
I'm~ COPY.

NON-L[FO EXECUTION OF
COGNITIVE PROCEDURES

Technical Report PCG -15

Kurt VanLehn, William Ball &
Bernadette Kowalski

Departments of Psychology and
Computer Science

Carnegie Mellon University
Pittsburgh, Pa. 15213

DEPARTMENT
- -of

PSYCHOLOGY

-. -A

Approved for public releas,

Carnegie Mellon. University.-

890. 06 0 5

NON-LIFO EXECUTION OF

COGNITIVE PROCEDURES

Technical Report PCG -15

Kurt VanLehn, William Ball &
Bernadette Kowalski

Departments of Psychology and
Computer Science

Carnegie Mellon University
Pittsburgh, Pa. 15213

13 April 1989

To appear in Cogrtire Science

P 35

We would like to thank Jamesine Friend for conducting the experiment, and Austin
Hendr[soifor writing the data collection program. Micki Chi, Paul Rosenbloom and
Clayton Lewis provided valuable comments on an -arly draft. Michi Chi's thoughtful
advice was particularly important to the development of the research. This research was
supported by the Cognitive Science Program, Cog'.ive and Neural Sciences Division,
Office of Naval Research, under Contract No. N00014-88-C-0688. Reproduction in whole
or in part is permitted for any purpose of the United States Government. Approved for
public release; distribution unlimited.

unclassifiLed

isPG

REPORT DOCUMENTATION PAGE

I. EOTSICUNTY aICS l"O 10 41STRITVE MARKINGS

Z.SCRITy Mrgp.VT'*ot AU"*OfRIT I OISTNI$UTION' AVAILAILiTY OF REPORT

2b 0CLASIPCATIWWW'PAMG S)41ULIApproved for public release;,
Zb OCLASIPCT10IOOWNO ~I~Distribution unlimited

4 PER06ORMING ORGANIZATION REPORT NUMBER(S) 5MONITORING ORGANIZATION REPORT NuMBER(S)

PCG - 15 Same as Performing Organization

6a. NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL ?a NAME OF MONITORING ORGANIZATION
Caregi Melo Unverity01 .1006OWO) Colnitive & Neural Sciences.)iv..

Caregi MelonUnierstyOffice of Naval Research (Cd L142 QS)

6L. ADDRESS (ty. State, slid ZIP Code) ?b ADDRSS (City. State. and ZIP Co) 1: .SI

Department of Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, VA 22217-5000

Sa. NAME OF FUNDING i SPONSORING O b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (0IfdpCab&5) N00014-88-K-0086

;ame as Monitoring Organization

St. ADDRESS (City. State, MWd ZIP Cods) 10 SOURCE Of FUNDING NUMBERS
PROGRAM PROJECT ITASK WRK UIT
ELEMENT NO No. No. CEssIO% NO

L N/A N/A N4/A N4/A

it TITLE (Incdud SoCurity Cfaw fiation)

Non-LIFO Execution of Cognitive Procedures

12 PERSONAL AuTI4OR(S)
Kurt VanLehn, William Ball & Bernadette Kowalski

13a. TYPE OF REPORT jtiu. TIME COVERED 11. OPT- OF r'.EPCI%- (VCar.MontfM,ODay) IiS. PAGE COUNT
Technical LFOf',fFJanO1_, I -O~e31 299prl

TO SIJPPLEMENIARY io(TaTriofI

7COSATI C013r' 16 SUBJECT TkRMS (Comtnue on reverse it necessary and idstffy by block pnuml:,.)
FIELD GROUP Sue-GROUP ~-Problem solving, skill acquisition, selection of

goals, cognitive architecture. ~ ,

19. ABSTRACT (Continue on reverse it ROieeary and identidv by 111000 number)

See Reserve Side

20. DISTRIUTION IAVAILAIUTy OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
0 UNCILASSIFIEO4IJumumTo X3 SAME AS RPT ~ C cUSEst

22& NAM Of RESPOnSLgU INOVIOUAL 225 rILEPHOE hcjiAe Cods) 22c. OFFICE SYMBOL.
usan Chipuan (202) 696-14322 A*7142 PT

DOFORM 1473. 04 MA43 APR edition May be Used vntil tIOed. SECURITY CLASSIFICATION Of THIS PAGE
Al otit edtionh ame om t. Unclassif ied

Abstract

Many cL nt theories of human problem solving and skill acquisition assume that people

work only on the unsatisfied goal that was created most recently. That is. the architecture obeys a

last-in-first-out (LIFO) constraint on the selection of goals. We argue that this restriction seems to

be violated by some subjects on some tasks. In particular, we show that non-verbal protocols of 8

subjects in a sample of 26 can be precisely simulated by dropping the LIFO restriction and

assuming instead that subjects' knowledge includes explicit goal selection preferences. Although

there is a great deal of between- and within-subject strategy variation in the data, it is nearly

completely accounted for by a few specific preferences that seem to be overgeneralized,

conditionalized or missing from the subjects' knowledge. On the other hand, LIFO-based models

can not account for the strategy variations in any simple way. Thus, it seems that part of the

flexibility in human problem solving comes from having a choice in which goal to work on next. We

conclude by reviewing the theoretical problems that led to the adoption of the LIFO restriction, and

showing how these can be simply solved Inside a non-LIFO architecture without introducing any

new architectural mechanisms. k -' -

Abstract

Many curent theories of human problem solving and skill acquisition assume that people

work only on the unsatisfied goal that was created most recently. That is. the architecture obeys a

last-in-first-out (LIFO) constraint on the selection of goals. This restriction seems necessary for the

proper functioning of automatic learning mechanisms, such as production compilation and

chunking. We argue that this restriction is violated by some subjects on some tasks, and in

particular, that 8 subjects from a sample of 26 execute subtraction procedures in a way that

violates the LIFO constraint. Although there is a great deal of between- and within-sub'ect strategy

variation in the 8 subjects' behavior, it can be simply explained by hypothesizing that (1) the goal

selection is not necessarily LIFO, (2) goal selection knowledge is represented by explicit

preferences, ar. (3) the 8 subjects have preferences that are mostly correct with just a few

preferences that are overgeneralized, overspecialized or missing. On the other hand, LIFO-based

models seem unable to explain the strategy variations in any simple way. Thus, it seems that part

of the flexibility in human problem solving comes from having a choice of which goal to work on

next. Fortunately, t is simple to ammend automatic learning mechanisms so that they will function

correctly in a non-LIFU arc; ,itecture.

Aocession For
MTIS GRA&I

DTIC TAB
Unannounced C3

1, "TIC Justification-

COPY
MNPECVEO 'By

e Distribut I al/

Avail;,,-, lt Y Codes

Dist special

2

1. Introduction
It seems clear to us that people feel free to select any pending goal they can recall as their

next focus of attention. The model of problem solving presented in this paper has this property, but

most models -- including GPS (Ernst & Newell, 1969), HPS (Anzai, 1978; Anzai & Simon, 1979),

ACT* (Anderson, 1983; Anderson, Farrell, & Saurers, 1984; Anderson & Thompson, 1986;

Anderson, 1987), Soar (Laird, Newell, & Rosenbloom, 1987), and Sierra (VanLehn, 19??) -- allow

students to select only the most recently created pending goal. That is, they impose a LIFO (last

in, first out) restriction on goal selection.1 For instance, suppose that processing goal A creates

subgoals B and C, then subgoal B is selected and its processing creates sub-subgoal D. At this

point, there are at least two pending goals, D and C, in working memory. A LIFO architecture has

no choice; it must select goal D because D was created after C. A non-LIFO architecture can select

either goal. On the face of it, the LIFO restriction seems a little strange. If working memory is

equated with information that can be easily recalled, then the LIFO restriction asserts that people

find it impossible to work on certain goals that they can easily recall.

There are no compelling computational reasons for placing a LIFO restriction on problem

solving. Indeed, many contemporary Al problem solving systoms have non-LIFO architectures.

Typic-ly, whenever the currently executing goal (r'fion called a task) ,-nerates subgoz-I, they are

placed in a set of pending tasks. When the currently executing task completes, the architecture

selects the next task from the set of pending tasks.2 Although the task selected may be one of the

ones just created, it does not have to be, and this makes the architecture non-LIFO. Despite the

widespread use of non-LIFO problem solving architectures in Al, no one has seriously considered

whether human problem solving might be non-LIFO. Most problem solving systems that have been

claimed as models of human problem solving have been LIFO, but that may have been more a

matter nfl conignience trjP theoretical conviction.

There are many difficulties in determining whether people obey a LIFO restriction. Here are

four:

'If several goals we created at the same time, then some models allow selection among them. But in no case is the
model allowed to choose a goal that was created before some other pending goal.

2Architectures vary in selection schemes they use. Some use simple numerical priorities attached I taks. Some use
heurisic rules. Others can use the fully power of th* problem solving system by "going mea and taking on goal selection
as a problem in itself.

3

1. It is usually the case that we do not know exactly what the subjects' procedures are.
If their behavior is consistent with a LIFO execution of one procedure and a non-LIFO
execution of a different procedure, but we do not know which procedure they have,
then how can we tell whether the LIFO constraint is being obeyed?

2. In many task domains, the LIFO restriction is imposed by the task itself. For instance,
if one is using a goal recursive strategy for solving the Tower of Hanoi puzzle, then
the rules of the puzzle force one to attend to the Move-disk goals in LIFO order
(Simon, 1975). Only task domains that give the subject the freedom to use a non-
LIFO order are useful for testing the LIFO hypothesis.

3. When a person follows a written procedure (e.g., while cooking), the goals of that
procedure probably are not subject to the LIFO restriction. Suppose the procedure is
memorized then followed from (declarative) memory. Presumably the goals are still
not subject to the LIFO constraint. Suppose the declarative representation of the
procedure is compiled into a procedural representation. Now the LIFO constraint
should apply. But how do we tell whether a given subject's procedure is represented
declaratively or procedurally?

4. Although the LIFO restriction applies to goals retrieved from working memory, that is
not how some goals are recalled. Instead, they are reconstructed from the externally
visible problem state (VanLehn & Ball, 19??). It is not clear whether the LIFO
restriction applies to reconstructed goals.

In short, the issue of LIFO vs. non-LIFO architectures is quite complicated. This article certainly

does not settle the issue, but merely introduces some some new data from a simple task domain

that avoids most of the complexities mentioned above.

The task domain is ordinary, multicolumn subtraction. This task domain has been

extensively investigated, and detailed models eXist for the knowledge representations and learning

processes that students seem to employ (VanLehr, 19??; VanLehn, 1983a; Young & O'Shea,

1981; Brown & VanLehn, 1980). Thus, difficulty 1 is avoided. The subtraction procedure is such

that non-LIFO executions are possible, so difficulty 2 is avoided. Our subjects have practiced

subtraction for many hours. As we shall argue later, this means that their subtraction procedures

are encoded as procedural knowledge and therefore should be subject to the LIFO restriction.

Thus, difficulty 3 is avoided. Although the task domain does allow goals to be stored externally and

rec;stnzjted, we will argue that mechanisms for storing goals are "implemeqtation" details that

should be considered separately from architectural principles, such as the LIFO constraint. Thus,

difficulty 4 is shown to have no force. In short, the task domain of subtraction is an ideal vehicle for

testing our claim that people's use of goals in not subject to the LIFO constraint.

There is another advantage of subtraction that is a bit less obvious, but quite important

nonetheless. If subjects reliably told us about their goals as they selected them, then we could use

goal structure mentioned earlier,

* A

Goal A
subg oal a

Sub-subgoal D
Subqoal C

in order to see if they always obeyed the LIFO restriction. If they selected goals in the order A, B,
or4

C and D, then they have violated the restriction. But verbal protocol data it notoriously incomplete,

and it is seldom that subjects mention all the goals that have played a role in their problem solving.

Fortunately, in subtraction, the primitive (lowest) goals in the heirarchy correspond to reliably visible

actions, such as writing a digit. This gives the experimenter partial evidence about the sequence of

goals selections. Unfortunately, this is not always good enough. For instance, suppose goals C

and D correspond to reliably visible actions and the experimenter sees the subject execute C then

D. This behavior is consistent with both a non-LIFO execution of the goal structure (A, B, C, D) as

well as a LIFO execution (A, C, B, D). Thus, this particular goal structure is too simple to allow an

experimenter to test whether or not the subject uses LIFO or non-LIFO goal selections. Testing

requires a more complicated goal structure, such as:
Goal A

Subgoal 8
Sub-subqoal B
Pub-r -v. B' 1, S

Subgoa).
Sub-subgqoal Cl
,ev- r v-.".l. C?

where goals B1, B2, C1 and C2 correspond to reliably visible actions. Now if the subject executes

the actions for goals B1, C1, B2 and C2, in that order, the experimenter is fully justified in

concluding that the subject has used non-LIFO goal selections, as there are only two orders for

goal selection that will generate this sequence (one is A, B, B1, C, C1, B2, C2, and the other is A,

C, B, B1, C1, B2, C2), and neither obey the LIFO restriction on goal selection.3 Fortunately,

subtraction procedures generate goal structures of the necessary kind, which is yet another reason

for using subtraction as the task domain.

We will not bother to argue for the generality of our findings since it is both too hard and too

easy. If one Ignores the four difficulties listed earlier, then cases of non-LIFO execution are easily

found: When you fix dinner, you have no problem interweaving subgoals from the Cook-dinner goal

3CoInPJr Wdentsle may recognize he pattehn of execuion as a kind of co-routining or pseudo-paralle procesin tat
can only be accomplished if tie programming language ha a spageltt stck. An ormry stack will not support suspendng
te execuon of procedure B in order to inmiate execution of C. th, laer resuming tew executon of procedure S.

I5

with subgoals from the Clean-up-breakfast-dishes goal, even though the LIFO restriction says that

you must complete all the subgoals of Clean-up-breakfast-dishes before starting to work on Cook-

dinner (or vice versa). But such easy counterexamples to the LIFO constraint are subject to all the

difficulties mentioned above. For Instance, we do not really know the goal structure of the

knowledge involved in cooking and cleaning up the kitchen, nor whether it is represented

procedurally or declaratively. Thus, although it is easy to make plausible claims about generality, it

is difficult to support them properly, so this article restricts its claims to subtraction.

The argument to be presented is a classic case of finding a model that captures the variance

in a set of data. In this case, the data are protocols of 26 subjects solving subtraction problems. It

will be shown that 8 of these subjects alternate between a standard execution sequence, wherein

all the subgoals of processing a column are completed before moving on to work on the next

column, and a variety of nonstandard execution sequences. For instance, some subjects do all the

borrowing that a problem requires before answering any column, then they answer the columns,

starting with the leftmost one and proceeding towards the units column (see figure 1). The

variance in the data is exactly the strategy shifts of the subjects. For instance, one subject did 4

problems with the standard exacution strategy, 4 with the nonstandard strategy just mentioned, and

2 with a second nonstandard strategy. Two further problems were solved with blends of the three

strategies.

A. B. C.
5 0 5 0

6 4 18 04 XS 4Z
-2709 -2 709 -2 709i 3709

Figure 1: Initial, intermediate and final states of a nonstandard solution

After presenting the data, we present a problem solving model that is based on the

assumptions that (1) goals are not subject to a LIFO restriction and (2) people have explicit goal

selection preferences as part of their knowledge of the subtraction procedure. A typical goal

selection preference is "If there is a pending goal of type Process-column and a pending goal of

type Borrow, then prefer the goal of type Borrow."

Next, it Is shown that almost all the variance in the data can be captured by introducing small

6

perturbations into the set of goal selection preferences that defines the standard execution

strategy. Most perturbations consist of simply deleting a goal selection preference, wrapping a

condition around it, reversing its direction, generalizing it or specializing it. In short, our explanation

for the variance in the data is that most of the 26 subjects learned a complete, standard procedure,

but 8 either failed to completely encode a few of the standard goal preferences or they did encode

them but later decided to revise them slightly. Either way, the 8 subjects end up with a procedure

that is almost identical to the standard procedure, with only a few preferences modified.

Although this explanation for the variance is simple and intuitively compelling, t does depend

on having a non-LIFO problem solving architecture. Because the LIFO constraint has been a

fixture in successful problem solving models for almost a decade, we should be cautious about

abandoning such a traditional and useful assumption. So the next step in the argument is to

consider what it would take to capture the variance in these data using a LIFO architecture. We

tried several ways to model the data with LIFO architectures. Although all of the alternatives

worked, they all required some rather implausible extra assumptions.

Lastly, we examine why one would ever want a LIFO architecture in the first place. The chief

advantage of the LIFO restriction seems to be that it constrains automatic learning mechanisms,

such as knowledge compilation (Anderson, 1987) and chunking (Laird, R-ser-,lo)m, & Newel,

1986). We present a simple technique for constraining automatic learning without putting a LIFO

restriction on goal selection. This leads us to conclude that there is no reason for retaining the

LIFO constraint, and several reasons for dropping it.

2. The experiment and its results
The experiment involved collecting protocols from students learning multi-column

subtractiqn. Qne advarge of this-task domain is that subtraction is a fairly ptiue example of

procedural knowledge. Students, much to the regret of their teachers, do not seem to acquire a

deep understanding of the algorithm (Resnick, 1982; Resnick & Omanson, 1987; VanLehn, 1986).

As far as most of them are concerned, the procedure is just so much symbol manipulation. This

means that a representation can be simple and yet still suffice for representing their operative

7

knowledge.4 Moreover, a fair amount is already known about subtraction procedures and how they

are acquired (Brown & VanLehn, 1980; VanLehn, 1983b; VanLehn, 1983a; VanLehn. 19"?).

Before discussing the experiment itself, some additional background on this task domain is-

presented.

2.1. Background
Prior to the experiment described here, three phenomena were already known to occur in the

behavior of subtraction students. Because these phenomena also occur in the present data, the

following paragraphs briefly describe them and the best current explanations of them, as well as

introducing several technical terms (in italics) that are needed later.
1. Both students and adults are known to make slips, which are unintentional mistakes

such as omitting a borrow or misremembering a number fact (e.g., thinking 13-7=5).
Norman (1981) has proposed a preliminary model of slips.

2. Subtraction is taught in the second, third and fourth grades in the United States.
About 40% of the students in those grades seem to have buggy subtraction
procedures (Brown & Burton, 1978; VanLehn, 1982). A buggy procedure is a correct
procedure that has one or more small changes to its structure (bugs) that cause it to
generate incorrect answers on some problems. For instance, one common bug is
called Diff-0-N-0 because students with this bug answer columns with a zero on top
by simply putting zero in the answer instead of borrowing. One can model this by
simply adding a rule to a set of rules representing a correct procedure (Young &
O'Shea, 1981). Other bugs can be modelled by deleting rules or substituting rules...

3. In the grades where subtraction is taught, about 18% of the students exhibit bug
migrations, wherein they exhibit one bug on some problems and different bugs on
other problems (VanLehn, 1982). For instance, a common bug migration is to do
Diff-0-N-0 on some problems and Diff-0-N-N on others.

Brown and VanLehn (1980) proposed that most bugs and bug migrations are caused by repairs to

impasses. An impasse occurs when the student's procedure requires them to do something that

they believe cannot or should not be done. A repair is problem solving conducted with the goal of

getting past the impasse. Typical repairs are to skip the action that can/should not be done or to

substitute a similar action. In the case of a bug migration between Diff-0-N=0 and Diff-0-NaN, the

imfls8cUrs whi the student sfaifs to borrow and notices the top digit intfe column is a zero.

Perhaps he or she has heard "you can't borrow from zero," and thinks the rule applies to this

situation. In any case, 'or some reason the student reaches an impasse on borrow columns with

zeros on top. The two bugs are generated by two different repairs, both of which substitute actions

4Some students know much about the deep stiucture of the algorithm, but they do not seem to use it when they solve
problems. Moreover. they do not seem to cae if their solution violates the subtraction principles that they can state (Resnick
& Omanson, 1987). Our procedural representatons are meant to cover only the parts of their knowledge that affect problem
solving.

8

for the borrow. The bug Diff-0-N=N comes from substituting the normal take-difference action for

the borrow. The bug Diff-O-N-0 comes from substituting for the borrow the action that is normally

usp". on columns whose bottom digit is missing (e.g., the tens column of 34-8). These two bugs

illustrate how bug migrations, and for that matter, bugs themselves, are generated by repairs to

impasses.

VanLehn (in press, 1987) developed a computer program, called Sierra, that simulates the

acquistion of bugs. Sierra combines example-driven learning with impasses and repairs. In one

particularly rigidly controlled demonstration, it was shown that 33% of the 75 observed subtraction

bugs, including almost all of the most common bugs, could be acquired by Sierra (VanLehn, in

press). Hand simulation indicates that the theory could be extended to capture 85% of the bugs

(VanLehn, 1986).

The data for testing Sierra came from testing thousands students from around the world (849

from California, 288 from Massachusetts, 1325 from Nicaragua, and several smaller studies in

Pennsylvania, New York, Utah and the Philippines). In all cases, the students took diagnostic tests

of about 20 prohlems in length,5 with ee.ch prn'-"em presented in vertical frnrmat, e.g.,

5067
- 92

Test data were not scored or aggregated prior to analysis. Instead, each student's answers were

analyzed as digit strings. A student was counted as being successfully modelled if the students

answers to each problem were matched by the model's answers, digit for digit (with some

allowances made for slips).

Although this method of testing and analysis is more detailed than earlier ones (see Brown

and Burton, 1978, for a complete discussion), it omits one crucial piece of information. One cannot

determine the chronological sequence in which the writing actions were made. One would need

protocol data, such as one could collect by video taping, in order to obtain the exact sequence of

writing actions. The experiment described here was designed to collect such data and thereby (we

hoped) provide additional support for Sierra. As will be seen, this purpose was not achieved, but,

sProblems m hosen to maximize the power of the ost to differentiate buggy procedures. See Burton (1983) for a
description of Debuggy, the program used to generate tst items and analyze the students' solutions.

9

serendipitously, a new phenomenon was discovered instead.

2.2. Subjects and methods

By hypothesis, impasses occur because a student's knowledge of a procedure is not quite

complete. Since it is difficult to induce such a state of knowledge in the laboratory with any

reliability, a screening technique was used in order to find subjects who might naturally exhibit

impasses. This strongly biased subject selection means that the resulting group of subjects is not

a random sample of the population. Thus, frequency of occurrence of the phenomena described

later could be inflated when compared to the frequency of occurrence in the general population.

Screening was done in the context of the California study mentioned earlier. The tests used,

the methods of administration, and the results are reported elsewhere (VanLehn, 1982). Since we

anticipated bringing protocol-taking equipment out to the schools, we selected only three

classrooms for participation in this experiment. The students in these classrooms had been tested

twice, approximately two months apart with the diagnostic tests mentioned earlier. On the basis of

these screening tests, 33 third graders were selected. In order to have stringent data to test our

theory, we selected students who had uncommon bugs or whose behavior was not systematic

enough to be modelled by hugs. The belivf was that these students would be more likely to exhibit

impasses.

These 33 subjects were tested individually in a small room adjacent to their classroom. Each

student solved an individualized paper-and-pencil test whose items were designed to elicit the

errors we saw on that student's pre-tests. Each test consisted of about 13 subtraction problems,

presented in vertical format. In order to collect the exact chronology of the students' writing

actions, the test page was taped to an electronic tablet, and students filled out the test with a

special pin. Equipment malfunctions caused the data from 7 students to be lost. Tablet data from

each of the remaining 26 students were coded as a sequence of writing actions. For instance, a

correct solution to the problem shown in figure 2, frame A, would be coded as the five-action

sequence (Slash (2), -. crement (2), Add-ten(l), Take-difference(i),

Take-difference (2)] where 1" means the units column, "2" means the tens column, etc. The

states after each action are shown in frames B through F, of the figure. Although we also audio

taped the students' comments, they said so little that their verbal protocols were not transcribed or

10

analyzed. Consequently, the raw data from this experiment consist of 26 nonverbal protocols, one

for each subject.

A. B. C. D. Z. V.
2 2 2 2

3 4 1 4 4 j4 314 X14
-18 -1s -is -is -is -8

6 1 6

Figure 2: A correct solution, shown as a sequence of problem states

2.3. Results

Without verbal reports, evidence for impasses would have to come from the actions and the

pauses between them. We had hoped to develop a criterion for the existence of impasses by

measuring the pauses between actions, and assuming that the longer pauses were caused by

impasse-repair episodes. However, fragmentary verbal data and the notes of the experimenter

indicated that long pauses seemed to be caused mostly by counting in order to determine a

number fact, such as the difference between 15 and 7. Against this high background variation in

pause length, it would be difficult to set a reliable criterion for the duration of impasse-repair

episodes relativ, to the duratinn 6f non-repair actnc,. C'n.requently, we were unable to achieve

one purpose for the experiment, which was to collect protocol data on what happens at impasses,

because we had no reliable way to directly detect impasses.

Another reason for the experiment was simply to check if the models that we developed for

data in the form of numerical answers would also fit protocol data. The earlier research had

produced a large set of correct and buggy procedures, which will henceforth be called the standard

procedures. Since this set had been developed with a very large sample of students, and this

experiment had a rather small sample, we expected that for each student in this experiment, there

should be some standard procedure that would accurately simulate the student's protocol. Of the

26 students, 15 met our expectation, 8 did not, and 3 students could not be analyzed because they

made no scratch marks (i.e., the marks made in the top row of the problem that indicate the actions

of borrowing). The rest of this paper focuses on the behavior of the 8 students whose protocols

could not be modelled by a standard procedure. They will be called the nonstandard students for

ease of reference. Appendix I presents their protocols and our analysis of them. The following

I

11

comments summarize those analyses.

For expositional purposes, it is convenient to consider two types of behavior. The first type of

behavior involves nonstandard ways of doing borrowing. For instance, on the problem shown in A

of figure 3, Hilda first puts a scratch mark through the 8, then adds ten to the 3, then decrements

the 8, and finally answers the units column, as shown in B through E of the figure. Let us

abbreviate her actions, so that "S" stands for slash, "A" for adding ten, "D" for decrement, and "-"

for column difference. Then Hilda exhibits the permutation SAD-. The most commonly taught

borrow order is SDA-, although ASD- is also taught, so we had expected students to exhibit either

one or the other of these two standard orders, but not both. However, Hilda's SAD-order violates

this expectation. She was not alone in this respect. Of the 8 nonstandard students, 7 exhibit

nonstandard borrowing permutations. (The 15 standard students used either the SDA-order on the

whole test, or the ASO-order on the whole test. They did not alternate among the two orders

during the test, nor did they use nonstandard orders.) Table 1 gives a rough indication of the

borrowing permutations exhibited by the nonstandard students by counting the number of times

each permutation occurred, excluding unclear cases (e.g., borrowing across zeros). Possible

permutations that never occurred are excluded from the table.

A. B. C. D. Z. J.
7 7 7

8 3.3 P3 .913 k3 013
-44 -44 -44 -44 -44 -44

9 3 9

Figure 3: Hilda's solution, shown as consecutive states

Table 1: Borrowing permutations frequencies

-Student SDA- SAD- SA-D ASD- A-SD,..

Angela 19
Hilda 3 6 2
Janine 10
Paul 2 11
Pete 2 2
Robby 1 3
Tanya 2 4
Trina 2 7
Total 27 10 19 13 7

12

The second type of behavior involves nonstandard orders for processing columns. Although

two students, Hilda and Paul, processed columns in the standard, left-to-right order, the other

nonstandard students used a variety of unusual orders. For instance, Janine used a "horizontal"

ordering on four problems. She first did all the scratch marks required for borrowing in the whole

problem, moving right to left across the top row of the problem. Then she filled in all the column's

answers. Usually she did this second pass in right to left order, but on one problem, she filled in

the thousand's place first then moved rightward, filling in the other answer places as she went. We

call her way of solving the problem "horizontal" because it first does the top row then does the

answer row. On three problems, Janine used a "vertical" ordering. She did all the marks in one

column before moving on to the next. Thus, on the problem shown in A figure 4, she added ten to

the 2, and answered the units column (see state B in the figure). Then she moved to the tens

column, where she wrote "9" above the upper zero and in the answer (state C). Then she moved

to the hundreds column, where she decremented the 7 by one, and put "5" in the answer (state D).

We call this ordering "vertical" because all actions that are aligned vertically are done together. On

two other problems, Janine used a strategy that seems to be a mixture of the horizontal and

vertical strategies.

9 6 9
1 02 *7 012 7 9Y2 P1

-108 -108 -108 -108
4 9 4 594

Figure 4: Janine's solution, shown as a sequence of states

Table 2 gives a rough indication of the usage of various ordering conventions for column

processing. The cells in the table ifdicate the number of problems answered with the indicated

convention.6 The column in the table labeled "Unique" lumps together various strategies that are

unique to a single student. For instance, Robby has a particular strategy that he uses on 2

problems; Angela has a different one that she uses on 4 problems; both counts are shown in the

"unique" rolumn. See appendix 1 for descriptions of the actual ordering conventions used.

gWhen a problem has no borrows, fie column processing convention is sometmes ambiguous, so two figures have
some guesswork built into them.

13

Table 2: Frequencies of column processing conventions

Horizontal Horizontal

Student Standard L. to R. R. to L. Vertical Unique

Angela 8 4
Hilda 12
Janine 4 1 3 3 2
Paul 12
Pete 9 3 1
Robby 11 2
Tanya 14
Thna 9 3

These two dimensions of variations -- borrowing permutations and column processing orders

-- represent the unexpected aspects in the students' behavior. The other aspects of their behavior

have been observed before. All of the 8 nonstandard students exhibited slips. Four of the 8

students (Hilda, Robby, Tanya and Trina) had bugs. One of the 8 students (Robby) exhibited bug

migration.

There are some rather obvious observations to make about these data. First, all eight

nonstandard students seem to be executing a standard procedure, but they often permute the

order in which the standard procedure's actions are executed. On any given problem, the

horizontal ordering convention, -for instance, generates exactly the same set of actions as the

standard procedure with standard execution. However, the sequence of actions generated by the

horizontal convention is a permutation of the sequence generated by the standard execution of the

standard procedure.

A second observation is that all the students (except Tanya) exhibited more than one

execution strategy. Janine, for instance, used three: a standard execution strategy, the horizontal

execution strategy and the vertical execution strategy. Paul used two: standard and horizontal.

Sometfrrwr ite executidi strategies were used in sequential runs. Paul, for instance, used the

standard execution strategy for the first nine problems, then a unique execution strategy, then the

horizontal execution strategy for the last three problems. In other cases, there are correlations

between features of the problem and the student's choice of execution strategy. For Instance,

Tanya used the ASD permutation when a borrow originated In the units column and the SDA

permutation when the borrow originated in the tens column.

14

A third observation, which is perhaps not so obvious, is that the nonstandard execution

strategies exhibited by most of the students (all except Angela, whose protocol is discussed later)

happen to give the same answers as the standard execution strategy would, In particular, if the

student's procedure were bug-free, then the student's answers would be correct (ignoring slips).

This explains why the phenomena of nonstandard ordering had escaped our notice in the earlier

subtraction experiments -- we only had the students' answers, and not the exact sequence of their

writing actions. Thus, the experiment showed that the original Sierra models of subtraction

procedures fit only 15 of the 26 students' protocols (i.e., only the standard students) even though

they fit 25 of the 26 students' answers (i.e., all except Angela).

Given these observations, a simple hypothesis leaps to mind: all the students learned

standard procedures, but 8 of the 26 are missing a few unimportant constraints on the ordering of

actions. Perhaps they never encoded those unimportant ordering constraints, or perhaps they

learned them but discovered later that it made no difference to the answer if they dropped them. In

order to investigate this hypothesis further, we developed a formal representation of knowledge

such that modifying "a few unimportant constraints" would yield exactly the behavior exhibited by

the students. The next section presents the representation.

3. A concose ro[r .entation of tti r w -Los

The knowledge representation we selected is based on the standard cognitive science

concepts of goals, operators and control knowledge. Control knowledge is divided into two kinds:

(1) Goal selection information is used to choose a goal to attend to, called the current goal. (2)

Operator selection information is used to choose an operator appropriate for the current goal.

Execution of the selected operator causes either a change in the state of the situation, such as

writing a digit, or the creation of subgoals.

The fMfMI Y*ltSs used fW these concepts are also standard ones. Operators and operator

selection information are represented as a goal-hierarchical production system, similar to the ones

used by HPS (Anzai, 1978), Grapes (Anderson, Farrell, & Saurers, 1984), and many other

systems. Goal selection information is represented as a set of conditional preferences similar to

the ones used by Soar (Laird, Newell, & Rosenbloom, 1987), Prodigy (Carbonell, Minton &

Knoblock, 19??; Minton et al., 1987) and other systems. Except for the preferences, this

15

representation of knowledge is very similar to the one used by Sierra.

The part of working memory that contains goals is called the goal store. One of the goals is

marked as the current goal. Each production has exactly one goal test as part of its condition:

productions are considered for execution only if their goal tests match the current goal. A

production may have one or more goal specifications on its action side; the goals that they create

are added to the goal store. For instance, consider the following production:

if the goal is (ProcelsColun i), and
the top digit of i is less than the bottom digit of £,

then
set the goals (BorrowFrzom i+l), (AddLO i), (ColuUUDiffe-eonce i).

If the current goal is (ProcessColumn 2), which means to process the tens columns (columns

are numbered from right to left), then this production is considered for execution. Suppose that the

problem is 234-190. Then the test that is the second element of the left side will succeed, because

3 < 9, so the production is executed.7 Three goals are created by the right side and added to the

goal store.

The goal store contains only pending goals. Whenever a production that matches a goal is

executed, the goal is removed from the goal store. Thus, if the store contains
(Proce~sColum 2)
(Proc.asColmt 3)

just before the production above fires, then it will contain
(Borrowlrom 3)
(AddL0 2)
(ColumDif ference 2)
(ProcessColuma 3)

just after the production fires.8

Some goals are primitive, in that whenever they are selected as the current goal, the next

cycle of the production systemresults in a change to the state of the problem rather than firing a

production rule. For instance, (Addl0 2) causes ten to be added to the top digit in the tens

column, and (ColumnDifference 2) causes the difference between the top and bottom digits in

?A Uchnkd dsti: I* conflit reu ion sWagy a specificity - if the set of working mwory ftm matched by
productio A is a subs of fhos a by prodwcon B, then A i dieeded.

The compulr impempewon does not yic* rmove gok from Ow god str, but only mati Ow e -not
pendng." Thi mae it possJble o back up lo teod if a fdlure octnu aid chas a dffnt oducon for achng it.
SinM such bedding up did not see to occur in t e dais, the ddiM ha ben suppesed in orde to sift te expmoon,
WW the coisnts of e goal sUr * qmd with e so peding gods.

16

the tens column to be written in the answer row as the answer for that column. This completes the

description of t notation used for procedures. As an illustration, table 3 presents a correct

subtraction procedure expressed in this production system notation.

Table 3: A correct subtraction procedure

1. If the goal in (Subtract)
then for each columi i, set the goal (Procesecolum L).

2. If the goal is (ProceaaColumn i), and (Top i)<(3ottom L.),
then set the goals (Dorrovrron i+l), (AddlO i), (Column ifference i).

3. If the goal in (ProceasColumn i),
then aet the goal (ColuniDiffoirence i).

4. if the goal is (3orrourrom L), and (Top i)=O,
then sot the goals (Borrourrom L+l), (AddlO L.), (Borrovfrom A).

5. if the goal is (Sorrovrrom A),
then aet the goals (Slash i), (Decrment i).

Sierra did niot need goal preferences, because It used its goal store as a last-in-first-out

stack. The most recently added goal was considered to be the current goal. In the new model, the

goal store is considered to be an unordered set, and goal preferences are used to select a goal

from ft.

We tried fotir notations for preicr-nces before finding one thiat yields simple, elegant student

modols. 9 The ono i 'e settV,4d on re, -sents a goal sc WO-ki: tratogv asasil o prferences o! the

form,
If <condition>
then prefer <goal> over <goal>
else prefer <goal> over <goal>.

A <condition> is like a condition in a production rule in that it can test working memory and/or the

state ef the external world. A <goab. is a pattern that matches items in the goal store. The goal

patterns can mention constants, variables or constrained variables. For instance, the preference

*The onowng is a brief deacrlpdmo of those notations and their inadequacies. (1) A goal selection strategy is
represented a a sot of preisrences of the forn 4oal type A~o is bette than <cgol type B~o. When t 8 students are fit by
a stralogy expressed this way, 33% of tie trprete cycles result i a multiple goal impasse. (Van lshn & Bd, 1967)
Essentially, the rpentoncould not represent toe fIM that most students change ordering conventions during fte
course of the testing session. (2) A goal selection strlgy is repressn s a 'big switch, among several aft of
preferences of fte form described in 1, above. Although ft could represnt the observed strategies, the sem used for any
given owldent tended to overlap considerably, indicating the most of their preferences were constant and only a few vaied
(VanLehn & Sal, 1967) (3) A goal selection strategy is represened n a discrimnination net whose leaves are goal tye
(VanLehn A Garllck, 1967. This functions identically to a set of rules of the born If <Oondlidon ,- then -cgoal type'. This
represnaion could not express some of tie observed strategies (Kowski A VanLehn, 1966). (4) A goal selco
strategy is represete by a se of preferences of the forn, if ecanditor then prefe <goal M. over <goal 8B,. where toe
goal patleru must have an explicit goal namte V them (Kowisid & Vanlshn, 1966). This representation wam er, qvey
respect butS not as concise as e chose represenao, which alowse variables fo goal names and has *Wclauses n
WeON as Tin clauses.

17

f (Top i)>9
then prefer (ProceseColuIn J) over (Col1mDifference i)
el"e prfer (ColuanDiffeonce i) over (ProcaesColum J)

means: if the column difference in column i will be a "hard" one to calculate/recall, because the top-

digit is ten or more, then prefer starting to process another column rather than taking the column

difference in i. On the other hand, if the column difference will be a normal one, then ift is

preferable to take care of it before moving on to another column. That is, this preference prefers to

procrastinate taking the difference in columns whose top digits are ten or more.

For convenience in exposition, we sometimes drop parts of a preference. For ins 'ce, if a

goal preference always holds, then we write just Prefer <goal> over <goal>.

The execution cycle is to (1) select a goal, then (2) select a production, then (3) execute the

production. Preferences are used during Step 1. Goal selection begins by gathering the set of

preferences whose conditions are true at this time. Next, it finds a subset of the goal store that is

maximal, according to the true preferences. A goal is maximal If there Is no goal that Is preferred

over it. Often, there is just one maximal goal, so it is chosen as the next current goal. If there are

nz, mximal goals (e.g., because the true preferences have a cycle in them), then a "no goar

impasse occurs. If there are two or more maximal goals, then a "multiple goal" impasse occurs.

This use of preferences is quite similar to the way preferences are used in Soar (Laird, 'Newell, &

Rosenbloom, 1987).

Table 4 shows the "standard" preference set, which will generate a standard, depth-first,

left-to-right execution of the procedure of table 3. Although there are many different sets of

preferences that will yield standard executions, we think this one corresponds most closely to the

preference sets acquired by the students. As will be seen later, all the students' strategies can be

formnedf making -1mai deleti~ns or additions to this set of preferences.. Hence, it Is worth a

moment to examine it carefully.

The first three preferences concern satisfaction of a precondition nf the ProcessColumn

goal. The first step In processing a column Is to test whether it needs a ,w. In order for the

test to deliver a correct result, al pending actions that could modify the coi, n must be executed

before the test. Theset BorrowingGoils i$ (BorrowFrom, AddlO, Slash, Decrement},

so preerence 1 guarantees that such a goal will be selected before ProcessColumn when both

S18

Table 4: Preferences for a correct subtraction procedure

1. ror X in the set BorrovingGoals, prefer (X i) over (ProcessColumn i).
2. ot X in the set BorrovingGoals, prefoer(X i) over (ColumnDifference i).
3. rot x in (BorrowFrom, Slash, Decrement), prefer (AddlO i) over (X i).
4. Prefer (Slash i) over (Decrement).
5. Prefer (ProcessColumn i) over (ProcesaColmn i+J).
6. or x in the set BorrowingGoals, prefer (X J) over (ProcessColumn J).
7. For X Ln the set BorrowingGoals, prefer (X i) over (ColumnDifference J).
8. Prefer (ColumnDifference i) over (ProcesaColum J).
9. ror X, Y in the set BorrowingGoals, prefer (X L+j) over (Y i).

refer to the same column. Similarly, preference 2 concerns satisfaction of a precondition of

ColumnDifference, and preference 3 concerns satisfaction of a precondition of decrementing

zero.

Preference 4 is a universal convention in handwriting: cross out the old stuff before writing

the new stuff in.

Preference 5 causes the columns to be processed from right to left. This preference is

mandatory because it concerns satisfaction of the preconditions of the test embedded in the

ProcessColumn goal. In fact, all of the first five constraints are maiidatory (although one could

quibble about pr~rrence 4) in that violating any one of them will result in incorrect answers b:oinv

generaied from a correct pmduction system.

The remaining four preferences are mere conventions. Deleting or modifying them will not

harm the correctness of the answers. Preferences 6, 7 and 8 rank the goals by type:

BorowingGoals > ColumnDifference > ProcessColumn

Notice that the relative location of the goals does not matter to these preferences, whereas it is

crucial In the mandatory preferences. Preference 9 causes the borrowing goals to be executed in

left-to-rlo oLrht f. This is te most coMmonly taught ordering of the borrowing actions..

We should note that the distinction between mandatory and conventional preferences is

important, particularly in the discussion of how preference sets are learned.

19

3.1. The eight student models

For each of the 8 nonstandard students, appendix 1 presents four items: the student's

protocol, an idealized version of the protocol, a production system, and a preference set. The latter

two constitute our model of the student. When the student model is executed, it generates the

idealized protocol exactly. So the discrepancies between the model and the data are captured in

the differences between the idealized protocols and the real ones. Each such difference is

highlighted and discussed in the appendix. In order to give an overview, table 5 categorizes the

discrepancies and discusses each briefly. All of them are either well explained by current theory

(e.g., the cases of repairs to impasses) or clearly in the province of some other theory, such as

Norman's (1981) theory of action slips or Siegler's (in press) theory of arithmetic facts.

The student models in Appendix 1 exhibit several important features. First, all the production

systems represent standard procedures that have occurred many times before in analyses of the

bug data. The second feature exhibited by the student models is that all of the preference sets are

quite similar to the standard preference set of table 4. For instance, three students (Janine, Pete

and Tanya) exhibit a horizontal execution strategy, wherein they perform all the borrowing actions

required by the problem before fling in any of the problem's answers. The horizontal execution

strategy can be formed by reversing the standard preference,.
6. Prefer (ColumnDlfference L) over (ProcessColumn j).

to become
S. Prefer (ProcessCollmn J) over (ColumnDifference i).

and leaving the remainder of the standard preferences intact.

Sometimes, deleting or weakening a standard preference creates an execution strategy that

exhibits just the right kind of nondeterminism. For instance, in place of the standard preference,
9. Prefer (X 1+1) orer (Y L), for XY in the net BorrowinzgGoals.

w iSR to peiOrm the actions of borrowing from left to right, Hildahas the following

preferences:

9a. Prefer (Slash 1+1) over (AddlO J).
9b. Prefer (Uorrowlrom £+) over (AddlO j)

These preferences leave three possible permutations of the borrowing actions, and Hilda exhibits

them all. The rest of Hilda's preference set Is identical to the standard preference set.

Sometimes we saw a pattern in the student's alternation among strategies. Although the

20

Table 5: Discrepancies between idealized and actual protocols

Number of Description
occurrences

22 Facts errors. Column differences or decrements are misremembered, e.g.,
12-9=4.

10 Missing pieces of borrows. Sometimes there is a slash without a decrement,
a decrement without a slash, a missing addition of ten that is detected later,
etc.

9 Redoing a column difference. The students rewrite the answer to a column,
possibly because they consider it illegible or as a result of checking the
column subtraction.

9 Leading zero suppression. The student models will write leading zeros for
problems like 303-279, whereas some students do riot.

5 Extra pieces of borrows. Extra scratch marks are made for no apparent
reason. In some cases, they seem to be ignored later.

4 Missing borrows. The student inexplicably fails to borrow for a column where
she or he ordinarily would.

2 Extra borrows. The student inexplicably borrows for a column that she or he
would ordinarily not borrow for.

2 Blanks treated as ones. In a column with a blank subtrahend, the student's
answer was one less than it should be.

2 Missing answer. One column Is missing an answer.

1 Impasses and repairs.: The interrretpr used with the stiident models did not
have a compete set of repairs in it, so it was not able to generto. actly the
repairs that Q.' ae stuci:1ts . to -, their irr;.,a ssei.
Quit early. Hilda forgot to answer the last two columns of her last problem,
even though she had borrowed from them.

1 Floundering. Pete made three slips during his solution of problem 8, and got
so frustrated that he quit, copied the problem over (as problem 9) and tried
again. Problem 8's solution was omitted from the idealized protocol.

I Slash after decrement. One student reversed the usual order of slashing and
decrementing.

1 Use Slash for Add10. One student used a slash where she would normally
use an Addl 0, and later changed it.

prefererss-'ould be witten, like HIlda'i, so that the choice was undetermined, we wrote

preferences that captured as much of the variation as we could see. For instance, Robby's

strategy column processing strategy is represented by replacing

8. Prefer (Coli mnfference L) over (1rocessColuim J).

with
8. If the top digit of column L is greater than 10 and

the current problem is either problem or 7,
then prefer (ProcessColum J) over (ColuimnDfference L)
else prefer (Colmnifference L) over (ProcessColumn J).

21

We do not know why Robby only uses a nonsta ering on problems 6 and 7 only, so we

deliberately chose to mention the problem numL the preference's condition. It is clear,

however, that the columns whose answers are de ire the ones where the column difference

would be "hard" because the top digit is ten or a. Because the condition is ad hoc, the

preference causes an exact match to Robby's protocol, and thus serves as an accurate reduction

of the data, albeit only a partial explanation of it. An alternative formulation would be to delete

preference 8 entirely. This would not capture what appears to be a valid (although partial)

explanation of why Robby delays the answering of some columns. In general, whenever we could

find such explanations, we wrote them into the preferences. When we could not, we left the

prference set underdetermined. We were usually able to see patterns (partial explanations) in the

choice of column processing strategies, but we often could not see patterns in the choice of

borrowing permutations.

3.2. Discussion

Overall, the most important observation to make is that all the students had preference sets

that are nearly identical to the standard set. Also, the instability in any given student's apparent

goal selection strategy can be simply and succinctly represented by conditionalizing or dropping a

v,;iy few p,,ferences. In short, a represehitation for the data had been found that reduces a large

amount of protocol variance to a small amount of preference set variance.10

A second finding is that the differences between the students preferences and the standard

preferences tended to involve only conventional preferences. The preference sets of all the

students except Angela include all the mandatory standard preferences. This means that all the

students except Angela have "correct" preference sets, in that they will produce correct answers

when used with a correct production set. (Angela has a conditionalized version of standard

proferset' 5, a mandatory preference, which causes her to give incorrect ansers on 4 of the 12

problems she solves.)

As the introduction mentioned, there is an informal explanation that leaps to mind when one

considers the nonstandard students' behavior. The explanation Is that these 8 students lack a few

'0Howwvu, some of the models are non-defarminisic, beomise U'air piefareno sets undarconmsin some goal selection
ivents. Thus, to modls do not e*plain al w mlnv e in the do. For dimseion of the Vadeofs involved in U'm type of
dem aaln=, sm VanLem and Bai, 1987.

22

"unimportant" standard constraints because either they overlooked them as they learned the

procedure, or they learned them but later discovered that they were unimportant, so they started

ignoring or modifying them. So far, this informal explanation has been bor out by formal

modelling. A computationally sufficient representation exists such that the behavior of the

nonstandard students is accurately reproduced by deleting or modifying a few "unimportant" parts

of it. The "unimportant" parts turn out to be conventional standard preferences.

4. Explanations based on LIFO architectures
The preceding section presents successful models that violate the LIFO restriction. Before

abandoning such a venerable restriction, we should see how well the data can be modelled if we

maintain the LIFO restriction. There are two basic approaches to modelling these data within the

confines of a LIFO architecture. Both add complexity to the account based on a non-LIFO

interpretation. The first approach adds complexity to the representations used for the student's

procedure. The second approach retains the simple procedural representations used with the

non-LIFO model, and adds complexity to the execution of these procedures.

4.1. Uig swiUt rGpresentations of subtrection pr.'edures
Any collection of observed strategie _an be recrcuentcfl hy & cal(-tion of pficedurelone

per strategy, with a "big switch" that selects among them. For instance, to model Janine's

behavior, one can write LIFO procedures for each of three strategies -- horizontal, vertical and

standard -- then write productions that act as a "big switch" to select among them. Appendix 2

presents hierarchical production systems for each of the 8 nonstandard subjects that suffice to

model their behavior within the confines of a LIFO architecture. The LIFO models for 4 of the 8

subjects (Angela, Hilda, Paul, and Tanya) turn out to be quite simple and not much different from

the production systems given for them in the first appendix. This simplicity is due to the fact that

the nonstandardness in their behavior is due mostly to local permutations in the order of their

borrowing actions (e.g., from the standard SDA- to SA-D), and that kind of variance doesnl require

a big switch to represent it, even in a LIFO architecture. However, the other four students (Janine,

Pete, Robby, and Trina) do require big switch representations.

If parsimony of knowledge representations were our only criteria, we would reject the LIFO

hypotheses. But parsimony is an argument of last resort, to be used only when empirical evidence

23

fails to discriminate the hypotheses. The rest of this section will develop some empirical tests for

differentlatilg the LIFO hypothesis from the non-LIFO hypothesis. Although the tests are not

conclusive, what little evidence there is favors the non-LIFO hypothesis.

4.1.1. Blends of strategies

When an iterative or recursive procedure is in the middle of its execution, its design causes

certain properties to be true of the current state. For instance, when the vertical strategy is

runnirg, all the columns to the right of the current column will be completely finished, while all the

columns to the left will be totally free of scratch marks. Different properties are true for the

standard execution strategy and the horizontal one. When the intermediate state proertles of two

procedures are different, it is difficult to abort one procedure in the middle of a problem and start

the other. It may take rather sophisticated problem solirj to convert the state left by the first

procedure into one that is suitable for execution of the .,ocond procedure. Thus, If the sUeCtS did

indeed have a big switch procedure for ,.,btraction, one would not expect to see them "throw the

switch" in the middle of problems. That would force them to engage In difficult problem solving for

no particular reason.

On the other hand, if subjects have a non-LIFO procedure, then switching from, say, the

standard to the horizontal strategy, amounts to reversing the direction of a single pruference. This

is done in the middle of solving a problem just as easily as it is done in between problems. The

resulting behavior would appear to the observer as a "blend" of the two strategies. Thus, i blends

of strategies occur, it is more plausible that subjects have a non-LIFO representation than a big

switch representation. If blends do not occur, then they could equally well have either

representation.

Of twe four suoJects whose LIFO representations require big switches, Janine displays clear

instances of strategy blends in her solutions to problems 10 and 13. (The LIFO procedure given in

appendix 2 does not successfully model her solutions to 10 and 13.) Pete's solution to problem 10

may also be a blend of strategies, but that problem is difficult "alyze because Pete seems to be

in the middle of acquiring a new strategy at that point. (The LI procedure in appendix 2 does not

model Pete's solution to problem 10.) The other two sube ! (Robby and Trtna) do not switch

strategies In the middle of problems. Thus, there Is a little evidence that Janine has a non-LIFO

representation, but the data are silent in the case of the other three subjects.

24

4.1.2. Bugs

Under both the LIFO and non-LIFO hypotheses, bugs are represented by perturbed

production systems; the preferences, if any, are left alone. Under the non-LIFO hypothesis, the

subjects have just one production system. Their preferences cause them to display different

column processing strategies on different problems. Thus, if the subject has a bug, it must appear

regardless of the column processing strategy used by the subject, since the bug is represented in

the subject's production system, and that does not shift over the course of the testing session. On

the other hand, under the LIFO hypotheses, the "big switch" subjects have different productions for

each of their strategies. They could have acquired the bug in the context of only one of their

strategies. Thus, if subjects display different bugs depending on the strategy they are using, or

display bugs only on some of their strategies and correct performances on others, then we have

evidence for the LIFO representation. If the subjects show the same bugs under all strategies,

then both hypotheses would be consistent with the data.

Unfortunately, the data are silent. Of the four students who switch column processing

conventions, two (Janine and Pete) are totally bug-free. Robby has a bug that shows up when he

is doing the standard column processing convention, but he does his nonstendard convention only

on two problems where the conditions for the bug's occurrence are absent. Trina I1 i bug, and it

shows up Ulder both her standard and nonstandard execution strategies. However, the bug occurs

in a rule that is shared by those two conventions regardless of which hypothesis is used to

represent her procedural knowledge. In short, both the LIFO and non-LIFO hypotheses are

consistent with the bug-versus-strategy data.

4.1.3. Summary of "big switch" arguments

We tried to differentiate the two hypotheses by looking for blends of strategies and for bugs

that oeew 1y In sorw of the subjeets-strategies. The strategic blend data had the ability to

support the non-LIFO hypothesis, and they did, but only weakly. The bug-versus-strategy data had

the ability to refute the non-LIFO hypothesis, but they did not. So these arguments provide a tiny

bit of support for the non-LIFO hypothesis. However, the main significance of the arguments is to

show that the two hypothesis actually are discriminable, even though these data do not do a good

job of it.

25

4.2. Are subtraction goals special?

The preceding section made the assumption that the goals generated in the course of

solving subtraction problems have the same status as the goals that one generates while solving

puzzles, college physics problems, and all the other types of problems used in testing cognitive

architectures. It was shown that this assumption, plus the hypothesis of a LIFO architecture,

implied that some subjects had unparsimonious "big switch" procedures. This section examines

the contrary position. It assumes that subjects have parsimonious representations for their

procedures but the goals generated during the course of solving subtraction problems are atypical

in that they are not subject to the LIFO restriction even though the architecture is indeed a LIFO

architecture. Two different versions of this assumption will be examined.

4.2.1. Is subtraction declarative knowledge?

One way to release subtraction goals from the LIFO constraint is to assume that the

subjects' procedures are declarative knowledge. As such, they do not run directly on the

architecture, but instead are interpreted by a procedure that is running directly on the architecture.

This interpreter procedure need not enforce a LIFO restriction even If the architecture does.

Thenm are several pieces of evidence against the hypothesis that these students are

interpretix their procodures (as opposed to exocuting them directly). First, the subjects in this

experiment were nearing the end of the third grade in a school where subtraction Instruction begins

in second grade. They had between one and a half and two years of intermittent instruction on the

subtraction procedure. Anderson, based on experiments where students learn geometry, estimates

that compiling from declarative to procedural knowledge takes only a short period of time, not years

(Anderson, 1982; Anderson, 1987). Surely, the students in this experiment had compiled their

knowledge before they reached our experiment. Secondly, verbal rehearsal of the procedure is

usuajlyApmmon when a student is iterpreting a declaratively encoded procedure (Anderson,

1983), but such rehearsal was absent in our experiment. Thirdly, all the subjects in our experiment

were relatively rapid, smooth solvers who seemed to pause only when they could not recall a

number fact or when they detected a mistake that needed correction. Speed and lack of apparent

effort at recall are hallmarks of a compiled skill. On these grounds, it appears that the students in

this experiment were executing compiled procedures, rather than interpreting declarative

knowledge.

26

These pieces of evidence bear only on Anderson's theory of the procedural-declarative

distinction. However, regardless of what theory of the procedural-declarative distinction turns out to

be correct, one wig have to assume that the category one assigns to subtraction should also be

assigned to the knowledge for Tower of Hanoi, geometry theorem proving, physics, and other tasks

of the problem solving literature, because the performances of our subjects are not qualitatively

different from the performances of subjects in these classic task domains. 1 Taking this position

seriously would mean that protocol data from the classic experiments as well as this experiment

are simply irrelevant to determining the underlying cognitive architecture. Such data bear only on

the structure of the interpreters, and there might be arbitrarily many of them. Clearly, there are

significant methodological advantages to the traditional assumption that there is just one cognitive

architecture and that the procedures for solving the classic tasks, and subtraction as well, are

executed directly by this architecture.

Although the specific version of the interpretation hypothesis that derives from Anderson's

theory can be rejected empirically, the general version can be rejected only on methodological

grounds, i at all. Nonetheless, this explanation of the data from our experiment seems clearly to

have more problems than the others.

4.2.2. Are nobtractlon goals stovoc -xternIly? . : --

Goals sometimes are forgottern and have to be reconstructed. For instance, Anderson

(1983, pg. 161) claims that he often fails to retrieve goals when solving the Tower of Hanoi, and

must either retrieve them from long term memory or reconstruct them from the current puzzle state

by using Simon's (1975) perceptual strategy. Larkin (in press) and VanLehn and Ball (in press)

have proposed that the problem state Is routinely used as a sort of external storage for goals.

Pylyshyn (In press) comments that it would be just as revealing and more traditional to say that

such goals are stored In long term memop but the external problem state serves as a .vual cue

for retrieving them. Regardless of the mechanisms involved, it is clear to all involved that goals are

not necessarily stored in working memory -- sometimes you can get them from the external world.

"In par cular, suppose we assume (as programmers often do), that a program that is running on an interpreter is ln
imes slower tha It would be if it could run drec y on the architecture that the Interpmet runs on. If this en-to-Oce rallo

hold for the gener ogillve Wsystem, and our subjects ae running an inteprte while the subjects in the classic
emene ae not, then o, subjecs should be ten times slower than the subjets in the classic experimenia. But both
"a of subec% seem io be wow"g about a tat, so tihs aonjuncion of assumptlons is untenable.

27

If one views the LIFO restriction as deriving from some property of the part of working

memory that stores goals, then it follows that goals that are "stored" externally are not subject to

the LIFO constraint. So it seems to follow that parsimonious subtraction procedures can be used

even in a LIFO architecture. But if this line of reasoning is examined closely, it falls apart.

Consider the subtraction procedure shown in table 3. If the goals it creates are stored in a

LIFO memory, then it generates a standard execution strategy when executed. However, suppose

the ColumnDifference goals are forgotten but later reconstructed from the external problem

state just after the goal Subtract has completed. The resulting behavior is exactly the horizontal

strategy. So it seems at first that a non-LIFO architecture can explain the data. But the price is

assuming that all the ColumnDifference goals are "forgotten." This occurs routinely, so It must

be a part of the person's knowledge -- not really a case of working memory failure. Obviously, the

person has decided to delay the processing of ColumnDifference goals until after the problem's

borrowing is done. That is, they have adopted the preference *For X In the set BorrowingGoals,

prefer (X i) over (ColumnDifference j)." In a LIFO architecture, this preference means that

ColumnDifference goals should be dropped from the LIFO goal memory (or ignored) and

reconstructed later. But if the architecture can do this on a routine basis, then in what sense is it

still a LIFO architecture?

Almost all cognitive modelling has been conducted under the useful idealization that the goal

store does not forget goals. The LIFO restriction has always been interpreted as a characterization

of this idealized goal store. We think it is still useful to have an idealized goal store whose

properties are spelled out carefully. The business about reconstructing goals from external and/or

long-term memory is an "implementation" issue, albeit an important one. If one goes this route,

then putting a LIFO restriction on the idealized goal store implies that some students have
uniW inious, bi~switch procedures, which leads to the problems discussed'arlier.

On the other hand, if one chooses to dispense with the idealization and model goal storage

at the level of retrieval/reconstruction from external/long-term memory, then it is patently clear that

the goals are not subject to a LIFO restriction, for no one (we assume) would want to argue that the

external world and/or long-term memory impose some kind of LIFO restriction on recall.

So, the availability of a non-LIFO place to store goals does not really help the LIFO theory of

28

problem solving. To be consistent, either the theory has to recognize this non-LIFO storage facility

as a first-class goal store, in which case there is no sensible LIFO restriction, or the theory has to

stick with an idealized LIFO goal store, in which case it is stuck with big switch procedures. The

aftemative that we favor, of course, is to work with an idealized goal store that is non-LIFO. This

keeps the theory of problem solving from becoming enmeshed in the "implementation" details of

the goal store, and it also avoids burdening the learning component of the theory with having to

acquire complex procedural structures.

5. Conclusions

This article makes two main points. The first is that there is a great deal of variance in the

execution strategies of some subtraction students, both between subjects and within the individual

subject's performance. The second point is that this variance can be simply represented as minor

perturbations of standard procedures, provided that goal selection information is represented

explicitly and the architecture does not enforce a LIFO restriction on goals. To these rather

substantially supported points, we added a rather extended examination of how a LIFO architecture

could model these c.ata. The primary conclusion is that it cnuld, but only at the price of assuming

that soin" of the students had somehow acquired conpx 'big switch" procedures. We also

deviod some ,.."idcal test for whether their procedutea we r h1g rwitc'ieS or nt; r. ir'uiKonotely,

the data were silent.

Early accounts of problem solving did not impose a LIFO restriction. Miller, Galanter and

Pnbram (1960) explicitly differentiate inflexible plans from flexible plans whose goals can be

rearranged to suit the occasion. Although their examples indicate a non-LIFO sort of processing for

flexible plans, they are not explicit on the point. Newell and Simon (1972) are explicit (to put it

mildly!), and they sometimes use LIFO models and sometimes use non-LIFO models. In their

famous chapter 14, wherein they present their theory of human problem solving, no LIFO restriction

is placed the goal store.

LIFO restrictions became common at about the same time that cognitive architectures began

to include automatic learning mechanisms, such as production compounding (Anderson, 1982) and

chunking (Rosenbloom, 1983). In order to yield plausible learning, one wants to compound two

productions only when those productions serve the same goal. For instance, if a subtraction

29

problem was immediately followed by an addition problem, then one would want to avoid forming a

compound from the last production executed during a subtraction problems' solution and the first

production executed for the addition problem, even though those productions may have been

executed consecutively. Since automatic learning mechanisms are part of the architecture, it

makes sense to make the LIFO restriction be a part of the architecture. This makes it simpler to

place the same-goal constraint on automatic learning.

Once the question is posed, it is clear that a non-LIFO architecture does not really make

automatic learning any more complicated. In order to impose the same-goal constraint that seems

critical for plausible automatic learning, the architecture need only maintain explicit information

about the goal-subgoal relationship of the goals that it creates. Because this information is often

needed anyway, relaxing the LIFO restriction adds no new burdens to the architecture.

As far as we can see, there is no good reason for believing the LIFO constraint, and several

weak reasons for disbelieving it. So far, there is nothing in the data to contradict the intuition that i

a person can recall a goal, then they can act on it even If that goal is not the most recently created

pending goal.

30

6. Appendix 1: Protocols and Non-LIFO models
This appendix presents the protocols of each of the eight nonstandard students and our

models of them. The syntax of the models has been explained in the text. The protocols use an

abbreviated notation. Each action is indicated by a letter and a number. The letter stands for the

type of the primitive goal:

A Add1 0
D Detelmnt

- ColumnDifference
S Slash
N witeNine

The number stands for the column that the action was executed in. Thus, A2 means (Add10 2),

the addition of ten to the top digit in the tens column.

In order to capture some of the variability in the protocols, ad hoc predicates on the problem

states are used. The most common one is (Problem x), which is true whenever the current

problem's number is contained in the set that is its argument. Thus, (Problem (3, 7)) is true

during problems 3 and 7.

Angela

Angela always uses a standard, correct procedure. On eight problems, she uses the

standard scheduling strategy. In four problems (5, 9, 10, and 11), she permuts V o ,;er of the

ProcessColurni goals. She seems to delay processing a column if that column seems hard, for

instance, because it requires borrowing from zero. We represent this by making the standard

preference 5 conditional on the perceived difficulty of the problem. The predicate

(ColuwnSeemsHard i) has an ad hoc definition, since we do not have enough data to fully

understand Angela's concept of column difficult.

Protocols

1. S62 2 D2 D2A- -2 -3

2. 742 82D2 A -1 -2-3
-136

-3. s0 S2 D2 A-1 -2
- 23

4. 6305 83 D3 A2 82 D2 Al -1 Caxzy2 -2 -3
- 3 Idesl: -1 -2 -3 -4

31

Angela mistakenly borrows in: Nlumn, which causes the units answer
to be 12, so she carries the t ten's column. When she comes to
taking the column difference in r olumn, she interprets the 9 with a one
over it (from the carry) as 9-1, vrites 8 in the answer. The idealized
protocol omits this extra-borrow Am' Angela omits answering the last
column, which the idealized proto. ,es noi.

5. 106 S3 D3 A2 -2 -1 -3
- 70

6. 716 S2 D2 Al -1 -2 -3

- 598 ideal: S2 D2 Al -1 S3 D3 A2 -2 -3

Angela mistakenly omits the borrow for the tens column, doing 0-9=9 instead.
The idealized protocol rectifies this missing-borrow slip. Her answer in column
one is off by one: 16-8=7.

7. 1564 S2 D2 Al -1 33 D3 A2 -2 S4 D4 k3 -3 -4
- 887

8. 6591 82 D2 A1 -1 -2 S4 D4 A3 -3 -4
- 2697 ideal: S2 D2 Al -1 83 D3 A2 -2 84 D4 A3 -3 -4

Angela mistakenly omits the borrow in the tens column, doing 8-9-1 Instead.

9. 311 83 D3 A2 -2 Carzy3 -3 <cross out answer 3> 82 D2 Al -1
- 214 Ideal: -2 -3 S2 D2 Al -1

Angela processes the tens column first, as she does In several other problems.
For some reason, she borrows. Perhaps she sees that the units column will
cause a decrement in the tens. If so, she forgets her discovery by the time she
gets to the -2, and takes I from 11, gets ten, and carries Into the hundreds.
After processing the hundreds, she apparently decides this cary was wrong,
and thus the answer to the hundreds should be zero instead, so she crossos
out her answer in the hundreds column. The idealized protocol retains the
column, processing order, but omits her extra borrow and the trouble that it
causes.

10. 102 83 D3 A2 -2 32 D2 A1 -1 -3
- 39

11. 9007 -1 84 D4 A3 -3 S3 D3 A2 -2 -4
- 6880

12. 702 83 D3 A2 92 D2 A -1 -2 -3
- 108

Azritbuotic slip in the units column: 12-8=5.

Production System

It the goal i (Subtract)
than for each column , set the goal (ProcessColum i).

If the goal is (ProcessColum i), and (Top i)<(ottm i),
then set the goals (Borrolrom i+l), (AddlO i), (ColuimD=fference 1).

If the goal is (ProcessColum L),
then set the goal (ColmnDifference L).

32

If the goal is (BorrowVre i), and (Top 1)-O,
then set the goals (Sorrovrcom L+1), (AddlO i), (Borrowrrom i).

if the goal is (2orrovlrCm i),
then set the gols (Slash i), (DecreMent i).

Goal selection strategy

1. Prefer (X 1) over (ProcesColumn i), for X in the set BorrowingGoals.

2. Prefer (X i) over (ColumnDifference i), for X in BorrovingGoals.

3. Prefer (A,1.0 i) over (X i), for X in (BorrowFrom, Slash, Decrement).

4. Prefer (Slash i) over (Decrement i).

5. If (ColumnnSeemsard i)
then prefer (ProcessColumn i+j) over (ProcessColumn J)
else prefer (ProcesColnn i) over (FrocessColumn i+j).

6. Prefer (X i) over (ProcesaColc j), for X in the set socrovingGoals.

7. Prefer (X i) over (Columt Dfference J), for X in BorrovingGoals.

8. Prefer (ColuDifference i) over (ProcensColim j).

9. Prefer (X .+J) over (Y i) for X, Y in the set BorrowingGoals.

Hilda
Hilda has a standard Wupc, cII 80;".v-cross-Zeo, that skips over zeros during

borrowing. Hilda's scheduling strategy is standard, except that she exhibits three different

permutations of the borrowing actions. Since we do not understand what determines her choice

among them, we represent her scheduling strategy by weakening standard preference number 9 in

such a way that the choice among the three permutations is undetermined.

Protocols
1. 647 -1 -2 -3

- 45

2. 885 -1 -2 -3
- 205

3. 63 82 Al D2 -1 -2
- 44

33

4. 8305 -1 -2 -3 -4
- 3

S. so S2 D2 Al -1 -2
- 23

6. 562 82 Al D2 -1 -2 -3
-3

7. 742 S2 A1 -1 D2 -2 -3
- 136

8. 106 -1 S3 D3 k2 -2 -3
- 70

9. 9007 -1 S4 A2 -2 D4

- 6080 ideal: -1 S4 A2 -2 D4 S4 A3 -3 D4 -4

Hilda reaches an impasse when she attempts the slash-decrement for the
borrow in the hundreds column because the 9 has already been decremented.
Her repair is to quit. The idealized protocol pretends that she had no Impasse.

10. 4015 S2 D2 Al -1 -2 84 A3 D4 -3 -4
- 607

11. 702 82S ,SA. D3 -1 -2 -3

- 108 Idpaa: 83 Al D3 -1 -2 -3

Hila preforms the slash to the top o the tens column before she notices that it
is zero, and thus should be skipped over. The idealized protocol omits the S2.
Also, Hilda makes a facts error in the units column, 12-8=5.

12. 20rj6 -1 <redo -1> 83 S4 A? D4 -2
- 42 Idal: -1 S4 A2 D4 -2 -3 -4

Hilda makes several slips, which the idealized protocol rectifies. She redoes
her units column difference. She makes a slash in the hundreds column
before noticing that its top digit is zero. She quits before answering the
hundreds and thousands column.

Production System

If the goal is (Subtract)
then for each colum L, set the goal (ProcessColumn i).

If the goal is (ProcesColum 1), and (Top i)<(Bottom i),
then set the goals _4forroWlrcm :P, (AddlO i), (ColumnDifferenee. i),
where is the first colum to the left of L with a non-zero top digit.

If the goal is (ProcessColum L),
then set the goal (Col-.ifferemce L).

If the goal is (UorroVlom i),
then set the goals (Slash i), (Decrment L).

34

Goal selection strategy

1. Prefer (X i) over (PrOCeSsColM i), for X in the set BorrovingGoals.

2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (AddL0 i) over (X i), for X in (Borrowvrom, Slash, Decrement).

4. Prefer (Slash i) over (Decrement i).

5. Prefer (ProcessColumn i) over (ProcessColumn i+J).

6. Prefer (X i) over (ProcessColun J), for X in the set BorroWingGoals.

7. Prefer (X i) over (ColuMnDifference J), for X in the set (Borrowrom,
Slash, AddL0).

S. Prefer (ColumDifference i) over (ProcessColumn J).

9a. grefer (Slash i) over (AddlO J).
9b. Prefer (Borrowfrom i) over (dd10 J)

Janine

Janine uses a standard, correct production system. It has a borrow from zero routine that

substitutes a WriteNine operation (abbreviated as "N" in the protocols) for the more common

combination of adding ten and decrementing. This change necessitates a slight change to

standard preference number 4. The major differenc. irnm tho standard scheduling strategy occur

because Janine uses three different conventions for processing columns. On four problems (1, 2,

4, and 8), she uses the standard scheduling strategy. On four problems (5, 6, 11 and 12), she uses

a horizontal convention. On three problems (3, 7 and 9), she uses a vertical convention. On two

problems (10 and 13), she uses a mixture of all three strategies. We currently do not understand

the problem characteristics, if any, that cause her to choose one scheduling strategy over another,

so a simple way to model Janine's behavior would be to delete standard preferences 6, 7 and 8,

which establish the conventional ordering for ProcessColumn and Column difference with respect

to the borrowing goals and each other. However, we believe that Janine actually has knowledge of

the standard, horizontal and vertical conventions, so we prefer a more complicated model that uses

(Problem x) to tum off preferences 6, 7 and 8 on some problems. Two new preferences (10

and 11) are added, and they are also conditional on the problem being processed. The conditions

are written so as to put no constraints on the column processing order in problems 10 and 13,

because we see no patem to her behavior on those problems.

atawl

35

Protocols

1. 83 k 32 D2 -1 -2
- 44

2. 50 Al S2 D2 -1 -2
- 23

3. 742 Al -1 S2 D2 -2 -3
- 136

4. 106 -1 A2 $3 D3 -2

- 70 Ideal: -1 A2 83 D3 -2 -3

Janine suppresses the answer's leading zero; the idealized protocol does not.

5. 716 A1 2 D2 A2 S3 D3 -1 -2 -3
- 598

6. 1564 A1 S2 D2 A2 3 D3 A3 S4 D4 -1 -2 -3

- 887 Ideal: A1 S2 D2 A2 3 D3 A384 04 -1 -2 -3 -4

Janine suppresses the answers leading zero.

7. 102 Al -1 <redo -1> 82 N2 -2 83 D3
- 39 Ideal: A1 -1 82 92 -2 83 D3 -3

Janine redoes the units column's answer to correct the facts error 12-9-4, and
she suppresses the answer's leading zero. The idealized protocol does neither
of these.

8. 9007 -1 A2 83 N3 S4 D4 -2 -3 -4
- 6880

9. 702 A -1 N2 -2 83 D3 -3 <rewrite result of D3>
- 108 Ideal: A1 -1 82 N2 -2 S3 D3 -3

Janine omits the slash in the tens column; she rewrites the 6 over tne 7 after
she has finished the problem.

10. 2006 -1 A2 -2 N3 83 84 D4 -3 -4
- 42 Ideal: -1 A2 -2 83 N3 S4 D4 -3 -4

Janine Inexplicably reverses the order of the Slash and the WriteNine In the
hundreds column. The idealized protocol has them in their usual order.

11. 10012 Al 82 D2 A2 83 N3 84 34 S5 DS -1 -2 -3 -4
J deal: Al S2 D2 A2 S3 N3 34 4 35 D5 -1 -2-- 3 -4 -5

Janine suppresses the answer's leading zero.

12. 1001 A 2 N 83 M3 84 D4 -4 -3 -2 -1
- 43

13. 401 l S28 2 -1 -2 $3 D3 -3
- 206

36

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+1), (AddlO i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (Borrowrom i+1), (Slash i), (WriteNine i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.

2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (Addl0 i) over (X i), for X in (BorrowFrom, Slash, Decrement).

4a. Prefer (Slash i) over (Decrement i).
4b. Prefer (Slash i) over (WriteNine i).

5. Prefer (ProcessColumn i) over (ProcesColumn i+j).

6. If (MroQ.m u (1, 2, i, 5, 6, 8, 11, 12)) then
.-.:2er (i) ove. (ProcessColumn J), Zr X An thc &et Bor3:o'.LngGoals.

7. If (Problem (1, 2, 4, 5, 6, 8, 11, 12)) then
prefer (X i) over (ColumnDifference J), for X in BorrowingGoals.

8. If (Problem (5, 6, 11, 12))
then prefer (ProcessColumn i) over (ColumnDifference J)
else prefer (ColumnDifference J) over (ProcessColumn i).

9. Prefer (X i) over (Y i+1) for X, Y in the set BorrowingGoals.

10. If (Problem (12))
then Lefer (ClumnDiffirence i+j) over (ColumnDifference i)
else prefer (ColumnDifference i) over (ColumnDifference i+3).

11. If (Problem (3, 7, 9))
then prefer (X i) over (Y i+l), for any X, Y.

Paul

Paul has a standard, correct subtraction procedure, and uses the standard column

processing order. He exhibits two different nonstandard permutations of the borrowing actions

37

when he does a borrows from non-zero digits. He u- the standard permutation when he does

borrowing from zero. In order to represent this, we use in ad hoc predicate, (BFZinProgress),

which is true whenever a borrowing from zero is being performed.

Protocols

1. 647 -1 -2 <redo -1> <redo -2> -3
- 45 Ideal: -1 -2 -3

Paul rewrites his first two answers, apparently because they were illegible.
The idealized protocol omits these rewrites.

2. 8305 -1 -2 -3 -4
- 3

3. 885 -1 -2 -3
- 205

4. 83 S2 Al -1 D2 -2
- 44

S. 50 82 Al -1 02 -2
- 23

6. 562 S2 Al -1 02 -2 -3
- 3

7. 6591. 82 A -1 D2 83 A2 D3 -2 S4 A3 -3 D4 -4
- 2697

8. 311 2 Al -1 02 S3 a2 -2 03 -3
- 214

9. 1813 S2 Al -1 02 83 A2 -2 D3 -3 -4
- 215

10. 4015 S2 kl -1 D2 -2 84 a3 04 -3 -4
- 607

11. 10012 82 Al -1 02 85 05).4 a *,D A3 S3 03]2 -2 -3 -4
- 214 Ideal: S2 Al -1 D2 S5 DS L S4 D4 3 S3 D3 A2 -2 -3 -4 -5

Paul suppresses the answer's leading zero; the idealized protocol does not.
12. 8001 84 04 A3 83 03 A2 82 02 Al -1 -2 -3 -4

Production System

If the goal is (Subtract)
then for each colum 1., set the goal (ProcesColumn i).

If the goal is (ProcnsColuin i), and (Top i)<(Bottom 1),
then set the goals (Borrowrrom 1+1), (Add10 i), (ColumnDifference i).

If the goal is (procesColum J),

38

then set the goal (ColumnDifference i).

If the goal is (Borrowirom i), and (Top i)-0,
then set the goals (BorrowFrom i+l), (Addl0 i), (BorrowFrom 1).

If the goal is (BorrowFrom i),

then set the goals (Slash i), (Decremnt i).

Goal selection strategy

I. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.

2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (AddlO i) over (X i), for X in {BorrowFrom, Slash, Decrement).

4. Prefer (Slash i) over (Decrement i).

5. Prefer (ProceasColumn i) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn J), for X in the set BorrowingGoals.

7. If (BlZinProgress)
then prefer (X i) over (ColumnDifference J) for X in BorrowingGoals
else prefer (X i) over (ColumnDifference J)

for X in the set {BorrowFrom, AddlO, Slash).

8. Prefer (ColuM-Difference i) over (ProcessColumn J).

9. If (BWinProgrr~mp)
then prnfer (- i-1i) ovCr (Y i) .- , Yin the set RorrovyivgGoal .
else

prefer (BorrowFrcwd i+l) over (Addl0 i), and
prefer (Sl&sh i+1) over (AddlO i), and
prefer (AddlO i) over (Decrinnt i+l).

Pete

Pete has a standard, correct production system. Pete seems to learn a new scheduling

strategy somewhere in the vicinity of problem 10. On problems 1 though 9, he exhibits the same

pattern of borrow permutations that Paul does; see the section on Paul for discussion. On problem

10, Pete exhibits a transitional strategy that is like the pattern for borrowing from zero, but it is

applied to a problem that has no borrowing from zero. We do not model Pete's solution to this

problem. On problems 11 through 13, Pete exhibits a horizontal scheduling strategy. Also, Pete

exhibits two permutations of his borrowing actions during problems 11 through 13. For borrows

into the leftmost column, he uses the order Slash-Decrement-AddSO. For other columns, he uses

Slash-AddlO-Decrement. To represent this, we use the ad hoc predicate (Penultimate i),

39

which is true it i is the next to last column in the problem.

Protocols

1. 647 -1 -2 -3 <redo -2>
- 45 Ideal: -1 -2 -3

Pete rewrites his answer to the tens column. The idealized protocol omits this.

2. 885 -1 -2 -3
- 205

3. 83 32 A. D2 -1 -2
- 44

2. 8305 -1 -2 -3 -4
- 3

5. so S2 Al -1 D2 -2

- 23

Facts error in column 1: 10-3=6.

6. 562 2 A1 D2 -1 -2 -3
- 3

7. 742 -1 -2 -3
- 136

Pete fails to notice that a borrow is necessary in the units column. Since we
do not know what his scratch marks would. be in this case, the idealized
protocol pretends the problem is 742-131, which requires no borrowing:

8. 106 S3 A2 D2 32 Al
- 70

Pete makes se -lips on this problem, and ultimately gives up, copies the
problem (which 3rs as 9 below) and tries again. His slips are borrowing
for the units co, leaving out the decrement in the hundreds column, and
switching the SL.. and the decrement in the tens column. This problem's
solution is excluded from the idealized protocol.

9. 106 S3 £2 D2 Al -1 -2
- 70 ideal: 3 D3 A2 82 D2 k1 -1 -2 -3

Pete again makes several slips on this problem: borrowing for the units
column, leaving out the decrement in the hundreds column, and leaving out
the slash Irrihe tens column. Also, he suppresses the answer's leading zero.

-This problem IS the best evidence in the protocol that "Pete knows about
borrowing from zero, so it is necessary to leave it in. Thus, the idealized
protocol pretends the problem is 106-79, which requires a borrow in the units
column. The idealized protocol rectifies Pete's other slips and does not
suppress the leading zero.

10. 3 83 D3 A2 S2 D2 l -1 -2 -3
-2

11. 6591 32 Al D2 83 k2 D3 S4 D4 JL3 -1 -2 -3 -4

- 2697

Facts error In the units column: 11-7-5.

40

12. 1564 S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3

- 887 Ideal: S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3 -4

Pete suppresses the answer's leading zero: the idealized protocol does not
Facts error in the hundreds column: 14-8-7.

13. 716 S2 Al S3 D3 D2 A2 -1 -2 -3
- 598 Ideal: 52 D2 Al S3 D3 A2 -1 -2 -3

Pete seems to forget to do the decrement in the tens column, but he catches
his mistake just before adding ten in the tens column, The idealized protocol
does not make this slip.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+1), (Addl0 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)-0,
then set the goals (Borrowfrom i+l), (AddlO L), (BorrowFrom i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement 1.

Goal .!- ,i1ctoio strategy

1. Pr -fer (X i) ov,.r (Proc aC-&.iman s.), .or 2: in thn ret Borrovin(a.4.f.

2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (AddlO i) over (X i), for X in {BorrowFrom, Slash, Decrement).

4. Prefer (Slash i) over (Decrement i).

5. Prefer (ProcessColumn i) over (ProcessColumn i+J).

6. Prefer (X i) over (ProcessColumn J), for X in the set BorrowingGoals.

7a. If (BMZinProgress)
thmi Vwefer (IFI) over (ColumnDifference J) for X in BorrowingGoals
else prefer (X i) over (ColumnDifference J)

for X in the set (BorrowFrom, AddlO, Slash).

7b. If (Problem (5))
then prefer (ColumnDifference i) over (Decrement J)
else prefer (Decrement J) over (ColumnDifference i).

8. If (Problem (11, 12, 13))
then prefer (ProcessColuin i) over (Columndifference J),
else prefer (ColumnDifference J) over (ProcessColumn i).

9. If (BlZinProgress) or

wr

41

((Problem (11, 12, 13)) and (Penultimate 1))
then prefer (X i+j) over (Y i) for X, Y in the et BorrowingGoals
else

prefer (Borrowrrom i+l) over (Addl0 i), and
prefer (Slash i+1) over (Add10 i), and
prefer (Add10 i) over (Decrement i+1).

10. Prefer (ColumnDi.fference i) over (Colum-Difference i+j).

Robby

Robby seems to have a common bug, called Stops-Borrow-At-Zero. (There is a second

analysis, which attributes to him a procedure that does not know how to borrow across zero. When

given a borrow-from-zero problem, he reaches an impasse when he tries to decrement a zero. On

two problems (10 and 11), he repairs by skipping the BorrowFrom goal. On another problem (13),

he repairs by relocating the BorrowFrom leftwards. However, the evidence for a relocation repair in

problem 13 is weak, because Robby only does the slash and not the decrement of the supposedly

relocated BorrowFrom.) Robby's scheduling strategy is usually the standard one, but on two

problems (6 and 7), he delays doing "hard" column differences until the end of the problem, where

"hard" appears to mean that the top digit in the column is ten or more. Also, Robby exhibits several

p,.:;1nutations of the borrowing operations, which we model by deleting standard preferences 7 and

9, and adding a new preference, .10. The new preference causes slash-decrement pairs to be

executed continguously, with no intervening actions. Robby is by far the sloppiest student in the

experiment. He makes many facts errors, and he frequently omits parts of the borrowing

subprocedure.

Protocols

1. 885 -1 -2 -3
- 205

2. 8305 -1 -2 -3 -4
- 3

3. 03 82 D2 kl -1 -2
-44

4. 967 -1 -2 -3

- 607

Facts slip in hundreds column: 9-6-4.

5. 106 -1 A2 s3 D3 -2 <oedo -2> -3
- 70 Ideal: -1 A2 83 D3 -2 -3

Robby correctly answers the tens column, then "corrects" it to 10-7=4.

42

6. 6591 Al 32 D2 -2 A3 S4 D4 -4 -3 -1

- 2697

Robby mistakenly omits the borrow in the tens column. Since it is not clear
what he would have done if he had notice the borrow there, the idealized
protocol keeps his action sequence and pretends that the problem is
6591-2677, which requires no borrow in the tens column.

7. 108 -1 A2 S3 D3 -3 -2 <redo -2>
- 60 Ideal: -1 A2 S3 D3 -3 -2

Robby makes a facts error in the tens column, detects it, and redoes the
column difference. The idealized protocol gets it right the first time.

8. 1236 Al S2 -1 A2 S3 -2 A3 -3 -4
- 497 Ideal: A1 2 D2 -1 A2 S3 D3 -2 A3 S4 D4 -3 -4

Robby makes several slips, which are rectified in the idealized protocol. He
omits D2, D3 and the whole of (BorrowFrom 4). Also, he makes a facts error
in column 2 (12-9=4) and in column 3 (11-4=4).

9. 1813 Al -1 -2 S3 D3 -3 -4
- 215 Ideal: Al -1 S2 D2 A2 -2 S3 D3 -3 -4

Facts error in the units column: 13-5=7. Robby does not write the
(BorrowFrom 2) and A2, but he acts as if he did, and give 10-1-9 as the
answer in column 2.

10. 102 Al -1 A2 S3 D3 -2 -3
- 39

Facts error in the units column: 12-9-4.

11. 9007 -1 IL2 -2 163 -3 S4 D4 -4
- 6880

Facts error in the thousands column's decrcrnent: 9-1.7.

12. 4015 Al -1 D2 -2 A3 S4 D4 -3 -4
- 607 Ideal: Al -1 82 D2 -2 A3 S4 D4 -3 -4

Robby omits the S2.

13. 104 S3 Al -1 A2 -2 -3
- 27 Ideal: Al -1 A2 -2 -3

The initial Slash may be due to a repair to the decrement-zero impasse, or it
may be a slip of some kind. The idealized protocol omits it.

Production System

if the goal is (Subtract)
then for each colum i, set the goal (ProcessColum i).

If the goal is (ProceseColumn i), and (Top i)<(Bottom i),
then sot the goals (Borrofrrom 1+l), (AddlO i), (ColumnDifference i).

If the goal is (ProceusColum i),
then set the goal (Columflifference i).

If the goal Is (3orrowFrom i), and (Top 1),,0,
then do nothing.

43

If the goal is (Borrowlrom L),
then set the goals (Slash i), (D crement i).

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BOrrowingGoals.

2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (AddlO i) over (X i), for X in {Borrowrrom, Slash, Decrement).

4. Prefer (Slash i) over (Decresmnt i).

5. Prefer (ProcessColumn L) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn J), for X in the set BorrowingGoals.

7.

8. If (Top i)>9 and (Problem (6, 7))
then prefer (ProcessColun J) over (Colum-Difference i)
else prefer (ColmnDifference i) over (ProcesColumn j).

9.

10. Prefer (Decrement i) over (X j),
for X in (AddA., Colm Difference, Borrowfrom).

Tanya

Tanya has a moderately common bug, called Diff-0-N-O-Except-After-Borrow, which merely

writes zero in the answer instead of borrowing whenever a column has zero as its top digit, and the

zero is from the original top row rather than being created by an earlier borrow that decremented a

one. This bug is represented by adding an extra condition -- that the original value of the top digit

in the column be non-zero -- to the production that initiates borrowing, and assuming that

ColumnDifference always takes the absolute difference of the digits in the column. Also, Tanya

has the same version of borrowing from zero as Janine -- see the comments in Janine's section for

discussion. Tanya's scheduling strategy is almost perfectly stable. She always uses the horizontal

convention, which completes all borrowing before doing any column-answering. This is

represented by reversing standard preference number 8. Tanya systematically employs two

permutations of the borrowing goals. If the borrow originates in the units column, Tanya does the

Add10 first; if the borrow originates in the tens column, she does the BorrowFrom first. Only

problem 11 Is an exception, and the exception may be due to a slip. Tanya's policy on borrowing

permutations is represented by putting a condition around standard preference number 9.

w

Protocols

1. 647 -1 -2 -3
- 45

2. 885 -1 -2 -3
- 205

3. 83 Al S2 02 -1 -2
- 44

4. 8305 -1 -2 -3 -4
- 3

5. 5o -1 -2
- 23

S. 106 -1 -2 -3 <reo -3>
- 70 -1 -2 -3

Tanya first writes 1 in the units column answer, then "corrects" it to 0. Ideal
protocol leaves it as 1.

7. 716 A1 2 D2 S3 D3 A2 -1 -2 <redo -2> -3
- 598 Idea:A1 S2 D2 33 D3 A2 -1 -2 -3

Tanya rewrites her answer to column 2; the idealized protocol does not.

8. 311 A1 2 D2 S3 D3 A2 -1 -2 -3
- 214

Facts error in colurn,, 1: 11-4.-6.

9. 102 11 N2 83 D! "1 -2 -3
- 3P

Facts error in column 1: 12-9=9.

10. 9007 -1 -2 -3 -4
- 6880

11. 4015 Al 82 D2 A2 N3 -1 -2 -3 -4
- 607 Ideal: Al 82 D2 -1 -2 -3 -4

Tanya slips, starts a borrow in the tens column, but stops before completing it.
The idealized protocol omits the borrow.

12. 702 Al N2 33 D3 -1 -2 -3

13. 205 -1 -2 -3

- 30

Slip in column 3: writes I in answer.

14. 100 -1 -2 -3
- 60

Slip in column 3: writes 0 in the answer.

a

45

Production System

If the goal is (Subtract)
then for each oolum i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),

and (OriginalTop i) is not equal to zero,

then set the goals (Borrowrrom i+l), (AddlO i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (Colu=nDifference i.

If the goal is (BorrowFrom i), and (Top i)-0,
then set the goals (Borrowrom i+1), (WriteNine i).

If the goal is (BorroWrrom i),
then set the goals (Slash i), (Decrement i).

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set borrowingGoals.

2. Prefer (X i) over (ColumDifference i), for X in BorrowingGoals.

3. Prefer (AddlO i) over (X i), for X in (Borrowrrom, Slash, Decrement).

4a. Prefer (Slash i) over (Decrement i).

4b. Prefer (Slash i) over (Write9 i).

5. Pre tr (Procc.s&Column i) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn J), for X in the set BorrowingGoals.

7. Prefer (X i) over (ColuDifference J), for X in BorrowingGoals.

B. Prefer (ProcessColumn i) over (Coll-Difference J).

9. If i-1 or (3rsinProgress)
then prefer (X i) over (T i+l) for X, Y in the set BorrowingGoals,
else prefer (Y i+l) over (X i) for X, Y in the set BorrowingGoals.

10. Prefer (ColumnDifference i) over (ColuonDifference i+j).

Trina

Trina has a common bug, called Don'-Decrement-Zero, which makes her borrow from zero

routine incorrect. The correct procedure Is to add ten to the zero and then later to decrement;

Trina's bug omit the decrementing. Trina's strategy for processing columns i generally standard,

except on problems 9, 10 and 12. On those problems, as soon as the actions of the last possible

borrow are completed, she answers the remaining columns in left to right order. This aspect of her

46

strategy is represented by wrapping a conditional around standard preference number 5. In

problem 10, she delays the column difference in the tens column, so standard preference 8 also

has a condition wrapped around it. Trina also shifts unsystematically between three permutations

of the borrowing actions, which is represented by deleting standard preferences numbers 7 and 9,

and adding a new preference, 10. The effect of the new preference is to cause slash-decrements

to be executed continguously, with no intervening actions.

Protocols
1. 50 S2 D2 Al -1 -2

-23

2. 562 Al -1 S2 D2 -2 -3
- 3

3. 742 Al -1 S2 D2 -2 -3
- 136

4. 106 -1 <redo -1> Al -2 S3 D3

- 70 Ideal: -1 Al -2 83 D3 -3

Trina rewrites her answer in column 1, and she suppresses the answer's
leading zero. The idealized protocol does neither.

5. 716 Al -1 S2 D2 83 D3 A2 -2 -3
- 598

6. 102 Al -1 A2 S3 i3 -2

- 39 Ideal: Al -1 A2 S D3 -2 -3

Trina supresses the leading zero. The ideal protocol does not.

7. 9007 -1 k2 A3 84 D4 -2 -3 -4
- 6880

8. 4015 Al -1 S2 D2 -2 A3 -3 84 D4 -4
- 607

9. 702 S2 D2 A1 -1 A2 33 D3 -3 -2
- 108 Ideal: Al -1 A2 83 D3 -3 -2

Trina Inexplicably begins by slashing the top zero in the tens column and
"decrementing" it to zero. The idealized protocol omits these actions. Both
Trr1i and the idear protocol do 10-0-0 in the tens column. That is, they both
omit carrying.

10. 2006 -1 k2 A3 84 D4 -4 -3 -2
- 42

Both Trina and the ideal protocol omit carrying from the hundreds column.

11. 10012 A1 -1 82 D2 A3 A4 85 D5 A2 -2 -3 -4 -5
- 214

12. 8001 Al -1 82 £33 4 D4 -4 -2 <Write 10 above colum 2>
- 43 Ideal: Al -1 £2 £3 84 D4 -4 -3 -2

47

Trina makes two Slips, which the ideaitzed protocol rectifies. First, she tails to
answer the hundreds column. Second, she does an S2 instead of an A2.
Apparently, she catches this error later, because her answer to the second
column is 6, indicating that she interpreted the slash mark as an Addi 0
Nonetheless, she changes her slash to a "10" after she has already completed
the problem.

Production System

if the goal is (Subtract)
then for each column i, set the goal (ProcessColm L).

if the goal is (ProcessColumn i), and (Top i)<(3ottoa i),
then set the goals (SorrowFrom i+1), (AddlO J), (ColumnDifference i).

if the goal La (ProcossCo.umn i),
then met the goal (ColumnDifference i).

If the goal is (SorrowFrom i), and (Top 1)-0,
then set the goals (Borrow~rom £44), (Add3O J).

if the goal is (BorrowFrom i),
then set the goals (Slash i), (Dermnt 1.).

Goal slection strategy

1. Prefer (X i) over (ProcessCol'min), for X in the set DorrowingGoals.

2. Prefer (X 1) over (ColumiADiffaranco i), for X in BorrowingGoals.

3. Prefer (AddlO i) over (X A), for X in (Borrowrrom, Slash, Decrement).

4. Pre~fer (Slash A.) over (Decremennt A.).

5. if (Problm (9, 10, 12))
and there is a slash-decrment in the leftmost colum,

then prefer (ProcessColumnt i+j) over (ProcessColumn A.)
else prefer (ProcesaColum A.) over (ProcessColumn i+j).

6. Prefer (X A.) over (ProcessColum J), for X in the set BorrowinqGoals.

7.

8. If (Not (Problein (10)))
then prefer (Colm-Diffftenclil L) over (ProcessColumn j).

- MW

9.

10. Prefer (Dcrsint L) over (X j),
for X in (MddlO, Coliinifference, Dorrowrrom).

48

7. Appendix 2: LIFO models
This section presents LIFO models for the 8 non-standard students. The models are

expressed as hierarchical production systems. The notational conventions used in the non-LIFO

models are used here, with one modification. If a production creates several goals, the default

interpretation is that the goals are to be completed in the order of their occurrence in the rule.

Thus, the productin if C then set the goals A, B means to complete goal A before

starting to work on B. This default interpretation can be overridden by preferences attached to the

production. The production if C then set the goals A, B. If (Problem (12, 13)

then prefer B over A means to finish goal A before starting on B for all problems except

woblems 12 and 13; on those problems, goal B is to be finished before wcic begins on goal

A. Similarly, the default interpretation of an action side of the form "boreach column i, set the

goal...." is to select the goals in right-to-left order by their arguments; but preferences can modify

this order. The preferences attached to a production can only mention goals that appear in the

action side of the production. Thus, this notation is strictly less powerful than the non-LIFO

notation.

If the goal iv~ (Subtract)
then for each column. i, act t he goal (Prf.,nsCo.=jrn);
If (Co1tnmu~seem&Kard i)-
then)4wfor (ProcessColumn i+j) over (ProcessColumn i) -

If the goal in (ProcessColum i), and (Top i)(ottom i)
then set the goals (Borrovfrom i+1), (AddlO L), (ColumnDifference i).

If the goal in (ProcessColum i),
then set the goal (ColunnDifference i) -

if the goal in (Borrowram L) and (Top 1)-O,
then set the goals (Docrowrom 1+1), (AddlO0 i), (BorrowVrom i) -

If the goal is (lorrowrrom i),
then set Me goals;-Sla1sh L), (D~crement i) -

Hilda

If the goal in (Subtract)
then for each colum i, set the goal (ProcesColumi i);

If the goal is (ProcessColumn i), and (Top i)((Bottom i)
then net the goals (Slash j), (Add%,O L), (Decrement j), (Column ifference i),
where j is the first colum to the loft of ± that has a non-zero top digit.
If (Problem 15, 0)) then prefer (Decrement J) over (AddlO L),
else if (Problem (7, 9)) then prefer (Col-Difference i) over (Decrment j).

49

if the goal ise (ProcessColumn i.),
then set the goal (ColumnDifference 1).

Janine

If the goal is (Subtract) and (Problem (1,2,4,81),
then for each column i., 3et the goal (ProcessColumn 1).

If the goal ise (ProcesoColumn i.), and (Top i)<(Bottom i),
then not the goals (AdO i.), (Borrovrrom i.+1), (ColumnDifference i.).

If the goal ise (ProcessColumn i.),
then not the goal (ColumwDifference i.).

If the goal ise (Sorrovrrow i.), and (Top i.)mO,
then sot the goals (Slash i.), (WritaNin i.), (Borrovrrom, i.+1).

if the goal is (Borrowrrom i),
then set the goals (Slash i), (Decrement i.).

if the goal ise (Subtract) and (Problem (5,6,11,12)),
then set the goals (Doll~orrows), (Dokllknswers).

if the goal is (DoAlliorrows),
than for each column i., set the goal (Borrow i.).

If the goal is (Borrow L) and (Top i) <(Bottoma i.),
then set tl~r coals (AddlO i.), (Borrowrrom i.+l).

If thc. goail Le (Borrow i),
than do

If the goal in. (IDo~llAnuwers),
then for each column i, set the goal (ColumnDifference i.).
If (Problem 112))
then prefer (ColuDifference i.+j) over (ColumnDifference i.).

If the goal is. (Subtract) and (Problem (3,7,9)),
then for each colum L, sot the goal (Vertical i.).

If the goal i.n (Vertical i) and (Top i.)0 and (Incoming~orrow i.), 12

then set the goals (Slash i.), (WriteNine i.), (ColumnDifference i.).

If th&,5oal is-(Vertical i) and (Top i)>(Bottam i) and (I4comingaorrow i.),
then set the goals (Borrowrrom i.),(ColumnDifference i.).

If the goal is (Vertical i) and (IncomingBorrow L),
then set the goals (Dorowrrom i), (AddlO i), (ColumnDifference i).

If the goal ise (Vertical i) and (Top i)<(Bottom L),
then set the goals (AddlO i), (Col-Difference L).

12 fl* peAmeN (Incaminqflorrow i) is &we if toem is a oOIUff i-1 w4l sittw fth acti AddlO or t actionl
V~ftNine hNs beew psnoeme on it

50

if the goal is (Vertical i),
then set the goal (ColumnDifference i).

Paul

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i) and (Top i)<(Sottom i) a-. (Top i+I)=0,
then set the goals (BorrowFrom i+1), (AddlO i), (ColumnDifference i).

If the goal is (ProcessColumn i) and (Top i)<(Bottom i),
then set the goals (Slash i+l), (AddlO i), (Columr.Difference i), (Decr mnt i+1).
If either (Problem (7)) and i-2 or (Problem (10)) and i-3,
then prefer (Decrement i+l) over (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (Borrowlrom i), and (Top i)O,
then set the goals (BorrowFrom i+1), (Addlo i), (BorrowFrOm i).

If the goal is (Borrovrrom i),
then set the goals (Slash i), (Decrement i).

Pete

If th, goal ic (Subtract) and (Prob]em (1,2,3, ,5,6,7,9),
then for each coluwm i, set the goal (ProcessColumn i).

If thA goal is (Pvo/cssColun i) and (Top i)<(-ottom i) . (Top iij)wU,
then set the goals (BorrowFrom i+l), (AddlO i), i(ColumnDifference i).

If the goal is (ProcessColumn i) and (Top i)<(Bottom i),
then set the goals (Slash i+l), (AddlO i), (Col-nDifference i), (Decrement i+1).
If (Problem (3, 6)) then prefer (Decrement i+l) over (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColimnDifference i).

If the goal is (Borrow~rom i), and (Top i)-0,
then met the goals (Borrowvrom i+l), (AddlO i), (Borrowrrom i).

if the-goEli is (5Erowr-om i),
then set the goals (Slash i), (Decrment i).

If the goal is (Subtract) and (Problem (11, 12, 13)),
then (DoAlllorrows), (DoAllColu s)

If the goal is (DoAllaorrows),
then for each colun i, set the goal (borrow i).

If the goal is (Borrow i) and (Top i)<(Iottom i),
then set the goals (Slash i+1), (AddlO i), (Decrement i+1).
If (PenultiNate i), then prefer (Docement i+l) over (AddlO i).

51

If the goal is (Borrow i),
then do nothing.

If the goal is (DoAllAnswers),
then for each column i, set the goal (ColumnDifference i).

Robby

If the goal is (Subtract) and (Problem (1,2,3,4,5,8,9,10,11,12,13)),
then for each col%mLn i, net the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (AddlO i), (Borrowrom i+l), (ColumnDifference i).
If either (Problem (9, 11)) or both i-2 and (Problem (12)),
then prefer (ColumnDifference i) over (Borrowrrom i+l),
else if (Problem (3)),
then prefer (BorrowFrom i+1) over (AddlO i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)-0,
then do nothing.

If the goal is (Borrowrrom i),
then set the goals (Slash i), (Decrsmn, i).

If the goal is (Subtract) and (Problem (6,7)),
thon (DoColumns), (FinishUp).

If the goal is (DoColumns),
then for each column i, sot the goal (DoProcessColumn i).

If the goal is (DoProcessColumn i) and (Top i)<(Bottom i),
then set the goals (Add0 i), (BorrowFrom i+l).

If the goal is (DoProcessColumn i),
then set the goal (ColumnDifterence i).

If the goal is (FinishUp),
then !or each column i, set the goal (Check&Answer i),
where L goes rightward from the leftmost column.

If the goal is (Check&Answer i) and the answer place of i is blank,
then set the goal (ColumnDifference i).

If the goal is (Check&Answer i),
then do nothing.

Tanya

If the goal is (Subtract)
then set the goals (DoAllocrows), (DoAllAnswers).

If the goal is (DoAllaorrows),

52

then for each colum i, set the goal (Borrow i).

If the goal is (Borrow i), and (Top i)<(Bottom i),
and (originalTop 1) is not equ~al to zero,
then set the goals (Borrowrrom i+l), (Adl i).
if i-1, then prefer (AddlO i) over (BorrowFrom i+1).

If the goal is (Borrow i),
then do nothing.

if the goal is (Borrow~rom i), and (Top i)=0,
then set the goals (WriteNine i), (Borrowirrom J+1).

if the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrmnt i).

if the goal is (DoAllhnswers)
then for each column L, net the goal (ColumnDifference i).

Trina

if the goal is (Subtract) and (Problem (1,2,3,4,5,6,7,8,11)
then for each colum L, set the goal (ProcessColum L).

if the goal is (ProcasColm i), and (Top i)<(Bottom i),
then set the goals (AddlO i), (ColmnJfference i), (Borrourrom i+l).
if either (Problem (11) or both L-2 and (Problem (5,11)),
then prefer (Bcrrotromw i+1) over (Add1O i),
else if (Probly& (7)),
titan prpfer (BorrotiFrom i+l) over (ColumnDifference i).

it: the goal i&. (ProcessCol ian i),
then set the goal (Columnifference i).

If the goal is (Borrow~rom i), and (Top 1)-0,
then set the goals (Addl0 i), (Borrowrrom i+1)

If the goal is (Borrowrrom, i),
then set the goals (Slash i), (Decrmnt i).

If the goal is to (Subtract) and (Problem (9,10,12)),
then set the goal (Recuxsivegub i).

If the goal is (RecursivelUb i) and the leftmost column has a slash in it,
then M~ CAch col& i, net the goal (ColumnDifference i), vhet*
i goes from the leftmost colum to the rightmost unanswered column.

If the goal is (Recursivegub i) and (Problem (10)) and i-2,
then (AddlO L), (Borrowrrom i+1), (RecursiveSub i+1).

If the goal is (RecursiveSub i),
then set the goals (ProcessColumn i), (RecursiveSub L+1).

53

References

Anderson, J.R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard.

Anderson, J.R. (1987). Skill acquisition: Compilation of weak-method problem soutions.

Psychological Review, 94(2), 192-210.

Anderson, J.R. & Thompson, R. (1986). Use of analogy in a production system architecture. Paper

presented at the Illinois Workshop on Similarity and Analogy, Champaign-Urbanna, June,

1986.

Anderson, J. R., Farrell, R., & Saurers, R. (1984). Learning to program in LISP. Cognitive

Science, 8, 87-129.

Anzai, Y. (1978). Learning strategies by computer. In Proceedings of Second Conference.

Canadian Society for Computational Studies on Intelligence,

Anzai, Y. & Simon, H.A. (1979). The theory of learning by doing. Psychological Review, 86,

124-140.

Brown, J. S. & Burton, R. B. (1978). Uiagnostic models for procedural bugs in basic mathematical

skills. Cognitive Science, 2, 155-192.

Brown, J. S. & VanLehn, K. (1980). Repair Theory: A generative theory of bugs in procedural

skills. Cognitive Science, 4, 379-426.

Burton, R. B. (1982). Diagnosing bugs in a simple procedural skill. In D. H. Sleeman &

J. S. Brown (Eds.), Intelligent Tutoring Systems. New York: Academic. 157-183.

Carbonell, J.G., Minton, S. & Knoblock, C. (in press, 19??). The Prodigy model: An integrated

architecture for planning and learning. In K. VanLehn (Ed.), Architectures for Intelligence.

Hillsdale, NJ: Ertbaum.

Emeh .W.& NewelLA. (1969): GPS.LA Case Study in Generality and Problem Solving. New

York, NY: Academic Press.

Kowalski, B. & VanLehn, K. (1988). Inducing subject models from protocol data (Tech. Rep.

PCG-15). Dept. of Psychology, Carnegie-Mellon University.

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An architecture for general

intelligence. Artificial Intelligence, 33, 1-64.

Laird, J. E., Rosenbloom, P. S., and Newell, A. (1986), Chunking in Soar: The anatomy of a

general learning mechanism. Machine Learning, 1(1), 11-46.

a

* 54

Larkin, J. (1989). Display-based problem solving. In Klahr, D. & Kotovsky, K. (Ed.), Complex

Information Processing: The Impact of Herbert A. Simon. Hillsdale, NJ: Eribaum.

Miller, G.A., Galanter, E. & Pribram, K.H. (1960). Plans and the Structure of Behavior. New York:

Holt, Rinehart & Winston.

Minton, S., Carbonell, J.G., Etzioni, 0., Knoblock, C. & Kuokka, D.R. (1987). Acquiring effective

search control rules: Explanation-based learning in the Prodigy sytem. In P. Langley (Ed.),
*

Proceedings of the Fourth International Workshop on Machine Learning. Los Altos, CA:

Morgan Kaufmann.

Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1-15.

Pylyshyn, Z. (in press, 19??). Architectures and strong equivalence: Commentary. In K. VanLehn

(Ed.), Architectures for Intelligence. Hillsdale, NJ: Erlbaum.

Resnick, L. (1982). Syntax and semantics in learning to subtract. In T. Carpeter, J. Moser &

T. Romberg (Ed.), A cognitive perspective. Hillsdale, NJ: Eribaum.

Resnick, L. B. & Omanson. S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.),

Advances in Instructional Psychology. Hillsdale, NJ: Erbaum.

Rosn-nbloom, P.S. (19S'). The rehunking of goal hierarchies: A model of practice and stimulus-

response compatibility. Doctoral dissertation, Carnegie-Mellon Univcrsity, Available as CMU

Cnrnpvtnr S ience Technical Report #83-148.

Siegler, R.S. (in press, 19??). Strategy choices in subtraction. In J.Sloboda & D.Rogers (Ed.),

Cognitive Processes in Mathematics. Oxford, UK: Oxford University Press.

Simon, H.A. (1975). The functional equivalence of problem solving skills. Cognitive Psychology, 7,

268-288. Reprinted in H.A. Simon, Models of Thought, Yale University Press, 1979.

VanLehn, K. (1982). Bugs are not enough: Empirical studies of bugs, impasses and repairs in

procedural skills. The Journal of Mathematical Behavior, 3(2), 3-71.

VanLehmi'K"(1983). HUman skill acquisfilon: Theory, model and psychological-validation. In

* Proceedings of AAAI-83. Los Altos, CA: Morgan Kaufmann,

VanLehn, K. (1983). The representation of procedures in repair theory. In H. P. Ginsberg (Ed.),

The Development of Mathematical Thinking. Hillsdale, NJ: Eribaum.

VanLehn, K. (1986). Arithmetic procedures are induced from examples. In J. Hiebert (Ed.),

Conceptual and Procedural Knowledge: The Case of Mathematics. Hillsdale, NJ: Eribaum.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31(1), 1-40.

VanLehn, K. (in press, 19??). Mind Bugs: The origins of procedural misconceptions. Cam ,

MA: MIT Press.

VanLehn, K. & Ball, W. (1987). Flexible execution of cognitive procedures (Technical

PCG-5). Carnegie-Mellon University, Dept. of Psychology.

VanLehn, K. & Ball, W. (in press, 19??). Teton: A large-grained architecture for studying le,.

In VanLehn, K. (Ed.), Architectures for Intelligence. Hillsdale, NJ: Erlbaum.

VanLehn, K. & Garlick, S. (1987). Cirrus: an automated protocol analysis tool. In Langley,

P. (Ed.), Proceedings of the Fourth Machine Learning Workshop. Los Altos, CA: Morgan-

Kaufmann.

Young, R. M. & O'Shea, T. (1981). Errors in children's subtraction. Cognitive Science, 5, 153-177.

I l I I

iii

List of Figures
Figure 1: Initial, Intermediate and final states of a nonstandard solution 5
Figure 2: A correct solution, shown as a sequence of problem states 10
Figure 3: Hilda's solution, shown as consecutive states 11
Figure 4: Janlne's solution, shown as a sequence of states 12

*

a

9I

AW/

V

List of Tables
Table 1: Borrowing permutations frequencies 11
Table 2: Frequencies of column processing conventions 13
Table 3: A correct subtraction procedure 16
Table 4: Preferences for a correct subtraction procedure 18
Table 5: Discrepancies between Idealized and actual protocols 20

t

w - -

tb

