pulse is the "IDENT"
pulse transmitted upon request of the air traffic controller in
Mode 3/A only. This results in special indications on the air
traffic controllers display which identifies the particular
aircraft responding to the ident request.

SYSTEM USER'S GUIDE

This section describes the operation of the various programs that
may be run when DATAS is used for ATCRBS transponder testing in
the field data collection environment.

ATCRBS TRANSPONDER FIELD TESTING.

DATAS can be used to test.the operation of beacon transponders
without physically connecting to the hardware in any way.
Although this does impose some limitations on the extent to which
the units may be tested, a comprehensive performance analysis can
be made. .

The extent of testing that can be done on the transponders
depends largely on how much control over the aircraft the
personnel running the tests have. Field testing can range from
having the system located near a taxi-way at an airport and
making quick measurements as the aircraft pass, to having the
aircraft stop at the test vehicle for an extensive test. The
design of the field test programs has taken the full range of
situations into consideration and provides the user with the
ability to take full advantage of his particular test situation.

SYSTEM START-UP. When the system is powered on it will perform
the boot procedure and activate VERSAdos which, upon
initialization, will prompt the user for several inputs. The
first is "ENTER DEFAULT SYSTEM VOLUME:USER=." Here the user
should respond with the volume and user number that contains the
ATCRBS field testing programs. An example response is "sys:321."
The volume name is "sys" and should not change. The user number
"321" is where the ATCRBS field test software was developed and
should be the one where it will run. If there are any changes, it
will be established with system delivery. If a carriage return is
entered, the default response is selected (sys:0). A new user
number can be established with the "use" command or by logout and
login.

The system will then prompt for the current date with "ENTER
DATE (MM/DD/YR)=." The system must be dated since the current

8

date is used as part of the file names created by the programs.
The test date 1is required as an entry from programs that
reproduce test data previously acquired. For this reason, the
date of data collection should be recorded.

The system will then prompt for the current time with "ENTER
TIME (HR:MIN)=." The time of day is not a critical entry for the
ATCRBS testing programs, but may be with some of the other DATAS
software packages. The correct time of day should be entered.

When the system completes the bulletin and several chain files,
the "=" prompt will appear. VERSAdos is now active. Any VERSAdos
command may be entered or any of the DATAS application programs
that reside in the current user number may be run.

DATA COLLECTION PROCEDURE. There are several basic steps
involved in conducting a transponder field test. First a location
for the system must be chosen, then the coupling losses must be
measured between the system and the transponder's antenna, a test
scenario must be generated, and the program must be run that
will conduct the actual field testing.

MATN_ _MENU. The ATCRBS Transponder Field Test program is
activated with the command "afexec". Figure 6 shows screen #1 of
the ATCRBS transponder field testing program. This screen
provides a menu for the user to select which of the higher level
functions of the program to perform. The current menu choice is
highlighted in reverse video, and the arrow keys are used to move
between choices. The function key F5 will exit the program.

1. "TEST LOCATION IDENTIFIER." This is not one of the functions
of the program, but is an important item. An entry here is
required only if transponder data collection will be conducted.
Up to four characters may be entered at this prompt. A carriage
return is required to accept .the entered characters. It is
suggested that the standard four character identification code
for the airport (or the nearest airport to the test location) is
entered here, although anything the user desires up to four
characters may be entered. Whatever is entered here must be
remembered since this character field is used as part of the data
file name. The same response entered here when data are collected
will be required by the functions that reduce or reproduce
previously recorded data.

2. "CALIBRATE COUPLING LOSS." If this prompt is selected with a
carriage return, the coupling loss calibration function is
performed. The purpose of this function 1is to measure the
difference between the original calibrated RF point of the system
with the 1location where the aircraft will be tested. These
differences are stored as offsets for test data acquired during
testing. Those measurements affected by coupling losses are
sensitivity (which requires an accurate system transmit power

9

level), reply power, and reply delay. The coupling loss program
has not been developed as of yet since the need for the system as
a transponder field tester has not arisen.

DATAS TRANSPONDER FIELD DATA COLLECTION PROGRAM

[USE ARROW KEYS TO MOVE, <RETURN> TO SELECT]

TEST LOCATION IDENTIFIER: UACY
CALIBRATE COUPLING LOSS
RUN TRANSPONDER TESTS
MODIFY TEST INTERROGATION PARAMETERS
RUN TRANSPONDER TEST SUMMARIES

PC SYSTEM ACTIVE: NO

<F5>-EXIT

FIGURE 6. SCREEN #1

3. "“RUN TRANSPONDER TESTS." This selection will activate the
transponder test programs. These programs require a test sequence
file and a calibrated system. The description of these programs
is later in the section (Test sequence files).

4. "MODIFY TEST INTERROGATION PARAMETERS." This selection will
allow the user to modify how the tests themselves will run. These
programs allow the user to change things such as P1 and P3 width,
interrogation power level, and/or the number of samples to take,
etc., for each of the transponder tests. This selection should be
made when the user wishes to reduce data collection time, modify
the tests performance, or increase data collection for a more
detailed analysis. The description of these programs is discussed
later in this section.

5. "RUN TRANSPONDER TEST SUMMARIES." This selection is used to
reproduce test results of previously recorded data. Test
summaries or test plots can be produced. Test plots require the

10

PC subsystem, therefore, the PC system activation must be
performed prior to making plots of test results. These programs
are described later in this section.

6. "PC SYSTEM ACTIVE." This prompt is used to establish
communications between the PC subsystem and the Motorola 68020
computer. This communication path is required for plotting data
on the PC system screen or printer, or storing the data on the PC
disk. Figure 7 shows the subsequent prompts that follow a "YES"
response. The "SCREEN PLOT (PC)" prompt allows data to be
plotted after each series of tests is completed ("ON POST-TEST"),
as the data is acquired (live) ("ON LINE"), or no plot on the
screen ("OFF"). The "HARDCOPY PLOT (PC)" prompt will select
whether or not to produce a hardcopy of the plots on the PC
system. The "STORE DATA IN PC (PC)" prompt will select whether or
not to store the data on disk in the PC systenmn.

PC SYSTEM ACTIVE: YES (NO)
SCREEN PLOT (PC): ON POST-TEST (ON LINE, OFF)
HARDCOPY PLOT (PC): NO (YES)
STORE DATA IN PC (PC): NO (YES)
FIGURE 7. PC SYSTEM ACTIVATION

TEST OPTIONS MENU. Figure 8 shows the Test Options menu. This
menu allows the user to select between various options that
control how the system will conduct the transponder tests. Again,
the current menu choice is highlighted in reverse video, and the
arrow keys are used to move between choices. The function key F5
will return to screen #1 and F6 will advance to the transponder
test screen.

1. "HARDCOPY OF TEST RESULTS." This prompt can be answered either
"YES" or "NO." The selection is made with the space-bar Kkey
(actually, any key will work for any of the space~bar selection
prompts). This will select whether or not a printed summary page
is automatically produced for each transponder tested. If "NO" is
selected a printed summary could still be produced from the
command keys during testing.

2. "POWER MODE." This prompt can be answered either "MANUAL" or
"AUTOMATIC." The selection is made with the space bar key. If
"MANUAL" power mode is selected the interrogation power of the
system can be adjusted manually by the user from the transponder
test screen. If "AUTOMATIC" power mode is selected the system
will adjust the interrogation power automatically between tests
in order to maximize reply efficiency and minimize interference

11

from other transponders. Automatic power mode has not yet been
implemented.

3. "INITIAL POWER LEVEL decibels referenced milliwatt (dbm)."
This prompt allows the user to enter the starting interrogation
power level in -dBm. The prompt will accept up to two numeric
digits and requires a carriage return. The level will be adjusted
by the system if power mode is "AUTOMATIC" or can be adjusted by
the user if power mode is "MANUAL."

DATAS TRANSPONDER FIELD DATA COLLECTION PROGRAM
TEST OPTIONS MENU
SELECT USING ARROW KEYS... <CR> TO ENTER
HARDCOPY OF TEST RESULTS: NO
POWER MODE: MANUAL
INITIAL POWER LEVEL (dBm): -45
TEST SEQUENCE FILE: STDSEQ
STORE DATA: YES

DATABASE FILE EXT.: AA NEW FILE

F5 TO EXIT =-==--- e F6 TO START SYSTEM

FIGURE 8. TEST OPTIONS MENU

4. "TEST SEQUENCE FILE." The test sequence file name is entered
at this prompt. The prompt will accept up to eight characters and
requires a carriage return. Entry will be tested by the program
to see if it is a valid file name. If it is not, error messages
will appear on the screen. The test sequence file contains a list
of transponder test numbers that control which tests and in what
order they will be run.

5. "STORE DATA." This prompt can be answered either "YES" or
"NO." The selection is made with the space-bar key. If the user
elects to store data he will be prompted for a data file name
extension. The data file will contain test data and aircraft
information for all transponders tested. The data should be
stored whenever the system is used in field data test situations.

12

[R S

The only time no data storage should be selected is during debug
situations.

6. "DATABASE FILE EXT.." This prompt will accept up to two
characters and requires a carriage return. This prompt is only
available when the user has selected data storage in the previous
prompt. The entry will be the file extension for the data file.
If the data file does not exist, "NEW FILE" will be displayed. If
the data file exists "WARNING: FILE EXISTS... WILL APPEND NEW
DATA" will be displayed.

TRANSPONDER TEST _SCREEN. Figure 9 shows the transponder test
screen. This is how the display will appear after the Fé key is
entered from the previous screen shown in figure 8. From here
the transponder tests are conducted.

DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 08-04-1989
IDLE INTERROGATION RUNNING
TEST STATUS POWER DELAY OUTPUT POWER (DBM):- 45.0
AIRCRAFT 1ID: ATRFRAME HEIGHT (FT) :0
AIRCRAFT TYPE: POWER MODE : MANUAL
TRANSPONDER TYPE:
COMMENT FIELD:
<F5>-EXIT <F7>-=INCREASE <F8>-DECREASE POWER
<F9>-~RUN TEST <F10>-STOP IDLE

FIGURE 9. TRANSPONDER TEST SCREEN

The date is displayed at the top right corner of the screen.
Just below that line is the system status message line. Here the
current status of the system is displayed, such as "IDLE
INTERROGATION RUNNING" or "FIELD TEST IN PROGRESS," etc.

The interrogation power of the DATAS system is displayed in the
upper right corner. This level can be adjusted using the F7 and
F8 function keys if the system is in manual power mode.

13

The center portion of the screen is the scrolling region for the
ATCRBS tests. As each test completes, the test number,
completion message, reply power, and reply delay are sent to the
screen. See figure 10 .as an example of a field test in progress.

DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 08-04-1989
FIELD TEST IN PROGRESS
TEST STATUS POWER DELAY POWER (DBM):- 45.0

1-TEST 10...COMPLETE 55.7 dBm 3.1 us
2-TEST 17...COMPLETE 55.8 dBm 3.0 us
3-TEST 19...

AIRCRAFT 1ID: AIRFRAME HEIGHT(FT) :0
AIRCRAFT TYPE: POWER MODE:MANUAL
TRANSPONDER TYPE:
COMMENT FIELD:

<F9>-STOP TEST

FIGURE 10. TRANSPONDER TEST SCREEN WITH
FIELD TEST IN PROGRESS

Below the scrolling region is the aircraft information entry
area. Here the Aircraft 1ID (Tail number), aircraft type,
transponder type, and a comment field entry areas are provided as
a means of identifying the test data. The cursor is moved
between these prompts using the arrow keys; the entries must be
ended with a carriage return. This information is stored with
each series of completed tests. The aircraft information can be
entered prior to testing and after the test has completed. It
cannot be entered during the test sequence or after the test data
has been stored. See figure 11 for an example screen with
aircraft information entered. There is also a prompt for airframe
height and power mode within this area. The cursor is on the
airframe height prompt when this screen is initially displayed
so that it can be entered prior to the start of the test. The
measured reply power and the interrogation power delivered to the
aircraft's antenna are affected by the height of the antenna from
the ground. The approximate height of the antenna in feet

14

(usually the height of the underside of the aircraft) should be
entered here prior to the start of the test. There is also a
prompt that allows the user to switch between MANUAL and
AUTOMATIC power mode. (See the description of "POWER MODE" after
figure 8 "Test options menu.")

DATAS ATCRBS FIELD DATA COLLECTION SYSTEM 0R-04-1989
ENTER AIRCRAFT INFORMATION
TEST STATUS POWER DELAY POWER (DBM) :- 45.0
1-TEST 10...COMPLETE 55.7 dBm 3.1 us
2-TEST 17...COMPLETE 55.8 dBm 3.0 us
3-TEST 19...COMPLETE 56.0 dBm 3.1 us
SENSITIVITY 70 - 71 POWER 55.6 - 56.0 DELAY 3.30 - 3.00
TEST ENDED AFTER SEQUENCE #3 ... TEST #19
AIRCRAFT ID:N1234 AIRFRAME HEIGHT(FT):0
AIRCRAFT TYPE:CESSNA 150 POWER MODE:MANUAL
TRANSPONDER TYPE:KING KT-76
COMMENT FIELD:NO MODE C CAPABILITY
<F9>-STORE TEST RESULTS <F10>-ABORT

FIGURE 11. TRANSPONDER TEST SCREEN WITH
FIELD TEST COMPLETE

Below the aircraft information entry area is the function key
definition area. This area displays the currently active
function keys. The function keys will not be the same all the
time, they depend on the current status of the system. For
example, if the system is running, the only active function is F9
which is to stop testing (see figure 10). Figure 9 shows the
active function keys when the idle interrogation is running. The
F5 key will exit (return to screen #1), F7 and F8 are to
increase or decrease the interrogation power level. They are only
active when MANUAL power mode is selected. The power level is
made variable so that the user can make the power level high
enough so that the aircraft being tested will reply, but 1low
enough so that any other aircraft nearby will not. The F9 Kkey is
used to start the test sequence. The F10 key will stop the idle
interrogation. When the idle interrogation is stopped the F10 key
can be used to start it again.

15

Figure 10 shows the transponder test screen with the transponder
testing in progress. At the top of the screen, the system status
shows "FIELD TEST IN PROGRESS." The test scrolling region shows
that test 10 is complete and the highest reply power reported
during the test was 55.7 dBm and the shortest reply delay was 3.1
microseconds. Test 17 is also complete, and the ihprovement shown
in both the reply power and delay may indicate that the aircraft
is moving towards the center of the beam. The only active
function key is F9 which can be used to stop the test.

If the test sequence is not stopped prior to completion with the
F9 key, the system will continuously monitor the transponders
sensitivity, reply power, and reply delay until the user stops
the system with the F9 key. At this point the screen will no
longer scroll, but will continuously display the current
sensitivity, power, and delay as compared to the best of each
measured so far (see figure 11). The display will show "current
value--best value" for each of the three measurements. If the
current value is an improvement over the best value, it will be
displayed in reverse video along with the word "INCREASING" left
of the delay. The best value will then be updated. The idea
behind this is so that these measurements can be made while the
aircraft rolls through the calibrated main beam.

Figure 11 shows the transponder test screen after the . test
sequence is complete and the user has stopped the test with the
F9 key. The system status message is reminding the user to enter
the aircraft information. In this example screen the aircraft
information has already been entered.

In the scrolling region, it shows that three tests have run, test
10, 17, and 19. The highest sensitivity measured was -71 dBm, the
highest reply power was 56.0 dBm and the shortest reply delay was
3.0 microseconds. The highest reply power and/or shortest delay
can be measured in any of the transponder tests since they all
record that information.

The active function keys at this point are F9 to store the test
results and F10 to abort the test. If F9 is entered, the data
from all the tests and the aircraft information will be stored in
the data file and a summary of the test results will be displayed
(see figure 14). If F10 is entered, the data will be discarded
and the screen will return to original transponder test screen as
shown in figure 9.

TEST SUMMARIES. Figure 12 shows the test summary menu screen
which is called when the "RUN TRANSPONDER TEST SUMMARIES" menu
seclection is made from the main menu (screen #1l). This menu
allows the user to locate data files on the disk in order to
produce test summaries or plot the data using the PC subsysten.
The three file 1location entries are the 1location identifier,
date, and data file extension. The arrow keys are used to move

16

between selections. The location identifier, date, and data file
extension must be the same as what was entered when the test data
was originally collected.

The "“SUMMARY MODE" prompt allows the selection of whether to
produce the results of a single aircraft or all aircraft in the
file. The mode selection is switched using the space bar key. If
the mode is "SINGLE" the program will retrieve the test data for
a single aircraft. A subsequent prompt requesting the "AIRCRAFT
ID" accompanies the SINGLE summary mode. The identification of
the aircraft is required to find its test results. The aircraft
ID must be entered identical to what was stored with the data,
and must be terminated with a carriage return.

DATAS TEST RESULT SUMMARY PROGRAM

LOCATION IDENTIFIER: UACY
DATE: (MMDDYYYY): 08041989
DATA FILE EXTENSION: AA
SUMMARY MODE: SINGLE

AIRCRAFT ID:

F5 TO EXIT =w===—=-—w=--- F6 TO EXECUTE

FIGURE 12. TEST SUMMARY MENU SCREEN

If the summary mode selected is "MULTIPLE" the program will
retrieve all of the data in the file one aircraft at a time (see
figure 13). A second prompt requesting an output device appears
with the multiple summary mode. The selections available are for
"SCREEN" or "PRINTER." A space bar 1is used to change the
selection.

17

SUMMARY MODE: MULTIPLE

OUTPUT DEVICE: SCREEN

FIGURE 13. SUMMARY MENU SCREEN "MULTIPLE SUMMARIES" SELECTED

Figure 14 shows an example test summary page from a transponder
test. This screen can be called from two different places. First,
it could be displayed following the completion of a transponder
test. After the user elects to store the test data (F9 entered
figure 11), the summary of the tests is displayed. Second, the

screen could be called from the test summary menu (F6 key figure
12).

DATAS FIELD TEST SUMMARY

ATIRCRAFT ID: N1234 ATIRCRAFT TYPE: CESSNA 150
TRANSPONDER TYPE: KING KT-76
COMMENT: NO MODE C CAPABILITY

10 - Minimum RF Output Power = 52.3 dBm
17 - Reply Rate Limit = 975 PRF
Sensitivity Reduction - Mode A 98.0% Mode C 97.0%
19 - Maximum pulse position error (us) F1 ref -1.02
Pulse-pulse ref ~-.98

-

N

<F5>-EXIT <F6>-PAGE <F7>-PRINT LINE/ALL <F8>-~PLOT LINE/ALL

FIGURE 14. TEST SUMMARY PAGE

At the top of the screen is the aircraft information. The center
area of the screen shows the test summaries. In the example
shown, tests 10, 17, and 19 were conducted on the transponder. At

the bottom of the screen are the various function keys that are
available.

18

The F5 key will exit the screen. If the screen was called from a
Summary program, it will return to the Summary menu. If the
screen was entered following a test sequence, it will return to
the transponder test screen.

The F6 key will page- through the test summaries if they take
more room than will fit on one page. In the example shown, there
is less than one screen of test summaries.

The F7 key will print the summary for the test which is
displayed in.reverse video (in the example it is in bold). The
arrow keys may be used in order to select another test summary to
print. The F7 key will always print the test summary which is
displayed in reverse video. If SHIFT F7 is entered, all test
summaries for the transponder will be sent to the printer.

The F8 key will plot the test results for the current test
displayed in reverse video. If SHIFT F8 is entered, all tests for
the transponder will be plotted. For anything to be plotted, the
PC system must be on line (see main menu figure 7).

If the screen was called from the summary menu in "MULTIPLE"
summary mode, an additional function will appear. F9, the "MORE"
key, 1is used to advance to the following transponder test within
the file.

PARAMETER _MODIFICATION. Figure 15 shows screen 1 of the
parameter modification programs. This screen is called when the
"MODIFY TEST INTERROGATION PARAMETERS" option is selected from
the main menu (figure 6). The test parameters are variables that
can be changed by the user to alter the way a transponder test
works. There are two types of parameters: interrogation
parameters which define the interrogation used by the test, and
test parameters which enable test algorithms to be modified. The
interrogation parameters are the same for all of the tests, but
all of them are not used by every test. Appendix C describes how
each test uses the interrogation parameters.

The first screen is simply a prompt for the test number of which
the user wishes to modify. If a "0" 1is entered, the
interrogation parameters for all tests can be changed. This is
useful if, for example, the user wishes to run all tests at a
lower PRF, he would enter a 0 and change the PRF in the following
screen.

A single function key, F5 is provided which is used to return to
the main menu.

19

ENTER TEST NUMBER -_

0 - TO SET GLOBAL PARAMETERS FOR ALL TESTS

.<F5>-EXIT
FIGURE 15. PARAMETF® MODIFICATION MENUS
SCREFN #1

Figure 16 shows an example cf an interrogation parameter menu for
test 3. There are two sets of parameters: one for Mode A and the

other for Mode C. A new value for a parameter is entered from the
keyboard followed by a carriage return. The arrow keys are used
to select which parameter to change. The currently selected
parameter is displayed in reverse video (in the example it is
shown in bold print "Pl1l WIDTH (us) 0.800"). Once a parameter
is changed to a value other than its default value it will be
displayed in reverse video. Each parameter has a limited range
and resolution. If a value is entered that is inappropriate for
one of the parameters, an error message is displayed and the
entry is rejected. Table 1 is a table of the interrogation
parameters, their acceptable ranges, and resolutions.

20

PARAMETER MENU FOR TEST -3

----- MODE A-----
.Pl WIDTH (us) 0.800 P2 WIDTH (us) 0.800
P3 WIDTH (us) 0.800 P1-P2 SPACING (us) 2.000
P1-P3 SPACING (us) 8.000 INT POWER OFFSET(dB) 0.000
P2 POWER OFFSET(dB) -40.000 PRF 450
FREQUENCY (MHz) 1030.000

----- MODE C=-==--
P1 WIDTH (us) 0.800 P2 WIDTH (us) 0.800
P3 WIDTH (us) 0.800 P1-P2 SPACING (us) 2.000
P1-P3 SPACING (us) 21.000 INT POWER OFFSET(dB) 0.000
P2 POWER OFFSET(d4B) -40.000 PRF 450
FREQUENCY (MHz) 1030.000
<F5>-EXIT <F6>-SET ALL TO DEFAULT <F7>-SET CURRENT TO DEFAULT

FIGURE 16. INTERROGATION PARAMETER MENU
TABLE 1. INTERROGATION PARAMETERS

Default Minimum Maximum
Parameter Value Value Value Resolution
Pl WIDTH (us) 0.800 0.100 7.975 0.025
P2 WIDTH (us) 0.800 0.100 7.975 0.025
P3 WIDTH (us) 0.800 0.100 7.975 0.025
P1-P2 SPACING (us) 2.000 0.100 80.000 0.025
P1-P3 SPACING (us) *8.000,*%*21.000 0.200 80.000 0.025
INT POWER OFFSET(dB) 0.000 -90.000 +90.000 0.1
P2 POWER OFFSET (dB) -40.000 -90.000 +90.000 0.1
PRF 450 1 2000 50
FREQUENCY (MHz) 1030.000 900.000 2000.000 0.500

*-Mode A, **-~-Mode C

The pulse widths are from 1lead edge to trail edge in
microseconds. The pulse spacings are from lead edge to lead edge

21

in microseconds. The power offsets are the number of dB's from
normal. For example, if INT POWER OFFSET for a test was +3.000,
that would mean that the interrogation power is 3 dB higher than
all other tests at default. These power levels are relative to
the current system power. In order to introduce suppression into
a test, P2 POWER OFFSET could be set to 0.000. This would mean
that P2 power is equal to P1l,P3 power. PRF is the number of
interrogations per second. Frequency is the RF transmit frequency
in MHz.

The function keys for both the interrogation and test parameter
menus are the same. The F5 Kkey will exit and store the
parameters in the menu. The Fé6 key will return all parameters on
the screen to their default values. The F7 key will return only
the selected parameter (reverse video) to its default value.

Figure 17 shows an example of a test parameter menu for test 3.
The menu works the same as the interrogation parameter menu. The
test parameters are not the same for all tests. They are user
changeable parameters designed to make the transponder test

procedure more flexible. Their primary importance is 1in
accommodating the speed of each test to the present test
situation. If there is an unlimited time to test each

transponder, the values could be made to acquire the largest
sample of data with the smallest granularity possible, in order
to rake each test as accurate as possible. If the desire is to
keep test time to a minimum, the samples could be reduced and the
granularity made greater. The default values for each test are
usually somewhere in the middle.

PARAMETER MENU FOR TEST -3
INTERROGATIONS 100 START POWER (-dBm) 20.000

END POWER (-dBm) 80.000 POWER INCREMENT 5.000

<F5>-EXIT <F6>-SET ALL TO DEFAULT <F7>~SET CURRENT TO DEFAULT

FIGURE 17. TEST PARAMETER MENU

22

TEST SEQUENCE _FILES.

Test Sequence Files are user generated files that determine
which transponder tests are run and in what order when the
transponder test program is activated. A valid test sequence file
name is required at the start of the transponder test program.
The DATAS system provides an editor called "SEQ" to generate or
modify test sequence files.

GENERAI, DESCRIPTION. A test sequence file contains a list of
numbers which determine which transponder tests are run. The
order of the tests are determined by the order of the numbers in
the file. The purpose of test sequence files is to allow a
predetermined series of tests to be run without user interaction
during time critical testing situations.

TEST NUMBERS. Most of the transponder test procedures come from
the ATCRBS/Mode S transponder MOPS section 2.4.2 "Detailed Test
Procedures.”" The test numbers are assigned in the order that
they appear in the MOPS. The reason the test numbers are not
consecutive is because the MOPS test procedures intermix ATCRBS
and Mode S tests, and this document describes only the ATCRBS
transponder tests. However, it 1is not required that this
numbering scheme be strictly adhered to since some tests may be
combined into one test, or new tests may be designed to meet
specific user requirements. Table 2 lists the available ATCRBS
transponder tests.)

SEQ - TEST SEQUENCE FILE EDITOR. The SEQ editor allows the user
to generate new files, modify existing files, or modify existing
files and store them with new file names.

The SEQ editor is menu driven and utilizes four different menu
screens that provide the following functions:

1. File access - used to read files for editing and write files
for disk storage.

2. File display - displays the contents of a test sequence file
with the test numbers referenced with the Minimum Operational
Performance Standard (MOPS) test description.

3. Test list - displays a list of available transponder tests in
numerical order with reference to the MOPS test descriptions.

4. Edit screen - displays the contents of the file as test
numbers for editing purposes.

23

TABLE 2.

ATCRBS TRANSPONDER TESTS

TEST MOPS
NUMBER REFERENCE DESCRIPTION
2 2.4.2.1 Step 2 Sensitivity
3 2.4.2.1 Step 3 ATCRBS Dynamic Range
9 2.4.2.2.1 Reply Transmission Frequency
10 2.4.2.2.2 Step 1 ATCRBS Power Output
17 2.4.2.2.5 Step 1 Determination of Reply Rate Limit
19 2.4.2.3,1 Step 1 ATCRBS Reply Pulse Spacing
20 2.4.2.3.1 Step 2 ATCRBS Reply Pulse Shape
22 2.4.2.3.2 Step 1 Reply Delay
25 2.4.2.4 Step 1 SLS Decoding
27 2.4.2.4 Step 3 SLS Pulse Ratio
29 2.4.2.4 Step 5 Suppression Duration
30 2.4.2.4 Step 6 Suppression Reinitiation
31 2.4.2.4 Step 7 Recovery After Suppression
34 2.4.2.5 Step 3 Pulse Level Tolerances (ATCRBS)
36 2.4.2.5 Step 5 Pulse Duration Tolerances (ATCRBS)
41 2.4.2.5 Step 10 Simultaneous Interrogations
42 2.4.2.6 Step 1 ATCRBS Single Pulse Desensitization
and Recovery
44 - 2.4.2.8 Undesired Replies
55 Not from MOPS Suppression Test

CALLING THE SEQ EDITOR. In order to run the Test Sequence File
editor, enter "seq" at the VERSAdos prompt. The display will
appear as in figure 18. The first display in the test sequence
editor is the file access screen. At this point the user may read
an existing file, write to a file whether it exists or not, or
exit the program. The read/write function is switched using the
space-bar key. The function key F5 will exit the program.

READING FILES. The user may accept the default file name
"TSTSEQ" by entering a carriage return or enter a file name of
his choice followed by a carriage return. In either .case, if the
file exists, the screen will display the contents of the file as
shown in the example display in figure 19. If the file does not
exist, a blank edit screen similar to the one shown in figure 20
will be displayed.

24

DATAS TEST SEQUENCE FILE EDITOR
ENTER FILE NAME: STDSEQ

READ FILE
(SPACE BAR TO CHANGE)

F5-EXIT

FIGURE 18. SEQ DISPLAY #1 FILE ACCESS

DATAS TEST SEQUENCE FILE: STDSEQ

1 2 2.4.2.1 Step 2 - Sensitivity
2 3 2.4.2.1 Step 3 - ATCRBS Dynamic Range
3 9 2.4.2.2.1 - Reply Transmission Frequency
4 10 2.4.2.2.2 Step 1 - ATCRBS Power Output
F5-PAGE F6-PRINT F7-EXIT F8-ENTER TEST MATRIXIJ

FIGURE 19. SEQ DISPLAY #2 EXAMPLE FILE DISPLAY

25

DATAS TEST SEQUENCE FILE: STDSEQ

SEQUENCE # 0 1 2 3 4 5 6 7 8 9
_ 2 3 9 10 [_)
1_
2_
3.-—
4—
5_
6—
7—
8—
9—

TEST NUMBER _

SEQUENCE NUMBER 5

F5-INSERT F6~-REPLACE F7-DELETE/ALL F8-LIST TESTS F9-EXIT

FIGURE 20. SEQ DISPLAY #4 EDIT SCREEN

Figure 19 shows an example display of the contents of a test
sequence file named "STDSEQ."™ The file will cause the
transponder test program to run the following four transponder
tests: test 2 - Sensitivity, test 3 - ATCRBS Dynamic Range, test
9 - Reply Transmission Frequency, and test 10 - ATCRBS Power
Output. The decimal numbers refer to the MOPS section which
defines the test.

The F5 key will page through the list of tests if there is more
than one screen is able to display. The F6 key will send a
complete list of the tests in the file to the system printer. The
F7 key will return to display #1, the file access screen. The F8
key will advance to the edit screen.

EDITING FILES. Figure 20 shows the test matrix screen where the
actual file editing takes place. The file name is displayed at
the top of the screen. In this example the file name is
"STDSEQ."

There is a 10x10 matrix which shows the 99 possible test numbers
in their sequential order. There is a cursor within the matrix
which highlights the current sequence position. In the example it
is in sequence order 5 since this is the next available sequence
position.

26

The screen entry cursor can be moved between two prompts using
the arrow keys: the "TEST NUMBER"” prompt and the "SEQUENCE
NUMBER" prompt. The "TEST NUMBER" prompt is where the actual test
numbers are entered and stored in the position determined by the
number in the "SEQUENCE NUMBER" prompt. The user may change the
sequence number to allow insertions and changes to the file. When
a test number is entered the program will automatically advance
to the next sequence number. The sequence number cannot be
advanced beyond the location following the last test number.

The F5 and F6 keys are used for "INSERT" and "REPLACE" modes,
respectively. When the insert mode is selected, any test numbers
entered will be stored at the current sequence number position
and any following test numbers will be advanced one position.
When the replace mode is selected the test number at the current
sequence number position will be replaced by the new one entered.

The F7 key 1is used for deleting tests from the sequence. If the
F7 key is pressed, the test at the current sequence number will
be deleted. If SHIFT F7 is pressed, all of the tests in the file
will be deleted.

The F8 Key is used to display a list of available tests. An
example display is shown in figure 21.

The F9 key will exit the screen and advance to the file access
screen where the file may be stored.

Figure 21 shows an example of a display of all available
transponder tests. The F5 Kkey is used to page through the 1list
and the F6 key is used to print a copy of the 1list. F7 will
return to the edit screen.

WRITING FILES. If the user wants to save the current test
sequence file, he must write the file to the disk. The file
access screen screen is used to write files to the disk (figure
22). He may accept the default file name or type in any valid
file name followed by a carriage return. If the file does not
already exist it will be written to the dis¥% and the prompt will
switch to read the file. If the file already exists, the user
will be warned and will have the option to either name it
something else or replace it with the current file. To exit the
editor enter the F5 key. Note: If the F5 key is pressed before
the file is written to the disk, the file will not be stored.

27

DATAS TRANSPONDER TESTS

2 2.4.2.1 Sstep 2 - Sensitivity

3 2.4.2.1 Step 3 - ATCRBS Dynamic Range

9 2.4.2.2.1 - Reply Transmission Frequency

10 2.4.2.2.2 Step 1 - ATCRBS Power Output

17 2.4.2.2.5 Step 1 ~ Determination of reply rate limit

19 2.4.2.3.1 Step 1 ~ ATCRBS Reply Pulse Spacing

20 2.4.2.3.1 Step 2 - ATCRBS Reply Pulse Shape

22 2.4.2.3.2 Step 1 - Reply Delay

25 2.4.2.4 Step 1 - SLS Decoding

27 2.4.2.4 Step 3 - SLS Pulse Ratio

29 2.4.2.4 Step 5 - Suppression Duration

30 2.4.2.4 Step 6 - Suppression Reinitiation

31 2.4.2.4 Step 7 - Recovery After Suppression

34 2.4.2.5 Step 3 - Pulse Level Tolerances (ATCRBS)

36 2.4.2.5 Step 5 - Pulse Duration Tolerances (ATCRBS)

41 2.4.2.5 Step 10 - Simultaneous Interrogations
F5-PAGE F6-PRINT F7-EXIT

FIGURE 21. SEQ DISPLAY #3 TEST LIST

DATAS TEST SEQUENCE FILE EDITOR

ENTER FILE NAM
WRITE F
(SPACE BAR TO

F5-EXIT

E: STDSEQ
ILE
CHANGE)

FIGURE 22.

SEQ DISPLAY #1 FILE ACCESS IN WRITE MODE

28

BIBLIOGRAPHY :

Baker, John L., Philip N. McCabe, Kenneth V. Byram, Journal of
ATC, October - December 1985.

Federal Aviation Administration, National Ajirspace System Plan,
September 1989.

Radio Technical Commission for Aeronautics, Minimum Operational
Performance Standards for Traffic Control Radar Beacon

System/Mode Select (ATCRBS/Mode S) Airborne Equipment, March 1983.

29

APPENDIX A

ATCRBS FIELD TEST FUNCTTONS

GENERAL DESCRIPTION

The Air Traffic Control Radar Beacon System (ATCRBS) Field
Executive program is the actual transponder testing program. It
is a menu-driven multiscreen program that gives the user
complete control over his testing environment. The major
subfunctions of the program are: calibration of the coupling
loss, control of individual as well as global test parameters,
display of individual transponder test results summaries, control
of the personal computer (PC) subsystem interface, and execution
of the transponder tests.

SOURCE FILES.

INCLUDE FILES (.h). The following is a list of the include files
used by the functions of the ATCRBS field executive program and a
brief description of their contents:

300.include.calib.h - definitions related to -system calibration.
Includes the <calibration file names and file structure
definitiors.

300.inciude.dataloc.h - definitions for the storage locations for
the three transmit control channels.

decode.h - definitions for the hardware decoder addresses and
structures to store the decoder information.

300.include.displib.h - definitions for WYSE terminal display
attributes and escape sequences.

idle.h - contains the idle loop interrogation definition.

300.include.mmap.h - definitions for the memory locations of the
DATAS hardware.

parminit.h - declaration and initialization of all transponder
test parameters.

armlib. - definitions used by the parameter modification
programs.
pcinc.h - definitions wused for PC-68020 communications.

Communication control and buffer structure definitions.

‘seqflib.h - definitions related to the test sequence file.

A-1

300.include.stdlib.h - standard 1ibrary} provides common
definitions such as TRUE, FALSE, etc.

testdef.h - function array definitions for the ATCRBS
transponder tests.

tstinc.h - common transponder testing library.
SOURCE FILES (.cc). The afexec program may be linked by running
the command file afexec.cf. A cross reference between function

names and file names follows:

Major functions are displayed in bold print.

aftsts()
aftst[x] ()
bldmenu ()
calread()
chk_channels()
chk_dflt()
chk_level()
chk_name()
ck_format ()
Ck_range()
Ck_resolu()
clk_set()
clk_sp()
clk_strt()
cnt_pulses()
convt_ans()
count_pulses()
curpos ()
dbfile()
dfname ()
d_fun_keys()
erase ()
extrct_data()
fatal()
fatal_error()
funct((x] ()
gen_action()
gen_atten()
gen_pattern()
gen_pulse()
gen_time()
gen_transm()
get_decl()
get_input ()
getmtl ()
getsd()
getyorn()

aftsts.cc
aftst[x].cc
bldmenu.cc
calread.cc
wf2chann.cc
parmscrn.cc
chklev.cc
chkname.cc
chkformt.cc
chkrange.cc
chkresol.cc
timer.cc
timer.cc
timer.cc
repulse.cc
convtans.cc
wf2count.cc
disputil.cc
aftsts.cc
dfname.cc
tstdrvr.cc
disputil.cc
repulse.cc
pcinit.cc
ferror.cc
chkformt.cc
wf2acti.cc
wf2atte.cc
wf2patt.cc
wf2puls.cc
wf2time.cc
wf2transm.cc
disputil.cc
disputil.cc
getmtl.cc
getsd.cc
disputil.cc

A=-2

hwinit ()
interference()
int_err()
int_loop()
main()
mdec_acr ()
mparms ()
mtl_fun()
parmscrn()
pcinit ()
plotdat()
plotmsg()
plotque()
pmsg ()
pr_head()
prt_init ()
pw_thresh()
odatf ()
rddat ()
rds_file()
read_seqf_file()
rep_test()
repulse()
set_dflt()
setfreq()
set_idle()
setlev ()
setscroll ()
spandd ()
stcenter ()
store_ans()
store_ptr()
suc_apprx()
sum[x] ()
sumdat()
summenu ()
sumscrn ()
toupper ()
tstdrvr()
tstseq()
vfcreat2 ()
vfopen()
wfmod ()
wrtdat ()

hwinit.cc
intfer.cc
wfmod.cc
intlp.cc
afexec.cc
ndecode.cc
mparms.ccC
getmtl.cc
parmscrn.cc
pcinit.cc
plotdat.cc
sumscrn.cc
sumscrn.cc
pmsg.cc
prhead.cc
print.cc
pwthresh.cc
odatf.cc
sumdat.cc
rdsfile.cc
sfread.cc
reptest.cc
repulse.cc
parmscrn.cc
setfreq.cc
setidle.cc
setlev.cc
disputil.cc
spandd.cc
disputil.cc
storeans.cc
storeans.cc
sapx.cc
sumfx].cc
sumdat.cc
summenu.cc
sumscrn()
disputil.cc
tstdrvr.cc
tstseq.cc
vfcreat2.cc
vfopen.cc
wfmod.cc
wrtdat.cc

~,

Figure A-1 shows a hierarchical relationship between the more
important functions within the transponder test program. These
and all of the functions written for use with the transponder
test programs are contained in this appendix.

main()
|
[I J 1
aftsts() summenu () mparms () coupling
loss
function
(future)
tstdrvr () parmscrn ()
tstseq() sumscrn ()
1
|
aftst(x] () sumdat () plotdat ()
sum({x] ()
FIGURE A-1. MAJOR FUNCTION RELATIONSHIPS
aftsts()
NAME
aftsts - ATCRBS field testing options menu. Source file-

aftsts.cc.

FUNCTION CALL
aftsts().

GLOBAL VARIABLES
The following are global variables that are used throughout
the program that are declared in aftsts.cc.

int i_power - Interrogation power level.

int p mode = 0 - Interrogation power mode, default is
"MANUAL" (0), other choice is "AUTOMATIC" (1).

int ps mode = NO - Hardcopy flag, indicates whether or not
to automatically print a summary of the test results.
Default is "NO" (0), other choice is "YES" (1).

A-4

int store = YES ~ Flag to indicate whether or not to store
the test data on disk. Default is "YES" (1), other choice is
"NO" (0).

DESCRIPTION

This function permits the user to select various options to
control how the system will function when running transponder
tests. The options included are: hardcopy of test results or not;
interrogation power mode--whether it is manual or automatic
adjust; initial power level; test sequence file name; whether or
not to store data on disk, and if so, the database file name.

DETAILED DESCRIPTION

The function builds the display, maintains an error array
(e_flg[]) that indicates error conditions in menu options, and
calls the function dbfile() to open data and key files. If there
is an error condition for a prompt, there is an indication next
to the prompt. When the user selects the prompt with the error
condition the error is explained at the bottom of the screen. The
program then waits for input from the user. If F5 is entered the
data files and key files are closed and the program returns. If
F6 is entered the program advances to the test function. Arrow
keys will select between options. ASCII characters are accepted
as input as file names or switches for flags.

aftstx()
NAME

aftst* - ATCRBS field test number *. Source file-
aftst*.cc.

FUNCTION CALL
aftst*(t_data, best_power, best_delay, p_data_loc)

struct data_share *t_data; /* Test data *x /
int *best_power:; /* Best power measured */
int *best_delay:; /* Best delay measured */

struct data_destination p_data_loc:; /* Hardware addrs. */

GLOBAL VARIABLES
The following variables must be declared external to most
ATCRBS field test functions:

struct INT TYPE _int cur[] - Current interrogation
parameters.
struct TST_TYPE tst_cur - Current test parameters.

struct CAL TYPE calib - Calibration tables.

int j afloss - Airframe loss.
int i power - Default interrogation power.

int_tx port - Transmitter port in use.

DESCRIPTION

This represents the calling structure of a typical ATCRBS
field test function. The ATCRBS tests are described in detail in
appendix C. The test results are stored in the structure
"t data." The highest reply power measured during the test are
returned in the variable "best_power." The lowest reply delay is
returned in the variable "best_delay." "p_data_loc" provides the
addresses of the hardware locations to store the interrogation
waveforms.

bldmenu
NAME

bldmenu -~ Build menu for terminal screen. Source file-
bldmenu.cc.

FUNCTION CALL
bldmenu(parm_io, prmt_ord, prmt_flg, strc_indx, prmt_cnt,
prm_ques, spaceb)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structs */

int prmt_ord[]: /* Array of prompt order */

int prmt_flg[]: /* Prompt flags */

int strc_indx; /* Index of struct */

int prmt_cnt; /* Number of prompts */

char *prm_ques[]: /* Prompt questions */

char *spaceb(]: ’ /* Spacebar answers * /
DESCRIPTION

This function is used to set the order of the test or
interrogation parameters for display on the screen. The
parameters are displayed as question and answer and they are
positioned in two columns on the screen when possible. The main
value of this function is to accommodate parameters that require
more than half of the screen and, therefore, must be displayed on
a screen row by themselves.

DETAILED DESCRIPTION

The variable "prmt_cnt" is used to determine how many
prompts to position on the screen. The pointer "*parm_io" is the
location of the actual prompts. The array "prmt_ord[]" will
contain the order number to display each prompt, a -1 indicates
an unused position. The array "prmt_flg([]" will contain "TRUE"
for all prompts that are used and "FALSE" for those that aren't.
For each prompt the question and answer lengths are combined to
determine the overall length. If the length is greater than half
the screen it must be positioned on the 1left side, and the
adjacent right side must be made unavailable. The function will
return a success condition (0) if all prompts can be displayed,
or a fail condition (1) if there is not room for all prompts on
the screen,

A-6

calread ()
NAME

calread - Calibration file read function. Source file-
calread.cc.

FUNCTION CALL
calread(calib, mode)

struct CAL_TYPE *calib; /* Pointer to calibration
parameters */
int mode; /* Read mode */
DESCRIPTION

This function opens and reads the calibration file that is
selected by the variable "mode." The include file "calib.h" must
be included for #defines for the mode as well as file names and
calibration structures. The possible modes are: MTF, CTF, MCF,
and CCF for Master Table File, Current Table File, Master
Coupling File, and Current Coupling File.

chk channel;()
NAME

chk_channels - Check channels. Source file - wf2chan.cc.

FUNCTION CALL
chk_channels(p_wfm def, p_maxl, p_max2, p_max3)
struct wave_parm *p_wfm_def; /* Waveform struct */

int *p maxl; /* Locations used ch. 1 */

int *p_max2; /* Locations used ch. 2 */

int *p_max3; /* Locations used ch. 3 */
DESCRIPTION

This function determines the number of waveform events used
in each of the three channels. The end of a series of events must
be flagged in the waveform structure with a zero stored in the
channel member.

chk level ()
NAME

chk_level - Check for valid interrogation power 1level.
Source file - chklev.cc.

FUNCTION CALL
chk_level (p_level, port, atten)

int p_level; /* Power level *x/
int port; /* Interrogation port (0-2) */
int atten; /* Attenuator selected (0-2) */

DESCRIPTION

This function is used to check if a desired power level can
be achieved. The function will subtract coupling 1loss and
airframe loss from the desired interrogation level and test if
the transmitter can maintain that level at the calibration point.
If the level is too high "P_TOO_HI" is returned, if it is too low
"P_TOO_ILO" 1is returned, otherwise "SUCCESS" 1is returned. The
include files "calib.h" and "stdlib.h" are used in this function.

chk name()
NAME

chk_name - Check file name. Source file chkname.cc.

FUNCTION CALL
chk_name(filename, count)

char *filename; /* Filename to check */
int count; /* Number of characters #*/
DESCRIPTION

Tests a character string to see if it is a valid VERSAdos
file name.

DETAILED DESCRIPTION

The purpose of this function is to test for a valid filename
before it is combined with user number and catalog, etc., for
file open. The name is stored in the character string "filename"
and the length of the string is passed in the variable "count."
The first character is tested to be an alphabetic character and
the following characters are tested to be either alphabetic or
numeric. If either of these conditions are violated, a "1" is
returned to indicate illegal characters. If count is greater than
eight, a "2" is returned to indicate the file name is too long.
If the file name is valid, the function returns a "0."

ck_format ()
NAME

ck_format - Check input format. Source file - chkformt.cc.

FUNCTION CALL
ck_format(p_in_data, parm_io)
char *p_in_data; /* Pointer to input data */
struct PARM_IO_TYPE *parm_io; /* Parameter IO structurex*/

DESCRIPTION

This function will test a character string to see if it is
in a predefined format. The character string is passed in the
variable "p_in_data" and the format is defined in the structure
"parm_io." There are seven possible formats to test, which are
#defined in tstlib.h. If the string is in the correct format, a
success condition is returned (0); if it is in an incorrect

A-8

-

format, an error condition which is defined in "parmlib.h" is
returned. The possible formats are: decimal, binary, octal,
hexadecimal, character, real, and undefined (for expansion
purposes) .

ck_range()
NAME

ck_range - Check that a test parameter is within a valid
range. Source file - chkrange.cc.

FUNCTION CALL
ck_range(parm_io, temp_ans)
struct PARM_IO_TYPE #*parm_io; /* Parameter IO structurex/
long temp_ans; /* Parameter value * /

DESCRIPTION

This function will test that a long variable "temp_ans" is
within its wvalid range. This is used in conjunction with the
test parameter modification routines. The range of the variable
is defined in the structure "parm_io" (parm_io->min and
parm_io->max) .

ck_resolu()
NAME

ck_resolu - Check that a test parameter is at a valid
resolution value. Source file - chkresol.cc.

FUNCTION CALL
ck_resolu(parm_io, temp_ans)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structurex*/
long temp_ ans; /* Parameter value * /

DESCRIPTION

This function will test that a long variable "temp_ans" is
at the proper resolution. This is used in conjunction with the
test parameter modification routines. The resolution of the
variable is defined in the structure "parm_io" (parm_io->res).
The function uses the MOD function to test for the proper
resolution.

clk_set()
NAME

clk_set -~ Clock set function. Source file - timer.cc.

FUNCTION CALL
clk_set (nm_ticks)
long nm_ticks; /* Number of ticks for interruptx*/

DESCRIPTION

Utilizes on board timer. Timer rate is based on 2 megahert:z
(MHzZ) clock rate. "nm_ticks" 1is the number of microseconds
between interrupts.

clk _sp()
NAME

clk_sp - Clock stop function. Source file - timer.cc.

FUNCTION CALL
clk_sp()

DESCRIPTION
Stops the on board timer and disables interrupts.

clk strt()
NAME

clk_strt - Clock start function. Source file - timer.cc.

FUNCTION CALL
clk_strt()

DESCRIPTION
Starts the on board timer and enables interrupts. The timer
interrupts occur at the rate established via call to "clk_set."

cnt pulses()
NAME =

cnt_pulses -~ Count reply pulses. Source file - repulse.cc.

FUNCTION CALL
cnt_pulses()

DESCRIPTION
This function will return the number of reply pulses
indicated by the raw status word.

convt _ans()
NAME

convt_ans - Convert and display a test parameter. Source
file - convtans.cc.

FUNCTION CALL
convt_ans(parm_io, spaceb)
struct PARM_IO_TYPE *parm_io; /* Parameter IO structure*/
char *spaceb[]; /* Space bar answers */

A-10

DESCRIPTION

This function will display a parameter which is stored in
the parameter structure (*parm_io->p_cur) as a character string
in its proper format on the display screen.

count_pulses()
NAME

count_pulses - Count interrogation pulses (events). Source
file - wf2coun.cc.

FUNCTION CALL
count_pulses(p_wfm_def, p_countl, p_count2, p_count3)

struct wave_parm *p wfm_def; /* Waveform struct * /

int *p_countl; /* Count for ch. 1 * /

int *p_count2; /* Count for ch. 2 */

int *p_count3: /* Count for ch. 3 */
DESCRIPTION

This function will count the number of pulse lead-edges and
trail-edges for each of the three channels. The end of a channel
is determined when the channel member contains '‘a zero.

curpos ()
NAME

curpos - Cursor position. Source file - curpos.cc.

FUNCTION CALL
curpos (ro, co)

int ro; /* Screen row */
int co: /* Screen column * /
DESCRIPTION

This function will position the cursor at the specified row
and column on a wyse 75 compatible terminal.

dbfile()
NAME
dbfile - Data file access function. Source file - aftsts.cc.

FUNCTION CALL
dbfile(cur_ques, df_lun, kf_lun, dfd, kfd)

int cur_ques:; /* Current question number*/
char *df_lun; /* Data file LUN */
char *kf lun; /* Key file LUN */
int *dfd; /* Data file descriptor */
int *kfd: /* Key file descriptor */

A-11

DESCRIPTION

This function provides access to the data and key files, and
displays the status of these files to the user at the data file
extension prompt on the screen displayed by aftsts(). This
function was designed to work with the function aftsts().

DETAILED DESCRIPTION

Displays the answer to the store option (YES or NO). If the
current question is the store option, the answer will be in
reverse video. The data file extension prompt and answer is then
erased. If the store option is YES, the prompt -and answer are
redisplayed. The file is opened with a call to odatf(). The file
status will be displayed next to the file extension prompt. The
file status possibilities are: the file already exists, the file
is new, or there was an error in the file open.

dfname ()
NAME

dfname - Create data file name. Source file - dfname.cc.

FUNCTION CALL ‘
dfname(f_str, f_type, f_date, s_loc_id)

char *f_ str; /* File name string */

int f_type; /* File type */

char *f date; /* Date */

char *s_loc_id; /* Location Identifier */
DESCRIPTION

This function will create a file name from the 1location
identifier and the date for either the data file or the key file
depending on the "f type" variable (f_type=1 - data file, else
key file). The location identifier is used as the catalog and the
date is part of the file name. Formats: "(s_loc_id).D(f_date)."
for data file and "(s_loc_id).K(f_date)." for key file.

d_fun _keys()
NAME

d_fun_keys - Define function keys. Source file - tstdrvr.cc.

FUNCTION CALL
d_fun_keys(sys_status)
char sys_status; /* System status */

DESCRIPTION
Will display the specific function keys and their action for
the "tstdrvr" function.

erase()
NAME

erase - Erase characters on the display. Source file-
erase.cc.

FUNCTION CALL
erase(n_chars)
int n_chars; /* Number of characters to erase*/

DESCRIPTION

Will erase n_chars characters starting at the current cursor
location. If n_chars is 0, will erase entire line from the
cursor.

extrct data()
NAME

extrct_data - Extract reply data. Source file - repulse.cc.

FUNCTION CALL
extrct_data(pulse, p_addr)

struct RAW_PULSE *pulse: /* Reply pulse data */
unsigned long *p_addr; /* Hardware address */
DESCRIPTION

This function is used to separate the various reply data for
the reply pulse at the address indicated by "p_addr." See the
function "repulse()" for more information.

fatal error()
NAME

fatal_error - Fatal error message. Source file - ferror.cc.

FUNCTION CALL
fatal_error(err_num, func_name)

int err_num; /* Error message number */
char *func_name; /* Name of function error occurred */
DESCRIPTION

Will display a message on the screen describing an
unrecoverable error that occurred in a function.

gen_action()
NAME

gen_action - Generate waveform action field. Source file-
wf2acti.cc.

A-13

FUNCTION CALL
gen_action(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct */
unsigned long p_data_pnt; /* Hardware address */

DESCRIPTION

This function will 1load the action field in its proper
binary format into the hardware waveform definition locations.
Action fields consist of items such as DELAY, PAM, PAM with SYNC
PHASE etc.

gen_atten()
NAME

gen_atten - Generate waveform attenuator selection. Source
file - wf2atte.cc.

FUNCTION CALL
gen_atten(p_wfm_def, p_data_pnt)
struct wave_parm *p_wfm_def; /* Waveform struct */
unsigned long p_data_pnt; /* Hardware address */

DESCRIPTION
This function will load the attenuator selection into the
proper hardware waveform definition locations.

gen_pattern()
NAME

gen_pattern - Generate waveform pattern. Source file-
wf2patt.cc.

FUNCTION CALL
gen_pattern(p_wfm_def, p_data_loc, mode_s_offset)
struct wave_parm *p_wfm_def; /* Waveform struct */

struct data_destination *p_data_loc: /* Hardware locs.*/
unsigned long mode_s_offset; /* Data block offset *x/
DESCRIPTION

This is the high level function for generating interrogation
.waveforms in binary format from waveform structures.

DETAILED DESCRIPTION

This function first determines the number of pulse events
and stores this in "p_data_loc->num_of_ pulses." This can be used
later by functions that need to modify the interrogation as it is
stored in hardware. For each of the channels, the waveform
information is encoded into its correct binary format and stored
in the hardware addresses determined by "p_data_loc." The
variable "mode_s_offset" is used to properly position the Mode S
data block with respect to the P6 pulse.

A-14

gen_pulse()
NAME

gen_pulse - Generate pulse fields. Source file-
wf2puls.cc.

FUNCTION CALL
gen_pulse(p_wfm_def, p_data_pnt)

struct wave_parm *p_wfm_def; /* Waveform struct */
unsigned long *p_data_pnt; /* Hardware address */
DESCRIPTION

This function encodes the pulse information (lead-edge,
trail-edge, etc.) into the proper binary format required by the
hardware. The pulse information 1is stored in the waveform
structure "p wfm_def."

gen_time()
NAME

gen_time - Generate time field. Source file - wf2time.cc.

FUNCTION CALL
gen_time(p_wfm_def, p_data_pnt, p_strt_s_blk,
cal_blk_offset, p_error)

struct wave_parm *p_wfm_def; /* Waveform struct */

unsigned long *p_data_pnt; /* Hardware address */

unsigned int *p_strt_s_blk; /* Start of Mode S block */

unsigned long cal_blk _offset; /* Data block offset */

unsigned int *p_error; /* Position error */
DESCRIPTION

This function will encode the time delay values contained in
the waveform structure into the binary format used by the
hardware. It will automatically use more than one hardware
address if the time delay requires more than the maximum value
provided by one location.

gen_transm()
NAME

gen_transm - Generate transmit field. Source file-
wf2tran.cc.

FUNCTION CALL
gen_transm(p_wfm_def, p_data_pnt)
struct wave_parm *p_ wfm_def; /* Waveform struct */
unsigned long *p_data_pnt; /* Hardware address */

DESCRIPTION
This function encodes the transmit information into the
proper format required by the hardware.

A-15

get decl()
NAME

get_decl - Get decimal numbers as input. Source file-
getdecl.cc.

FUNCTION CALL
get_decl(p_data, row, col, max_in)

char *p_data; /* Pointer to input data */

int row; /* Current row position */

int col; /* Current column position */

int max_in; /* Max digits allowed */
DESCRIPTION

Accepts only numeric characters as input from keyboard.

DETAILED DESCRIPTION

This function is intended to be called only after the first
numeric character has been read in. Its purpose is to accept only
numeric characters (0 - 9) until a carriage return is entered,
arrow keys are entered, or the buffer is full. If any other
characters are entered they will be ignored except the backspace
and delete keys, which are recognized and will erase characters
that were entered. The input characters are stored -'in the array
p_data up to the maximum input length indicated in max_in. Row
and Col are used to position the echoed characters on the screen.
This is a modified version of get_dec(), it was updated to exit
if an arrow key is entered.

get_input()
NAME

get_input() - Get keyboard input. Source file - getinl.cc

FUNCTION CALL
get_input(p_data, count, row, col, mx_in, e_len, opt)

char *p_data: /* Pointer to input data */
int *count; /* # characters read in * /
int row: /* Current row position */
int col; /* Current column position */
int mx_in; /* Max character input allowed*/
int e_len; /* # characters to erase */
int opt; /* Option, 0 exit, 1 pause max*/
DESCRIPTION

This is a general purpose function that filters only
printable characters from keyboard input and echoes them on
screen and stores them in a fixed length buffer.

A-16

DETAILED DESCRIPTION

This function is intended to be called only after the first
character has been read in. Its purpose is to test this character
and test and accept any following characters until the buffer is
full or a carriage return is entered. If any invalid characters
are entered (not between ascii 0x20 and O0x7f) the function
returns a "1" as an error condition. If all characters ars valid
and a carriage return is entered, the function will return a "O"
as a success condition. The backspace and delete keys are
recognized and will erase characters that were entered. The input
characters are stored in the array p_data up to the maximum input
length indicated in mx_in. Row and Col are used to position the
echoed characters on the screen. Count will contain the number of
characters read in.

This is a modified version of get_input, it has the addition
of "e_len" which determines how many characters to erase before
echoing input, and "opt" which determines what to do if the
maximum input is exceeded. If opt is "0" the program will exit,
if opt is "1" it will pause.

getmtl ()
NAME

getmtl - Acquire minimum transmit 1level (MTL) of
transponder. Source file - getmtl.cc.

FUNCTION CALL
getmtl(mtl, p_data_loc)
int *mtl; /* Minimum transmit level * /
struct data_destination *p_data_loc; / * Hardware
locations */

DESCRIPTION

This function will determine the minimum RF signal level
required to produce a 90 percent reply efficiency. The
measurement is made with a standard Mode A interrogation using a
successive approximation algorithm.

DETAILED DESCRIPTION

This function requires the include files: tstlib.h, stdlib.h
mmap.h, and calib.h. It requires the external variables: struct
CAL_TYPE calib for access to the calibration tables, int i_afloss
for airframe loss, and tx_port for the current transmitter port
in use. It uses a standard Mode A interrogation with the reply
window adjusted for coupling time. The PRF used is 500.

A subfunction called mtl_fun() is included in the function
to do the actual interrogation algorithm. This function initially
sets the interrogation power to be -88 dBm, the power variation
to 8 dBm, and the number of interrogations to be 20. It will
continuously interrogate with a call to the function
"suc_apprx ()" until the variation in power is down to 1 dB or the
interrogation power is out of range. If the transponder replies

A-17

at least 90 percent, the interrogation power is decreased by the
power variation, if less than 90 percent, the power is increased
by the power variation. Once the transponder replies at least 90
percent to a series of interrogations, the number of
interrogations will be doubled for the next run and the
variation will be divided in half.

The measured MTL is returned in the variable "mtl" in dB *
10.

* Potential improvement - The function returns the MTL in a
pointer variable, but it should also return a status to indicate
if MTL was found. i.e., if (was_90) return(SUCCESS).

getsd ()
NAME

getsd - Acquire suppression duration of transponder. Source
file - getsd.cc.

FUNCTION CALL
getsd(sd, mode, p_data_loc)

long #*sd; /* Suppression duration */
int mode; /* Interrogation mode, 0=a 1=C */
struct data_destination *p_data_loc; / * Hardware

locations */

DESCRIPTION

This function will determine the suppression duration of the
transponder. SuppreSSLOn duraticn is defined as the 1length of
time the transponder is suppressed following a P1-P2 suppre551on
pair. The measurement is made with a standard P1-P2 pair followed
by a standard interrogation. The interrogation mode is determined
by the variable "mode." If "mode" is a "0," Mode A is used, if
it is a "1," Mode C is used. The function varies the spacing
between the P1-P2 pair and the interrogation using a successive
approximation algorithm to find the 10 percent reply point.

DETAILED DESCRIPTION

This function requires the include files: tstlib.h,
stdlib.h, decode.h, mmap.h, and calib.h. It requires the external
variables: struct CAL_TYPE calib for access to the calibration
tables, int i_afloss for airframe loss, i_power for standard
1nterrogat10n power, and tx_port for the cusrent transmitter port
in use. It stores the 1nterrogatlon with the reply window
adjusted for coupling time in channel 1 and the P1-P2 pair in
channel 2. The PRF used is 450 and the frequency is 1030 MHz.

The function sets the interrogation power for both channels
the same as the standard interrogation 1level in the global
variable i_power. If it is unable to set the level of both
channels the same, it will abort. The initial spacing between the
P1-P2 pair and the interrogation is set to 50 microseconds, the
spacing variation to 10 microseconds, and the number of

A-18

interrogations to be 10. It will continuously interrogate with a
call to the function "suc_apprx()" until the variation in spacing
is down to 25 nanoseconds or the pulse spacing is less than the
spacing variation. If the transponder replies at least 10
percent, the spacing is decreased by the spacing variation, if
less than 10 percent, the spacing is increased by the spacing
variation. Once the transponder replies less than 10 percent to a
series ot interrogations, the number of interrogations will be
doubled for the next run and the variation will be divided in
half.

The measured suppression duration 1is returned in the
variable "sd" in nanoseconds.

getyorn()
NAME

getyorn - get "y" or "n" from the keyboard. Source file-
getyorn.cc.

FUNCTION CALL
getyorn() ;

DESCRIPTION

Waits indefinitely for a "y" or "n" from the keyboard. Lower
case and upper case are- allowed. Returns a "1" if a "y" is
entered,; returns a "0" if "n" is entered.

hwinit ()
NAME
hwinit - Hardware initialization. Source file - hwinit.cc.

FUNCTION CALL
hwinit ()

DESCRIPTION

This function initializes the important DATAS hardware
locations. It will reset the system clock, RF control, local
oscillator is set to 1030 MHz, the interrupt control is set to 0,
the transmit controller is set to stop all channels, the external
output controls are set, the threshold is set to minimum, and all
decoder variables are set.

interference()
NAME

interference - interference detection function. Source file
- intfer.cc.

FUNCTION CALL
This function has not yet been developed.

A-19

int_err()
NAME

int_err - interrogation setup error message. Source file-
wfmod.cc.

FUNCTION CALL
int_err(e_code, msqg)

int e_code; /* Error code */
char *msqg; /* Message string * /
DESCRIPTION

This function will decode and form an error message
describing the error code returned from the function "wfmod()."

int _loop()
NAME

int_loop - 1Interrogation 1loop algorithm. Source file-
intlp.cc.

FUNCTION CALL
int_loop(num_ints, reply, xmit_chan)

int num_ints; /* Number of interrogations*/
struct reply format *reply; /* Reply information struct#*/
int xmit_chan; /* Transmit channels */

GILOBAL VARIABLES
The following variables must be declared external to this
function:

struct CAL_TYPE calib; /* Calibration tables */

int i_afloss; /* Airframe loss */

int tx_port; /* Current transmit port */
DESCRIPTION

This function is used as a general purpose transponder
interrogation algorithm. It is used by the transponder tests that
require only a percent reply or some other general reply
information. The function will send the number of interrogations

defined in "num_ints," run the transmit channels defined in
"xmit_chan," and store the reply information in the struct
"reply."

DETAILED DESCRIPTION
The reply information supplied by the function is contained
in a data structure. The structure format of the "reply" struct
is defined in tstlib.h and provides the following information:
reply->power.min - The lowest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's *
10. All calibration offsets are added including airframe
loss and receiver coupling loss.

reply->power.mean - The mean reply power of the last reply
pulse (F2) measured in all replies. Is stored in dB's * 10.

A-20

All calibration offsets are added including airframe 1loss
and receiver coupling loss.

reply->power.max - The highest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's *
10. All calibration offsets are added including airframe
loss and receiver coupling loss.

reply->frequency.min - The lowest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.

reply->frequency.mean - The mean RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.

reply->frequency.max - The highest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz. .

reply->delay.min - The least reply delay measured out of all
replies. It is stored in nanoseconds. This is the delay from
the lead edge of the reply window. It assumes that the reply
window has been adjusted for coupling time.
reply—->delay.mean - The mean reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->delay.max - The maximum reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->atcrbs _code - ATCRBS identification code (4096). This
code comes from the system reply decoder and is in whatever
format the decoder provides. In order for this variable to
be stored it must be the same for at least five consecutive
replies. If the code changes during the interrogation loop,
this variable will contain whatever the code was for the
latest five consecutive replies.

reply->stdev_pls_cnt - Standard deviation of reply pulses.
This 1is provided so that reply reliability can be
determined.

reply->mean_pulse_count - Mean number of reply pulses per
interrogation.

reply~>intfere ratio - Ratio of replies that were rejected
because of interference to accepted replies. This is
provided to indicate data reliability.

reply->reply cnt - Reply count. The number of replies
detected.

The variable "xmit_chans" determines from which channels to

transmit. Each bit position corresponds to a channel; a "1"
means to transmit and a "0" means not to transmit. There are
currently three channels in the system, meaning a total of three
active bits (e.g., 0x0005 means to transmit on channels 1 and 3).
The timing must be set for the channels prior to calling this
function.

A-21

This function will start the system clock, but the PRF must
be set prior.

A status (integer) will be returned when the function
terminates. The following are return possibilities which are
defined in tstlib.h: T_ABORT (-1), PRF_ERROR (2), or T_PASS (0).
A status of T_ABORT will be returned if the acceptable level of
interference is exceeded. PRF_ERROR will be returned if the
system timer interrupt is already set when it is first read at
any time during the loop. T_PASS will be returned in all other
cases.

main() .
NAME

main - Transponder field testing main function. Source file
- afexec.cc.

FUNCTION CALL
main()

GLOBAL VARIABLES
The following is a list of global variables that are used
throughout the afexec program. They are declared in afexec.cc.

char asq_buf[100] - Asynchronous service queue buffer.

char date[9] ~ Current date.

char dat_file[STR_LEN] - Data file name. STR_LEN is defined
in tstlib.h (24).

char df_ ext{EXT_ LEN+1] = ("AA") - Data file extension.
EXT_LEN is defined in tstlib.h (2).

char f _date[9] - Current date in file format.

char key file[STR_LEN] - Key file name.

char loc_id{LID_LEN + 1] = (“UACY") - Location identifier.
LID_LEN is defined in tstlib.h (4).

char seq file[STR LEN] = ("STDSEQ"™) - Test sequence file
name.

char tsknam([4] = ("AFEX"} -~ Task name used for asynchronous
service queues.

char util buf[REP_BUF_LEN] - "REP_BUF_LEN" is defined in
tstlib.h (5000). This is a utility buffer intended to be
used as a general purpose array.

int hardcopy - Hardcopy flag.

int i_afloss - Airframe loss.

int pc_active - PC system active flag.

int pc_store - Flag to indicate if data should be stored in
PC.

int plot - Plot mode flag.

int test array[T LIMIT] - Test array from test sequence
file. T_LIMIT is defined in tstlib.h (100).

int tx_port = ANTENNA - Current transmission port in use.

ANTENNA is defined in calib.h.

long pc_buf loc(BUF_CNT] - Array of PC buffer addresses.
A-22

BUF_CNT is defined in pcinc.h (10).
struct CAL_TYPE calib - Calibration tables.
struct seqf_head seq _data - Test sequence file header.

parminit.h

Parminit.h is one of the most important files in the afexec
program. It contains definition and initialization of the global
test parameters, interrogation parameters, and structures that
support these parameters for all of the transponder tests. This
file is included in main() (afexec.cc), and any modifications to
these parameters, or any time a test is added, parminit.h must be
updated and afexec must be recompiled.

The major components of this include file are the current
and default test parameters, and the current and default
interrogation parameters. The test parameters are variables that
control how the test will operate (i.e., number of interrogations
to run, etc.). Two identical structures maintain the default
test parameters, which can only be changed with a program
modification, and the current test parameters, which are equated
to the default values but may be changed by the user at run time.
The interrogation parameters control the waveforms for the
interrogations that are common to all tests (i.e. Pl width, Pl to
P3 spacing, etc.). There is a default structure that can only be
modified with a program change that stores the initial value for
all parameters. There is a current structure array (one element
for each test) that the user may change at run time. The current
parameters are. stored in an array so that all tests may be
modified with one change if so desired.

These structs and their supporting structures that are
defined in parminit..h are defined below:

struct INT_TYPE int_cur([MAX_NM_TESTS]

struct INT_TYPE int def - These are the interrogation

parameter structures for the current and default

interrogation parameters respectively. The structure format

INT_TYPE is defined in tstlib.h and has the following

format:

#define NUM_PARMS 18
struct INT TYPE

{

yi
There are 18 parameters for each test. The current
parameters are stored in an array with enough elements for
the number of existing tests, "MAX_NM_TESTS" which is also
defined in tstlib.h. At program startup, the current
interrogation parameter array is filled with the values of
the default interrogation for each member of the array.
struct TST_TYPE tst_cur
struct TST_TYPE tst _def - These are the test parameter
structures for the current and default test parameters
respectively. The structure format TST TYPE is defined in
tstlib.h and has the following format:

long parm[NUM_PARMS);

A=-23

struct TST_TYPE

{
struct T2_TYPE tst2;
struct T3_TYPE tst3;

struct TN_TYPE tstN;
)i
There is a substructure corresponding to each existing test.
These substructures are also defined in tstlib.h.

There exists a structure that governs the users ability to
modify the structures at run time. The purpose of this is to
check the validity of a parameter value that is entered by
the user and to contain a pointer to the parameter value.
This structure definition is as follows:

struct PARM_IO_TYPE int_iof]

struct PARM_IO_TYPE tst_io[)]
The structure format PARM_IO_TYPE is defined in tstlib.h and
has the following format:

struct PARM_IO_TYPE

{

long *p_cur; /* Current value */
long *p_def; /* Default value * /
long min; < /* Minimum value */
long max; /* Maximum value * /

. long res; /* Resolution of value*/
int max_inp_char; /* Max input of chars */
int variabl_type; /* Variable type code */
int input_format; /* Input format code */
int ques_index; /* Index to question */

)i
The interrogation parameter IO array (int_io(]) contains one
structure for each of the 18 parameters. Because there is an
array of these structures, the pointer to the interrogation
for a particular test can be loaded at run time. The test
parameter IO array (tst_io[]) contains one structure for
each test parameter that exists. The pointer to each
parameter is stored in parminit.h because they could not be
found at run time. That is the reason for the extensive
initialization in parminit.h

Since the current test parameters may be modified by
the user at run time, the program has to be able to locate
each parameter based on the test number alone. To
accomplish this, a 1lookup table 1is also defined and
initialized in parminit.h. The 1lookup table has the
following format:

int p_lkup(MAX_NM_TESTS])[2] = ({ 0,0 },

{ 0,-1 },{ 0,2 },cunnncsds
For each test there is two integer values; the first is the
index into the io_struct location and the second is the
number of parameters for that test.

A-24

DESCRIPTION

Initializes the system, reads in the calibration files, and
generates the first display screen. The menu selections for this
screen are: Location ID entry, Calibrate Coupling Loss,. Run
Transponder Tests, Modify Test Interrogation Parameters, Run
Transponder Test Summaries, PC System Activation.

DETAILED DESCRIPTION

Calls hwinit() to set system hardware to starting point.
Calls prt_init() to 1initialize printer device. Allocates an
asynchronous service queue for event timing purposes. Acquires
system date and time: Calls calread() to read in calibration
files. Builds the display screen. If the PC system active flag is
true, will attempt to initialize the PC system by calling
pc_init(). The function will then wait for input from the
keyboard. The F5 key will exit the program, arrow keys will
select different menu options (the current menu option is
displayed in reverse video), a carriage return will execute the
current menu option, and ASCII characters are accepted as input
for the location ID and to switch the PC option answers.

When a menu option is selected with a carriage return, the
data and key file names are created using the location ID and the
system date via a call to the function dfname().

The PC active flag can be switched using the space bar or
any other key. When it is switched on (YES), three additional
prompts will appear to allow the user to select what the PC
system will do with the data. The options include whether or not
to display on the PC screen, whether or not to produce a
hardcopy, and whether or not to store the data in the PC system.
The global variables that contain this information are: plot,
hardcopy, and pc_store, respectively. The global variable for the
overall PC system is pc_active. Each of these variables contain a
"1" when active or a "0" when inactive accept for the variable
plot, which contains a "O" for inactive, a "1" for active plot
after the test is complete, and a "2" for active on-line with the
test.

mdec_acr()
NAME

mdec_acr - Multiple decode of ATCRBS replies. Source file-
mdecode.cc.

FUNCTION CALL
mdec_acr (p_a_status, p_a_data, max_dec, max_win)

struct MA_REP_STAT *p_a_status; /* Pointer to ATCRBS
reply status struct */
struct MA_REP_DATA *p_a_data; /* Pointer to ATCRBS
reply data struct * /
int max_dec; /* # of decode data structs availablex*/
int max_win; /* # of reply windows allowed */

A-25

DESCRIPTION

This function will process the decoded reply data from the
hardware memory area. The decoded reply status will be stored in
the struct "p_a_status"; the decoded reply data will be stored in
the array of structs "p_a_data." The number of data structs
available is passed in the variable "max_dec." The function will
return three possible status conditions, "NO_REPLY" (1) if the
decoder indicates there was no reply, "DEC_ERROR" (-1) if there
is an error in the decoder data, or a "O0" if there was a
successful decode.

DETAILED DESCRIPTION
If the number of decodes indicated in hardware is "0," a no
reply status is returned. If the decode error word in hardware
indicates a fatal decode error, then a decode error status is
returned. Otherwise the decode information is stored in a status
structure and a reply data structure.
Relevant information regarding the decode data is stored in
a status structure called "p_a_status." The structure is of the
type "MA_REP_STAT" which is defined in decode.h. The following
information is stored in the decode status struct:
p_a_status->nm replies - The total number of ATCRBS replies
decoded in all reply windows. Initialized to "O0," this
variable is incremented with each occurrence of a time of
arrival (TOA) word where the decode type was ATCRBS.
p_a_status->nm windows =~ The number of reply windows.
Initialized to 1, this variable is incremented with each
occurrence of an interim status word. It is assumed that
there must have been at least one reply window.
p_a_status->rep w_map - This 1is a pointer variable that
contains the location of an array which will store the
number of replies in each window. The contents at the
pointer is incremented with each occurrence of a TOA and the
pointer itself is incremented with each occurrence of a
interim status word.
p_a_status->d _error - Decode errors. This variable contains
the decode errors provided by the hardware status as well as
errors that occurred when checking through the decoded data.
Each bit in the word corresponds to an error. The following
are errors from the hardware errors at location EF824024:

Bit O - Decode 1 counter overflow
1 - Decode 2 counter overflow
2 - Decode 3 counter overflow
3 - Decode 4 counter overflow
4 - Decode 5 counter overflow
5 - Decode 6 counter overflow
6 - Decode 7 counter overflow
7 - Decode 8 counter overflow
8 - Total decode overflow
9 - TIMLOSS-lost a time word

10 - ATCLOSS-lost ATCRBS data

A-26

11 - MSLOSS- lost Mode S data

12 - TOVFLO- Range counter overflow
The following are errors that can occur when checking the
decoded data:

Bit 13 - Missed decode data

14 Illegal decode, decode not ATCRBS

15 - Reply window overflow

16 - Reply overflow, not enough data loc.

Information regarding each reply is stored in an array of
structs called "p_a _data." Each reply is stored in its own
structure element. If there are more replies than the array can
hold, the error bit 16 "Reply Overflow" is set in the error word.
The structures are of the type "MA_REP_DATA" which is defined in
decode.h. The following describes the contents of each data
struct:

p_a_data->a_time - The time field from the TOA word from

hardware.

p_a_data->a_code - The code data from the Decode Status word

from hardware.

p_a_data->wind nm - The reply window that “this data came

from.

mparms
NAME
mparms - Modify parameters. Source file - mparms.cc.

FUNCTION CALL
mparms ()

GLOBAL VARIABLES

The following external variables are required by this
function:

char *prm_ques[] ~ The array of parameter questions.

char *spaceb[] - The array of answers for space bar
selectable parameters.
struct INT TYPE int _cur{] - The array of current

interrogation parameters.

struct INT TYPE _int def - The structure of default

interrogation parameters.

struct TST TYPE tst cur - The structure of current test

parameters.
struct TST TYPE tst _def - The structure of default test
parameters.
int p _lkup{]{2] ~ The lookup array for the test parameters
locations.

c PA O_TYPE _int_io - The array of user 1I/0
information for the interrogation parameters.
struct PARM_ IO TYPE tst io - The user I/0 information for

the test parameters.

A-27

DESCRIPTION

This is the main function for the parameter modification
area of the DATAS transponder testing program. It builds the
screen that prompts the user for the test number for which
parameters to access. It will accept only numeric characters as
input for the test number or the F5 function key to exit. If an
invalid test number is entered, an error message Wwill be
displayed. If a "O" is entered, it will call the appropriate
functions to modify the interrogation parameters for all tests.
Otherwise, it will call the function "parmscrn()" to access the
interrogation parameters and again to access the test
parameters. The function will then prompt again for another test
number. It will be active until the F5 key is entered.

There are two arrays that determine the position on the
screen for each parameter. The array "sp_sc" 1is for the
interrogation parameters, and the array "db_sp" is for the test
parameters.

parmscrn ()
NAME

-

parmscrn - parameter modification screen. Source file-
parmscrn.cc.

FUNCTION CALL
parmscrn(parm_io, index, num, prm_ques, mov_dir, title,
tl_row, tc, tst_num, int_cur, spaceb)

struct PARM_IO_TYPE *parm_io; /* Parameter IO info */
int index:; /* Parm IO index (start) */
int num; /* Number of parameters */
char *prm_ques(]: /* Parameter questions * /
int mov_dir([][2]; /* Prompt locations * /
char *title[]; /* Title messages */
int t1_row(]:; /* Location for titles */
int tc; /* Title count */
int tst_num; /* Test number */
struct INT_TYPE *int_cur; /* Interrogation parameters*/
char #*spaceb(]: /* Space bar answers */

DESCRIPTION

This is the display function for the parameter modification
routines. It displays the parameters on the screen and allows the
user to change them. The user selects between parameters using
the arrow keys. The current parameter as well as those that have
been set to other than default are displayed in reverse video.
The function keys that are active are: F5 to exit, F6 to set all
values displayed to their default values, and F7 to set only the
current parameter to its default value.

DETAILED DESCRIPTION
The function will first determine the order and location of
the parameter prompts and answers with a call to the function

A-28

"bldmenu." If there is not enough room for all parameters the
program will terminate with a fatal error. The parameters and
their prompts are displayed on the screen with the parameters
whose values are other than default displayed in reverse video.
If the current parameter is one that is altered by entering the
space bar key, an appropriate message directing the user to do so
is displayed on the screen.

The active function keys are F5 to exit, Fé to set all of
the parameters displayed to their default values, and F7 to set
only the current parameter to its default value. The arrow keys
are used to select between the parameters.

When an answer to a prompt is entered, it will be put
through several checks before it is accepted. Most of the checks
are made against constraints stored in the parameter IO struct.
First the format is checked with a call to the function
"ck_format." If the format is ok, the parameter string that was
entered is converted into its variable type. The value is then
checked that it is in range with a call to "ck_range." and that

it is in the proper resolution with a call to "ck_resolu." If
there are any errors, the answer 1is rejected and a message is
displayed.

In the case of a spacebar parameter, the value 1is simply
incremented to the next value. If it is at the maximum value it
is simply returned to the starting value.

When the answer has been fully tested the actual parameter
value 1is replaced with the new value. If all test parameters are
changed, then it will update those of all tests.

pcinit ()
NAME
pcinit - PC system initializer. Source file - pcinit.cc.

FUNCTION CALL
pcinit(msg, pc_buf_loc)
char *msg; /* Status message * /
long *pc_buf_loc; /* Array of PC data buffers */

GLOBAL VARIABLES
The following are external variables required by this
function:

char asq _buf[] - Asynchronous service queue buffer.
char tsknam[] - Task name.
DESCRIPTION

This function will establish the communication link between
the 68020 computer and the PC subsystem. It will store the
location of the communication buffers and attempt to bring the
two systems to an on-line state. A success (0) or fail (1)
condition is returned and if the initialization did fail, the
variable "msg" will contain an error message.

A=-29

DETAILED DESCRIPTION

The include file "pcinc.h" is required by this function to
establish PC system addresses, relevant #defines, and
communications buffer structures. There are two primary goals of
this function. The first is to bring the 68020 and the PC to an
on~-line state, and the second is to store the addresses of the PC
data buffers into an array. .

The two systems are brought "on-line" through a mutual
handshaking process. The process 1is controlled by the 68020
system which acts as the master system. The control information
is stored in a structure which contains the following fields:

p_pc_ctrl->h_id - Host identifier.

p_pc_ctrl->h state - Host state.

p_pc_ctrli->pc_id - PC system identifier.

p_pc_ctrl->pc _state - PC state.

p_pc_ctrl->mode - Operation mode.

p_pc_ctrl->buf num - Number of buffers.

p_pc_ctrl->block addr -~ Entry block address.

p_pc_ctrl->buf _addr - Buffer base address.

p_pc_ctrl->buf size[BUF _CNT] - Array of buffer sizes.

This structure is stored in the PC memory. When the PC system is
started, it will f£fill in the information that it is responsible
for including pc_id, pc_state, buf_num, block_addr, buf_addr, and
buf_size[]. The state of the two systems is then controlled by
the 68020 system with the following scenario:

-Host state is off-line (h_state = S_OFFLINE (0))

-Host waits until PC state is equal to host state

-Host state is PC request (h_state = S_PC_REQ (1))

-Host waits until PC state is equal to host state

-Host state is on-line (h_state = S_ONLINE (2))

-Host waits until PC state is equal to host state
The time that the Host system will wait is controlled by the
service queue. If the PC does not respond in time or if any other
failure occurs, a message wWill be stored and the function will
return a failure condition.

Once the 1link is established, the array "pc_buf_ loc" is
filled with the starting address of each of the PC buffers.

plotdat()
NAME

plotdat - Plot reply data on PC system. Source file-
plotdat.cc.

FUNCTION CALL
plotdat(test_data, b_hdr_in, entry_pos)

struct data_share *test_data; /* Test reply data */
struct BUF_HDR *b_hdr_in; /* Buffer header info */
int *entry_pos: /* Block entry position t/

A-30

GLOBAL VARIABLES

The following external variables are required by this
function:

long pc_buf lcc[] - Array of buffer addresses.

int pc_active - PC status O=off 1l=on.

int plot - Plot flag.

int hardcopy - Hardcopy flag.
int pc_store - Store data flag.

DESCRIPTION

This function is used to transfer the results of a
transponder test to a buffer location in the PC system. The PC
system is used to represent the transponder test performance in
graphic form. The data can be sent there to be plotted on the
screen, plotted on a hard copy, stored in the PC memory, or any
combination of all three.

DETAILED DESCRIPTION

In order for this function to work, the PC system/68020
communication .link must have already been established. First,
the function will check that the pc_active flag is true, check
that the pc_id is correct, and check that the pc_state is on-
line. If any of these conditions are not met, a fail condition is
returned.

Next, the function will have to find an available buffer
that will fit the transponder test data block.” The data buffers
are of various sizes, therefore, the function will search for the
smallest one that will fit the test data. Since the last buffers
are the smallest and the first buffers are the largest, the
search is done from the last buffers to the first. If no buffers
are available or none that will fit the data are available, a
buffers-full condition is returned. Otherwise, the buffer header
and the data are transferred using the memcpy() function. The
buffer header precedes the data in each buffer and contains some
important information. The structure is described below:

b_hdr_out->bit.blk _type - Data block type, O=data 1=ASCII.

b_hdr out->bit.store ~ Data store flag.
b_hdr_out->bit.hdcpy - Hardcopy flag.

b_hdr out->bit.display - Display plot flag.
b_hdr_out->bit.link - O=single buffer l=multi-buffer.

b hdr out->bit.mode - 0=Block l1l=itterative.

b_hdr out->bit.flag - O=Buffer available, 1l=not available.
b_hdr out->bit.buf_id - ID of next buffer (link=1l).

b_hdr out->test _num - Test number.

b_hdr out->data ct - Size of data.

b_hdr out->point_ct - Number of points so far, if itterative
mode.

This buffer header information is supplied to this function, it
is not supplied by this function.

Once the data is transferred to the buffer, it is then
required that the entry is made known to the PC system by making
an entry in the buffer entry queue. The information in this queue

A-31

is constantly monitored by the PC and contains a flag indicating
a used buffer as well as the location of the buffer. If there are
no positions available in the queue, a buffers full status is
returned.

plotmsqg()
NAME

plotmsg - plot system status message. Source file-
sumscrn.cc.

FUNCTION CALL
plotmsg(status, row)

int status; /* Status code */
int row; /* Display row */
DESCRIPTION

This function will display a message describing the status
of the PC system on the screen at the row provided.

-

plotque()
NAME

plotque - Plot system queue. Source file - sumscrn.cc.

FUNCTION CALL :
plotque(data, pc_buf_head, entry_pos)

struct data_share *data; /* Data to be plotted */

struct BUF_HDR *pc_buf head; /* Buffer header info */

int *entry_pos; /* Block entry position */
DESCRIPTION

This function will periodically try to transfer data to the
PC plot system. If no buffers are available, a message will be
displayed and the function will wait until one becomes available
or an escape character is entered.

pmsg()
NAME
pmsg - Print error message. Source file - pmsg.cc.

FUNCTION CALL
pmsg (e_code, str)

int e_code: /* Error code */
char *str; /* Error message array */
DESCRIPTION

This function will display an error message for each bit
that is set in the integer "e_code." Each bit position is tested
and if it is a "1" an error message indexed by the bit position
will be displayed.

A-32

pr head()
NAME

pr_head - Print header information. Source file - prhead.cc.

FUNCTION CALL .
pr_head(hdrinfo, io_buf, num_lines)

struct HEADER *hdrinfo: /* Header information */

struct data_share *io_buf; /* Output buffer */

int *num_lines; /* Number of lines used */
DESCRIPTION

This function formats and stores the transponder under test
header information into a buffer for display purposes. This
function is used by the summary programs to display unit under
test information with the test results. The header information
includes the aircraft ID, aircraft type, transponder type, and
the comment field.

print()
NAME

print - Send string to printer device. Source file-
print.cc.

FUNCTION CALL
print(s_ptr, nm_prt)

char *s _ptr; /* String pointer */
int nm_prt; /* Number of characters */
DESCRIPTION

This function will send the number “f characters specified
in "nm_prt" from the string pointed to by "s_ptr" to the printer
device. The 1lwrite() function is used. The status of the 1lwrite
is returned.

prt_init()
NAME

prt_init - 1Initialize printer device. Source file-
print.cc.

FUNCTION CALL
prt_init()

DESCRIPTION

This function will assign a Logical Unit Number to the
printer device. The lassign() function is used. The logical unit
number is stored in the global variable "plun." Currently, an
escape sequence is sent to initialize an HP Laser printer, but
this may be temporary. If the assign 1is successful a PASS
condition is returned, otherwise, a FAIL condition is returned.

A-33

pw_thresh()
NAME

pw_thresh - Pulse width threshold set function. Source file
- pwthresh.cc.

FUNCTION CALL
pw_thresh(p_data_loc)
struct data_destination *p_data_loc; / * Hardware
locations */

DESCRIPTION

This function will set the pulse width measurement threshold
to the optimum level which is determined by the reply power
level. The value that must be stored in the hardware to set the
level correctly is stored in the calibration tables and can be
referenced based on the reply power.

This function will generate 100 Mode A interrogations in
order to find the mean reply power of the first reply pulse. If
there are at least 10 replies, the threshold will be set and a
SUCCESS condition is returned, otherwise, a FAIL condition is
returned.

odatf ()
NAME

odatf - Open data file. Source file - odatf.cc.

FUNCTION CALL
odatf(dat_file, df_ext, df_lun, dfd, key_file, kf_lun, kfd,
new_file, crff)

char *dat_file; /* Data file name */
char *df_ext; /* Data file extension */
char *df_lun; /* Data file LUN */
int *dfd4d; /* Data file descriptor */
char *key file; /* Key file name * /
char *kf 1lun; /* Key file LUN */
int *kfd:; /* Key file descriptor */
char *new_file; /* New file flag */
int crff; /* Create file flag */
DESCRIPTION

This function is used to open a data file and key access
file in order to store the transponder test results. The function
requires both the data and key file names and extensions as
inputs, and provides file descriptors and logical unit numbers.
The create file flag (crff) will tell the function whether or not
to create the files if they do not exist. A crff of "0" means NO
and "1" means YES. If the file had already existed, the
"new_file" flag will contain a "0," if the file had to be
created, it will contain a "1."

A-34

rddat ()
NAME

rddat - Read data. Source file - sumdat.cc.

FUNCTION CALL
rddat (lun, rrn, buf, pldt)

char lun:; /* LUN of file * /

long rrn; /* Record number */

struct data_share *buf; /* Data buffer */

long *pldt: /* Amount of data read *x /
DESCRIPTION

This function will read from the logical unit supplied the
current record "rrn" and store it in "buf." The number of bytes
read is stored in "pldt." It will return "O" for success, "-1"
for end of file, and terminates on VERSAdos errors.

rds file()
NAME

rds_rile - Read DATAS file. Source file - rdsfile.cc.

FUNCTION CALL
rds_file(f_type, e_code)
int f_type; /* File type code (obsolete) */
int *e_code:; /* Error code if occurred * /

GLOBAL VARIABLES
The following are variables that must be declared external
to this function.

char seg _file[] - Sequence file name.
struct seqf head seq _data - Sequence file header.
int test _array[] - Test sequence array.

DESCRIPTION

This function was originally intended to read a variety of
file types for the DATAS program. It has been reduced to
performing the read of test sequence files. It will read and
store the sequence file header and the test sequence. If it is
successful, it will return a "0," if the file does not exist, it
will return a "1," if there is an error in the file open or read,
the error code will be stored in e_code and a "2" will be
returned.

read segf file
NAME

read_seqf file - read test sequence file. Source file-
sfread.cc.

FUNCTION CALL
read_segf file(s_fil_ data, test_array, fp)

struct seqf_head *s_fil_data; /* File header */

int test_array(]: /* Test # array */

char *fp: /* File LUN * /
DESCRIPTION

Reads a test sequence file from disk given the logical unit
number of the file. The header information and the array of tests
is returned.

DETAILED DESCRIPTION

The file is first rewound. If an error occurs, the program
will exit with an error message. A lread() is used for all file
reads. First, the header is read into a temporary buffer. If an
error occurs the error code is returned in negative logic. The
data is then transferred from the temporary buffer into the
header struct "s_fil data." The test numbers are then read in
until the end of file. The test numbers are stored in the format
"struct test_type" which is defined in this function. The test
number field from this struct is stored into the test array
(test_array[]). The flag field "flg" in the test struct is
currently not used.

reé test ()
NAME

rep_test - Reply test. Source file - reptest.cc.

FUNCTION CALL
rep_test(wfm, loc, lead_del)

struct wave_parm *wfm; /* Waveform array *x/

int loc; /* Waveform index for reply */

long lead_del; /* Lead reply delay * /
DESCRIPTION

This function is used to transmit a reply from channel 2 in
order to test transponder tests. It will modify an existing
interrogation structure array so precaution must be taken to make
sure that the original structure array is 1large enough to
contain the added reply pulse definitions. The reply is stored in
channel 2 beginning at the location "loc." The lead reply delay
is set to the value contained in "lead_del," which should
normally be equal to all the time fields in channel 1 up to the
reply window. The function will also set the RF unit to the
diagnostic mode and set the channel 2 frequency to 1090 MHz.

repulse()
NAME

repulse - Reply pulse processor. Source file - repulse.cc.

FUNCTION CALL
repulse(pulse, a_code)

struct RAW_PULSE *pulse; /* Reply pulse information*/
int a_code; /* ATCRBS code */
DESCRIPTION

This function will separate the raw reply data for each
reply pulse and store it in an array of structs. The struct array
is dimensioned as 16 structs, one for each possible reply pulse
(al, cl,etc...) including the framing pulses and the Special
Position Indicator (SPI). The indexes of the structs correspond
directly to the order of the pulses, 0=Fl1, 1=Al, etc.. The
structure definition and information is as follows:

struct RAW_PULSE

{

int flg; 0=No pulse 1=Pulse present
int le_time; time of pulse

int amp; amplitude of pulse

int freq; frequency of pulse

int width; width of pulse

int mp_value mono-pulse value

)

The ATCRBS code in the reply data is used to separate the
reply pulses into their respective positions.

If the raw data status word shows an error condition or the
ATCRBS code and the number of pulses in the reply data disagree,
this function will return an error condition.

This function uses two subfunctions: extrct_data() to
extract the reply data for each pulse, and cnt_pulses to count
the number of reply pulses present.

setfreq()
NAME

setfreq - Set transmit frequency. Source file - setfreq.cc.

FUNCTION CALL
setfreq(chan, freq)

unsigned long chan; /* Channel address */
long freq: /* Frequency in khz */
DESCRIPTION

This function will store the transmit frequency in Binary
Coded Decimal (BCD) format in the channel address provided.

set_idle()
NAME

set_idle - Set idle interrogation on or off. Source file-
setidle.cc.

A-37

FUNCTION CALL
set_idle(s_row, s_status, p_data_loc)

int s_row; /* System message row */
char s_status; /* System status */
struct data_destination *p_data_loc; / * Hardware

locations */

GLOBAL VARIABLES
The following variables must be declared external to this
function:
struct CAL _TYPE calib - Calibration tables.
int i _power - Interrogation power.
int i afloss - Airframe loss.

int tx port - Active transmitter port.

DESCRIPTION

Based on the current system status, this function will
either start or stop the idle interrogation. A message will be
displayed on the screen in the row indicated by "s_row" when the
idle is turned on or erased when the idle is turned off. The idle
interrogation is defined in the include file "idle.h."

setlev()
NAME

setlev - Set power level. Source file -~ setlev.cc.

FUNCTION CALL
setlev(level, chan, atten, atten_index)

int *level: /* Transmit power level */
int chan; /* Transmit channel */
inc atten; /* Attenuator selected *x/
int atten_index; /* Attenuator index */

GLOBAL VARIABLES

The following variables must be declared external to this
function:

struct CAL TYPE calib - Calibration tables.

int i afloss - Airframe loss.

DESCRIPTION

This function will attempt to set the transmit level of the
channel to the level desired. If the level is too high, the level
will be set to the maximum and "P_TOO_HI" will be returned. If
the level is too low the level will be set to the minimum and
"P_TOO_LO" will be returned. If the 1level 1is achievable a
"SUCCESS" condition is returned.
setscroll ()
NAME

setscroll - Set scrolling region. Source file - stscrol.cc.

A-38

FUNCTION CALL
setscroll (start, stop)

int start; /* Starting row */
int stop: /* Ending row */
DESCRIPTION

This function will define a scrolling region on a WYSE 75
compatible terminal between rows start and stop. To terminate a
scrolling region, call setscroll with start at 0, and stop at 24.

spandd ()
NAME

spandd - Sensitivity, power, and delay measurement. Source
file - spandd.cc.

FUNCTION CALL
spandd (t_data, best_power, best_delay, p_data_loc)

struct data_share *t_data; /* Struct to pass back data */
int *best_power; /* Best power measured so far */
int *best_delay: /* Best delay measured so far */

struct data_destination #*p_data_loc; /* Load addresses */

GLOBAL VARIABLES

The following variables must be declared external to this
function:

struct CAL TYPE calib - Calibration tables.

int i _afloss - Airframe loss.

int tx _port - Active transmitter port.

int i power - Interrogation power.

DESCRIPTION '

This function will constantly monitor the reply power,
sensitivity, and reply delay of the transponder under test. This
is used primarily to measure these parameters as the aircraft
>asses by the main beam in order to find the optimum measurement
at center beam. It will transmit a standard Mode A interrogation
at 200 PRF. An F9 key entered will stop the function. The
successive approximation algorithm "sapx()" is used to measure
the sensitivity, and the interrogation 1loop algorithm
"int_loop()" is used to measure reply power and delay.

The current measurements are displayed on the screen along
4ith the best measurements so far, if any parameter improves, it
will be displayed in reverse video along with a message
"increasing."

stcenter()
NAME

stcenter - String centering function. Source file-~
stcenter.cc.

A-39

FUNCTION CALL
stcenter(str)
char *str; /* String */

DESCRIPTION
This function will return a column position where the input
string "str" would be in the center of the display screen.

store _ans()
NAME

store_ans - Store parameter answer. Source file-
storeans.cc.

FUNCTION CALL
store_ans(p_inp_data, parm_io, dest)

char *p_inp_data: /* Parameter as entered from keyboard*/

struct PARM_IO_TYPE *parm_io; /* Parameter defines */

long dest; /* Storage destination * /
DESCRIPTION

This function will store the character string "p_inp_data"
in the location "dest" in the proper format which is defined in
"parm_io."

store ptr()
NAME

store_ptr - Store pointer answer. Source file - storeans.cc.

FUNCTION CALL
store_ptr(parm_io, source)

struct PARM_IO_TYPE *parm_io; /* Parameter defines */
long source; /* Source address of value*/
DESCRIPTION

This function will store from the location "source" into the
pointer variable in the "parm_io" struct.

suc_apprx()
NAME

suc_apprx - Successive approximation algorithm. Source file
- sapx.cc.

FUNCTION CALL
suc_apprx(rep_thresh, num_ints, reply, xmit_chan)

int rep_thresh; /* Reply threshold (usually 90%)x/
int num_ints;: /* Number of interrogations */
struct reply format *reply; /* Reply data */
int xmit_chan; /* Transmit channels */

A-40

GLOBAL VARIABLES

The following variables must be declared external to this
function:

struct CAL TYPE calib - Calibration tables.

int i_afloss - Airframe loss.

int tx port - Active transmitter port.

DESCRIPTION

This function is used to rapidly find a certain percent
reply point using the successive approximation algorithm. This is
the function that will generate the actual interrogations for the
algorithm. The intended number of interrogations is passed in the
variable "num_ints" and the function will interrogate until
either the number of replies are met to insure that the reply
threshold is met or the number of misses are encountered to
indicate the reply threshold can not be met. The function will
run the transmit channels defined in "xmit _chan," and store the
reply information in the struct "reply."

DETAILED DESCRIPTION
The reply information supplied by the function is contained
in a data structure. The structure format of the "reply" struct
is defined in tstlib.h and provides the following information:
reply->power.min - The lowest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's *
10. All calibration offsets are added including airframe
loss and receiver coupling loss.
re ->power .mean - The mean reply power of the last reply
pulse (F2) measured in all replies. Is stored in dB's * 10.
All calibration offsets are added including airframe 1loss
and receiver coupling loss.
reply->power.max - The highest reply power of the last reply
pulse (F2) measured out of all replies. Is stored in dB's *
10. All calibration offsets are added including airframe
loss and receiver coupling loss.
reply->frequency.min - The lowest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply->frequency.mean - The mean RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply-»frequency.max - The highest RF transmitter frequency
of the first reply pulse measured out of all replies. It is
stored in kHz.
reply->delay.min - The least reply delay measured out of all
replies. It is stored in nanoseconds. This is the delay from
the lead edge of the reply window. It assumes that the reply _
window has been adjusted for coupling time.

reply->delay.mean - The mean reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay

from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->delay.max - The maximum reply delay measured out of
all replies. It is stored in nanoseconds. This is the delay
from the lead edge of the reply window. It assumes that the
reply window has been adjusted for coupling time.
reply->atcrbs_code - ATCRBS identification code (4096). This
code comes from the system reply decoder and is in whatever
format the decoder provides. In order for this variable to
be stored, it must be the same for at least five consecutive
replies. If the code changes during the interrogation loop,
this variable will contain whatever the code was for the
latest five consecutive replies.

reply->stdev_pls_cnt - Standard deviation of reply pulses.
This 1is provided so that reply reliability can be
determined.

reply->mean_pulse count - Mean number of reply pulses per
interrogation.

reply->intfere_ratio - Ratio of replies that were rejected
because of interference to accepted replies. This is
provided to indicate data reliability.

reply->reply _cnt - Reply count. The number of replies
detected.

The variable "xmit_chans" determines from which channels to
transmit. Each bit position corresponds to a channel; a "1v
means to transmit and a "0" means not to transmit. There are
currently three channels in the system, meaning a total of three
active bits (e.g., 0x0005 means to transmit on channels 1 and 3).
The timing must be set for the channels prior to calling this
function.

This function will start the system clock, but the PRF must
be set prior.

A status (integer) will be returned when the function
terminates. The following are return possibilities which are
defined in tstlib.h: T_ABORT (-1), PRF_ERROR (2), T_FAIL (1), or
T_PASS (0). A status of T_ABORT will be returned if the
acceptable level of interference is exceeded. PRF_ERROR will be
returned if the system timer interrupt is already set when it is
first read at any time durlng the loop. T_PASS will be returned
if the reply threshold is achieved. T_ FAIL will be returned if
the reply threshold was not met.

sum#*
NAME
sum* - Summary function for test *. Source file sum*.cc.

A-42

FUNCTION CALL
sum* (t_data, io_buf, num_lines)

struct data_share *t_data; /* Test data */

struct data_share *io_buf; /* output buffer * /

int *num_lines; /* Number of lines */
DESCRIPTION

This represents a typical call to a test summary function.
The test summaries produce a brief description of the results of
the transponder for each test. The test data is passed to the
function in the structure "t_data." The summary for the test is
returned in the structure "io_buf" in ASCII format. The number of
lines that the summary message requires for the screen or printer
is returned in "num_lines.”

sumdat ()
NAME

sumdat - Summarize transponder test data. Source file-
sumdat.cc.

FUNCTION CALL
sumdat (start_pnt, hdrinfo, io_dev, dflun, rrn, range,
line_array, head_rrn, head_sent)

int *start_pnt; /* Starting test # index */
struct HEADER *hdrinfo; /* Test header info */
int io_dev; /* Output device */
char df_lun;: /* Data file LUN */
long *rrn; /* Current record # */
int range; /* Display- O=LINE 1=PAGE%*/
int *line_array: /* # lines per test * /
long head_rrn; /* Record # of header */
int head_sent; /* Header sent flag */
DESCRIPTION

This function is the heart of the test summary function. It
will retrieve the test data from the data file, call the
appropriate data reduction function, and display the results on
the screen or printer.

DETAILED DESCRIPTION

The page limit is set based on the output device chosen. The
defines for the screen and printer limits are in "sumdef.h."

The test data header information will be displayed if the
starting point is at the beginning (*start_pnt = 0) and a full
page 1is being displayed (range = 1); or the header has not been
sent (head_sent = NO), a single line is being displayed (range =
0), and the output device is the printer. "head rrn" is used to
locate the header record in the file.

The test data will be displayed or printed until either all
tests have been displayed or the screen 1s full. The summary

A-43

functions sum* are called to reduce the data. These functions are
in a function array defined in "sumdef.h" and there is one for
each test. The current record "“*rrn," the start 1location
"*start_pnt,"” and the test 1line array "*line array" are
maintained to allow for multiple pages. This function will reduce
and display one line or one page of test results only. It must
be called again to display following pages.

The function returns "0" if successful or "-1" if the end of
file is reached.

summenu
NAME
summenu - Test summary menu. Source file ~ summenu.cc.

FUNCTION CALL
summenu ()

DESCRIPTION

This function drives the initial screen for the transponder
test summary program. It prompts the user for the following
information: Location Identifier - location code for the site
where the data was collected, this is used as the file catalog;
Date - date when the data were collected, is used as part of the
file name; Data file extension - the extension for the data file;
Summary mode - either SINGLE or MULTIPLE (SINGLE will prompt for
the aircraft ID to locate a specific test result, MULTIPLE will
prompt for an output device to send all the test results
collected at the location and date entered).

The function key FS will exit the function and Fé6 will start
the summary program.

sumscrn
NAME

sumscrn - Test summary screen display. Source file-
sumscrn.cc.

FUNCTION CALL
sumscrn(dflun, rrn, s_mode)

char dflun; /* Data file LUN * /

long rrn; /* Data file record number * /

int s_mode: /* Summary mode - SINGLE or MULTIPLE*/
DESCRIPTION

This function will call the function "sumdat" to produce the
test summaries and headers on the screen. The center portion of
the screen will display the test summaries and the bottom will
display several function key options. One of the test summaries
is highlighted and may be selected using the arrow Kkeys. The
function keys perform the following tasks: F5 - EXIT, will return
to the previous screen; F6 - PAGE, will display the next page of

A-44

*

results on the screen; F7 - PRINT LINE/ALL, will send the
highlighted line test summary and header to the printer: if SHIFT
F7 is entered, will send all the test results from that target to
the printer; F8 - PLOT LINE/ALL, will send the test data and
header data to the PC plot system; if SHIFT F8 1is entered, will
send all summaries from the target to the PC; F9 - NEXT, will
advance to the next aircraft's test result data block.

toupper()
NAME

toupper - convert alphabet characters to upper case. Source
file - toupper.cc.

FUNCTION CALL
toupper (sptr)
char *sptr; /* Character string pointer */

-

DESCRIPTION
Converts all alphabetic characters in the string "sptr" to
upper case. Terminates when a null character is reached.

tstdrvr()
NAME

tstdrvr - Test driver function. Source file - tstdrvr.cc.

FUNCTION CALL
tstdrvr(dflun, kflun)
char dflun; /* Data file LUN */
char kflun; /* Key file LUN */

GLOBAL VARIABLES

The following variables must be declared external to this
function:

int p mode - Power mode.

int ps_mode - Print summary mode.

int_i _power - Interrogation power.

int store - Data store flag.

struct seqgf head seqg_data - Test sequence file header.
int test_array([] ~- Test array.

char date[] - System date.

char loc_id[] - Location ID.

ijint i _afloss ~ Airframe loss.

struct CAL TYPE calib - Calibration tables.

int tx port - Transmitter port.

DESCRIPTION .

This function controls the actual transponder field testing
process. It sets up the field testing display screen, displays
entry prompts for aircraft information, and provides function
keys for test control.

A-45

DETAILED DESCRIPTION

The entry prompts are initialized to be blanks or O0's
before the tests are run. The function will start the idle
interrogation and then wait for keyboard entry. The function keys
that are active depend on the status of the system, hence, the
variable "sys _status." The function "d_fun_keys" is called to
define and display the active function keys. Some of the more
important function keys are as follows: F5 will exit the
function, F9 will start the test sequence if it is not running
and stop the sequence if it is running, F10 is used to toggle the
idle 1loop (start-idle, stop-idle), and F7 will increase the
interrogation power and F8 will decrease the interrogation power
if the interrogation power is under manual control.

The function "tstseq()" is called to loop through the test
sequence when the user starts the ATCRBS field tests.

This function is responsible for storing the test data into
the data file. The function "wrtdat" is called to do so. The
function "sumscrn" is also called to display the test results on
the screen.

tstseq()
NAME

tstseq - Test sequence function. Source file - tstseq.cc.

FUNCTION CALL
tstseq(p_data_loc, s_msg_row, f_head)

struct data_destination *p_data_loc; /* Hardware loc*/
int s_msg_row; /* System message row */
struct HEADER *f_ head; /* Data file header struct*/

GLOBAL VARIABLES
The following variables must be declared external to this
function:
char util buf[] - Utility buffer. A general purpose block of
memory used for large data transactions. Used by this
function to hold the transponder test results prior to disk
storage.
struct data_share r data - Used to point to the transponder
test results data.
int test_array[] - Array of test numbers to run.
int store - Flag to indicate if the data should be stored on
disk or not.

DESCRIPTION)

This function will 1loop through the test numbers in the
array '"test_array" and call their corresponding ATCRBS test
functions. "p _data_loc" 1is passed the transponder tests to
provide the hardware locations for hardware control.

A-46

DETAILED DESCRIPTION

If the storage flag "store" is TRUE, a temporary file is
opened to store the test results as an intermediate step before
the user decides to store the test results in the actual data
file. The scrolling region on the display, that was defined in
previous functions, is cleared in order to display the status of
the running tests. The system status messages are displayed 1in
the "s msg _row" on the screen. The function will then 1loop
through each test stored in the array until complete or stopped
by the F9 key entered by the user. Prior to calling the test
sequence, the pulse width measurement threshold 1is set to
minimum. Each test number is checked to see if it is valid and if
the test exists. Each valid test is run and the results are
stored in the temporary file. As each test completes, a status
message is displayed on the screen. If the status is valid, the
best power and delay measured during the test is displayed. When
the test sequence completes, the reply power, sensitivity, and
delay are monitored continuously until the user ends the test.
The function that monitors these parameters 1is called
"spandd()." The temporary data file is closed when this function
is complete.

vicreat ()
NAME

vfcreat - VERSAdos file create. Source file - vfcreat.cc.

FUNCTION CALL
vfcreat (viname)
char *vfname; /* File name */

DESCRIPTION

Creates a VERSAdos file and returns a logical unit
number (char). If there is an errcr, returns the VERSAdos error
code in negative logic. Uses lalloc().

vfopen()
NAME

vfopen ~ VERSAdos file open. Source file - vfopen.cc.

FUNCTION CALL
vfopen (vfname)
char *vfname; /* File name */

DESCRIPTION

Opens a VERSAdos file and returns a 1logical unit
number (char). If there is an error, returns the VERSAdos error
code in negative logic. Uses lassign().

A-47

wfmod ()
NAME
wfmod ~ waveform modifier. Source file - wfmod.cc.

FUNCTION CALL
wfmod (pulse_num, width, p_space, p_wfm)

int pulse_num; /* Pulse number */

long width; /* Pulse width */

long p_space; /* Pulse spacing */

struct wave_parm #*p_wfm; /* Waveform struct */
DESCRIPTION .

This function will modify a pulse while it is stored in the
waveform structure. This is primarily used to modify default
waveform patterns that have been changed by the user prior to
encoding them into the binary format used by the hardware.

The 1location of the pulse to be modified 1is found by
searching for the "pulse_num," the lead-edge of a PAM action
field from the starting address "p_wfm." If the pulse is not
found in the struct, a "1" is returned as an error condition.

The pulse spacing refers to the lead-edge of the chosen
pulse. If the chosen pulse is the first pulse in the waveform it
simply stores the "p_space" value as the lead-edge time of that
pulse. If there are other pulses preceding the chosen pulse, the
spacing is from the lead-edge of the previous pulse. The function
will adjust for the previous pulses width. If the width of the
previous pulse is too wide for the spacing selected, a "2" is
returned as an error condition.

The pulse width is stored at the trail edge of the chosen
pulse, which must be at the next location in the struct or a "3"
will be returned as an error condition. The timing of any events
following the chosen pulse are adjusted accordingly with the new
width of the pulse.

If no error conditions occur, a "0" is returned. If error
conditions have occurred, the function "int err()" can be called
to print a message describing the error.

wrtdat ()
NAME

wrtdat - write data file. Source file wrtdat.cc.

FUNCTION CALL
wrtdat (hdrinfo, tfname, dflun, kflun, msgrow)

struct HEADER *hdrinfo; /* Header information *x/
char *tfname; /* Temp file name */
char dflun; /* Data file LUN * /
char kflun; /* Key file LUN */
int msgrow; /* Message row */

A-48

DESCRIPTION
This function will store the test data in the database file
and the key file information in the key-access file.

DETAILED DESCRIPTION -

The temporary data file "tfname" 1is the source of the
transponder test data. If the file open of the temp file fails, a
fatal error occurs. The data will be stored at the end of the
data file. The function uses the function "lposition" to locate
the end of the file. If the position is unsuccessful, a fatal
error occurs. The transponder header information from "hdrinfo"
is first stored in the data file, then the data is read from the
temporary file and stored in the data file. The key information,
which is the aircraft ID, etc., is stored in the key file from
.the header information "hdrinfo."

A-49

APPENDIX B

SEQUENCE FILE EDITOR FUNCTIONS

GENERAL DESCRIPTION

The test sequence file editor program seq.lo is used to generate
and modify test sequence files. The program is a menu driven
screen editor. The heart of the program is comprised of four
discrete display functions that perform the basic capabilities of
the editor which are: file access, file display, the edit screen,
and a list of available tests.

SEQUENCE FILE STRUCTURE.

Test sequence files contain a header record and test number
records. The header record currently contains an integer field
which contains the number of tests in the file. The remaining 254
bytes are for future expansion if needed. Following the header
field is a series of records, one for each test number stored in
the file. The test number records contain an integer for the test
number and a long integer as a flag field. The flag field is
currently not in use. Figure B-1 shows the sequence file format.

HEADER HEADER - struct sedqf head
{

— int test_num;

}
254 bytes free.

TEST NUMBER 1 TEST NUMBERS - struct test_type
} {
TEST NUMBER 2 int num;
long flg:
TEST NUMBER 3)
Test numbers are stored in "num." The
-- "flg" field is currently not used.
One record is stored for each test
TEST NUMBER N number.

FIGURE B-1. TEST SEQUENCE FILE STRUCTURE

SOURCE FILLS.

Include files (.h). The following is a list of the include files
used by the SEQ program and a brief description of their
contents:

WYSE terminal

displib.h - definitions for display

attributes and escape sequences.

seqflib.h - relevant definitions used by the SEQ
editor.
stdlib.h - standard 1library, provides common

definitions such as TRUE, FALSE, etc.

tstlib.h - common transponder testing library.

Source files (.cg). The seq program may be linked by running the

command file seq.cf. A cross-reference between function names and

file names follows:

chk_name ()

chkname.cc

chk_tst() chktst.cc
curpos () curpos.cc
dis_matx() dismatx.cc
displ() displ.cc
disp2() disp2.cc
disp3() disp3.cc
disp4 () disp4.cc
get_dec() getdec.cc
get_input() getinput.cc
getyorn() getyorn.cc
main() seq.cc
rd_tests() rdtests.cc
read_seqf file() sfread.cc
toupper() toupper.cc
vicreat () vfcreat.cc
vfdes () vfdes.cc
vifopen () vfopen.cc

writ_seqf file()

chk name
NAME

sfwrite.cc

chk_name - Check file name. Source file chkname.cc.

FUNCTION CALL

chk_name(filename, count)

char *filename;
int count;

/* Filename to check
/* Number of characters

*/
*/

DESCRIPTION
Tests a character string to see if it is a valid VERSAdos
file name.

DETAILED DESCRIPTION

The purpose of this function is to test for a valid filename
before it is combined with user number and catalog, etc., for
file open. The name is stored in the character string "filename"
and the length of the string is passed in the variable "count."
The first character is tested to be an alphabetic character and
the following characters are tested to be either alphabetic or
numeric. If either of these conditions are violated, a "1" is
returned to indicate illegal characters. If count is greater than
eight, a "2" is returned to indicate the file name is too 1long.
If the file name is valid, the function returns a "0."

chk_tst
NAME

chk_tst - Check transponder test number is within range.
Source file - chktst.cc.

FUNCTION CALL
chk_tst(tst_num)
int tst, num; /* Test number to check #*/

DESCRIPTION

This function will check that a test number is greater than
"0" and less than or equal to T_LIMIT. T_LIMIT is defined in
tstlib.h.

curpos
NAME

curpos - Cursor position. Source file ~ curpos.cc.

FUNCTION CALL
curpos(ro, co)

int ro; /* Screen row */
int co: /* Screen column * /
DESCRIPTION

This function will position the cursor at the specified row
and column on a wyse 75 compatible terminal.

dis _matx
NAME

dis_matx - Display number in 10 x 10 matrix. Source file-
dismatx.cc.

FUNCTION CALL
dis_matx(test_array, seq_ans)

int test_array(]: /* Test # array */
int seq_ans; /* Sequence number */
DESCRIPTION

This function positions and displays the test numbers in the
10 x 10 matrix for the edit function. If there is no test number
at the sequence position, a blank box will be displayed. The
numbers will be displayed right justified. The location in the
matrix area is determined by the sequence number.

displ
NAME

displ -~ display function #1, file access. Source file-
displ.cc.

FUNCTION CALL
displ(s_fil_data, test_array, s_file, access, fp)

struct seqf_head *s_fil_data; /* File header */

int test_array: /* Test # array */

char *s_file; /* Sequence file * /

int *access:; /* Access mode R,W */

. char *fp; /* File LUN */
DESCRIPTION

Displ.cc 1is display function 1, the file access display.
This function provides file access for reading and writing test
sequence files to the disk.

DETAILED DESCRIPTION

The function creates the display screen and then 1loops to
accept characters from the keyboard. If the default file is
accepted with a carriage return, the loop is ended. If a valid
file name is entered, the loop is ended; otherwise, a message is
displayed as to why the name is invalid. If a space bar is
pressed, the file access mode is toggled between read and write,
and is displayed as such on the screen. If the function key F5 is
pressed, the function returns a "0" as the indication to exit the
program.

If the default file name was accepted or a valid file name
was entered, a complete filename is constructed using the volume,
user number, and catalog defined in stdlib.h as well as the
extension defined in seqflib.h.

The file is then opened.

If the access is for read, the file is read with a call to
the function read_seqf_ file() which is the source file sfread.cc.
If the read is successful, the file is closed and the function
returns a "2" to indicate that the next display function to call
is disp2, the file display function. If the read 1is not
successful, the appropriate error messages are displayed.

B-4

If the access is for write, the test array must contain at
least one test number before it can be written. If the array is
empty an error message is displayed and the user can either exit
by entering an F5 key or reenter the program with read access by
typing any other key. If the array contains one or more test
numbers, the file is checked to see if it currently exists. If it
currently exists, the user is warned and is prompted as to
whether or not to replace it. If the user wishes to replace the
file, the old file is deleted and a new one of the same name is
created. If the file did not exist, it is created. The file is
then written to the disk with a call to the function
writ_seqf_ file() which is the source file sfwrite.cc. If the
write 1is successful, the function switches the file access to
"read" and returns a "1" to cause the program to return to
display 1. If there is an error, it is displayed on the screen.

disp2
NAME

disp2 - display function #2, file display. Source file-
disp2.cc.

FUNCTION CALL
disp2 (t_tests, num_strs, s_fil_data, test_array, filename)

char *t_tests; /* Array of test names */

int num_strs; /* Number of test names */

struct segf_head *s_fil_data; /* File header */

int test_array(]: /* Test # array */

char *filename; /* Sequence file */
DESCRIPTION

Disp2.cc is display function 2, the file display screen.
This function will display the contents of a test sequence file
on the terminal screen. It will list the sequence number, test
number, and the name of each test in the file. The user may page
through the list of tests and make a hardcopy of the list on the
printer.

DETAILED DESCRIPTION

The function creates the display and then checks if there is
a cross-reference test name list available, (num_strs > 0). The
variable num_strs contains the value of the return from the
function call to rd_tests() in main(). If num_strs is "0" the
test list was empty. If it is "-1" the test list file could not
be accessed. In either case, an error message is displayed and
the user may enter F7 to return to display 1, or enter F8 to go
to display 4.

If num_strs indicates that there is a test list available,
the first page of the file will be displayed. This display
mechanism is contained in a "while loop" since the display can be
paged. First the screen is cleared in the area where the tests
are displayed. Then, until the screen is full or there are no

B-5

more tests in the file, the array of tests are indexed by the
test numbers stored in the file and printed on the screen. If
there is no test name available in the file, only the test number
is displayed. The variable "start" is used to keep track of the
current position in the file between "pages." The terminal is
then polled for Kkeyboard input. There are four active function
keys: F5 to page, F6 to print, F7 to exit to display 1, and F8 to
exit to display 4 to edit the file.

disp3
NAME

disp3 - display function #3, test 1list. Source file-
disp3.cc.

FUNCTION CALL
disp3(t_tests, num_strs)

char *t_tests; /* Array of test names * /
int num_strs; /* Number of test names */
DESCRIPTION

Display function 3 is used to produce a list of available
transponder tests on the terminal screen. The user may page
through the list and make a hardcopy of the list on the printer.

DETAILED DESCRIPTION
The function creates the display and then checks if there is

a cross-reference test name list available (num_strs > 0). The
variable num_strs contains the value of the return from the
-function call to rd_tests() in main(). If num_strs is "0" the

test .ist was empty. If it is "-1" the test list file could not
be accessed. In either case, an error message is displayed and
the user may enter F7 to return to display 1.

If num_strs indicates that there is a test list available,
the first page of the 1list will be displayed. This display
mechanism is contained in a "while loop" since the display can be
paged. First, the screen is cleared in the area where the tests
are displayed. Then, the test list file is displayed until the
page is full or there are no more tests in the list. The variable
"start" is used to keep track of the current position in the file
between "pages." The terminal is then polled for keyboard input.
There are three active function keys: F5 to page, Fé6 to print,
and F7 to exit to display 4 to edit the file.

disp4
NAME

disp4 - display function #4, edit screen. Source file-
disp4.cc.

FUNCTION CALL
disp4(s_fil_data, test_array, access, filename)

struct seqf_head *s_fil_data; /* File header */

int test_array[]): /* Test # array */

int *access; /* Access mode R,W */

char *filename; /* Sequence file */ :
DESCRIPTION

Disp4 1is display function 4, the file edit screen. This
function allows the user to generate or modify test sequence
files. i

DETAILED DESCRIPTION

The function creates the display and then displays the test
numbers in the test matrix area. The function dis_matx() is used
to position the tests properly in the matrix. The variable
"test_ans" is used to Kkeep track of the test number at the
current test sequence position. The current test number and
sequence number are displayed at the entry prompts.

The function then waits for keyboard input from the user. If
the first character is an escape key, the rest of the input is
stored. If the F5 key is entered, insert mode is activated and
indicated as such on the display with "INSERT" underlined. If the
F6 key is entered, replace mode is activated and indicated with
"REPLACE" underlined. If the F7 key is pressed, the test number
at the current sequence position is deleted from the array as
well as the display matrix. If SHIFT F7 is entered, all the tests
are deleted from the array and the display matrix. If F8 is
entered, the function returns a "3" to call the test list
function. If F9 is entered, the access mode is switched to
"write" and a "1" is returned to call the file access function.
If an arrow key is entered, the function will position the cursor
to the appropriate position, either the "TEST NUMBER" or
"SEQUENCE NUMBER" prompt.

If numeric data is entered, the function get_dec() is called
to store the input. If the cursor is on the test number question,
the function chk_tst() is used to test for a valid test number.
If the test number is invalid, an error message is displayed. If
there is no more room for tests in the matrix, an error message
is displayed. If everything is valid, the test number is entered
into the array and displayed in the test matrix. The test
sequence number is advanced to the next available position and
displayed.

If a sequence number is entered, it is tested to see if is
within range. If it is, the sequence number is advanced to that
position and the new value is displayed. If the sequence number
entered is out of range, an error message is displayed.

get _dec
NAME

get_dec() - Get decimal numbers as input. Source file-
getdec.cc.

B-7

FUNCTION CALL
get_dec(p_data, row, col, max_in)

char *p_data; /* Pointer to input data */

int row; /* Current row position * /

int col; /* Current column position */

int max_in; /* Max digits allowed */
DESCRIPTION

Accepts only numeric characters as input from keyboard.

DETAILED DESCRIPTION

This function is intended to be called only after the first
numeric character has been read in. Its purpose is to accept only
numeric characters (0 - 9) until a carriage return is entered or
the buffer is full. If any other characters are entered they will
be ignored except for the backspace and delete keys, which are
recognized and will erase characters that were entered. The input
characters are stored in the array p_data up to the maximum
input 1length indicated in max_in. Row and Col are used to
position the echoed characters on the screen.

get_input
NAME

get_input() - Get keyboard input. Source file - getinput.cc

FUNCTION CALL
get_input(p_data, count, row, col, mx_in)

char *p_data; /* Pointer to input data */

int *count; /* # characters read in *x/

int row; /* Current row position */

int col; /* Current column position */

int mx_in; /* Max character input allowed*/
DESCRIPTION

This 1is a general purpose function that filters only
printable characters from Kkeyboard input and echoes them on
screen and stores them in a fixed length buffer.

DETAILED DESCRIPTION

This function is intended to be called only after the first
character has been read in. Its purpose is to test this character
and test and accept any following characters until the buffer is
full or a carriage return is entered. If any invalid characters
are entered (not between ASCII 0x20 and Ox7f) the function
returns a "1" as an error condition. If all characters are valid
and a carriage return is entered, the function will return a "O"
as a success condition. The backspace and delete keys are
recognized and will erase characters that were entered. The input
characters are stored in the array p_data up to the maximum input
length indicated in mx_in. Row and Col are used to position the

B-8

echoed characters on the screen. Count will contain the number of
characters read in.

getyorn
NAME

getyorn - get "y" or "n" from the keyboard. Source file-
getyorn.cc.

FUNCTION CALL
getyorn()

DESCRIPTION

Waits indefinitely for a "y" or "n" from the keyboard. Lower
case and upper case are allowed. Returns a "1" if a "y" |is
entered, returns a "0" if "n" is entered.

main
NAME

main() - Test sequence file editor main routine. Source file
- seq.cc.

FUNCTION CALL
main()

DESCRIPTION
The main function of the test sequence file editor program
controls the calls to the various functions of the program.

DETAILED DESCRIPTION

The main function initializes the appropriate variables to
start with display function #1. It then calls the function
rd_tests() which stores a list of available transponder tests in
the string array "t_tests." The function then enters a "while
loop" in which it will remain until the program exits. The "while
loop" consists of a screen clear and a switch statement where the
program will switch to the appropriate display functions. Each of
the display functions returns the value of the next function to
call. If the value "0" is returned, the program exits.

rd tests
NAME

rd_tests - Read 1list of transponder tests. Source file-
rdtests.cc.

FUNCTION CALL
rd_tests(t_tests)
char t_tests[][SCREEN_WDTH]: /* Array of test names */

DESCRIPTION

Reads and stores a list of transponder tests into the array
"t tests." The list is stored in the file with the name defined
by "LISTFILE" which is defined in segflib.h. Returns the number
of strings read.

read seqf file
NAME

read_seqf_file - read test sequence file. Source file-
sfread.cc.

FUNCTION CALI
read_seqf_file(s_fil_data, test_array, fp)

struct seqf_head *s_fil_data; /* File header */

int test_array(]: /* Test # array */

char *fp; /* File LUN */
DESCRIPTION

Reads a test sequence file from disk given the logical unit
number of the file. The header information and the array of tests
are returned.

DETAILED DESCRIPTION

The file is first rewound. If an error occurs, the program
will exit with an error message. An lread() is used for all file
reads. First, the header is read into a temporary buffer. If an
error occurs, the error code is returned in negative logic. The
data are then transferred from the temporary buffer into the
header struct "s_fil_data." The test numbers are read in until
the end of file. The test numbers are stored in the format
"struct test_type" which is defined in this function. The test
number field from this struct is stored into the test array
(test_array[]). The flag field "flg" in the test struct is
currently not used.

toupper
NAME

toupper - convert alphabet characters to upper case. Source
file - toupper.cc.

FUNCTION CALL
toupper (sptr)
char *sptr; /* Character string pointer */

DESCRIPTION

Converts all alphabetic characters in the string "sptr" to
upper case. Terminates when a null character is reached.

B-10

vfcreat
NAME
vfcreat - VERSAdos file create. Source file - vfcreat.cc.

FUNCTION CALL
vicreat (vfname)
char *vfname; /* File name *x /

DESCRIPTION

Creates a VERSAdos file and returns a 1logical unit
number (char). If there is an error, returns the VERSAdos error
code in negative logic. Uses lalloc().

vfdes
NAME

vfdes -~ VERSAdos file name/file descriptor conversion.
Source file ~ vfdes.cc.

FUNCTION CALL
vfdes(filenl, fdesp)

char *filenl; /* File name */
struct fdes *fdesp; /* File descriptor */
DESCRIPTION

Given a complete filename (includes volume, user ID, etc.),
will convert to file descriptor. For use where file access
requires a file descriptor.

vfopen
NAME

vfopen - VERSAdos file open. Source file - vfopen.cc.

FUNCTION CALL
vfopen(vfname)
char *vfname; /* File name * /

DESCRIPTION

Opens a VERSAdos file and returns a logical unit
number (char). If there is an error, returns the VERSAdos error
code in negative logic. Uses lassign().

writ_seqf file
NAME

writ_seqf file - write test sequence file. Source file-
sfwrite.cc.

o
[

11

FUNCTION CALL
writ_seqf_ file(s_fil_data, test_array, fp)

struct seqf_head *s_fil_data; /* File header */

int test_array(]: /* Test # array */

char *fp; ' /* File LUN */
DESCRIPTION

Writes a test sequence file to the disk given the logical
unit number of the file. The header information and the array of
tests are written.

DETAILED DESCRIPTION

The header information is first stored in a buffer named
"a_buf." It is then written to file using the lwrite function.
The function 1loops for the number of tests indicated in the
header and stores the numbers in the test_type format in the
file. The file is then closed and the Logical unit is freed.

B-12

APPENDIX C

ATCRBS FIELD TESTS

INTRODUCTION

This section provides a detailed description of the DATAS ATCRBS
field tests. For each test there is a description section which
defines the purpose of the test, a procedure section that
briefly describes the more important elements of the test
procedure, lists of the interrogation and test parameters, the
test data structure definition, and following each test 1is a
sample plot of the test results. Preceding the test by test
descriptions is an overview which tells about fundamental items
that are common to all tests.

The overview and parts of the individual test descriptions
contain information that is primarily important only for software
maintenance or development support.

OVERVIEW.

The Air Traffic Control Radar Beacon System (ATCRBS) field test
procedures were designed to follow:the procedures defined in the
Minimum Operational Performance Standards (MOPS) for Air Traffic
Control Radar Beacon System/Mode Select (ATCRBS/Mode S) Airborne
Equipment (Document No. RTCA/DO-181). Each ATCRBS test is
numbered. The test numbers loosely follow the sequential order in
which they appear in the MOPS. This is not a strict requirement
of the test program design. The reason that the test numbers are
not consecutive is that some of the MOPS test procedures are not
applicable to a field testing situation, or, they are Mode S
transponder test procedures. The tests are referenced by number
so that they can be called using an index (test number). They are
stored as an array of functions. This function array is defined
in the include file "testdef.h."

Each test has a source file named "“aftst(X).cc" ((X) is the test
number) and an "include file" "tst(X).h." The "include file"
primarily contains the structure definition for the test data.

GLOBAL VARIABLES. The calibration tables are used by virtually
all of the tests. The calibration tables are stored in the global
structure "struct CAL_TYPE calib." The calibration structure
types are defined in "calib.h." "tstlib.h" is included since it
provides the structure definitions for the interrogation and test
parameters as well as some other common definitions. The
interrogation parameters are stored in the global structure array
"struct INT_TYPE int_cur(]" and the test parameters are stored in
the global structure "struct TST_TYPE tst_cur."

Cc-1

-

Another global variable used by the tests is "int 1i_afloss"
which is the airframe loss. This variable is used to adjust the
interrogation power and reply power measured. The airframe loss
value originates from the calibration tables and is a function of
airframe height.

The global variable "i_power"™ is the system interrogation power.
This is the interrogation 1level set by either the user or the
system, depending on what power mode was selected. This value is
used by those tests where interrogation power is not controlled
as a function of the test or where a certain interrogation level
is not defined by the test.

The global variable "tx_port" defines which transmitter port is
currently in use. The value of this variable is stored in the
main function (source file afexec.cc). The #defines used to
determine the value come from "calib.h."

INTERROGATION WAVEFORMS. The interrogation waveforms are defined
within each test function. The process that determines the
resulting waveform is quite elaborate because the system was
designed to be as flexible as possible.

A default waveform is provided in each test. The waveform is
stored in a structure array (struct wave_parm) which was designed
to be easily readable to the test programmer. The following is an
example section from such a struct:

PULSE TIME ATTEN. CHAN. ACTION
{ DELAY, 100L, 1, 1, DELAY, Y
{ LE, 10000L, 0, 1, PAM, Y,
{ TE, 800L, o, 1, PAM, Y.

There are five variables within each struct (five columns). The
pulse field defines the event, i.e. lead edge, trail edge, delay,
etc.. The time field stores the time to wait before performing
the event. The attenuator field determines which attenuator to
select for the event. In order for the attenuators to switch
properly in hardware, there must be a transition from one
attenuator to another; hence, each test begins with an attenuator
switch from 1 to 0. The channel field determines which of the
three channels to use. The action field controls what kind of
event to perform PAM, DELAY, REPLY (reply window), etc.. These
waveforms are defined as static and are initialized when the
program is first started. Any modifications to what is stored in
these structures will affect the subsequent calls to these tests.
The programmer should be careful.

The interrogation waveforms are user modifiable. The
interrogation parameters determine certain characteristics about
the waveforms (P1 width, Pl1-P2 spacing etc.). The function

C=-2

"wfmod ()" is called for each pulse in the waveform. This function
will adjust “he values in the struct to set the pulse width and
spacing according to what is stored in the interrogation
parameters for the test.

As mentioned earlier, the waveform structure is only used to
provide a readable way for the programmer to set waveform
definitions. The interrogation waveforms must actually be stored
in the DATAS transmitter memory locations in the compact binary
format used by the hardware. The function "gen_pattern()" is
called to translate from the structure format to the hardware
format.

TRANSMITTER FREQUENCY. The transmitter frequency should be set
by each test, since the frequency set by the previous test may
have been some value other than what is required by the current
test. The transmitter frequency for most tests (other than those
that vary the frequency) is determined by the interrogation
parameters. The frequency is set with a call to the function
"setfreq()." The frequency should be set for each channel used
by the test.

TRANSMITTER POWER. There are several functions that are used to
help set the attenuator levels to control the transmitter power.
The function "chk_level()" can be used to test if a desired power
level is within range of the attenuator. The function "setlev()"
will do even more. It will see if the desired level is within
range. If it is, it will set it; if it is not, it will set it to
the maximum if it is too high, or set it to the minimum if it is
too low. The power level is variable by 1/10 dB steps.

TEST NUMBER: 2
FILE: aftst2.cc - ATCRBS field test #2.
TEST: Sensitivity.

DESCRIPTION: Sensitivity refers to how well the transponder is
able to receive transmissions. A high sensitivity would mean
that a very weak signal could be accepted and processed. A low
sensitivity would mean that a very strong signal is required at
the receiver before the transponder will respond. Either extreme
in the air traffic environment is undesirable since a sensitivity
that is too low could cause missed transmissions or too low of an
operating range and too high of a sensitivity level could make
the transponder too susceptible to fruit. The national standard
has determined that the sensitivity must be -73 dBm +/- 4 dBm.

This test will determine the minimum RF signal 1level
required to produce a 90 percent reply efficiency for both Modes
A and C. This measurement is achieved with the use of a
successive approximation algorithm (suc_apprx()). Reply power and
delay are measured separately at the end of the test with a short
series of ATCRBS interrogations.

A sensitivity measurement relies on having a calibrated
transmitter power level at the antenna of the transponder from
the DATAS test system. Therefore, a true sensitivity measurement
can only be made when the transponder under test's antenna is
directly in the nose of the main beam. This test should only be
run in the field testing environment when it is assured that the
required test conditions are met, otherwise the sensitivity will
merely be relative to the quality of transmission coupling.
Sensitivity is also measured by the function 'spandd()"
(Sensitivity, Power, and Delay test) which is run at the end of
the series of tests so that the aircraft can be made to roll
through the calibrated center beam during these critical
measurements. This is the procedure that should be used when the
system operators have 1little or no control over the test
environment.

TEST PROCEDURE: The procedure is the same for both Modes A and C.
The interrogation power is initially set to -88 dBm and the power
variation (the amount the power is changed by) is set to 8 dB.
The transponder is interrogated a number of times (initially 20)
which will increase as the test progresses. If the transponder
replies greater than 90 percent the interrogation power is
decreased by the "power variation" amount. If the transponder
replies less than 90 percent the interrogation power is increased
by the "power variation" amount. Once the transponder has replied
90 percent the variation is divided in half with each iteration.
This procedure will continue until the variation has reached
minimum. The sensitivity is the transmit power at the end that
achieved a 90 percent reply percentage.

C-4

For each interrogation mode, the function interrogates to
measure reply power and delay.

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur{2].parm{A_Pl1_WDTH] determines Pl width.
P2 width - int_cur(2].parm{A_P2_WDTH] determines P2 width.
P3 width - int_cur(2].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(2].parm[A_Pl_P2_SP] determines Pil-
P2 spacing.

P1-P3 spacing - int_cur(2).parm[A_Pl_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - Determined by test.

P2 power -~ int_cur(2].parm(A_P2_PO] determines P2 power
offset from P1,P3 power.

PRF - int_cur([2).parm[A_PRF] determines PRF.

Frequency - int_cur(2].parm(A_FREQ)] determines frequency.

Mode C:

Pl width - int_cur(2).parm[C_P1_WDTH] determines Pl width.
P2 width - int_cur(2].parm{C_P2_WDTH] determines P2 width.

P3 width - int_cur(2].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(2].parm{C_P1_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur(2].parm[C_P1l_P3_SP] determines Pl-
P3 spacing. ,

P1,P3 power - Determined by test. .

P2 power - int_cur(2).parm{C_P2_PO] determines P2 power

offset from P1l,P3 power.

PRF - int_cur[2].parm[C_PRF] determines PRF.

Frequency - int_cur(2].parm[C_FREQ] determines frequency.

TEST P. :
tst cur.tst2.del ints - determines the number of

interrogations to use in the delay and power measurement
part of the test.

tst_cur.tst2.meas_acc - determines the measurement accuracy
of the sensitivity test, either to 1 dB or 1/10 of a dB.

TEST DATA:
int meas_acc; /* Measurement accuracy */
int a_sens; /* Mode A sensitivity */
int c_sens; /* Mode C sensitivity */
int power:; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 12 bytes.

ON wap 0°0 = NOILVIHVA ALIATLISNIS

ON wap O'v/— = ALIAILISN3S 0D 3AdO0W

ON wap O ts—- = ALIATILISN3S VvV 300W
3UNIIvd NOILVIUWVA/ALIAILISNIS

#l1QTU3S u3PpUOCdSURJ]

9wt} 1s8a)

ALIATILISNES sS8YI1V e# 1S31 Ssviva

31gN0OYL H3IANOdSNYHL Q3i4H0d34Y 101ld :IUBwwo)y

VvO/LLYM ONIXM :8adik) vapuodsuedy

0Lt VYNSS3D :9dAl 11jeuddty rE2IN QI Iseuduty

C-6

TEST NUMBER: 3
ILE

o

aftst3.cc - ATCRBS field test #3.

EST

|

ATCRBS Dynamic Range.

DESCRIPTION: Dynamic range is how the transponder reacts to
interrogations received at various power levels. The transponder
should reply greater than 90 percent to Mode A and Mode C
interrogations at all power levels between Minimum Transmit Level
(MTL) and -21 dBm. MTL refers to the lowest power level that the
transponder will reply greater than 90 percent.

The dynamic range test requires a calibrated transmitter
power level at the antenna of the transponder from the DATAS test
system. Therefore, the dynamic range test should only be run when
the transponder under test's antenna is directly in the nose of
the main beam. This test shoulc only be run in the field testing
environment when it is assured that the required test conditions
are met, otherwise, the dynamic range will merely be relative to
the quality of transmission coupling.

TEST PROCEDURE: The procedure is the same for both Modes A and C.
The DATAS power level is varied from the value stored in the
parameter variable "tst_cur.tst3.strt_pow" to the value stored in
"tst_cur.tst3.end_pow" in increments of "tst_cur.tst3.pow_inc."
The number of replies for each level is stored.

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur(3].parm(A_P1l_WDTH) determines Pl width.
P2 width - int_cur(3].parm(A_P2_WDTH] determines P2 width.
P3 width - int_cur(3]).parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(3].parm[A_Pl_P2_SP] determines P1-
P2 spacing.

P1-P3 spacing - int_cur(3].parm[A_Pl1_P3_SP] determines P1l-
P3 spacing.

P1.P3 power - Determined by test.

P2 power - int_cur(3].parm[A_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur[3).parm{A_PRF] determines PRF.

Frequency - int_cur(3].parm[A_FREQ] determines frequency.

TEST

Mode C:

Pl width - int_cur(3].parm[{C_P1_WDTH] determines Pl width.
P2 width - int_cur(3].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur(3).parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur([3].parm[C_P1_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur(3].parm{C_Pl1_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - Determined by test.

P2 power - int_cur({3].parm(C_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur(3].parm{C_PRF] determines PRF.

Frequency - int_cur(3].parm{C_FREQ] determines frequency.

PARAMETERS :

TEST

tst_cur.tst3.num _ints - determines the number of
interrogations to send at each power level.
tst_cur.tst3.strt pow -~ Test starting power level.
tst_cur.tst3.end pow - Test ending power level.
tst_cur.tst3.pow_inc - Power level increment.

DATA:

int num_ints; /* Number of interrogations */
int strt_pow; /* Start power */
int end_pow; /* End power */
int pow_inc; /* Power increment */
int rep_cnt(2)[801]:/* Reply count - [0][n] Mode A

[1][n] Mode C */
int power:; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 3218 bytes.

ap-) JuBaMOd an-) J@mMOod

3

¥ 3

SN\

SNNNN

SN

RN

» »* » »* » »* » »* »* € mr. oos »* » * »* »* »* »» »* » »*

Rawa o>
wawa 1>

\\\\\\\\\\ SN

3 AaNoOW v 9POnW

JUTDd JuBad suotyefoudualul oO0OT7

39NVH D WYNAQ €# 1S31 Svivgo

3I19N0OHL HIANOLSNVYHL Q314H0d3d 1071Id I3UswWWon
#LRTUBS Jdapuodsueud] VLI ONIXM :8dA)L Japuodsuedy
8wty 3s3i 0cF VYNSS3ID 8dA) 3ji8uDduly PE2IN QI Ij0UDUITY

c-9

TEST NUMBER: 9
FILE: aftst9.cc - ATCRBS field test #9.
TEST: Reply Transmission Frequency.

DESCRIPTION: This test measures the transmitter radio frequency
of the transponder under test. The national standard requires
that the frequency is 1090 mHz +/- 3 mHz for operation in
aircraft not exceeding altitudes of 15,000 feet. Aircraft
operating above 15,000 feet must have a carrier frequency of 1090
mHz +/- 1 mHz.

The reply frequency test only requires that the transponder
responds to the interrogations from the DATAS system. It is not
required that the antenna of the transponder be directly in the
main beam.

TEST PROCEDURE: This test will measure the minimum, mean, and
maximum reply frequency from each reply pulse from the specified
number of replies examined. It will also store the number of
occurrences of reply frequency through a specified range from all
reply pulses. This will enable a bell curve plot of transmitter
frequency vs. percent occurrence.

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur(9].parm(A_P1_WDTH] determines Pl width.
P2 width - int_cur([9].parm[A_P2 _WDTH] determines P2 width.
P3_width - int_cur({9).parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(9).parm[A_Pl_P2_SP] determines P1-
P2 spacing.

P1-P3 spacing - int_cur(9].parm{A_Pl_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - System interrogation power "i_power" offset by
int_cur(9].parm{INT_PO].

P2 power - int_cur(9].parm{A_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur(9].parm[A_PRF] determines PRF.

Frequency - int_cur(9).parm[A _FREQ] determines frequency.

Mode C:

Pl width - int_cur(9].parm{C_P1_WDTH] determines Pl width.
P2 width - int_cur(9).parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur[9].parm[C_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur([9].parm(C_Pl1_P2_SP] determines P1l-
P2 spacing.
P1-P3 spacing - int_cur(9].parm[C_Pl1_P3_SP] determines Pl-

P3 spacing.
P1.P3 power - System interrogation power "i_power" offset by
int_cur(9)].parm{INT_PO].

W - int_cur(9].parm(C_P2_PO] determines P2 power
offset from P1,P3 power.

C-10

PRF - int_cur([9).parm[C_PRF] determines PRF.

Frequency - int_cur(9].parm{C_FREQ] determines frequency.

PARAMETERS :
tst cur.tst9.num ints =~ determines the number

TEST

interrogations to send.
tst_cur.tst9.mode - determines interrogation mode.
1=Mode C.

DATA ::

TEST

struct T9_P_TYPE

{
unsigned long min; /* Min frequency
unsigned long mean; /* Mean frequency
unsigned long max; /* Maximum frequency

} i

int num_replies; /* Number of replies examined
int mode; /* Interrogation mode 0=A 1=C
st.ruct T9_P_TYPE freq[l16]; /* Freq. array

long frq_arr{10l1]; /* Freq. array all pulses

int power:; /* Highest reply power measured
int delay; /* Lowest reply delay measured
int e_code; /* Test error codes

Data size = 606 bytes.

*/
*/
*/

*/

*/
*/
*/
*/
*/

of

0=Mode A.

(Zunw) O3y # @sind
»80% za0t osos egot 1 (.24 [} ’
SN IR N NP TP IR — O HHIA OB R T AR F — —+ +
»
»
*
»* Lf L... enot
*

—

)

=
——

e
——
R
o,
—_—
D
—t—
—p—
e
—p—
——
teep—
Ar

:

y T TT T TTooosomsosmoooommmoooos 1
- n
3 !
. ° - ogot
%
- aot 4. pwor
83s8[Nd Atdayd [Iv 330 Aduanbaug asSINd ATday ud>2e3 30 Asuanbaug
v epow uotieBuuajug
satrday O0OT uQ paseg @lIeQ 1S3y
AJDNIND3IHS NOISSIWSNYHL Ad3d 6# 1S31 Sviva
3I18N0OHL H3IANOGSNYHL g314dH0d34Y 10771d :jIuswwo)h
#lQ@TUIg JudpuUCcAdSURJ] VYOI ONIN 90A) JuapuodsuRJd]}
dwtyl 21839} 04T VYNSS3ID :9dAl 148434ty PESTN QI ¥IseudUItY

LOWO ICN

C-12

TEST NUMBER: 10
FILE: aftstl10.cc - ATCRBS field test #10.
TEST: ATCRBS Power Output.

DESCRIPTION: This test measures the transmitter power of the
transponder under test by measuring the amplitude of the reply
pulses.

A power measurement relies on having a calibrated coupling
path between the DATAS system and the aircraft's transponder.
Therefore, a true power measurement can only be made when the
transponder under test's antenna is directly in the nose of the
main beam. This test should only be run in the field testing
environment when it is assured that the required test conditions
are met, otherwise, the power measured will merely be relative to
the quality of transmission coupling. Reply power 1is also
measured by the function "spandd()" (Sensitivity, Power and
Delay test) which is run at the end of the series of tests so
that the aircraft can be made to roll through the calibrated
center beam during these critical measurements. This 1is the
procedure that should be used when the system operators have
little or no control over the test environment.

However, this test does contribute some valuable information
even if it is run outside of the center beam. Since it stores the
reply power of each individual pulse, the relative reply power of
each pulse can be compared to the others. It can also be made to
run at different Pulse Repetition Frequencies (PRF's) and
therefore, provide information relating reply power to
transmitter duty cycle.

TEST PROCEDURE: This test has two operating modes: single PRF and
multiple PRF modes. The operating mode is determined by the test
parameter variable "tst_cur.tstl0.t_mode" (0O=single l=multiple).
In "single PRF mode" the test will measure the reply power from a
series of interrogations at a single PRF which is determined by
the test parameter "tst_cur.tstl0.s_prf." This mode should be
selected when a shorter test time is required; reply power vs.
PRF information 1is not desired, or if the test 1is being
conducted in a field environment where a high PRF could interfere
with the air traffic control systems. Multiple PRF mode will
conduct the same test repeated for 10 different PRF's. The PRF's
are determined by the test parameters "tst_cur.tstlO0.m_prf lo"
and "tst_cur.tstl0.m_prf hi." The 10 PRF's are evenly divided
between the low and high PRF.

This test will measure the minimum, mean, and maximum reply
power of each reply pulse from the specified number of replies
examined. It will also store the number of occurrences of reply
power through a specified range from all reply pulses. This will
enable a bell curve plot of reply power vs. percent occurrence.

INTERROGATION PARAMETERS:

Mode A:

Pl width - int_cur({10]).parm[A_P1_WDTH] determines Pl width.
P2 _width - int _cur[10]).parm[A_P2_WDTH] determines P2 width.
P3 width - int _cur([l0].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(10].parm{A_Pl_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur[l0].parm(A_P1l_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - System interrogation power "i_power" offset by
int_cur{10).parm[INT_PO].

P2 power - int_cur(l0].parm{A_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur(10].parm[{A_PRF] determines PRF.

Frequency - int_cur[10].parm[A_FREQ] determines frequency.

Mode C:

P1 width - int_cur[10].parm(C_P1_WDTH] determines Pl width.
P2 width - int_cur[l10].parm[C_P2_WDTH] determines P2 width.
P3_width - int_cur{10].parm(C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(10].parm{C_P1_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur({l10].parm{C_Pl1_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - System interrogation power "i_ power" offset by
int_cur{10].parm{INT_PO]}.

P2 power -~ int_cur[l0]).parm({C_P2_PO] determines P2 power
offset from Pl,P3 power.

PRF - int_cur([10].parm{C_PRF] determines PRF.

Frequency - int_cur[10].parm[C_FREQ] determines frequency.

PARAMETERS :

tst _cur.tstl0.num_ints - determines the number of
interrogations to send.

tst _cur.tst10.i mode - determines interrogation mode. 0=Mode
A. 1=Mode C.

tst _cur.tst10.t mode - determines test mode. O=single PRF
mode, 1=Multiple PRF mode.

st _cur.tst10.s prf - PRF for single PRF mode.
tst_cur.tstl0.m prf 1o - Starting PRF for multiple PRF mode.

Est_cur.tstio.m prf hi - Ending PRF for multiple PRF mode.

TEST DATA:
struct T10_P_TYPE

{

int min; /* Min power */

int mean; /* Mean power _ */

int max; /* Maximum power */
}:
int num_replies(10];/* Number of replies examined each PRF*/
int i_mode; /* Interrogation mode 0=A 1=C */
int t_mode; /* Test mode O=single l=multiple PRF*/
int num_prfs:; /* # PRF's run if multiple */
int s_prf; /* Single PRF * /
int m_prf_lo; /* Multiple PRF low */
int m_prf_hi; /* Multiple PRF high */
struct T10_P_TYPE pow[16][10];/* power array for 16 pulses

and 10 PRF's */

int pow_arr([80][10];/* Power array all pulses */
int power: /* Highest reply power measured */
int delay: /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 2618 bytes.

J4@8MmOod

i
—
® 000Ia
L
——

oot

sa@g(ind A1day (v 40 3101d J8mad e8INd A(do9y Uude@3 30 I01ld Jemad

GeE2 - dHd
v 3apow uotaeBuuasjul

sat[dey 007 U0 Paseg ®3iIeQ 3isal

H3IMOd Ad3H SAHOLY Oot# 1S3L Sviva

378N0HL H3IANOJDSNVHL Q3.1H0d3Y 1071Id :3Iuswwo)
#(RTUIS JIPpUOCdSURU]L VOZIM ONIN 8dA)] JIpuodsuedy
awty) 3188} 04T VYNSS3D :9dA] 11jeuduty rESTN QI I40UdUTYVY

i

TEST NUMBER: 17

FI aftstl7.cc - ATCRBS field test #17.

TEST: ATCRBS Reply Rate Limit and Sensitivity Reduction.

DESCRIPTION: This test determines the reply rate limit and tests
the sensitivity reduction function of the transponder. Reply rate
limit is the maximum number of ATCRBS replies the transponder can
send in a 1l-second interval. The National Standard requires that
the 1limit can be adjusted between 500 continuous replies per
second up to the maximum number of which the transponder is
capable, or 2000 replies per second, whichever is lesser. Reply
rate limit is a function that protects the transponder from over
interrogation.

A sensitivity reduction is when the transponder responds to
only the stronger interrogation signals when it 1is being over
interrogated.

This test does not require that the transponder be at the
center of the main beam; however, for best results the aircraft
should at or near a stationary position for the duration of the
test. This test attempts to set the interrogation power levels
according to the MOPS definitions which are all relative to MTL.
This test measures MTL and sets the interrogation power relative
to it.

TEST PROCEDURE: This test first performs the reply rate limit
test. The interrogation mode used for this test is determined by
the test parameter "tst_cur.tstl7.i_mode" (0=Mode A, 1=Mode C).
The transponder is interrogated for 1l-second intervals starting
at the PRF determined by ¢the +test parameter
"tst_cur.tstl7.prf lo" and ending at "tst_cur.tstl7.prf hi."
There are 16 PRF's measured which are evenly divided within this
range. MTL is measured prior to this test and the power is set to
20 dB above MTL. If MTL is not measured successfully or the power
can not be achieved, the power is set to the system interrogation
power. The number of replies for each PRF is recorded.

The sensitivity test will interrogate for 1 second with a
Mode C interrogation, at the reply rate limit determined earlier
with the power level at MTL + 20 dB, along with an asynchronous
Mode A interrogation at half the reply rate limit with a power
level at MTL + 3 dB. The number of replies for each mode is
recorded.

INTERROGATION PARAMETERS:

TES

Mode A:

Pl width - int_cur[17]).parm[A_Pl_WDTH] determines Pl width.
P2 width -~ int_cur(17).parm[A_P2_WDTH] determines P2 width.
P3 width -~ int_cur([17].parm[A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[l7).parm[A_Pl_P2_SP] determines P1l-
P2 spacing.

P1-P3 spacing - int_cur(17].parm(A_P1l_P3_SP] determines Pl-
P3 spacing.

P1l,P3 power - Determined by the test.

P2 power - int_cur{l17].parm{A_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - Determined by the test.

Frequency - int_cur(17].parm{A_FREQ] determines frequency.

Mode C:

Pl width - int_cur({l17].parm(C_P1_WDTH] determines Pl width.
P2 width - int_cur({17].parm{C_P2_WDTH] determines P2 width.
P3 width - int_cur(17].parm{C_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur{17)].parm{C_P1l_P2_SP] determines P1-
P2 spacing.
P1-P3 spacing - int_cur(l17].parm(C_P1_P3_SP] determines Pl-

P3 spacing.

Pl,P3 power - Determined by the test.

P2 power - int_cur(l7].parm{C_P2_PO] determines P2 power
offset from P1l,P3 power. '

PRF - Determined by the test.

Frequency - int_cur(10].parm{C_FREQ] determines frequency.

TERS ¢
tst cur.tstl7.num _ints - determines the number of
interrogations to send in the sensitivity reduction test.
tst cur.tstl17.i mode -~ determines interrogation mode. 0=Mode
A. 1=Mode C for the reply rate limit test.

tst_cur.tstl7.prf lo - Determines starting PRF.
tst _cur.tstl7.prf hi - Determines ending PRF.

TEST DATA:
struct SAMPLE_TYPE /*

{
int code; /*
int prf; /*
int reply_count;
)3
struct RATE_TYPE /*
{
int i_mode; /*
int prf _lo: /*
int prf_hi; /*
int num_prfs; /*

One for each PRF, RR limit

Mode A or C code
Pulse repetition frequency
/* Number of replies

Reply rate limit info

Interrogation mode 0=A 1=C
Start PRF

End PRF

Number PRF's run

struct SAMPLE_TYPE sample[16]; /* Reply info

int r_r_limit; /*
int mtl; /*
int int_power; /*
)i
struct MODE_TYPE /*
{
int code; /*
int int_power; /*
int prf; /*
int num_ints; /*
int num_reps; /*
)i
stuct SENS_TYPE /*
{

Reply rate limit
MTL measured
Interrogation power

Each mode sens. reduc.

Reply code

Interrogation power

Pulse Repetition Frequency
Number of interrogations
Number of replies

Sens. reduc. info

struct MODE_TYPE mode_a; /* Mode A info
struct MODE_TYPE mode_c; /* Mode C info

}i
struct RATE_TYPE rate;
struct SENS_TYPE sens;

int power; /*
int delay: /*
int e_code:; /*

Data size = 136 bytes.

/* Reply rate info

/* Sens reduc info
Highest reply power measured
Lowest reply delay measured
Test error codes

*/

*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

986 = 1IWI 31ivd Ad34Y

Sdd
aaet [.13-14 [.> 2 44 ane aLy oot
ON S3A 3yNivd
oot g ATd3Y X
|
986 EG ddd 4 E
re-— te- Y3MOd i
]
t l Aﬁ o8
o LLLL 30092 J
1
A
O 300w v 3a0W 3a0oW u
| 3
(]
NOILDNAO3Y ALIAILISNIS <
_ % 4 Q0O

_ LS3L ONIUHNA A3oONVHD NOOU\J £LL9L = IPOD v @dpOoWw uovriIeBouudjur

Jtwtl 219y Arday

NOILDNA3H ALIAILISNIS ANV LINWIT 3lvd Ad3Y 4T# 1S31 Sviva

3INEN0HL "H3ONQJSNVYHL 0d3.140d34Y 1011Id uawwo)
VOLAXM ONIMN 8adAh) JI3puodsueJy
:8dAK) 3Ij@Uuduty

#ATRTUIT JIPpUOCAdSURJ]

‘dwt 3183] O4LV VNSS3O PESTIN QI 3IjeudDuUtyY

C-20

TEST NUMBER: 19
FILE: aftstl9.cc - ATCRBS field test #19.
TEST: ATCRBS Reply Pulse Spacing.

DESCRIPTION: This test measures the reply pulse spacing of each
reply pulse with respect. to the first reply pulse (F1) and wich
respect to each previous pulse. Each reply pulse shall be spaced
1.45 microseconds from the previous pulse. The national standard
requires that the pulse spacing tolerances for each reply pulse
with respect to the first framing pulse shall be +/- 0.10
microsecond. The pulse spacing tolerance of any pulse in the
reply group with respect to any other pulse in the reply group
except the first framing pulse shall be no more than +/- 0.15
microsecond.

This test does not require that the transponder is at the
center of the main beam. However, if the test situation allows
control of the aircraft, it would be beneficial if the ATCRBS
reply code be set to 7777 or some other code that will produce
the maximum number of reply pulses.

TEST PROCEDURE: This test first sets the pulse width threshold
with a call to the function "pw_thresh()." This is required so
that the pulse spacing measurements are made at the proper level
with respect to the rise time of the reply pulses which is
affected by the reply power from the transponder being tested.

The test will interrogate the transponder enough times to
produce the number of replies determined by the test parameter
"tst_cur.tstl9.num_ints.™ All reply pulses are examined with
each reply. The mi~.mum, mean, and maximum position error with
respect to F1 and with the previous pulse are recorded.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur[19).parm(A_Pl_WDTH] determines Pl width.
P2 width - int_cur[19).parm(A_P2_WDTH] determines P2 width.
P3 width - int_cur(19].parm{A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(19).parm[A_Pl_P2_SP] determines P1l-
P2 spacing.
P1-P3 spacing - int_cur(19].parm{A_Pl_P3_SP] determines Pl-~-
P3 spacing.
P1,P3 power - System interrogation power "i_power" offset by
int_cur(19].parm(INT_PO].
P2 power - int_cur(l9).parm[A_P2_PO]) determines P2 power
offset from Pl,P3 power,.
PRF - int_cur{19].parm(A_PRF] determines PRF.
Freguency - int_cur{19].parm[A_FREQ] determines frequency.

Mode C:

P1 width - int_cur(19].parm{C_Pl_WDTH] determines Pl width.
P2 width - int_cur[19).parm{C_P2_WDTH] determines P2 width.
P3_width - int_cur([19).parm(C_P3_WDTH] determines P3 width.
P1-P2 spacing =~ int_cur(19].parm{C_P1_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur(19].parm(C_Pl1_P3_SP] determines Pl-
P3 spacing.

P1,P3 power - System interroyation power "i_ power" offset by
int_cur[19).parm[INT_PO].

P2 power - int_cur{l9].parm[C_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur(l9].parm{¢_PRF] determines PRF.

Frequency - int_cur(l19].parm[C_FREQ] determines frequency.

PARAMETERS :

TEST

tst_cur.tstl19.num_ints - determines the number of
interrogations to send.

tst_cur.tstl9.i mode - determines interrogation mode. 0=Mode
A. 1l=Mode C.

tst _cur.tstl9.prf lo - Determines starting PRF.
tst_cur.tstl9.prf hi - Determines ending PRF.

DATA:

TEST

struct T19_P_TYPE
{
int min; /* Minimum pulse error */
int mean; /* Mean pulse error */
int max; /* Maximum pulse error */
)i
int i_mode; /* Interrogation mode 0=A 1=C */
int num_replies; /* Number of replies */
int pulse_flg{16); /* Pulse flags O=none l=pulse */

struct T19_P_TYPE perr_f1(16]): /* Position errors F1l ref.*/
struct T19_P_TYPE perr pp[l6]: /* Position errors pls ref.*/

int power; /* Highest reply power measured * /
int delay: /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 234 bytes.

w 3IsSTNd w asind
% ey |] 1 4 at -4} - 1 4
lllllllllllllllllllllllllllllllllll 4 o5 - 4+ ev -
R U S RS U B SR &
#N) T T T T T T T S T e S T e S T T TS T TS m e
o8t Ng tong
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII +4 o A®ud <4 ot t4
Josu3l Jouulz
tsaod AL -1
lﬁ €0 -~ €0
3STNAd SNOTAIJUGY PUR T 4 WOUL4 DIDJUIUIIOIY JUOJUJUT UOTJITSOY

#TRITUIS JIPUODdSURJ])

awt)] 3183

v 9powWw uotjyebuusiulg
satrdey OO0t uQ paseg eiyeq s8]

ONIIDVAS 3ISINd ATd3H SAYILVY 6T+ 1S31 Svivao

318N0HL H3ANOJdSNVYHL g31i40d3Y 1077Id :jIuswwod
VYOI ONIXN :9dA) Japuodsueujl

041 VYNSS3D :3dA) 3Ijeuduty vYEZ2IN QI Iieuduty

Cc-23

TEST NUMBER: 20
FILE: aftst20.cc - ATCRBS field test #20.
TEST: ATCRBS Reply Pulse Shape.

DESCRIPTION: This test measures the reply pulse width of each
reply pulse and the pulse amplitude variation. The national
standard requires that the pulse width for all reply pulses shall
be 0.45 +/- 0.10 microsecond. The pulse amplitude variation of
one pulse with respect to any other pulse shall not exceed 1 dB.

This test does not require that the transponder is at the
center of the main beam. However, if the test situation allows
control of the aircraft, it would be beneficial if the ATCRBS
reply code be set to 7777 or some other code that will produce
the maximum number of reply pulses.

TEST PROCEDURE: This test first sets the pulse width threshold
with a call to the function "pw_thresh()." This is required so
that the pulse width measurements are made at the proper level
with respect to the rise time of the reply pulses, which is
affected by the reply power from the transponder being tested.

The test will interrogate the transponder enough times to
produce the number of replies determined by the test parameter
"tst_cur.tst20.num_ints." All reply pulses are examined with
each reply. The minimum, mean, and maximum pulse widths are
measured.

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur(20].parm[A_P1_WDTH] determines Pl width.
P2 width - int_cur[20].parm[A_P2_WDTH] determines P2 width.
P3 width - int_cur[20).parm[A_P3_WDTH]) determines P3 width.
P1-P2 spacing - int_cur{20].parm(A_Pl_P2_SP] determines P1l-
P2 spacing.

P1-P3 spacing - int_cur[20].parm[A_Pl1_P3_SP] determines Pl-
P3 spacing.

P1,P3 power - System interrogation power "i_ power" offset by
int_cur({20].parm[INT_PO].

P ower - int_cur(20].parm[A_P2_PO] determines P2 power
offset from P1,P3 power.

PRF - int_cur(20].parm({A_PRF] determines PRF.

Frequency - int_cur([20].parm[A_FREQ] determines frequency.

C-24

Mode C:

Pl width - int_cur(20).parm({C_Pl_WDTH] determines Pl width.
P2 width - int_cur[20].parm(C_P2_WDTH] determines P2 width.
P3 width - int_cur(20].parm(C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[20].parm[C_P1_P2_SP] determines P1-
P2 spacing.

P1-P3 sgacing - int_cur([20].parm{C_P1l_P3_SP] determines Pl-
P3 spacing.

P1,P3 power - System interrogation power "1_power" offset by
int_cur(20].parm{INT PO].

P2 power -~ int_cur(20].parm[C_P2_PO] determines P2 power
offset from P1l,P3 power.

PRF - int_cur[20].parm{C_PRF] determines PRF.

Frequency - int_cur([20].parm{C_FREQ] determines frequency.

PARAMETERS :

tst _cur.tst20.num_ints - determines the number of
interrogations to send.

Est_cur.tst20.i _mode - determines interrogation mode. 0=Mode
A. 1l=Mode C.

tst_cur.tst20.prf lo - Determines starting PRF.

tst_cur.tst20.prf hi - Determines ending PRF.

DATA:

TEST

struct T20_P_TYPE
{
int min; /* Minimum pulse width */
int mean; /* Mean pulse width */
int max:; /* Maximum pulse width */
)i
int i_mode; /* Interrogation mode 0=A 1=C * /
int prf: /* Pulse repetition frequency */
int num_replies; /* Number of replies */
int pulse_cnt(16]); /* Pulse count each pulse */
struct T20_P_TYPE p_width[16); /* Position widths */
int p_var; /* Power variation in dBm */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured * /
int e_code; /* Test error codes */

Data size = 142 bytes.

ﬂ..'l.l..lll.l.ll.J....‘l....ll..l..l.I.ll.l.l....l.lll..l..l.lllllllllllllllllllll]lﬂ\

3IyN1Ivd wap [= UOTICTJIEA J3aIMOH 3S[Nd ATd3H
3ISNd
o Z% e L 4
k + \ +
T+ wv'o
PEb bbb by
T HLOIM
IS INA
L oe®o

#IRTUIS udPUOdSUR U]

3wt 1sa)

OGSy = d4d
v 3apoWw uotaieBouusalul

satyday 00t uUQ Paseg eleq 1S3y

3dVHS 3STINd ATld3H S8HOLV oZ2# 1S31 Sviva

378N0YHL H3ANOJSNVHI 031H0d3Y 1071Id :Iuswwo)
VOLZLIM ONIXM :3dA) Japuodsued)
04%Y VNSS3D :3dA; 1j3€udurty PESIN A1 3I4€UDUIty

C-26

TEST NUMBER: 22
FILE: aftst22.cc - ATCRBS field test #22.
TEST: ATCRBS Reply Delay and Jitter.

DESCRIPTION: This test measures the reply delay and reply jitter.
Reply delay is defined as the time between the lead edge of the
P3 pulse in the interrogation and the lead edge of the first
reply pulse. The national standard requires that the transponder
have a reply delay of 3.0 +/- 0.5 microseconds at all RF input
levels from MTL to -21 dBm.

Reply jitter is the extreme positions of the leading edge of
the reply pulse, or reply delay variation. The National Standard
required that the jitter shall not exceed +/- 0.1 microsecond.

This test produces a plot of reply delay and jitter at
various interrogation power levels. In order for these power
levels to be accurate, the transponder being tested should have
the antenna directly at the calibrated point in the main beam.
However, if this cannot be guaranteed, these test results can
still show the relationship between relative interrogation power
and reply delay. An accurate reply delay measurement can be made
when the function '"spandd()" is. run following the series of
transponder tests.

TEST_ PROCEDURE: This test first sets the pulse width threshold
with a call to the function "pw_thresh()." This is required so
that the delay measurements are made at the proper level with
respect to the rise time of the reply pulses, which is affected
by the reply power from the transponder being tested.

The test will send the number of interrogations defined in
the test parameter "tst_cur.tst22.num_ints" at each interrogation
level. The interrogation levels to send are defined by the test
parameters "tst_cur.tst22.strt_pow," "tst_cur.tst22.end_pow," and
"tst_cur.tst22.pow_inc." The reply delay minimum, mean, and
maximum are stored at each point.

INTERROGATION PARAMETERS:
Mode A:

Pl width -.int_cur(ZZ].parm[A_Pl_WDTH] determines Pl width.
P2 width - int_cur(22].parm[A_P2_WDTH] determines P2 width.
P3 wjdth - int_cur(22].parm{A_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur{22).parm[A_Pl_P2_SP] determines P1l-
P2 spacing.

P1-P3 spacing - int_cur({22).parm(A_Pl1_P3_SP] determines P1l-
P3 spacing.

P1,P3 power - Determined by test.

P2 power - int_cur(22].parm(A_P2_PO] determines P2 power

offset from P1,P3 power.
PRF - int_cur(22].parm{A_PRF] determines PRF.
Frequency - int_cur(22].parm[A_FREQ] determines frequency.

Cc=-27

Mode C:

Pl width - int_cur({22].parm{C_Pl1_WDTH] determines Pl width.
P2 width - int_cur(22].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur({22].parm[C_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur[22].parm[C_Pl_P2_SP] determines P1l-
P2 spacing.

P1-P3 spacing - int_cur[22].parm{C_Pl_P3_SP]) determines P1-
P3 spacing.

P1,P3 power - Determined by test.

P2 power - int_cur[22]).parm{C_P2_PO)] determines P2 power
offset from P1l,P3 power.

PRF -~ int_cur({22].parm{C_PRF] determines PRF.

Frequency - int_cur[22].parm[C_FREQ] determines frequency.

PARAMETERS :

TEST

tst _cur.tst22.num_ints - determines the number of
interrogations to send at each power level.
tst_cur.tst22.i_mode ~ determines interrogation mode. 0O=Mode
A. 1=Mode C.

tst_cur.tst22.strt pow - Starting power level. .

tst_cur.tst22.end_pow - Ending power level.
tst_cur.tst22.pow_inc - Power level increment.

TEST DATA:

struct T22_P_TYPE
{

int min; /* Minimum reply delay */

int mean; /* Mean reply delay *x/

int max; /* Maximum reply delay */
}i
int i_mode; /* Interrogation mode 0=A 1=C * /
int prf; /* Pulse repetition frequency */
int num_ints; /* Number of interrogations * /
int pcnt_rep(80]; /* Percent reply array */
struct T22_P_TYPE p_delay(80]; /* Reply delays */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 652 bytes.

wap .- Iy P3PU3 SATTday X006

") O 'Q0 = U3V

(on) 29 € =« A@rag Arday

wae-) H3IMOJ

oe oL 1) (.1} or o€ oe
: . t t + = 0
lllllllllllllllllll M e ot e e e e e e e e e - . - e e e = e = = o = = = o = = =
. o€
(o
|| AV30
. b t + t } ¢ } t ATd3y
i t
T 0 <« J8}yYIP " L oo
J8@33 T |

Aerag Ardey -

d4Hd 0Gvr IV IUTO0d uad jIuas suotriIeBouuaiul v 8POoW O0OF

H3ILLIM ANV AVI3A Ad3Y S8YIOLvV 22« 1S31 Sviva

INEN0OYL H3IANOdSNYH1L 0314"H0d3d 10111d jJuewwod
#lETUIS udpPUODdSURJ] ‘ VLI ONINM :89dA] u3dpuodsued)
'awr | ,3s9) 0/t WNSS3D :83dA) 11jeddJdrty vYEZTN Q1 3Ijieudurty

Cc-29

TEST NUMBER: 25
FILE: aftst25.cc - ATCRBS field test #25.
TEST: SLS Decoding and dynamic range.

DESCRIPTION: This test measures the transponders response to
interrogations with the P2 suppression pulse included with the
interrogation. The National Standard requires that the
transponder shall initiate suppression (not reply) when the P2
pulse is equal to or greater than the amplitude of Pl and P3. The
nominal spacing between P1 and P2 is 2.0 microseconds. The
National Standard requires that the transponder shall suppress
when the time between Pl and P2 is between the range of 1.85 and
2.15 microseconds.

When an extra pulse occurs either 8.0 or 21.0 microseconds
prior to the P2 pulse, the transponder shall 1initiate
suppression.

This test procedure runs at various interrogation power
levels. In order for these power 1levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, these test results can still show the relationship
between relative interrogation power and P2 acceptance.

TEST PROCEDURE: The test first runs the "extra pulse" portion of
the test. P1,P2 and P3 spacing are set to nominal and the extra
pulse 1is introduced at 8.0 followed by 21.0 microseconds. The
test runs for Mode A and Mode C and at the various power levels.
The reply count for each iteration is recorded.

The extra pulse is then removed from the interrogation. The
test varies the Pl to P2 pulse spacing from
"tst_cur.tst25.strt_sp" to "tst_cur.tst25.end_sp," varied by
"tst_cur.tst25.sp_inc." This is run for the four power levels.
The P2 power level 1is offset from the P1,P3 1level by the
parameter "tst_cur.tst25.p2_pow."

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur([25]).parm[A_Pl_WDTH] determines Pl width.
P2 width - int_cur([25).parm{A_P2_WDTH] determines P2 width.
P3 width - int_cur({25).parm{A_P3_WDTH] determines P3 width.

P1-P2 spacing - Determined by test.
P1-P3 spacing - int_cur([25]).parm[A_P1l_P3_SP] determines P1-
P3 spacing.

P1,P3 power -~ Determined by test.
P2 power - Determined by tst_cur.tst25.p2_pow.

PRF - int_cur(25).parm{A_PRF] determines PRF.
Frequency - int_cur(25].parm[A_FREQ] determines frequency.

Mode C:

Pl width - int_cur(25].parm[C_P1_WDTH] determines Pl width.
P2 width - int_cur[25].parm[C_P2_WDTH) determines P2 width.
P3 width - int_cur(25].parm{C_P3_WDTH] determines P3 width.
P1-P2 spacing - Determined by test.

P1-P3 spacing - int_cur([25).parm{C_Pl_P3_SP] determines Pl-
P3 spacing.

P1,P3 power - Determined by test.

P2 power - Determined by tst_cur.tst25.p2_ pow.

PRF - int_cur(25].parm(C_PRF] determines PRF.

Freguency - int_cur[25).parm[C_FREQ) determines frequency.

TEST ERS:
tst _cur.tst25.num_ints - determines the number of
interrogations to send at each power level.
tst_cur.tst25.i mode - determines interrogation mode. 0=Mode
A. 1=Mode C.
tst_cur.tst25.strt_sp - Starting P1-P2 spacing.
tst_cur.tst25.end_sp - Ending P1-P2 spacing.

tst_cur.tst25.sp_inc - Spacing increment.
tst_cur.tst25.p2 pow - P2 power offset from P1l.

- TEST DATA:
int i_mode; /* Interrogation mode 0=A 1=C */
int pref; /* Pulse repetition frequency */
int num_ints; /* Number of interrogations */
int strt_sp; /* Starting P1-P2 spacing */
int end_sp: /* Ending P1-P2 spacing */
int sp_inc; /* P1-P2 spacing increment */
int level(4]:; /* Power levels */
int x1_pulse_sp: /* Extra pulse spacing #1 */
int x2_pulse_sp; /* Extra pulse spacing #2 */

int xp_rep_cnt(4](2](2]: /* X-pulse reply count array
level x spacing x which reply*/

int rep_cnt{4](161]; /* Percent reply array */
int power:; /* Highest reply power measured */
int delay:; /* Lowest reply delay measured * /
int e_code; /* Test error codes */

Data size = 1352 bytes.

C-31

(sm Butoedg ed - td

o' a2

Y
7,
w

.

[00t

72

‘

wap 09- - Wap O + 2d = td

#IQTtUdS UaIPpUOASURY)

awt)] 3183

\iIllIIllIlllllll.l..l.l.l.ll.lll.lllllllIll.ll.ll.llll.lllllll.lllllll

|RTwWa 4>

(o] o 2d 840,88 (s 1z Ardad %
o o 2d @uD;3g (*m g Atday %
wap 09- wap v — {PAD UIMOY /P8I NG PUIXT
(s Burtoedg Sed - td
o'r o2

7

/

NN

*

ke
» » Qo

wap ve-

nQaua >

SN

R\

- Wap 0 + 2d = td

OGP = dJHd

IUTOg uad suUotTIeEBouudiul v IPpOW 00T

JONVH JIWVNAQ ONV 9NIQO0D30 S1S G2« L1S3I1 Sviva
378N0HL H3ONOJdSNYHL 03140434 1011Id

VLALLM ONIMN
19dA) Ij@Juduty

IuBswwo)
@30A) J@puodsueu;y

0Lt VYNSS3D PECIN

gl 3I4@UDUTtY

(=32

1% o 24 @u0jag) [2 Aldauw X
o o 2d @u0jag M g Aldad %
wap t2- wao ov- {3A37F VIMO- /36N @uIX3T

sm Butoeds 2d - 1d (s Butdeds ed - td

o' o2

7

o'r 02

SN
S

AL
A

X

.

7.

X x
RNTwa J>
b 4
R ITwa J>»

7

»*

»*

o

E] o0t

wap 12— = Wap O + Z2d = td wap ov- = Wap O + 2d = ¥d

OGSy = dHd

IUTOd Jad SuUOotiI@BOoJLIIUTI Vv IPOW 00T
FONVH JIWVNAQ ONV 9NIA0D230 Ss71S S&# 1S31L Sviva

3N8N0HL Y3IONOdSNVHL O031H0d3dW 1071d juswwo)

#(QRTUIS uapuodsueuy VAL ONIX :9dA) u3dpuodsuedy

dwt) 3Isay 0Lt VYNSS3ID :9dA)] I4Q@UuDdDuty rESTIN Q1 Ijeuduty

Cc-33

TEST NUMBER: 27
FILE: aftst27.cc - ATCRBS field test #27.
TEST: SLS Pulse Ratio.

DESCRIPTION: This test measures the transponders response to
interrogations with the P2 suppression pulse included with the
interrogation at 9 dB below P1l,P3 power. The National Standard
requires that the transponder shall initiate suppression (not
reply) when the P2 pulse is equal to or greater than the
amplitude of P1 and P3. The transponder shall reply to at least
90 percent of the interrogations when the Pl level exceeds the P2
level by 9 dB or more, when no pulse is received at the position
2.0 +/- 0.7 microseconds following Pl, or when the duration of
P2 is less than 0.3 microsecond. The nominal spacing between P1
and P2 is 2.0 microseconds. The National Standard requires that
the transponder shall suppress when the time between Pl and P2 is
between the range of 1.85 and 2.15 microseconds.

This test procedure runs at various interrogation power
levels. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, these test results can still show the relationship
between relative interrogation power and P2 acceptance.

TEST PROCZOURE: The test varies the Pl to P2 pulse spacing from
"tst_cur.tst27.strt_sp" to "tst_cur.tst27.end_sp" varied by
"tst_cur.tst27.sp_inc." This is run for the four power levels.
The P2 power level is offset from the P1l,P3 1level by the
parameter "tst_cur.tst27.p2_pow."

ON RS :
Mode A:
Pl _width - int_cur(27).parm(A_P1_WDTH] determines Pl width.
P2 width - int_cur(27].parm(A_P2_WDTH] determines P2 width.
P3_width - int_cur(27).parm{A_P3_WDTH] determines P3 width.

- spaci - Determined by test.
P1-P3 spacing - int_cur{27].parm[A_Pl_P3_SP] determines Pl-

P3 spacing.

P1.P3 power - Determined by test.

P2 power - Determined by tst_cur.tst27.p2_pow.

PRF - int_cur(27).parm(A_PRF] determines PRF.

Fregquency - int_cur(27].parm{A_FREQ] determines frequency.

TEST

Mode C:

Pl width - int_cur(27].parm[C_P1 WDTH] determines Pl width.
P2 width - int_cur{27].parm[C_P2_WDTH] determines P2 width.
P3 width - int_cur({27).parm{C_P3_WDTH] determines P3 width.

P1-P2 spacing - Determined by test.

P1-P3 spacing - int_cur{27].parm{C_Pl_P3_SP] determines Pl-

P3 spacing.

P1,P3 power -~ Determined by test.

P2 power - Determined by tst_cur.tst27.p2_pow.
PRF - int_cur[27]).parm{C_PRF] determines PRF.

Frequency - int_cur(27].parm[C_FREQ] determines
PARAMETERS :
tst _cur.tst27.num ints - determines the

interrogations to send at each power level.
tst _cur.tst27.i _mode - determines interrogation
A. 1=Mode C.

tst cur.tst27.strt_sp - Starting P1-P2 spacing.
tst_cur.tst27.end _sp - Ending P1-P2 spacing.
tst_cur.tst27.sp_inc - Spacing increment.
tst_cur.tst27.p2 _pow - P2 power offset from Pl.

TEST DATA:

TEST

frequency.

number of

mode.

int i_mode; /* Interrogation mode 0=A 1=C
int prf; /* Pulse repetition frequency
int num_ints; /* Number of interrogations

int strt_sp; /* Starting P1-P2 spacing

int end_sp; /* Ending P1-P2 spacing

int sp_inc; /* Pl-P2 spacing increment

int level[4]: /* Power levels

int rep_cnt{4]([161): /* Percent reply array

int power; /* Highest reply power measured
int delay: /* Lowest reply delay measured

int e_code; /* Test error codes

Data size = 1316 bytes.

0=Mode

*/
*/
*/
*/
*/

*/
*/

*/
*/

(&n)

Butoedsg

o2

wap 09-

2d - td

- Wwap 6- + 2d = td

#IRITUIS JuapuUOodsURU]

tawrt] 389l

Kqwa J>

(s™ Buroedsg 2d - vd

(2 4 oz

nawa J>»

Al i e -

wap vi-— - Wwap 6~ + 2d = td

0%V = dYd
JUTODY Jad suotiIeouualjul v 8poOoWw 00T

OoIilvVYd 3IS NG SIS 2% 1S31 Sviva

379N0HL HIANOLSNVHL g3LlHOd3IH 107Id :jvawwol
VOZIM ONIM :9dA)] wapuodsueuf
04T VYNSS3ID :89dA)1 2jeudJrty YES2TN QI IjeudJty

Caulfb

| 4

(an)

. oa -]
A A
A |
T 4 d ~
\] g T
o
\“ x x ©
B = 1 oos gr = = R oos
wap t2- = wap 6- + 2d = td wap Or—- = wap 6- + 2d = Id

Burtoeds 2d - td (on) Butoedsg 2d - td

o2 o'v o2

oGy = dJud
JUTDg Jad suotiefoudusliul v @POW 00T

OIilvd 3ISINA S7S L2#4 1S3L Sviva

3189N0YHL "H3IAONOJdSNVYLl 03140d3Y 10771Id :jIvswwo)
#LQRTUIS uwapuodsuRd) VALLM ONIM 9dA] JIpuodsueu]
‘awty 3183y 04% VNSS3ID :18dA) 33j4@4dutvy PESTN QI Ijeuduty

——

TEST NUMBER: 29

FI aftst29.cc - ATCRBS field test #29.

TEST: Suppression Duration. .
DESCRIPTION: Suppression duration is the time the transponder is
suppressed after receiving a Pl1-P2 suppression pair. The
suppression duration is measured from the lead-edge of the P2
pulse that initiated the suppression to the lead edge of a P1
pulse that follows. The National Standard requires that the
suppression duration shall be between 25 and 45 microseconds.

This test procedure runs at the power levels required in the
MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test will still measure the
suppression duration at the available power level.

TEST PROCEDURE: The test sets up a Pl1-P2 suppression pair on
channel 2, and a P1-P3 interrogation on channel 1. The spacing
between the P2 lead edge and the interrogation Pl lead edge is
varied from "tst_cur.tst29.strt_sp" to "tst_cur.tst29.end_sp"
varied by "tst_cur.tst29. Sp_ dec." The number of replies at each
increment of the spacing is recorded.

INTERROGATION PARAMETERS:
Mode A:
Pl width =~ int_cur([29].parm[A_Pl_WDTH] determines both Pl
widths.
P2 width - int_cur(29].parm[A_P2_WDTH) determines P2 width.
P3 width - int_cur(29].parm[{A_P3_WDTH) determines P3 width.
P1-p2 sgac1ng - int _cur(29]. parm[A_P1l_P2_SP] determlnes P1-
P2 spacing of suppression pair.
P1-P3 spacing - int_cur({29].parm{A_Pl_P3_SP] determlnes P1-
P3 spacing.
P1,P3 power - int_cur({29].parm[A_INT PO] determines P1-P3
power.
P2 power - Determined by test (Ch.2 power = Ch.l power).
PRF - int_cur(29).parm{A_PRF]) determines PRF.
Frequency - int_cur(29).parm{A_FREQ] determines frequency.

TEST

Mode C:

Pl width - int_cur(29].parm{C_Pl1 WDTH] determines both Pl
widths.

P2 width - int_cur(29].parm{C_P2_WDTH] determines P2 width.
P3 width - int_cur(29].parm{C_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur(29].parm{C_Pl_P2_SP] determines P1l-
P2 spacing of suppression pair.
P1-P3 spacing - int_cur(29).parm{C_P1l_P3_SP] determines Pl-
P3 spacing.
P 3 ower - int_cur[29].parm[C_INT PO] determines P1-P3
power.

P2 power - Determined by test (Ch.2 power = Ch.1l power).
PRF - int_cur([29].parm[C_PRF] determines PRF.

Frequency - int_cur{29].parm(C_FREQ] determines frequency.
PARAMETERS :
tst_cur.tst29.num _ints - determines the number of

interrogations to send at each spacing.

tst_cur.tst29.strt _sp - Starting suppression spacing.
tst_cur.tst29.end_sp - Ending suppression spacing.
tst_cur.tst29.sp dec - Spacing increment.

DATA:

TEST

int prf[(2]; /* Pulse rep. frequency (each mode) */
int num_ints; /* Number of interrogations * /
int i_power(2]; /* Interrogation power (each mode) */
long strt_sp: /* Starting spacing * /
long end_sp:; /* Ending spacing */
long sp_dec; /* P1l-P2 spacing decrement */
int rep_cnt(2}{1201]; /* Reply count array */
int power:; /* Highest reply power measured * /
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 4832 bytes.

C-39

(ar) 00 €€ = (T2)S wotileung uvotrtssauddng (sM) QOO EE = (B)S uUOTIEUNO UOTSSIJVCUANS

€d 'td <- 2d 'td €d 'td <- 2d ‘td
(sm) Buroedg as[nNd (sm ButORdS 88T Nd
Q2 og oz
}) t —+ ORI +
MW“\
MW“\ WW“\
y o8 on
A A
A 7
d d
3 3
Y] \\ %]
x / x
00t [-1.14
Wwap G- = Y3IMOd 4 ‘td wWap GP- « YWIMDH 2d ‘td
0GPy = ddd oGy = dud
D aponw v @pow

IUTOd J8d suotiIedfoudsiul 00t
NOILvHNAO NOISS3IHddNS 62# 1S341 Sviva

3789N0W1L Y3ANOJdSNVHL O03140d34 10711d :3uswwo)

HMTRTLUIS JfpuUOdSURJY YOI ONIM :3dA) Japuctdsuea)
3wty 1839 04F VYNSS3ID :189dAj 1j3@Uudurty PESTITN QI I4@JDUTY

C-40

TEST NUMBER: 30
FILE: aftst30.cc - ATCRBS field test #30.
TEST: Suppression Reinitiation.

DESCRIPTION: Suppression reinitiation is the ability of the
transponder to initiate suppression immediately following a
previous suppression. The National Standard requires that the
transponder shall be capable of reinitiating suppression within 2
microseconds ‘after a suppression period.

This test procedure runs at the power levels required in the
MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test will still measure the
suppression duration at the available power level.

TEST PROCEDURE: The test sets up a P1l,P2 suppression pair
followed by another P1,P2 suppression pair on channel 2, and
P1,P3 interrogation on channel 1. The spacing between the first
P1,P2 pair and the second P1,P2 pair is set to the suppression
duration plus 2 microseconds. The suppression duration is
measured with a call to the function "getsd()." The spacing
between the P2 lead edge of the second P1,P2 - pair and the
interrogation Pl lead edge is varied from "tst_cur.tst30.strt_sp"
to "tst_cur.tst30.end_sp" varied by "tst_cur.tst30.sp_dec." The
number of replies at each increment of the spacing is recorded.

INTERROGATION PARAMETERS:
Mode A:

Pl width - int_cur([30).parm[A_Pl1_WDTH] determines all three
Pl widths.

P2 width - int_cur(30].parm{A_P2_WDTH] determines both P2
widths.

P3 _width - int_cur(30]).parm{A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(30).parm{A_Pl_P2_SP]) determines P1l-
P2 spacing of both suppression pairs.

P1-P3 spacing - int_cur({30].parm{A_Pl_P3_SP] determines Pl-
P3 spacing.

P1,P3 power - int_cur{30].parm[A_INT PO] determines P1-P3
power.

P2_power - Determined by test (Ch.2 power = Ch.l power).

PRF - int_cur(30].parm{A_PRF] determines PRF.

Frequency - int_cur(30].parm[A_FREQ] determines frequency.

c-41

-

Mode C:

Pl width -~ int_cur(30].parm{C_P1_WDTH] determines all three
Pl widths.

P2 width - int_cur([30].parm[C_P2_WDTH] determines both P2
widths. |

P3 width - int_cur(30].parm(C_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur[30].parm[C_Pl_P2_SP] determines Pl-
P2 spacing of both suppression pairs.

P1-P3 spacing - int_cur(30].parm{C_Pl1_P3_SP] determines Pl-
P3 spacing.

" P1,P3 power - int_cur{30].parm[C_INT_PO] determines P1-P3

TEST

power.

P2 power - Determined by test (Ch.2 power = Ch.1l power).
PRF - int_cur([30].parm[C_PRF] determines PRF.

Freguency - int_cur(30].parm[C_FREQ] determines frequency.

TEST PARAMETERS:

TEST

tst_cur.tst30.num_ints - determines the number of
interrogations to send at each spacing.
tst_cur.tst30.strt _sp - Starting suppression spacing.
tst_cur.tst30.end sp - Ending suppression spacing.
tst_cur.tst30.sp_dec - Spacing increment.

DATA:

int prf(2); _"/* Pulse rep. frequency (each mode)*/
int num_ints; /% Number of interrogations */
int i_power(2]; /* Interrogation power (each mode) */
long strt_sp: /* Starting spacing *x/
long end_sp: /* Ending spacing */
long sp_dec; /* Pl-P2 spacing decrement */
long s(2]; /* Suppression durations */
int rep_cnt{2](1201]; /* Reply count array */
int power; /* Highest reply power measured * /
int delay: /* Lowest reply delay measured * /
int e_code; /* Test error codes * /

Data size = 4838 bytes.

-]
L

(8") 00 €€ = UOTIETITLUTSIY JIIJIV
(N gE €€ = PIJNBROW

(TS)sS wotileung uotssauddng

Ed 'Td <- Z2d 'vtd huz
(sn) Butoedg 3ISING

7

7

-

-

RaTwa J>

X
..

wap gr- = HIMOd Z2d ‘td
oGy = AHd

O Spown

#TRTUSS JIpuUOAdSURJ}L

tawt)] 3say

(*r) 00 €E = WOTIETITUTAY J3I4Y
(N} QE €€ = pPaunseaw

(8) S uoYaleung uotrtssIuddng

€Ed 'td <- &d ‘td pue
(e ButoVOS @B Nd

o9 ez

N {—— SRR }

wap Q- = H3IMOd 2Sd ‘td

rRIwa Jd>

oGy = d4Yd

v SDpOW

IUTOHd J8d suortieBodualjul 00t

NOILVILINI3Y NOISS3HddNS oe# 1S31 Sviva

IGN0OHL Y30NOdSNvHL g314"0d3d 107Id juvswwo)d
\ VGZAIM ONIXN 8dKAk) uspuodsued)

04F VYNSS3ID :9dA| 13j4@uduty rE2IN 01 3IjseUDUTY

C-43

TEST NUMBER: 31

FILE: aftst3l.cc - ATCRBS field test #31.

H

ST: Recovery after Suppression.

DESCRIPTION: This test determines if the transponder returns to
full sensitivity within the prescribed time following a
suppression period. The National Standard requires that the
sensitivity for ATCRBS signals be at MTL no later than 1
microsecond after the end of the suppression period.

This test procedure runs at the power levels required in
the MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test can still measure the
suppression recovery if the available power level is adequate.

TEST PROCEDURE: The test sets up a Pl,P2 suppression pair on
channel 2, and P1,P3 interrogation on channel 1. The spacing
between the P2 lead edge and the interrogation Pl lead edge is
varied from "tst_cur.tst3l.strt_sp" to "tst_cur.tst3l.end_sp"
varied by "tst_cur.tst3l.sp_dec." The power 1level of the
suppression pair is set to -30 dBm and the power level of the
interrogation is set to MTL. MTL is measured with a call to
"getmtl ()" from this test. The reply count for each increment of
the spacing is recorded.

The test also measures the suppression duration with nominal
conditions as a comparison for the recovery test.

INTERROGATION PARAMETERS:
Mode A:
Pl _width - int_cur(3l].parm[A_P1_WDTH] determines both Pl
widths.
P2 width - int_cur[31].parm{A_P2_WDTH] determines P2 width.
P3 width - int_cur(3l1].parm{A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(3l].parm(A_Pl1_P2_SP] determines Pl-
P2 spacing of suppression pair.
P1-P3 spacing - int_cur(31l].parm(A_P1l_P3_SP] determines P1l-
P3 spacing.
P1,.P3 power - Determined by test (MTL).
P2 power - Determined by test (-30 dBm for P1,P2).
PRE - int_cur{3l].parm{A_PRF] determines PRF.
Frequency - int_cur([31].parm({A_FREQ] determines frequency.

C-44

T

TEST

TEST

Mode C:

Pl width - int_cur([31)].parm[C_Pl1_WDTH] determines both P1
widths.

P2 width - int_cur([31).parm[{C_P2_WDTH] determines P2 width.
P3 width - int_cur(31].parm[{C_P3_WDTH] determines P3 width.

P1-P2 spacing - int_cur(31l].parm(C_Pl_P2 SP] determines Pl-
P2 spacing of suppression pair.
P1-P3 spacing - int_cur(31l].parm(C_Pl_P3_SP] determines P1-

P3 spacing.

P1,P3 power - Determined by test (MTL).

P2 _power - Determined by test (-30 dBm for P1l,P2).

PRF - int_cur(31].parm[C_PRF] determines PRF.

Frequency - int_cur(3l].parm(C_FREQ] determines frequency.

PARAMETERS :

tst_cur.tst31l.num_ints - determines the number of
interrogations to send at each spacing.

tst_cur.tst3l.strt _sp - Starting suppression spacing.
tst_cur.tst3l.end _sp - Ending suppression spacing.
tst_cur.tst3l.sp _dec - Spacing increment.

TEST DATA:

int prf{2]; /* Pulse rep. frequency (each mode)*/
int mtl[2)]; /* MTL measured each mode */
int sd{2]r /* Measured Suppression durations */
int num_ints; /* Number of interrogations */
int sup_power{2]; /* Suppression pair powers */
long strt_sp: /* Starting spacing */
long end_sp; /* Ending spacing */
long sp_dec; /* P1-P2 spacing decrement * /
int rep_cnt(2][1201]; /* Reply count array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 4846 bytes.

C-45

("M QD €€ = AUIAOD8Y (™ 00 E€ = A JU3A0D3Y

(sM QE "EE = Ppaunseasw .) QGE €€ = D3JINSeINW
(tv2) S uotaieung uvotrtssaauddang (8) S uotilIeunp uUolssaudyng
€d 'tTd <-— Sd 'td €Ed 'td <- 2d ‘td
(«ry Butoedg asind &M Buredg Is{nNd
o8 az oe or
mew +- +
on x oe
A A
A 1
d . d
3 \ 3 k4
=] =) {
k x k x &
003 o0s
wap QE- = HIMOd NOISS3IHddNS <d ‘Id wap OE- = HIMOd NOISSIHIINS 24 °'Vd
wap vs- = VIW wap v/- = 1N
oGy = dHd OGYr = d4ud
D 9pOnW v 8pOwn
IUTODY JuB8dq sSuotraiefoudeailzul 00t
NOISS3IHIANS HIALA4VY AHIAOIIY tE® 1S31 Svivda
379N0YHL Y3ANQGSNvYHl g3130d3Y4 10771Id jIuswwo)
#1QTUIS JadpUOodsURU] VG ONIXM 8adA)} J9puodsuRu}
swty) 1say 041 YNSS3ID :8dA) 3JjeddJuty PE2IN QI 3Ijeusuty

\illlllll.lIlllllll.ll.l..'........l..l.......................llll.l....lllll.llL

TEST NUMBER: 34
FILE: aftst34.cc ~ ATCRBS field test #34.
TEST: Pulse Position Tolerances.

DESCRIPTION: This test determines how the transponder responds to
interrogations with the P1-P3 pulse spacings varied within the
required acceptance range as well as beyond the acceptance range.
The National Standard requires that the transponder accept the
interrogation as valid if the spacing between the P1 and P3 pulse
is within +/- 0.2 microsecond of the nominal spacing. The
transponder shall not accept the interrogation if the Pl and P3
pulse spacing differs from nominal by 1.0 microsecond or more.
This test procedure runs at the power levels required in
the MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test can still measure the pulse
position tolerances if the available power level is adequate.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation.
The spacing between the Pl and P3 lead edges is varied from
"tst_cur.tst34.strt_sp" to "tst_cur.tst34.end_sp" varied by
"tst_cur.tst34.sp_inc." The power level of the interrogation is
set to MTL + 10 dBm. MTL is measured with a call to "getmtl()"
from this test. The reply count for each increment of the spacing
is recorded.

NTERROGATION ERS:
Mode A:
Pl width - int_cur(34).parm{A_Pl1_WDTH] determines Pl width.
P2 width - int_cur({34].parm[A_P2_WDTH)]) determines P2 width.

P3 width - int_cur(34).parm{A_P3_WDTH] determines P3 width.
P1-P2 spacing - int_cur(34].parm(A_Pl_P2_SP]) determines Pl-
P2 spacing.

P1~-P3 spacing - Determined by test.

P1.P3 power - Determined by test (MTL + 10 dB).

P2 power - int_cur(34).parm(A_P2_PO] determines P2 power.
PRF - int_cur(34].parm(A_PRF] determines PRF.

Frequency - int_cur(34].parm[A_FREQ) determines frequency.

TEST

Mode C:

Pl width -~ int_cur({34].parm{C_Pl1_WDTH] determines P1l width.
P2 width ~ int_cur([34).parm[C_P2_WDTH] determines P2 width.
P3 width ~ int_cur([34).parm(C_P3_WDTH] determines P3 width.
21;21_§pgg;gg - int_cur(34).parm(C_Pl1_P2_SP] determines Pl-

P2 spacing.

P1-P3 spacing - Determined by test.
P1,P3 power - Determined by test (MTL + 10 dB).

TEST DATA:

P2 power - int_cur(34)].parm(C_P2_PO] determines P2 power.
PRF - int_cur[34].parm[C_PRF] determines PRF.
Frequency - int_cur[34].parm(C_FREQ] determines frequency.
PARAMETERS :

st cur.tst34.num _ints - determines the number
interrogations to send at each spacing.
tst _cur.tst34.strt_sp - Starting pulse spac1ng
tst_cur.tst34.end sp - Ending pulse spacing.
tst cur.tst34.sp_inc - Spacing increment.
int num_ints; /* Number of interrogations */
int mtl[2]; /* MTL measured each mode */
int i_power[2]; /* Interrogation powers */
long strt_sp:; /* Starting spacing */
long end_sp; /* Ending spacing */
long sp_inc; /* Pl1-P2 spacing increment * /
int rep_cnt(2]([401]; /* Reply count array */
int power; /* Highest reply power measured */
int delay; /* Lowest reply delay measured */
int e_code; /* Test error codes */

Data size = 1628 bytes.

of

(sn) GHuroieds €4 ‘'td

x
N

wap vi- = LW
wap vg- = JaMOd €d ‘Fd

J apow

#lIetuU3ag JuapuUOodsuURJy

9wty 1S3l

3

RTwa J>

(sn) BUutoeRUdS E4 ‘td

|
|

®Twa 1>

A
[
W

wap vsL- = AW
waqop Y- = JOMOd €d ‘vd

v SWPOW

IUTOYd JBg suotiyeBoudsliul oot
S3IONVHIN0L NOILISOd 3ISTWNJ ves®s 1S3L Svivad

3119N0”L H3ANOJSNVHL 0314043y 1071Id :3Iuadwwo)

VAL ONIM 8adAk; Japuodsuedy
0¢T VYNSS3D :183dAy 11je@udurty rE2IN QI 131jeuduty

C-49

TEST NUMBER: 36

FI aftst36.cc - ATCRBS field test #36.

TEST: Pulse Duration Tolerances.

DESCRIPTION: This test determines how the transponder responds to
interrogations with the Pl and P3 pulse widths varied within
their required acceptance range as well as beyond their
acceptance range. The National Standard requires that the
transponder accept the interrogation as valid if the width of
both Pl and P3 pulses is between 0.7 and 0.9 microsecond. The
reply ratio shall be 1less than 10 percent if the duration of
either Pl or P3 is less than 0.3 microsecond.

This test procedure runs at the power levels required in
the MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test can still measure the pulse
duration tolerances if the available power level is adequate.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation.
For each interrogation mode, the width of P1 and P3 is varied
one at a time from "tst_cur.tst36.strt_pw" to
"tst _cur.tst34.end_pw" varied by '"tst_cur.tst34.pw_inc." The
power level of the interrogation is set to MTL + 10 dBm. MTL is
measured with a call to "getmtl()" from this test. The reply
count for each increment of the pulse width is recorded.

INTERROGATION PARAMETERS:
" Mode A:

Pl width - Determined by test.
P2 width -~ int_cur({36].parm(A_P2_WDTH] determines P2 width.
P3 width -~ Determined by test.
P1-P2 spacing - int_cur([36].parm{A_P1l_P2_SP] determines P1l-
P2 spacing.
P1-P3 spacing - int_cur(36].parm[A_Pl1_P3_SP] determines P1l-
P3 spacing.
P1,.P3 power - Determined by test (MTL + 10 dB).
P2 power - int_cur([36].parm[A_P2_PO] determines P2 power.
PRF - int_cur(36].parm[A_PRF] determines PRF.
Frequency - int_cur(36].parm[A_FREQ] determines frequency.

C-50

Mode C:

Pl width - Determined by test.

P2 width - int_cur([36].parm[C_P2_WDTH] determines P2 width.
P3 width - Determined by test.

P1-P2 spacing - int_cur([36).parm[{C_Pl1_P2_SP) determines P1-
P2 spacing.

P1-P3 spacing -~ int_cur{36)].parm(C_Pl_P3_SP] determines Pl-
P3 spacing.

P1,P3 power =~ Determined by test (MTL + 10 dB).

P2 power - int_cur(36].parm[C_P2_PO] determines P2 power.
PRF - int_cur{36].parm{C_PRF) determines PRF.

Frequency -~ int_cur(36].parm(C_FREQ)] determines frequency.

TEST PARAMETERS:
tst cur.tst36.num _ints - determines the number of
interrogations to send at each increment.

tst_cur.tst36.strt pw - Starting pulse width.
tst_cur.tst36.end pw - Ending pulse width.
tst _cur.tst36.pw_inc - Width increment.

TEST DATA:
int num_ints; /* Number of interrogations */
int mtl([2]; /* MTL measured each mode */
int i_power(2); /* Interrogation powers * /
long strt_pw; /* Starting width */
long end_pw; /* Ending width */
long pw_inc; /* P1-P2 width increment */
int rep_cnt([2](2](41); /* Reply count array */
int power: /* Highest rep.y power measured */
int delay; /* Lowest reply delay measured *x/
int e_code; /* Test error codes */

Data size = 352 bytes.

00"

-

e uIotM td

»*

»*

I 222X 2222 2. 2.2 2 2 2. 2 2.8 2 3

1 oos

wap vL-~ = W
wap P9- = J8MOod €d ‘td

O 9POw

#IQTUIS Japuodsueuy

3wt 3say

RTWa J>

0Lv VNSS3D

sm Uipwm td

26 7€ 36 36 3¢ 3¢ IE 26 36 36 26 I IE I€ 3 3¢ 3¢ 3¢ 3¢ € oot

00

wRaTwae 4>

wap vL- = W
wap p9- = JOMO4 € ‘id

v 8DOW

Jutogd Jad suotiyefoudgaiul 00t

SIINVHIIOL NOIiLvHNa 3ISINd QE# 1S31 Sviva
I189N0YHL HIANODSNVYHL d3140d34Y 1L07Id

VOLLM ONIXN adA) JapuodsueuJd)
:9dA)] Yjeduduty

r3veawwoln

rE2IN A1 Ij0JIDITY

\

C-52

(sn)

$

ulptm €d

o9 N
'}

-

T

7

b o

T

N

1]

LR R X X XS XXX EZEEESEREEELESEZEZEZESE] 00¢

wap vri- = W
wap pg- = J8MO4 €d ‘td

D Spow

#1ETLUSS ulapuodsued)

8wT)] 1sa)

®Twa J>

04t VNSS3O

(en) ulotmM gd

co"t 090

b ' }
LS

T

7

N
N\
NN

N
R Twa J>

L E X ZEXZEEZEEIEREEEEEZELEEE X2 X \ oot

wap vi- = LW
wap v9- « JeMogd Ed ‘td

v 2DpOW

JIUTOY JBy SsSuotIeBouudalul 00t

S3ONVH3ITI0L NOILLVHNOg 3SINd 9€# 1S31 Sviva

3718N0YH1L H3IANOJSNVHL 0314043y POJHQ
VIAZLM ONIM

yueawwod
‘9dA | uapuodsueJ}
adAi 1j4eaduty

vESIN O Yjedduty

C-53

TEST NUMBER: 41
FILE: aftst4l.cc - ATCRBS field test #41.
TEST: Simultaneous Interrogations.

DESCRIPTION: This test determines how the transponder responds to
receiving both a Mode A and Mode C interrogation simultaneously.
The National Standard requires that if the transponder receives
two valid ATCRBS interrogations simultaneously it shall enter the
suppression state if one of the received pulse patterns is a Pl-
P2 suppression pair, or generate a Mode C reply if one of the
received patterns is a Mode C interrogation.

This test procedure runs at the power levels required in
the MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test can still run 1if the
available power level is adequate.

TEST PROCEDURE: The test sets up a standard Mode C interrogation
with a 0.8 microsecond pulse 8.0 microseconds prior to P3
(simultaneous interrogations). The transponder is interrogated
with four variations of this interrogation: with no P2 pulses, a
Mode C P2 pulse, a Mode A P2 pulse, and both interrogations
including a P2 pulse. The type of reply for each situation is
determined by first acquiring the Mode C and Mode A reply codes
and comparing them to the reply codes.

INTERROGATION PARAMETERS:
Pl width - Determined by test.
P2 width - Determined by test.
P3 width - Determined by test.
P1-P2 spacing - Determined by test.
P1-P3 spacing - Determined by test.
P1,P3 power - Determined by test (MTL + 10 dB).
P2 power - Determined by test (MTL + 10 dB).
PRF - int_cur(41].parm{A_PRF] determines PRF.
Frequency - .

TEST PARAMETERS:
tst cur.tst4l.num ints - determines the number of

interrogations to send at each increment.

TEST DATA:

int num_ints; /*
int code{2]: /*
int mtl; /*
int i_power; /*
int rep_cnt(3]([4]): /*
int power; /*
int delay: /*

int e_code; /*
Data size = 40 bytes.

Number of interrogations
Acquired codes 0=A 1=C
Minimum transmit level
Interrogation power

Reply count array

Highest reply power measured
Lowest reply delay measured
Test error codes

*/

*/
*/
*/
*/
*/
*/

3UNTIIvd SIALVIIANI »*=

O = 3002 D 300w
LLLL = 30A00 VO 3AOW

(o] 0 0] S.2d H108 HLIM IS

o o Q 2d 3 3Q0W HILIIM IS

(o] o (o] 2d VvV 30A0W HLIIM IS

0 g 14 ¢) S3SNd 2d ON HLIM IS
"H3H1O J 3AQ0wW v 30A0W

SNOILVOOUYILNI
Ald3Y %

- SNOILVOOHHILNI SNOINVLITINKWIS tre 1S3L Sviva

IEgN0OYL Y3ANOdSNvHl 031H0d34W 10711d 3jIu8swwo)
#leQTUSS JapuodsuwvJdy VOL1IM ONIX :90A) JIpuodsuRu}
‘8wt) 3Is3al 04t VYNSS3ID :9dAL 31sedduty PESTIN QI 3Ijeddaty

=56

TEST NUMBER: 42
FILE: aftst42.cc - ATCRBS field test #42.
TEST: Single Pulse Desensitization and Recovery.

DESCRIPTION: This test measures the transponders' desensitization
from a single interrogation pulse. When the transponder receives
any pulse more than 0.7 microsecond in duration it is
desensitized temporarily for all received signals by raising the
receivers threshold. Immediately after the desensitizing pulse,
the receiver shall be between the level of the desensitizing
pulse and 9 dB below that. The National Standard requires that
the receiver shall recover sensitivity within 3 dB of MTL, within
15 microseconds after reception of the trailing edge of a
desensitizing pulse having a signal strength up to 50 dB above
MTL. Recovery shall be at an average rate not exceeding 4.0 dB
per microsecond.

This test procedure runs at the power levels required in
the .MOPS test procedure. In order for these power levels to be
accurate, the transponder being tested should have the antenna
directly at the calibrated point in the main beam. However, if
this cannot be guaranteed, this test can still measure the pulse
desensitization if the available power 1level 1is adequate. The
power level required for this test is quite high.

TEST PROCEDURE: The test sets up a standard ATCRBS interrogation
preceded by a single pulse. The spacing between the pulse and the
interrogation 1is varied from "tst_cur.tst42.strt_sp" to
"tst_cur.tst42.end_sp" varied by "tst_cur.tst42.sp_inc." The
power level of the interrogation and whether or not 90 percent
replies were receded is recorded for each spacing.

INTERROGATION PARAMETERS:
Mode A:
Pl width - int_cur(42].parm(A_P1_WDTH] determines Pl width.
P2 width - int_cur(42).parm(A_P2_WDTH] determines P2 width
and the width of the desensitizing pulse.
P3 width - int_cur(42].parm(A_P3_WDTH] determines P3 width.
P1-P3 spacing - int_cur(42).parm(A_P1_P3_SP] determines Pl-
P3 spacing.
P1,.P3 power - Determined by test (MTL).
PRF - int_cur(42].parm{A_PRF] determines PRF.
Frequency - int_cur({42]).parm[A_FREQ] determines frequency.

TEST PARAMETERS:
tst_cu st42.1i mode - determines the interrogation mode.
tst _cur.tst42.strt_sp - Start spacing.
tst _cur.tst42.end _sp - End spacing.
tst cur.tstd42.sp_inc - Spacing increment.

TEST DATA;

int
int
int
int
int
int
int
int
int
int
int
int

i_mode:;

mtl;
dp_power;
mxX_power;
strt_sp:
end_sp?
sp_inc;
rep_90_flg(80]:
int_pow(80];
power;
delay;
e_code;

Data size = 340 bytes.

Interrogation mode 0=A 1=C
MTL measured

Desensitizing pulse power
Maximum system power

Start spacing

End spacing

Spacing increment

90 percent reply flags
Interrogation powers
Highest reply power measured
Lowest reply delay measured
Test error codes

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

TEST NUMBER: 44
FILE: aftstd44.cc - ATCRBS field test #44.
TEST: Undesired Replies.

DESCRIPTION: This test is used to monitor the transmitter of the
transponder to see if it sends unsolicited replies. If this
test is run in an active air traffic environment, replies could
be generated by interrogation sources within the area. For a true
unsolicited reply test, the transponder should be connected to
the test system by coaxial cable.

TEST PROCEDURE: This test simply sets up a constant reply window
and monitors for replies the allotted time.

INTERROGATION PARAMETERS:
Not applicable.

TEST PARAMETERS:
tst_cur.tst44.time - Number of seconds to monitor replies.

TEST DATA:
int time; /* Time in seconds for test */
int rep_cnt; /* Reply count * /

Data size = 4 bytes.

TEST NUMBER: 55
FILE: aftst55.cc - ATCRBS field test #55.
TEST: .Suppression.

DESCRIPTION: This test measures the transporiders response to
interrogations with the P2 suppression pulse included with the
interrogation equal in amplitude to P1,P3 and at 9 dB below P1,P3
power. The National Standard requires that the transponder shall
initiate suppression (not reply) when the P2 pulse is equal to or
greater than the amplitude of Pl and P3. The transponder shall
reply to at least 90 percent of the interrogations when the P1
level exceeds the P2 level by 9 dB or more. If multiple PRF mode
is selected this test can show the relationship between PR} and
suppression acceptance.

This test procedure runs at various interrogation power
levels. In order for these power levels to be accurate, the
transponder being tested should have the antenna directly at the
calibrated point in the main beam. However, if this cannot be
guaranteed, these test results can still show the relationship
between relative interrogation power and P2 acceptance.

TEST PROCEDURE: This test has two operating modes: single PRF and
multiple PRF modes. The operating mode is determined by the test
parameter variable "tst_cur.tst55.t_mode" (0O=single 1l=multiple).
In "single PRF mode" the test will run the two suppression ratios
at a single PRF which is determined by the test parameter
"tst_cur.tst55.s_prf." This mode should be selected when a
shorter test time is required, suppression vs. PRF information
is not desired, or if the test is being conducted in a field
environment where a high PRF could interfere with the air traffic
control systems. Multiple PRF mode will conduct the same test
repeated for 10 different PRF's. The PRF's are determined by the

test parameters "tst_cur.tst55.m_prf_1lo" and
“tst_cur.tst55.m_prf hi." The 10 PRF's are evenly divided
between the low and high PRF.
INT 0G ON P :

Mode A:

Pl width - int_cur(55]).parm{A_P1_WDTH] determines Pl width.

P2 width -~ int_cur(55].parm{A_P2_WDTH) determines P2 width.
P3 width -~ int_cur([55]}.parm{A_P3_WDTH) determines P3 width.
P1-P2 spacing - int_cur([55].parm[A_Pl1_P2_SP)] determines Pl-
P2 spacing.

Pl-P3 spacing - int_cur(55].parm{A_P1_P3_SP] determines Pl-
P3 spacing.

Pl.P3 power - int_cur(55].parm[A_INT_PO) determines power.
P2 power - Determined by test.

PRF - Determined by test.

Freguency - int_cur(55].parm[A_FREQ] determines frequency.

C-60

Mode C:

P1 width - int_cur(55].parm{C_P1_WDTH] determines Pl width.
P2 width - int_cur(55].parm(C_P2_WDTH] determines P2 width.
P3 width - int_cur[55).parm{C_P3_WDTH) determines P3 width.
P1-P2 spacing - int_cur({55).parm[C_P1l_P2_SP] determines Pl-
P2 spacing.

P1-P3 spacing - int_cur([55].parm{C_P1l_P3_SP] determines Pl-
P3 spacing. :

P1,P3 power - int_cur(55).parm[C_INT_PO] determines power.
P2 power - Determined by test.

PRF -~ Determined by test.

Frequency ~ int_cur(55].parm{C_FREQ] determines frequency.

PARAMETERS :

TEST

tst_cur.tst55.num_ints - determines the number of
interrogations to send.

tst_cur.tst55.1i _mode - determines interrogation mode. 0=Mode
A, 1=Mode C.

tst _cur.tst55.t mode - determines test mode O=single PRF,
l=multiple PRF.

st _cur.tst55.s prf - PRF if single mode.

st cur.tst55.m _prf 1o - Low PRF if multiple mode.
tst_cur.tst55.m prf hi - High PRF if multiple mode.

TEST DATA:

int num_ints:; /* Number of interrogations */
int i_mode; /* Interrogation mode 0=A 1=C */
int t_mode; /* Test mode, 0=1PRF 1=Mul. PRF */
int s_prf; /* Single PRF */
int m_prf_lo; /* Multiple PRF low * /
int m_prf_hi; /* Multiple PRF high * /
int rep_arr(2)][(10]; /* Reply array */
int power; /* Highest reply power measured */
int delay:; /* Lowest reply delay measured *x/
int e_ccode; /* Test error codes * /

Data size = 58 bytes.

Ad3Y
H31v3IHO HO XO06 oot waag 6 -
Ad3Y
SS37 WO X0t [o} weo o
J3dS 1S31L ATd3Y % 4410 td - gd
CE2 = d4Hd B8[(furg
suotijebouuadjlul v IPOW OO0F UD paseg ejeg 1S3y
NOISS3HdAANS SGe 1S31 Sviva
3718N0Y1L H3IANOJSNYHL Q3140434 1011Id :3jIudwwo)
#[@tUSS Ju3aIPpUOdSURJ] vOZI1IX ONIM 83dA)] uapuodsuedy
8wt) 189) 0Lt VYNSS3ID :89d/) 11j9@u4dJrv PES2TN Q1 IjeudUTY

=2

