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Abstract

Many cu' nt theories of human probiem solving and skill acquisition assume that people
work only on the unsatistied goal that was created most recently. That s, the architecture obeys a
last-in-first-out (LIFO) constraint on the selection of goals. We argue that this restriction seems to
be violated by some subjects on some tasks. In particular, we show that non-verbal protocols ot 8
subjects in a sample of 26 can be precisely simulated by dropping the LIFO restriction and
assuming instead that subjects’ knowledge includes explicit goal selection preferences. Although
there is a great deal of between- and within-subject strategy variation in the data, it is nearty
completely accounted for by a few specific preferences that seem to be overgeneralized,
conditionalized or missing from the subjects’ knowledge. On the other hand, LIFO-based models
can not account for the strategy variations in any simple way. Thus, it seems that part of the
flexibility in human problem solving comes from having a choice in which goal to work on next. We
conciude by reviewing the theoretical problems that led to the adoption of the LIFQ restriction, and
showing how these can be simply solved inside a non-LIFO architecture without introducing any

new architectural mechanisms. kz¢ ' -~ e, -
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Abstract

Many current theories of human problem solving and skill acquisition assume that people
work only on the unsatistied goal that was created most recently. That is, the architecture obeys a
last-in-first-out (LIFO) constraint on the selection of goals. This restriction seems necessary for the
proper functioning of automatic learning mechanisms, such as production compilation and
chunking. We argue that this restriction is violated by some subjects on some tasks, and in
particular, that 8 subjects from a sample of 26 execute subtraction procedures in a way that
violates the LIFQ constraint. Although there is a great deal of between- and within-sutyect strategy
variation in the 8 subjects’ behavior, it can be simply explained by hypothesizing that (1) the goal
selection is not necessanily LiFO, (2) goal selection knowledge is represented by explicit
preferences, an. (3) the 8 subjects have preterences that are mostly correct with just a few
preferences that are overgeneralized, overspecialized or missing. On the other hand, LIFO-based
models seem unable to explain the strategy variations in any simple way. Thus, it seems that part
of the flexibility in human problem solving comes from having a choice of which goal 1o work on
next. Fortunately, it is simple to ammend automatic learning mechanisms so that they will function
correctly in a non-LIFQ arciiitecture.
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1. Introduction

it seems clear to us that people feel free to select any pending goal they can recall as their
next focus of attention. The model of problem solving presented in this paper has this property, but
most moﬁels - including GPS (Ernst & Newell, 1969), HPS (Anzai, 1978; Anzai & Simon, 1979),
ACT* (Anderson, 1983; Anderson, Farreil, & Saurers, 1984; Anderson & Thompson, 1986:
Anderson, 1987), Soar {Laird, Newell, & Rosenbloom, 1987), and Sierra (VanLehn, 1977?) -- allow
students to select only the most recently created pending goal. That is, they impose a LIFO (last
in, first out) restriction on goal selection.! For instance, suppose that processing goal A creates
subgoals B and C, then subgoal B is selected and its processing creates sub-subgoal D. At this
point, there are at least two pending goals, D and C, in working memory. A LIFO architecture has
no choice; it must select goal D because D was created after C. A non-LIFQ architecture can select
either goal. On the face of it, the LIFO restriction seems a little strange. !f working memory is
equated with information that can be easily recalled, then the LIFO restriction asserts that people

find it impossible to work on certain goals that they can easily recall.

There are no compelling computational reasons for placing a LIFO restriction on problem
solving. Indeed, many contemporary Al problem solving systains have non-LIFO architectures.
Typicclly, whenever the currently executing goal (otign called a task) g nerates subgozls, they are
placed in a set of pending tasks. When the currently executing task completes, the architecture
selects the next task from the set of pending tasks.2 Although the task selected may be one of the
ones just created, it does not have to be, and this makes the architecture non-LIFO. Despite the
widespread use of non-LIFO problem solving architectures in Al, no one has seriously considered
whether human problem solving might be non-LIFO. Most problem solving systems that have been
claimed as models of human problem solving have been LIFO, but that may have been more a
matter of conygnience than theoretical conviction.

There are many difficulties in determining whether people obey a LIFO restriction. Here are

four:

"It several goais are created at the same time, then some models allow selection among them. But in no case is the
model aliowed to choose a goal that was created before some other pending goal.

Zarchitectures vary in selection schemes they use. Some use simple numerical priorities attached 1o tasks. Some use
heuristic rules. Others can use the fully power of the probiem solving system by “going meta“ and taking on goal selection
as a problem in itself.




1. It is usually the case that we do not know exactly what the subjects’ procedures are.
I their behavior is consistent with a LIFO execution of one procedure and a non-LIFO
execution of a different procedure, but we do not know which procedure they have,
then how can we tell whether the LIFO constraint is being obeyed?

2. In many task domains, the LIFO restriction is imposed by the task itsel{. For instance,
if one is using a goal recursive strategy for solving the Tower of Hanoi puzzle, then
the rules of the puzzle force one to attend to the Move-disk goals in LIFO order
(Simon, 1975). Only task domains that give the subject the freedom to use a non-
LIFO order are useful for testing the LIFO hypothesis.

3. When a person follows a written procedure (e.g., while cooking). the goals of that
procedure probably are not subject to the LIFO restriction. Suppose the procedure is
memorized then followed from (declarative) memory. Presumably the goals are still
not subject to the LIFO constraint. Suppose the declarative representation of the
procedure is compiled into a procedural representation. Now the LIFO constraint
should apply. But how do we tell whether a given subject's procedure is represented
declaratively or procedurally?

4. Although the LIFO restriction applies to goals retrieved from working memory, that is
not how some goals are recalled. Instead, they are reconstructed from the extemally
visible problem state (VanLehn & Ball, 1977). It is not clear whether the LIFO
restriction applies to reconstructed goals.

In short, the issue of LIFO vs. non-LIFO architectures is quite complicated. This article certainly
does not settle the issue, but merely introduces some some new data from a simple task domain

that avoids most of the complexities mentioned above.

The task domain i;s ordinary, multicolumn subtraction. This task domain has been
extensively investigated, and detailsd models exist for the knowledge representatibns and learning
processes that students seem to employ (VanLehr 19??; VanLehn, 1983a; Young & O'Shea,
1981; Brown & VanlLehn, 1980). Thus, difficulty 1 is avoided. The subtraction procedure is such
that non-LIFO executions are possible, so difficulty 2 is avoided. Our subjects have practiced
subtraction for many hours. As we shall argue later, this means that their subtraction procedures
are encoded as procedural knowledge and therefore should be subject to the LIFO restriction.
Thus, difficulty 3 is avoided. Although the task domain does allow goals to be stored externally and
recogstrcted, we will argue that mechanisms for storing goals are "implemeqtation” details that
should be considered separately from architectural principles, such as the LIFO constraint. Thus, )
difficulty 4 is shown to have no force. In short, the task domain of subtraction is an ideal vehicle tor

testing our claim that people’s use of goals in not subject to the LIFO constraint.

There is another advantage of subtraction that is a bit less obvious, but quite important
nonetheless. If subjects reliably told us about their goals as they selected them, then we could use
goal structure mentioned earlier,

_—
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Goal A
Subgoal B
Sub-subgoal D
Subgoal C
in order to see if they always obeyed the LIFO restriction. If they selected goals in the order A, B,

are
C and D, then they have violated the restriction. But verbal protocol data ie notoriously incomplete,

and it is seldom that subjects mention all the goals that have played a role in their problem solving.
Fortunately, in subtraction, the primitive (lowest) goals in the heirarchy correspond to reliably visible
actions, such as writing a digit. This gives the experimenter partial evidence about the sequence of
goals selections. Unfortunately, this is not always good enough. For instance, suppose goals C
and D correspond to reliably visible actions and the experimenter sees the subject execute C then
D. This behavior is consistent with both a non-LIFO execution of the goal structure (A, B, C, D) as
well as a LIFO execution (A, C, B, D). Thus, this particular goal structure is 100 simple to aliow an
experimenter to test whether or not the subject uses LIFO or non-LIFO goal selections. Testing

requires a more complicated goal structure, such as:

Goal A

Subgoal B
Sub-subgoal Bl
Sub=r “hvyer 1 B2

Subgoal.

Sub-subgoal Cl

fud-rubgoal C2 _ . :
where goals B1, B2, C1 and C2 correspond to réliably visible actions. Now if the subject executes
the actions for goals B1, C1, B2 and C2, in that order, the experimenter is fully justified in
concluding that the subject has used non-LIFO goal selections, as there are only two orders for
goal selection that will generate this sequence (one is A, B, B1, C, C1, B2, C2, and the other is A,
C, B, B1, C1, B2, C2), and neither obey the LIFO restriction on goal selection.3 Fortunately,
subtraction procedures generate goal structures of the necessary kind, which is yet another reason

for using sutjgaction as the task donmain.

We will not bother to argue for the generality of our findings since it is both too hard and too

easy. lf one ignores the four difficulties listed earlier, then cases of non-LIFO execution are easily

found: When you fix dinner, you have no problem interweaving subgoais from the Cook-dinner goal

3Computer scientisis may recognize this pattem of execution as a kind of co-routining or pseudo-paraliel processing that
can only be accomplished if the programming language has a spagett stack. An ordinary stack will not support suspending
the execution of procedure 8 in order %o initiate execution of C, the. later resuming the execution of procedure B.




with subgoals from the Clean-up-breakfast-dishes goal, even though the LIFO restriction says that
you must complete all the subgoals of Clean-up-breakfast-dishes before starting to work on Cook-
dinner (or vice versa). But such easy counterexamples to the LIFO constraint are subject to all the
difficulties mentioned above. For instance, we do not really know the goal structure of the
knowledge involved in cooking and cleaning up the kitchen, nor whether it is represented
procedurally or declaratively. Thus, afthough it is easy to make plausible claims about generality, it

is difficuit to support them properly, so this article restricts its claims to subtraction.

The argument to be presented is a classic case of finding a model that captures the variance
in a set of data. In this case, the data are protocols of 26 subjects solving subtraction problems. It
will be shown that 8 of these subjects alternate between a standard execution sequence, wherein
all the subgoals of processing a column are completed before moving on to work on the next
column, and a variety of nonstandard execution sequences. For instance, some subjects do all the
borrowing that a problem requires before answering any column, then they answer the columns,
starting with the leftmost one and proceeding towards the units column (see figure 1). The
variance in the data is exactly the strategy shifts of the subjects. For instance, one subject did 4
problems with the standard exacution strategy, 4 with the nonstandard stfategy just mentioned, and
2 with a second nonstandard strategy. Two further problems were solved with blends of the three

strategies.

A. B. C.

o
©
]
NE“
3
o".l__o
© ®

~N

Figure 1: Initial, intermediate and final states of a nonstandard solution

- —

After presenting the data, we present a problem solving model that is based on the
assumptions that (1) goals are not subject to a LIFO restriction and (2) people have explicit goal
selection preferences as part of their knowledge of the subtraction procedure. A typical goal
selection preference is “If there is a pending goal of type Process-column and a pending goal of
type Borrow, then prefer the goal of type Borrow.”

Next, it is shown that almost all the variance in the data can be captured by introducing small




perturbations into the set of goal selection preferences that defines the standard execution
strategy. Most perturbations consist of simply deleting a goal selection preference, wrapping a
condition around it, reversing its direction, generalizing it or specializing it. In shon, our explanation
for the variance in the data is that most of the 26 subjects learned a complete, standard procedure,
but 8 either failed to completely encode a few of the standard goal preferences or they did encode
them but later decided to revise them slightly. Either way, the 8 subjects end up with a procedure

that is almost identical to the standard procedure, with only a few preferences modified.

Although this explanation for the variance is simple and intuitively compelling, it does depend
on having a non-LIFO problem solving architecture. Because the LIFO constraint has been a
fixture in successful problem solving models for aimost a decade, we should be cautious about
abandoning such a traditional and useful assumption. So the next step in the argument is to
consider what it would take to capture the variance in these data using a LIFO architecture. We
tried several ways to model the data with LIFO architectures. Although all of the alternatives

worked, they all required some rather implausible extra assumptions.

Lastly, we examine why one would ever want a L_IFO architecture in the first place. The chief
advantage of the LIFO restriction seems to be that it. constrains automatic !egrning mechanisms,
such as knowledige compilation (Anderson, 1987) ahd chunking (Laird, Rcéen?‘nloam. & Newel!,
1986). We present a simple technique for constraining automatic learning without putting a LIFO
restriction on goal selection. This leads us to conclude that there is no reason for retaining the

LIFO constraint, and several reasons for dropping it.

2. The experiment and its results

The experiment involved collecting protocols from students learning multi-column
subtraction. Qne advantage of this task domain is that subtraction is a fairly pyre example o
procedural knowledge. Students, much to the regret of their teachers, do not seem to acquire a
deep understanding of the algorithm (Resnick, 1982; Resnick & Omanson, 1987; VanLehn, 1986).
As tar as most of them are concerned, the procedure is just so much symbol manipulation. This

means that a representation can be simple and yet still suffice for representing their operative




knowledge.* Moreover, a fair amount is aiready known about subtraction procedures and how they
are acquired (Brown & VanLehn, 1980; VanlLehn, 1983b; VanLehn, 1983a; VanLehn, 187?).
Before discussing the experiment itself, some additional background on this task domain is -

presented.

2.1. Background

Prior to the experiment described here, three phenomena were already known to occur in the
behavior of subtraction students. Because these phenomena also occur in the present data, the
following paragraphs briefly describe them and the best current explanations of them, as well as

introducing several technical terms (in italics) that are needed later.

1. Both students and adults are known to make slips, which are unintentional mistakes
such as omitting a borrow or misremembering a number fact (e.g., thinking 13-7=5).
Norman (1981) has proposed a preliminary model of slips.

2. Subtraction is taught in the second, third and fourth grades in the United States.
About 40% of the students in those grades seem to have buggy subtraction
procedures (Brown & Burton, 1978; VanLehn, 1982). A buggy procedure is a correct
procedure that has one or more small changes to its structure (bugs) that cause it to
generate incorrect answers on some problems. For instance, one common bug is
called Diff-0-N=0 because students with this bug answer columns with a zero on top
by simply putting zero in the answer instead of borrowing. One can model this by
simply adding & rule to a set of rules representing a correct procedure (Young &
O'Shea, 1981). Other bugs can be modelled by deleting rules or substituting rules.. -

3. In the grades where subtraction is taught, about 18% of the students exhibit bug
migrations, wherein they exhibit one bug on some problems and ditferent bugs on
other problems (VanLehn, 1982). For instance, a common bug migration is to do
Diff-0-N=0 on some problems and Diff-0-N=N on others.

Brown and VanlLehn (1980) proposed that most bugs and bug migrations are caused by repairs to
impasses. An impasse occurs when the student's procedure requires them to do something that
they believe cannot or shouid not be done. A repairis problem solving conducted with the goal of
getting past the impasse. Typical repairs are to skip the action that can/should not be done or to
substitute a similar action. In the case of a bug migration between Diff-0-N=0 and Diff-0-N=N, the
imPaEs¢Decurs whh the studen: sfarts to borrow and notices the top digit in'ttre column is a zero.
Perhaps he or she has heard “"you can't borrow from zero,” and thinks the rule applies to this
situation. In any case, ‘or some reason the student reaches an impasse on borrow columns with

zeros on top. The two bugs are generated by two different repairs, both of which substitute actions

“Some students know much about the deep structure of the algorithm, but they do not seem to use it when they solve
problems. Moreover, they do not seem to care if their solution violates the subtraction principles that they can state (Resnick
& Omanson, 1987). Our procedural representations are meant to cover only the parts of their knowledge that affect problem
solving.




for the borrow. The bug Diff-0-N=N comes from substituting the normal take-difference action for
the borrow. The bug Dif-0-N=0 comes from substituting for the borrow the action that is normally
use . on columns whose bottom digit is missing (e.g., the tens column of 34-8). These two bugs
illustrate how bug migrations, and for that matter, bugs themselves, are generated by repairs to

impasses.

VanLehn (in press, 1987) developed a computer program, called Sierra, that simulates the
acquistion of bugs. Sierra combines example-driven learning with impasses and repairs. In one
particularly rigidly controlled demonstration, it was shown that 33% of the 75 observed subtraction
bugs, including almost ail of the most common bugs, could be acquired by Sierra (VanLehn, in
press). Hand simulation indicates that the theory could be extended to capture 85% of the bugs
(Vanlahn, 1986).

The data for testing Sierra came from testing thousands students from around the world (849
from Califomia, 288 from Massachusetts, 1325 from Nicaragua, and several smailer studies in
Pennsylvania, New York, Utah and the Philippines). In all cases, the students took diagnostic tests

of about 20 prohlems in length,> with each preslem nresented in vertical format, e.g.,

5067
- .92 . | , -

Test data were not scored or aggregated prior to analysis. instead, each student’'s answers were
analyzed as digit strings. A student was counted as being successfully modelled if the students
answers to each problem were matched by the model's answers, digit for digit (with some

allowances made for slips).

Although this method of testing and analysis is more detailed than earlier ones (see Brown
and Burton, 1 978, fora 99mplete discussion), it omits one crucial piece of information. One cannot
detenniﬁ; tr;: chronological sequence m -v;hich the writing actions were made. O;e would need
protocol data, such as one could collect by video taping, in order to obtain the exact sequence of
writing actions. The experiment described here was designed to collect such data and thereby (we

hoped) provide additional support for Sierra. As will be seen, this purpose was not achieved, but,

Problems were chosen to maximize the power of the test o differentiate buggy procedures. See Burton (1983) for a
description of Debuggy. the program used to generate test items and analyze the students’ solutions.




serendipitously, a hew phenomenon was discovered instead.

2.2. Subjects and methods

By hypothesis, impasses occur because a student's knowledge of a procedure is not quite
complete. Since it is difficult to induce such a state of knowledge in the laboratory with any
reliability, a screening technique was used in order to find subjects who might naturally exhibit
impasses. This strongly biased subject selection means that the resulting group of subjects is not
a random sample of the population. Thus, frequency of occurrence of the phenomena described

later could be inflated when compared to the frequency of occurrence in the general population.

Screening was done in the context of the California study mentioned earlier. The tests used,
the methods of administration, and the results are reported elsewhere (VanLehn, 1982). Since we
anticipated bringing protocol-taking equipment out to the schools, we selected only three
classrooms for participation in this experiment. The students in these classrooms had been tested
twice, approximately two months apart with the diagnostic tests mentioned earlier. On the basis of
these screening tests, 33 third graders were selected. In order to have stringent data to test our
theory, we selected students who had uncommon bugs or whose behavior was not systematic
enough to be modelied by hugs. The belict was that these students would be more likely to exhibit

impasses.

These 33 subjects were tested individually in a small room adjacent to their classroom. Each
student solved an individualized paper-and-pencil test whose items were designed to elicit the
errors we saw on that student's pre-tests. Each test consisted of about 13 subtraction probiems,
presented in vertical format. In order to collect the exact chronology of the students’ writing
actions, the test page was taped to an electronic tablet, and students filled out the test with a
special pan. Equipment maﬁunt?tions caused the data from 7 students to be lest. Tablet data from
each of the remaining 26 students were coded as a sequence of writing actions. For instance, a
correct solution to the problem shown in figure 2, frame A, would be coded as the five-action
sequence (Slash(2), “acrement (2), Add-ten(l), Take-difference(l),
Take-difference (2) ] where 1" means the units column, 2" means the tens column, etc. The
states after each action are shown in frames B through F, of the figure. Although we also audio

taped the students’ comments, they said so littie that their verbal protocols were not transcribed or
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analyzed. Consequently, the raw data from this experiment consist of 26 nonverbal protocols, one

for each subject.
A B c. D E F
2 2 2 2
34 Z4 Z 4 y o1 1 34 4
- 18 - 18 - 18 - 18 -1 8 - 18
3

Figure 2: A correct solution, shown as a sequence of problem states

2.3. Resuits

Without verbal reports, evidence for impasses would have to come from the actions and the
pauses between them. We had hoped to develop a criterion for the existence of impasses by
measuring the pauses between actions, and assuming that the longer pauses were caused by
impasse-repair episodes. However, fragmentary verbal data and the notes of the experimenter
indicated that long pauses seemed to be caused mostly by counting in order to determine a
number fact, such as the difference between 15 and 7. Agamet this hugh background variation in
pause length, it would be difficutt fo set a rehable cmenon for the durat:on of |mpasse repair
episodes relativ:: to the duration of non-repair eri'un., Cf‘n.,equently, we were unable to achieve
one purpose for the experiment, which was to collect protocol data on what happens at impasses,

because we had no reliable way to directly detect impasses.

Another reason for the experiment was simply to check if the models that we developed for
data in the form of numerical answers would also fit protocol data. The earlier research had

produced a large set of correct and buggy procedures, which will henceforth be called the standard

procedures Sunce tms set had been developed with a very large sample of studems and this
expenment had a rather small sample, we expected that for each student in this expenment there
should be some standard procedure that would accurately simulate the student's protocol. Of the
26 students, 15 met our expectation, 8 did not, and 3 students could not be analyzed because they
made no scratch marks (i.e., the marks made in the top row of the problem that indicate the actions
of borrowing). The rest of this paper focuses on the behavior of the 8 students whose protocols
could not be modelled by a standard procedure. They will be called the nonstandard students for
ease of reference. Appendix 1 presents their protocols and our analysis of them. The following
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comments summarize those analyses.

For expositional purposes, it is convenient to consider two types of behavior. The first type of
behavior involves nonstandard ways of doing borrowing. For instance, on the problem shown in A
of tigure 3, Hilda first puts a scratch mark through the 8, then adds ten to the 3. then decrements
the 8, and finally answers the units column, as shown in B through E of the figure. Let us
abbreviate her actions, so that “S* stands for slash, "A" for adding ten, "D" for decrement, and -
for column difference. Then Hilda exhibits the permutation SAD-. The most commonly taught
borrow order is SDA-, although ASD- is also taught, so we had expected students to exhibit either
one or the other of these two standard orders, but not both. However, Hilda’s SAD-order violates
this expectation. She was not alone in this respect. Of the 8 nonstandard students, 7 exhibit
nonstandard borrowing permutations. (The 15 standard students used either the SDA-order on the
whole test, or the ASD-order on the whole test. They did not alternate among the two orders
during the test, nor did they use nonstandard orders.) Table 1 gives a rough indication of the
borrowing permutations exhibited by the nonstandard students by counting the number of times
each permutation occurred, excluding unclear cases (e.g., borrowing across 2eros). Possibie

permutations that never occurred are excluded from the table.

A B C. D E r
7 7 7
8 3 g3 73 n3 ns3 73
- 4 4 - 4 4 - 4 4 - 4 4 - 4 - 4 4

Figure 3: Hilda's solution, shown as consecutive states

Table 1: Bormowing permutations frequencies
- ~Student SDA- SAD- SA-D ASD- A-SP«
Angela 19
Hilda 3 6 2
Janine 10
Paul 2 1
Pete 2 2
Robby 1 3
Tanya 2 4
Trina 2 7
Total 27 10 19 13 7
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The second type of behavior involves nonstandard orders for processing columns. Aithough
two students, Hilda and Paul, processed columns in the standard, left-to-right order, the other
nonstandard students used a variety of unusual orders. For instance, Janine used a “horizontal”
ordering on four problems. She first did all the scratch marks required for borrowing in the whole
problem, moving right to left across the top row of the problem. Then she filled in all the column’s
answers. Usually she did this second pass in right to left order, but on one problem, she filied in
the thousand's place first then moved rightward, filling in the other answer places as she went. We
call her way of solving the problem "horizontal” because it first does the top row then does the
answer row. On three problems, Janine used a "vertical" ordering. She did all the marks in one
column before moving on to the next. Thus, on the problem shown in A figure 4, she added ten to
the 2, and answered the units column (see state B in the figure). Then she moved to the tens
column, where she wrote "9" above the upper zero and in the answer (state C). Then she moved
to the hundreds column, where she decremented the 7 by one, and put "5" in the answer (state D).
We call this ordering “vertical” because all actions that are aligned vertically are done together. On
two other problems, Janine used a strategy that seems to be a mixture of the horizontal and

vertical strategies.
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Figure 4: Janine's solution, shown as a sequence of states

Table 2 gives a rough indication of the usage of various ordering conventions tor column
processing. ;I'_he cells ir_l:lhe table idicate the number of problems answered wi;h‘the indicated
convention.® The column in the table labeled "Unique” lumps together various strategies that are
unique to a single student. For instance, Robby has a particular strategy that he uses on 2
problems; Angela has a different one that she uses on 4 problems; both counts are shown in the

"unique” ralumn. See appendix 1 for descriptions of the actual ordering conventions used.

“When a problem has no borrows, the column processing convention is sometimes ambiguous, so these figures have
some guesswork built into them.
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Table 2: Frequencies of column processing conventions
Horizontal | Horizontal
Student Standard L.toR. R.toL. Vertical Unique

Angela 8 4
Hilda 12

Janine 4 1 3 3 2
Paul 12

Pete 9 3 1
Robby 11 2
Tanya 14

Trina 9 3

These two dimensions of variations -- borrowing permutations and column processing orders
-- represent the unexpected aspects in the students’ behavior. The other aspects ot their behavior
have been abserved before. All of the 8 nonstandard students exhibited slips. Four of the 8
students (Hilda, Robby, Tanya and Trina) had bugs. One of the 8 students (Robby) exhibited bug
migration.

There are some rather obvious observations t0 make about these data. First, ali eight
nonstandard students seem to be executing a standard procedure, but they often permute the

order in which the standard procedure’'s actions are executed On any gwen problem, the -

horizontal ordering convention,-for instance, generates exactly the same set of actions as the
standard procedure with standard execution. However, the sequence of actions generated by the
horizontal convention is a permutation of the sequence generated by the standard execution of the
standard procedure.

A second observation is that all the students (except Tanya) exhibited more than one
execution strategy. Janine, for instance, used three: a standard execution strategy, the horizontal
execution strategy and the vertical execution strategy. Paul used two: standard and horizontal.
Sometimes-these executidn strategies were used in sequential runs. Paul, for instance, used the
standard execution strategy for the first nine problems, then a unique execution strategy, then the
horizontal execution strategy for the last three problems. In other cases, there are correlations
between features of the problem and the student’s choice of execution strategy. For instance,
Tanya used the ASD permutation when a borrow originated in the units column and the SDA
permutation when the borrow originated in the tens column.
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A third observation, which is perhaps not so obvious, is that the nonstandard execution
strategies exhibited by most of the students (all except Angela, whose protocol is discussed later)
happen to give the same answers as the standard execution strategy would. In particular, it the
student's procedure were bug-free, then the student’s answers would be correct (ignoring slips).
This explains why the phenomena of nonstandard ordering had escaped our notice in the earier
subtraction experiments -- we only had the students’ answers, and not the exact sequence of their
writing actions. Thus, the experiment showed that the original Sierra models ot subtraction
procedures fit only 15 of the 26 students’ protocols (i.e., only the standard students) even though
they fit 25 of the 26 students’ answers (i.e., alt except Angela).

Given these observations, a simple hypothesis leaps to mind: all the students leamed
standard procedures, but 8 of the 26 are missing a few unimportant constraints on the ordering ot
actions. Perhaps they never encoded those unimportant ordering constraints, or perhaps they
learned them but discovered later that it made no difference to the answer it they dropped them. In
order to investigate this hypothesis further, we developed a formal representation of knowledge
such that modifying “a few unimportant constraints™ would yield exactly the behavior exhibited by

the students. The next section presents the representation.

3. A concise representation of thc ol.sorved nonstzadard 1058

The knowledge representation we selected is based on the standard cognitive science
concepts of goals, operators and control knowledge. Control knowledge is divided into two kinds:
(1) Goal selection information is used to choose a goal to attend to, called the current goal. (2)
Operator selection information is used to choose an operator appropriate for the current goal.
Execution of the selected operator causes either a change in the state of the situation, such as

writing a digit, or the creation of subgoais.

-~

The foTmalisths used fOT these concepfs are also standard ones. Operators aﬁd‘operator
selection information are represented as a goal-hierarchical production system, similar to the ones
used by HPS (Anzai, 1978), Grapes (Anderson, Famell, & Saurers, 1984), and many other
systems. Goal selection information is represented as a set of conditional preferences similar_ to
the ones used by Soar (Laird, Newell, & Rosenbloom, 1987), Prodigy (Carbonell, Minton &
Knoblock, 197?; Minton et al., 1987) and other systems. Except for the preferences, this
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representation of knowledge is very similar to the one used by Sierra.

The part of working memory that contains goals is called the goal store. One of the goals is
marked as the current goal. Each production has exactly one goal test as part of its condition;
productions are considered for execution only if their goal tests match the current goal. A
production may have one or more goal specifications on its action side; the goals that they create

are added to the goal store. For instance, consider the following production:

If the goal is (ProcessColumn i), and
the top digit of i is less than the bottom digit of i,
then
set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference i).

If the current goal is (ProcessColumn 2), which means to process the tens columns (columns
are numbered from right to left), then this production is considered for execution. Suppose that the
probiem is 234-190. Then the test that is the second element of the left side will succeed, becaus§
3<9, so the production is executed.” Three goals are created by the right side and added to the

goal store.

The goal store contains only pending goals. Whenever a production that matches a goal is

executed, the goal is removed from the goal store. Thus, if the store contains

(ProcessColumn 2)
. {ProccasColumn 3) .

just before the production above fires, then it will contain

(BoxrowFrom 3)
(Add10 2)
(ColumnDifference 2)
(ProcessColumn 3)

just after the production fires.8

Some goals are primitive, in that whenever they are selected as the curment goal, the next
cydo of the production system-results in a change to the state of the problem rather than firing a
produalon rule. For instance, (Add10 2) causes ten to be added to tte top digit in the tens

column, and (ColumnDifference 2) causes the difference between the top and bottom digits in

A wchnical detail: the conflict resolution strategy is specificity — if the set of working memory items maiched by
production A is a subset of those maiched by production B, then A is discarded.

*The computer implementation does not physically remove goals from the goal store, but only marks them ss “not
pending.” This makes it possible 1o back up 1 the goal if a failure occurs and choose a different production for achieving it.
Since such backing up did not seem 1 occur in the data, this detail has been suppressed in order o simplify the exposition,
and the contents of the goal store is equated with the set of pending goals.
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the tens column to be written in the answer row as the answer for that column. This completes the
description of the notation used for procedures. As an illustration, table 3 presents a correct

subtraction procedure expressed in this production system notation.

Table 3: A comrect subtraction procedure

1. If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).
2. If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference 1).
3. If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).
4. If the goal is (BorrowFrom i), and (Top 1i)=0,
then set the goals (BorrowFrom i+l), (Add10 i), (BorrowFrom i).
5. If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Sierra did not need goal preferences, because it used its goal store as a last-in-first-out
stack. The most recently added goal was considered to be the current goal. In the new model, the
goal store is considered to be an unordered set, and goal preferences are used to select a goal

from it.

We tried fouir notations for preicrences before finding one that yieids simple, elegant étifdent
modois.? The one e setilad on reg. ~sents a goal sclectivi sirateQv as @ set of preferences of the

form,

If <condition>
then prefer <goal> over <goal>
else prefer <goal> over <goal>.

A <condition> is like a condition in a production rule in that it can test working memory and/or the
state cf the extemnal worid. A <goal> is a pattern that matches items in the goal store. The goal

patterns can mention constants, variables or constrained variables. For instance, the preference

——— e * -~

The following is a brief description of those notations and their inadequacies. (1) A goal seiection strategy is
represenied as a set of preferences of the form <goal type A> is better than <goal type B>." When the 8 students are fit by
a strategy expressed this way, 33% of the interpreter cycles result in a muitipie goal impasse. (VanLehn & Bail, 1987)
Essentially, this representation could not represent the fact that most students change ordering conventions during the
course of the testing session. (2) A goal selection strategy is repressnted as a "big switch® among several sets of
preferences of the form described in 1, above. Although this could represent the ocbserved strategies. the sets used for any
given student tended to overiap considerably, indicating thet most of their preferences were constant, and only a few varied
(VanLehn & Ball, 1987) (3) A goal selection strategy is represented as a discrimination net, whose leaves are goul types
(Vantehn & Garlick, 1987). This functions identically to a set of rules of the form “if <condition> then <goal type>®. This
representation could not express some of the obeerved stramgies (Kowalski & Vanlehn, 1988). (4) A goal selection
stralegy is represented by a set of preferences of the form, °If <condition> then prefer <goal A> over <goal B>,* where the
goal paterns must have an explicit goal name .* them (Kowaiski & VanLshn, 1988). This representation was fine ir: every
:::uﬁ:::mnasemnhoaatncwnnmwupnnunmkm,whbhwkmuvuﬂbk-kxgodrunnoandhu;%ho'du-nlan

- * clauses.
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I£ (Top 1)>9

then prefer (ProcessColumn j) over (ColumnDifference 1)

else prefer (ColumnDifference i) over (ProcessColumn p))
means: if the column ditference in column i will be a “hard” one to calculate/recall, because the top-
digit is ten or more, then prefer starting to process another column rather than taking the column
difference in i. On the other hand, it the column difference will be a normal one, then it is
preferable to take care of it before moving on to another column. That is, this preference prefers to

procrastinate taking the difference in columns whose top digits are ten or more.

For convenience in exposition, we sometimes drop parts of a preference. Forins -ce, if a

goal preference always holds, then we write just Prefer <goal> over <goal>.

The execution cycle is to (1) select a goal, then (2) select a production, then (3) execute the
production. Preferences are used during Step 1. Goal selection begins by gathering the set of
preferences whose conditions are true at this time. Next, it finds a subset of the goal store that is
maximal, according to the true preferences. A goal is maximal i there is no goal that is preferred
over it. Often, there is just one maximal goal, so it is chosen as the next current goal. I there are
no mavimal goals (e.g.. because the true preferences have a éycle in them), then a "no goal®
impasse o'czgurs: L the‘re are two or more maximal goals, then a "multiple goal” impasse occurs.
This uso' of “preferen-ces- is quite similar to the way preferences are used in Soar (Laird, Newell, &
Rosenbloom, 1987).

Table 4 shows the “standard” preference set, which will generate a standard, depth-first,
left-to-right execution of the procedure of table 3. Although there are many different sets of
preferences that will yield standard executions, we think this one corresponds most closely to the
preference sets acquired by the students. As will be seen later, all the students’ strategies can be
for_n_lody making ;s_mall deletidns or additions to this set of preferences. _i-lence, it is worth a
moment to examine it carefully. .

The first three preferences concern satisfaction of a precondition »f the ProcessColumn -
goal. The first step in processing a column is 1o test whether it needs & w. In order for the
test to deliver a correct result, al pending actions that could modify the coi. n must be executed
before the test. The set BorrowingGodls i {BorrowFrom, Addl0, Slash, Decrement},
80 preference 1 guarantees that such a goal will be selected before ProcessColumn when both

R —
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Table 4: Prelerences for a correct subtraction procedure

For X in the set BorrowingGoals, prefer (X i) over (ProcessColumn i).
For X in the set BorrowingGoals, prefer(X i) over (ColumnDifference i).
For X in {BorrowFrom, Slash, Decrement}, prefer (Addl0 i) over (X i).
Prefer (Slash i) over (Decrement 1i).

Prefer (ProcessColumn i) over (ProcessColumn i+j5).

For X in the set BorrowingGoals, prefer (X i) over (ProcessColumn jJ).
For X in the set BorrowingGoals, prefer (X i) over (ColumnDifference j).
Prefer (ColumnDifference i) over (ProcessColumn j).

For X, Y in the set BorrowingGoals, prefer (X i+j) over (Y i).

RN A WP

refer 10 the same column. Similarly, preference 2 concerns satisfaction of a precondition of
ColumnDifference, and preference 3 concerns satisfaction of a precondition of decrementing

Zero.

Preference 4 is a universal convention in handwriting: cross out the old stuff before writing

the new stuff in.

Preference 5 causes the columns to be processed from right to left. This preference is
mandatory because it concerns satisfaction of the preconditions of the test embedded in the
ProcessColumn goal. In fact, all ot tpe first tiye constrainis are maidatory (altthough c;rie oSuld
quibble about praference 4) in that violating any one of them will result in incorrect answers balno

generaied from a correci pioduction system.

The remaining four preferences are mere conventions. Deleting or modifying them will not

harm the correctness of the answers. Preferences 6, 7 and 8 rank the goals by type:
BorrowingGoals > ColumnDifference > ProcessColumn

Notice that the relative location of the goals does not matter to these preferences, whereas it is
crucial in the mandatory preferences. Preference 9 causes the borrowing goals to be executed in
left-to-right er. This is }_be most commonly taught ordering of the borrowing actior_\s;

We should note that the distinction between mandatory and conventional preferences is
important, particularly in the discussion of how preference sets are learned.




3.1. The eight student modeis
Fot each of the 8 nonstandard students, appendix 1 presents four items: the student's

protocol, an idealized version of the protocol, a production system, and a preference set. The latter
two constitute our model of the student. When the student model is executed, it generates the
idealized protocol exactly. So the discrepancies between the model and the data are captured in
the differences between the idealized protocols and the real ones. Each such difference is
highlighted and discussed in the appendix. In order to give an overview, table 5 categorizes the
discrepancies and discusses each briefly. All of them are either well explained by current theory
(e.g., the cases of repairs to impasses) or clearly in the province of some other theory, such as

Norman's (1981) theory of action slips or Siegler's (in press) theory of arithmetic facts.

The student models in Appendix 1 exhibit several important features. First, all the production
systems represent standard procedures that have occurred many times before in analyses of the
bug data. The second feature exhibited by the student models is that all ot the preference sets are
quite similar to the standard preference set of table 4. For instance, three students (Janine, Pete
and Tanya) exhibit a horizontal execution strategy, wherein they perform all the borrowing actions
required by the problem betore filling in any of the problem’s answers. - The horizontal execution

strategy can be formed by reversing the standard preterence, . .
6. Prefer (ColumnDifference i) over (ProcessColumn j).

to become
8. Prefer (ProcessColumn j) over (ColumnDifference i).

and leaving the remainder of the standard preferences intact.

Sometimes, deleting or weakening a standard preference creates an execution strategy that

exhibits just the right kind of nondeterminism. For instance, in place of the standard preference,
9. Prefer (X i+l) Qver (Y 1), for X,Y in the set BorrowingGoals.

which §3ys 1o peform the actions of borrowing from left to right, Hilda has the following

preferences:

9a. Prefer (Slash i+l) over (Addl0 3J).
9b. Prefer (BorrowProm i+l) over (Addl0 J)

These preferences leave three possible permutations of the borrowing actions, and Hilda exhibits

them ail. The rest of Hilda's preference set is identical to the standard preference set.

Sometimes we saw a pattern in the student’s alternation among strategies. Although the
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Table 5: Discrepancies between idealized and actual protocois
Number of Description
occurrences
22 Facts ermors. Column difterences or decrements are misremembered, e.g.,
12-9=4.
10 Missing pieces of borrows. Sometimes there is a slash without a decrement,
a decrement without a slash, a missing addition of ten that is detected later,
etc.
9 Redoing a column difference. The students rewrite the answer {0 a column,

possibly because they consider it illegible or as a result of checking the
column subtraction.

9 Leading zero suppression. The student modeis will write leading zeros for
problems like 303-279, whereas some students do not.

5 Extra pieces of borrows. Extra scratch marks are made for no apparent
reason. In some cases, they seem to be ignored later.

4 Missing borrows. The student inexplicably fails to borrow for a column where
she or he ordinarily would.

2 Extra borrows. The student inexplicably borrows for a column that she or he
would ordinarily not borrow for. _

2 Blanks treated as ones. In a column with a blank subtrahend, the student's
answer was one less than it shouid be.

2 Missing answer. One column is missing an answer.

impasses and repairs.” The intemeter used with the student models did not
have a compete set of repairs in &, sc it \vas not able to generaic gxactly the
repairs that s.ine stuacats made i their im;128se3.

] $

1 Quit early. Hilda }orgot to answer ihe last two columns of her last problem,
even though she had borrowed from them.
1 Floundering. Pete made three slips during his solution of problem 8, and got

so frustrated that he quit, copied the problem over (as problem 9) and tried
again. Problem 8's solution was omitted from the idealized protocol.

1 Slash after decrement. One student reversed the usual order of slashing and
decrementing.
1 Use Slash for Add10. One student used a slash where she would normally

use an Add10, and later changed it.

preferanCestould be written, like Hiida's, so that the choice was undetermifted, we wrote
preferences that captured as much of the variation as we could see. For instance, Robby's

strategy column processing strategy is represented by replacing
8. Prefer (ColumnDifference i) over (ProcessColumn 3).
with
8. If the top digit of column i is greater than 10 and
the current problem is either problem 6 or 7,

then prefer (ProcessColumn j) over (ColumnDifference i)
else prefer (ColumnDifference i) over (ProcessColumn J).
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We do not know why Robby only uses a nonsta. ering on problems 6 and 7 only, so we
deliberately chose to mention the problem numc the preference’s condition. It is clear,
however, that the columns whose answers are de! ire the ones where the column difference

would be "hard® because the top digit is ten or . 2. Because the condition is ad hoc, the
preference causes an exact match to Robby's protocol, and thus serves as an accurate reduction
of the data, albeit only a partial explanation of it. An alternative formulation would be to delete
preference 8 entirely. This would not capture what appears to be a valid (akthough partial)
explanation of why Robby delays the answering of some columns. In general, whenever we couid
tind such explanations, we wrote them into the preferences. When we could not, we left the
preference set underdetermined. We were usually able to see patterns (partial expianations) in the
choice of column processing strategies, but we often could not see patterns in the choice of

borrowing permutations.

3.2. Discussion

Overall, the most important observation to make is that all the students had preference sets
that are nearly identical to the standard set. Also, the instability in any given student's apparent
goal selection strategy can be sirnply and succinctly represented by conditibnalizing or dropping a
vty few picferences. 1 short, a represetitation for the data had been found that reduces a large

amount of protocol variance to a small amount of preference set variance.'®

A second finding is that the differences between the students preferences and the standard
preferences tended to involve only conventional preferences. The preference sets of all the
students except Angela include all the mandatory standard preferences. This means that all the
students except Angela have “correct” preference sets, in that they will produce correct answers
when used with a comrect production set. (Angela has a conditionalized version of standard
prdiien‘é-e 5 a mﬁ&atory preference, which causes her to give incorrect answers on 4 of the 12
problems she soives.)

As the introduction mentioned, there is an informal expianation that leaps to mind when one
considers the nonstandard students’ behavior. The explanation is that these 8 students lack a few

Oxowever, some of the models are non-deterministic, because their preference sets underconstrain some goal selection
events. Thus, the models do not explain all the variance in the data. For discussion of the tradecffs invoived in this type of
data anslysis, see VanLehn and Bail, 1087.
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“unimportant® standard constraints because either they overiooked them as they leamed the
procedure, or they leamed them but later discovered that they were unimportant, so they started
ignoring or modifying them. So far, this informal explanation has been born out by formal
modelling. A computationally sufficient representation exists such that the behavior of the
nonstandard students is accurately reproduced by deleting or modifying a few “unimportant™ parts

of it. The “unimportant” parts turn out to be conventional standard preferences.

4. Explanations based on LIFO architectures

The preceding section presents successful models that violate the LIFO restriction. Before
abandoning such a venerable restriction, we should see how well the data can be modelled if we
maintain the LIFO restriction. There are two basic approaches to modelling these data within the
confines of a LIFO architecture. Both add complexity to the account based on a non-LIFO
interpretation. The first approach adds complexity to the representations used for the student's
procedure. The second approach retains the simple procedural representations used with the
non-LIFO model, and adds complexity to the execution of these procedures.

4.1. Big switsli rapresentations of subtiaction pre~edures

Any collection of observed strategie~ zan be representce: hy & colle ~tion of pfocedures,’one
per strategy, with a "big switch” that selects among them. For instance, to model Janine's
behavior, one can write LIFO procedures for each ot three strategies -- horizontal, vertical and
standard -- then write productions that act as a "big switch" to select among them. Appendix 2
presents hierarchical production systems for each of the 8 nonstandard subjects that suffice to
model their behavior within the confines of a LIFO architecture. The LIFO models for 4 of the 8
subjects (Angela, Hilda, Paul, and Tanya) turn out to be quite simple and not much different from
the production systems given for them in the first appendix. This simplicity is due to the fact that
the nonstandardness in their behavior is due mostly to local permutations in the order of their
borrowing actions (e.g., from the standard SDA- to SA-D), and that kind of variance doesn't require
a big switch to represent it, even in a LIFO architecture. However, the other four students (Janine,
Pete, Robby, and Trina) do require big switch representations.

It parsimony of knowledge representations were our only criteria, we would reject the LIFO
hypotheses. But parsimony is an argument of last resort, to be used only when empirical evidence
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fails to discriminate the hypotheses. The rest of this section will develop some empirical tests for
ditferentiating the LIFO hypothesis from the non-LIFO hypothesis. Although the tests are not
conclusive, what little evidence there is favors the non-LIFO hypothesis.

4.1.1. Blends of strategies

When an iterative or recursive procedure is in the middle of its execution, its design causes
certain properties to be true of the current state. For instance, when the vertical strategy is
runnirg, all the columns to the right of the current column will be completely finished, while all the
columns 1o the left will be totally free of scratch marks. Different properties are true for the
standard execution strategy and the horizontal one. When the intermediate state proiarties of two
procedures are different, it is difficult to abort one procedure in the middle of a problemn and stan
the other. it may take rather sophisticated problem solvirj to convert the state left by the first
procedure into one that is suitable for execution of the .ecound procedure. Thus, if the subjects did
indeed have a big switch procedure for : ubtraction, one would not expect to see them “throw the
switch” in the middie of problems. That would force them to engage in difficult problem solving for

no particutar reason.

On the other hand, if sUbiécts have a non-Lle procedure, then switching from, say, the
standard to the horizontal strategy, amobnts to reversing the direction of a single preference. This
is done in the middle of solving a problem just as easily as it is done in between problems. The
resutting behavior would appear to the observer as a "blend” of the two strategies. Thus, it blends
of strategies occur, it is more plausible that subjects have a non-LIFO representation than a big
switch representation. H blends do not occur, then they could equally well have either
representation.

. ot ‘g\o four wgocw whose LIFO representations require big switches, ,Jagine displays clear
instances of strategy blends in her solutions to problems 10 and 13. (The LIFO procedure given in
appendix 2 does not successfully model her solutions to 10 and 13.) Pete’s solution to problem 10
may aiso be a blend of strategies, but that problem is difficut  nalyze because Pete seems to be
in the middie of acquiring a new strategy at that point. (The LI©  procedure in appendix 2 does not
model Pete's solution to problem 10.) The other two subjec - (Robby and Trina) do not switch
strategies in the middie of problems. Thus, there is a little evidence that Janine has a non-LIFO
representation, but the data are silent in the case of the other three subjects.
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4.1.2. Bugs

Under both the LIFO and non-LIFO hypotheses, bugs are represented by perturbed
production systems; the preferences, if any, are left alone. Under the non-LIFO hypothesis, the
subjects have just one production system. Their preferences cause them to display different
column processing strategies on different problems. Thus, if the subject has a bug, it must appear
regardless of the column processing strategy used by the subject, since the bug is represented in
the subject’s production system, and that does not shift over the course of the testing session. On
the other hand, under the LIFO hypotheses, the "big switch” subjects have different productions for
each of their strategies. They could have acquired the bug in the context of only one of their
strategies. Thus, if subjects display different bugs depending on the strategy they are using, or
display bugs only on some of their strategies and correct performances on others, then we have
evidence for the LIFO representation. If the subjects show the same bugs under all strategies,
then both hypotheses would be consistent with the data.

Unfortunately, the data are silent. Of the four students who switch column processing
conventions, two (Janine and Pete) are totally bug-free. Robby has a bug that shows up when he
is doing the standard column processing convention, but he does his nopstanda;d cotivention only
on two problems where the conditions for the bug's occurrence are absent. Trina has bqg._qnd it
shows up under both her standard and nonstandard ex‘ecut.ion s:trategieé. However, the bug 6c':curs
in & rule that is shared by those two conventions regardless of which hypothesis is used to
represent her procedural knowledge. In short, both the LIFO and non-LIFO hypotheses are
consistent with the bug-versus-strategy data.

4.1.3. Summary of "big switch” arguments

We tried to differentiate the two hypotheses by looking for blends of strategies and for bugs
that ceewr @mly in somw of the sugiee!s'-strategies. The strategic blend data had the ability to
support the non-LIFO hypothesis, and they did, but only weakly. The bug-versus-strategy data had
the ability to refute the non-LIFO hypothesis, but they did not. So these arguments provide a tiny
bit of support for the non-LIFO hypothesis. However, the main significance of the arguments is to
show that the two hypothesis actually are discriminable, even though these data do not do a good
jobof it.
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4.2. Are subtraction goals special?

The preceding section made the assumption that the goals generated in the course of
solving subtraction problems have the same status as the goals that one generates while solving
puzzies, college physics problems, and all the other types of problems used in testing cognitive
architectures. It was shown that this assumption, plus the hypothesis of 2 LIFO architecture,
implied that some subjects had unparsimonious "big switch” procedures. This section examines
the contrary position. It assumes that subjects have parsimonious representations for their
procedures but the goals generated during the course of solving subtraction problems are atypical
in that they are not subject to the LIFO restriction even though the architecture is indeed a LIFO
architecture. Two different versions of this assumption will be examined.

4.2.1. Is subtraction declarative knowledge?

One way to release subtraction goals from the LIFO constraint is to assume that the
subjects’ procedures are declarative knowledge. As such, they do not run directly on the
architecture, but instead are interpreted by a procedure that is running directly on the architecture.
This interpreter procedure need not enforce a LIFQ restriction even if the architecture does.

Therc are several pieces of evidence against the hypothesis that these ,sgudenté' are
interprating their prozodures (as opposed 1o oxocuting them directly). First, the subjects in this
experiment were nearing the end of the third grade in a school where subtraction instruction begins
in second grade. They had between one and a half and two years of intermittent instruction on the
subtraction procedure. Anderson, based on experiments where students learn geometry, estimates
that compiling from declarative to procedural knowledge takes only a short period of time, not years
(Anderson, 1982; Anderson, 1987). Surely, the students in this experiment had compiled their
knowiedge before they reached our experiment. Secondly, verbal rehearsal of the procedure is
usually_common wben a student is iterpreting a declaratively encoded pracedure (Anderson,
1983), but such rehearsal was absent in our experiment. Thirdly, all the subieclg in our experiment
were relatively rapid, smooth soivers who seemed to pause only when they could not recall a
number fact or when they detected a mistake that needed correction. Speed and lack of apparent
effort at recall are halimarks of a compiled skill. On these grounds, it appears that the students in
this experiment were executing compiled procedures, rather than interpreting declarative
knowledge. |
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These pieces of evidence bear only on Anderson's theory of the procedural-declarative
distinction. However, regardiess of what theory of the procedurai-declarative distinction turns out to
be correct, one will have to assume that the category one assigns to subtraction should aiso be
assigned to the knowledge for Tower of Hanoi, geometry theorem proving, physics, and other tasks
of the problem solving literature, because the performances of our subjects are not qualitatively
ditferent from the performances of subjects in these classic task domains.!! Taking this position
seriously would mean that protocol data from the classic experiments as well as this experiment
are simply irrelevant to determining the underlying cognitive architecture. Such data bear only on
the structure of the interpreters, and there might be arbitrarily many of them. Clearly, there are
significant methodological advantages to the traditional assumption that there is just one cognitive
architecture and that the procedures for solving the classic tasks, and subtraction as well, are
executed directly by this architecture.

Although the specific version of the interpretation hypothesis that derives from Anderson’s
theory can be rejected empirically, the general version can be rejected only on methodological
grounds, if at all. Nonetheless, this explanation of the data from our experiment seems clearty to

have more problems than the others.

4.2.2. Are subtraction goals stoiuc extgmg“y? e eaoamm o ET N
Goals sometimes are fofgotten and “hév; to be reconstructed. For instance, Anderson
(1983, pg. 161) claims that he often fails to retrieve goals when solving the Tower of Hanoi, and
must either retrieve them from long term memory or reconstruct them from the current puzzle state
by using Simon's (1975) perceptual strategy. Larkin (in press) and Vanl.ehn and Ball (in press)
have proposed that the problem state is routinely used as a sort of external storage for goals.
Pylyshyn (in press) comments that it would be just as revealing and more traditional to say that
such goais are stored in iong term memosy but the external problem state serves as a vigsual cue
for retrieving 't'ﬁ;m.;' Regardlesfof the mechanisms involved, it is clear to all involved that goals are

not necessarily stored in working memory -- sometimes you can get them from the external world.

Yin particular, suppose we assume (as programmers often do), that a program that is running on an interpreter is en
imes siower than it would be if it could run directly on the architecture that the interpreter runs on. If this ten-to-one ratio
hoiis for the general cognitive system, and our subjects are running an interpreter while the subjects in the classic
experiments are not, then owr subjects shouid be en times siower than the subjects in the classic experiments. But both
sets of subjects seem 1 be working about as fast, 30 this conjunction of assumptions is untenable.
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It one views the LIFO restriction as deriving from some property of the part of working
memory that stores goals, then it follows that goals that are "stored” externally are not subject to
the LIFO constraint. So it seems to follow that parsimonious subtraction procedures can be used

even in a LIFO architecture. But it this line of reasoning is examined closely, it falls apart.

Consider the subtraction procedure shown in table 3. If the goals it creates are stored in a
LIFO memory, then it generates a standard execution strategy when executed. However, suppose
the ColumnDifference goals are forgotten but later reconstructed from the external problem
state just after the goal Subtract has completed. The resulting behavior is exactly the horizontal
strategy. So it seems at first that a non-LIFO architecture can explain the data. But the price is
assuming that all the ColumnDifference goals are “forgotten.” This occurs routinely, so it must
be a part of the person's knowledge -- not really a case of working memory failure. Obviously, the
person has decided to delay the processing of ColumnbDifference goals until after the problem’s
borrowing is done. That is, they have adopted the preference “For X in the set BorrowingGoals,
prefer (X i) over (ColumnDifference j)." In a LIFO architecture, this preference means that
ColumnDifference goals shouid be dropped from the LIFO goal memory (or ignored) and
reconstructed later. But if the architecture can do this on a routine basis, then in what sense is it
still a LIFO architecturc?

Almost all cognitive modelling has been conducted under the useful idealization that the goal
store does not forget goals. The LIFO restriction has always been interpreted as a characterization
of this idealized goal store. We think it is still useful to have an idealized goal store whose
properties are spelled out carefully. The business about reconstructing goals from external and/or
long-term memory is an “implementation” issue, albeit an important one. If one goes this route,
then putting a LIFO restrictbq on the idealized goal store implies that some students have
unparsifonious, biJ switch procedures, which leads to the problems discussed ®arlier.

On the other hand, if one chooses to dispense with the idealization and model goal storage
at the level of retrieval/reconstruction from external/long-term memory, then it is patently clear that
the goals are not subject to a LIFO restriction, for no one (we assume) would want to argue that the

external world and/or long-term memory impose some kind of LIFO restriction on recall.

So, the availability of a non-LIFO place to store goals does not reaily help the LIFO theory of
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problem solving. To be consistent, either the theory has to recognize this non-LIFO storage facility
as a first-class goal store, in which case there is no sensibie LIFO restriction, or the theory has to
stick with an idealized LIFO goal store, in which case it is stuck with big switch procedures. The
afternative that we favor, of course, is to work with an idealized goal store that is non-LIFO. This
keeps the theory of problem solving from becoming enmeshed in the “implementation® details of
the goal store, and it also avoids burdening the learning component of the theory with having to

acquire complex procedural structures.

5. Conclusions

This article makes two main points. The first is that there is a great deal of variance in the
execution strategies of some subtraction students, both between subjects and within the individual
subject’s performance. The second point is that this variance can be simply represented as minor
perturbations of standard procedures, provided that goal selection information is represented
explicitly and the architecture does not enforce a LIFO restriction on goals. To these rather
substantially supported points, we added a rather extended examination of how a LIFO architecture
could model these data. The primary conclusion is that it could, but only at the price of assuming
that soin® of the studonts had somehow acquired complex “big switch” p.roéedures.' We also
deviccd some i vical test for whether their nroc.edutes wero big cwitches or n;:i;'u,mi-aiuﬁately,

the data were silent.

Early accounts of problem solving did not impose a LIFO restriction. Miller, Galanter and
Pribram (1960) explicitly differentiate inflexible plans from flexible plans whose goals can be
rearranged to suit the occasion. Although their examples indicate a non-LIFO sort of processing for
flexible plans, they are not explicit on the point. Newell and Simon (1972) are explicit (to put it
mildly?), and they sometimes use LIFO models and sometimes use non-LIFO models In their
famous chapter 14, wherem they present their theory of human problem solving, no LIFO restriction
is placed the goal store.

LIFO restrictions became common at about the same time that cognitive architectures began
to include automatic learning mechanisms, such as production compounding (Anderson, 1982) and
chunking (Rosenbloom, 1983). in order to yield plausible learning, one wants to compound two

productions only when those productions serve the same goal. For instance, if a subtraction
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problem was immediately followed by an addition probiem, then one would want to avoid forming a
compound from the last production executed during a subtraction problems’ solution and the first
production executed for the addition problem, even though thosg productions may have been
executed consecutively. Since automatic leaming mechanisms are part of the architecture, it
makes sense to make the LIFO restriction be a par of the architecture. This makes it simpler to

place the same-goal constraint on automatic learning.

Once the gquestion is posed, it is clear that a non-LIFO architecture does not really make
automatic learning any more complicated. In order to impose the same-goal constraint that seems
critical for plausible automatic learning, the architecture need only maintain explicit information
about the goal-subgoal relationship of the goals that it creates. Because this information is often
needed anyway, relaxing the LIFO restriction adds no new burdens to the architecture.

As far as we can see, there is no good reason for believing the LIFO constraint, and several
weak reasons for disbelieving it. So far, there is nothing in the data to contradict the intuition that ¥
a person can recall a goal, then they can act on it even if that goal is not the most recently created
pending goal.

)
!
/
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6. Appendix 1: Protocols and Non-LIFO models

This appendix presents the protocois of each of the eight nonstandard students and our
models of them. The syntax of the models has been explained in the text. The protocols use an
abbreviated notation. Each action is indicated by a letter and a number. The letter stands for the

type of the primitive goal:

A Addlr0

D Decramant

~ ColumnDifference
S Slash

N WriteNine

The number stands for the column that the action was executed in. Thus, A2 means (Add10 2),

the addition of ten to the top digit in the tens column.

in order to capture some of the variability in the protocols, ad hoc predicates on the problem
states are used. The most common one is (Problem x), which is true whenever the current
problem’s number is contained in the set that is its argument. Thus, (Problem {3, 7)) is true
during problems 3 and 7.

Angela

Angela always uses a standard, cofrect procedure. On eight problems, she uses the
standard scheduling strategy. In four problems (S, 9, 10, and 11), she permutes {10 witier of the
ProcessColurni goals. She seems to delay processing a column if that column seems hard, for
instance, because it requires borrowing from zero. We represent this by making the standard
preference 5 conditional on the perceived difficulty of the problem. The predicate
(ColumnSeemsHard i) has an ad hoc definition, since we do not have enough data to fully
understand Angela’s concept of column difficult.

Protocols

1. $62__ 82 D2AL-1 -2 -3 . - T~
- 3

2. 742 82 D2 AL -1 -2 -3
- 136

3. 50 82 D2 A1 -1 -2
- 23

4. 8308 83 D3 A2 82 D2 Al -1 Carry2 -2 -3

- 3 Idasl: -1 -2 -3 -4
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>lumn, which causes the units answer
ten's column. When she comes to
olumn, she interprets the 9 with a one
vrites 8 in the answer. The idealized
Al-» Angela omits answering the last
.8 NoL.

Angela mistakenly borrows in

to be 12, so she carries the {
taking the column difference in t
over it (from the carry) as 9-1, .
protocol omits this extra-borrow
column, which the idealized protoc

5. 106 S3I D3 A2 -2 -1 -3
- 70
6. 716 $2 D2 A1 -1 -2 -3
- 598 Ideal: S2 D2 A1 -1 83 D3 A2 -2 -3
Angela mistakenly omits the borrow for the tens column, doing 0-9=9 instead.
The idealized protocol rectities this missing-borrow slip. Her answer in column
one is off by one: 16-8=7.
7. 1564 S2 D2 Al -1 S3 D3 A2 -2 S4 D4 A3 -3 ~¢
- 887
8. €591 82 D2 Al -1 -2 S4 D4 A3 -3 -4
- 2697 Ideal: $2 D2 Al -1 83 D3 A2 -2 84 D4 A3 -3 -4
Angela mistakenly omits the borrow in the tens column, doing 8-9=1 instead.
9. 311 83 D3 A2 -2 Carry3 -3 <cross out answer 3> $2 D2 Al -1
- 214 Ideal: -2 -3 82 D2 A} -1
Angela processes the tens column first, as she does in several other problems.
For some reason, she borrows. Perhaps she sees that the units column will
cause a decrement in the tens. if so, she forgets her discovery by the time she
gets to the -2, and takes 1 from 11, gets ten, and carries into the hundreds.
After processing the hundreds, she apparently decides this carry was wrong,
and thus the answer to the hundreds should be zero instead, so she crosses
out her answer in the hundreds column. The idealized protocol retains the
column processing order, but omits her extra borrow and the trouble that it
causes.
10. 102 S3 D3 A2 -2 82 D2 A1 -1 -3
- 39
1. %007 -1 84 D4 A3 -3 S3 D3 A2 -2 -4
- 6880
12. 702 83 D3 A2 82 D2 A1 -1 -2 -3
- 108
Arithmetic slip in the units column: 12-8=5.
Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifferzence 1i).

If tha goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

f
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if the goal is (BorrowFrom i), and (Top 1)=0,
then set the goals (BorrowFrom i+l), (Add10 i), (BorrxowFrom i).

1f the goal is (Borrowfrom i),

then set the goals (Slash i), (Decrement i).

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (Addl0 i) over (X i), for X in (BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).

5. If (ColumSeemsHard 1)
then prefer (ProcessColumn i+j) over (ProcessColumn i)
else prefer (ProcessColumn i) over (ProcessColumn i+j).
6. Prefer (X i) ovar (ProcessColumn j), for X in the set BorrowingGoals.
7. Prefer (X i) over (ColumnDifference j), for X in BorrowingGoals.
8. Prefer (ColumnDifference 1) over (ProcessColumn j).

9. Prefer (X i+j) over (Y i) for X, Y in the set BorrowingGoals.

Hilda e
Hiia has a standard hun, cellac Bo:"-.iv:-}’{cross-Ze;o. that skips over zeros during

borrowing. Hilda's scheduling strategy is standard, except that she exhibits three different

permutations of the borrowing actions. Since we do not understand what determines her choice

among them, we represent her scheduling strategy by weakening standard preference number 9 in

such a way that the choice among the three permutations is undetermined.

Protocols

1. 647 -1 -2 -3
- 45 ~

PPy -

2. 885 -1 -2 -3
- 208

3. 83 82 Al D2 -1 -2
= 44
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4. 8305 -1 -2 -3 -4
=3
5 50 82 D2 Al -1 -2
- 23
6. 562 S2 A1 D2 -1 -2 -3
- 3
7. 742 $2 Al -1 D2 -2 -3
- 136
8. 106 -1 $3 D3 A2 -2 -3
- 70
9. 9007 -1 S4 A2 -2 D4
- 6880 Ideal: -1 S4 A2 -2 D4 S4 A3 -3 D4 -4
Hilda reaches an impasse when she attempts the slash-decrement for the
borrow in the hundreds column because the 9 has already been decremented.
Her repair is to quit. The idealized protocol pretends that she had no impasse.
10. 4018 S2 D2 Al -1 -2 S4 A3 D4 -3 -4
- 607
11. 702 82 82 ». D03 -1 -2 -3
- 108 Idea': 83 A1 D3 -1 -2 -3
Hida preforms the slash to the top of the tens column before she notices that it
is zero, and thus should be skipped over. The idealized protocol omits the S2.
Also, Hilda makes a yacts error in the units column, 12-8=5.
12. 2076 -1 <redo -1> 83 S4 AZ D4 -2 ' '
- ___42 Idasl: -1 S84 22 D4 -2 -3 -4
Hilda makes several slips, which the idealized protocol rectifies. She redoes
her units column difference. She makes a slash in the hundreds column
before noticing that its top digit is zero. She quits before answering the
hundreds and thousands column.
Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn 1), and (Top i)<(Bottom i),
then set tha goals _(Borrowfrom j), (AM3d10 1), (ColumnDifferenee i),
where § is the first column to the left of i with a non-zero top digit.

If the goal is (ProcessColumm 1),
then set the goal (ColumnDifferencs 1).

If the goal is (Borrowfrom i),
then set the goals (Slash i), (Decrement 1).
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Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (Addl0 i) over (X i), for X in (BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decremant i).

5. Prefer (ProcessColumn i) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.

7. Prefer (X i) over (ColumnDifference j), for X in the set (BorrowFrom,
Slash, Addlo}.

8. Prefer (ColumnDifference i) over (ProcessColumn 3j).

Sa. ¢refer (Slash i) over (Addl0 J).
9b. Prefer (BorrowFrom i) over (Addil Jj)

Janine

Janine uses a standard, correct production system. It has a borrow from zero routine that
substitutes a WriteNine operation (abbreviated as "N" in the protocols) for the more common
combination of adding ten and decrementing. This -chunge necessitates a slight change to
standard preference number 4. The major diﬁerem‘:_es from tha standard sCQegu!ing stratagy occur
because Janine uses three different conver;tk)r{s fdr prdcessing‘ éolﬁmnsf Cn four problems'(’1, 2,
4, and 8), she uses the standard scheduling strategy. On tour problems (5, 6, 11 and 12), she uses
a horizontal convention. On three problems (3, 7 and 9), she uses a vertical convention. On two
problems (10 and 13), she uses a mixture of all three strategies. We currently do not understand
the problem characteristics, if any, that cause her to choose one scheduling strategy over another,
$O a simple way to model Janine's behavior would be to delete standard preferences 6, 7 and 8,
which e‘s_t’ablizh the comgntional ordorin_g j_qr ProcessColumn and Column diﬁerepc\e with respect
to the borrowing goals and each other. However, we believe that Janine actually has knowledge of
the standard, horizontai and vertical conventions, so we prefer a more complicated model that uses
(Problem x) to turn off preferences 6, 7 and 8 on some problems. Two new preferences (10
and 11) are added, and they are also conditional on the problem being processed. The conditions
are written so as to put no constraints on the column processing order in problems 10 and 13,
because we see no pattern to her behavior on those problems.




Protocols
1. 83
- 44

2. 50
- 23

3. 742
- 136

4. 106
=70

5. 716
- 598

6. 1564
- 887

7. 102
- 39

8. 9007
- 6880

9. 702
- 108

10. 2006
- 42

11. 10012
- 214
12. 8001
- 43

13. 401
- 206
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Al 82 D2 -1 -2
Al s2 D2 -1 -2
Al -1 82 p2 -2 -3

-1 A2 83 D3 -2
Ideal: -1 A2 83 D3 -2 -3

Janine suppresses the answer's leading zero; the idealized protocol does not.
Al S2 D2 A2 s3 D3 -1 -2 -3

Al S2 D2 A2 S3 D3I A3 S4 D4 -1 -2 -3
Ideal: Al S2 D2 A2 S3 D3 A3 84 D¢ -1 -2 -3 -4

Janine suppresses the answer’s leading zero.

Al -1 <redo -1> 82 N2 -2 83 D3
Ideal: Al -1 82 92 -2 83 D3 -3

Janine redoes the units column's answer to correct the facts error 12-9=4, and
she suppresses the answer's leading zero. The idealized protocol does neither
of these. v B

-1 A2 S3 N3 S& D4 -2 -3 -4

» . -

Al -1 N2 -2 83 D3 -3 <rewrite result of D3>
Ideal: Al -1 S2 N2 -2 S3 D3 -3

Janine omits the slash in the tens column; she rewrites the 6 over the 7 after
she has finished the problem.

-1 A2 -2 N3 83 84 D4 -3 -4
Ideal: -1 A2 -2 83 N3 S4 D4 -3 -4

Janine inexplicably reverses the order of the Slash and the WriteNine in the
hundreds column. The idealized protocol has them in their usual order.

Al S2 D2 A2 S3 N3 S84 N4 S5 D5 -1 -2 -3 -4
Fdeal: Al S2 D2 A2 83 N3 S4 N4 S5 D5 -1 -2.-3 -4 -5

Janine suppresses the answer’s leading zero.
Al 82 N2 83 N3 8¢ D4 -4 -3 -2 -1

Al 82 N2 -1 -2 83 D3 -3
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Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (Slash i), (WriteNine i).

If the goal is (BoxrowFrom i),
then set the goals (Slash i), (Decrement i).

Goal selection strategy

1.

2.

3.

4a.
4b.

10.

11.

Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
Prefer (Addl0 i) over (X i), for X in (BorrowFrom, Slash, Decrement}.

Prefer (Slash 1) over (Decrement 1i).
Prefer (Slash i) over (WriteNine 1i).

Prefer (ProcessColumn i) over (ProcessColumn i+j).

If {Rroriem (1, 2, £, 5, 6, &, 11, 12}) then
pr:ier (X i) ovai (FrocessColumn j), Zur X in tic set Boryrow.ngGoals.

If (Problem (1, 2, 4, 5, 6, 8, 11, 12}) then’
prefer (X i) over (ColumnDifference j), for X in BorrowingGoals.

If (Problem {5, 6, 11, 12})

then prefer (ProcessColumn i) over (ColumnDifference j)

else prefer (ColumnDifference j) over (ProcessColumn i).

Prefer (X i) over (Y i+l) for X, Y in the set BorrowingGoals.
If (Problem (12})

then prefer (CelumnDiffarence i+j) over (ColumnDifference i)
else prefer (ColumnDifference i) over (CclumnDifference i+J).

If (Problem (3, 7, $9})
then prefer (X i) over (Y i+l), for any X, Y.

Paul

Paul has a standard, correct subtraction procedure, and uses the standard column

processing order. He exhibits two different nonstandard permutations of the borrowing actions




when he does a borrows from non-zero digits. He us

W

37

the standard permutation when he does

borrowing from zero. In order to represent this, we use n ad hoc predicate, (BFZinProgress),

which is true whenever a borrowing from zero is being performed.

Protocols

1. 647
- 45

N

830s
- 3

3. 885
-~ 205

4. 83

- 44

S. 50

- 23

6. 562
-3

7. 6591
= 2697

8. 311
- 214

9. 1813

- 215
10. 4015
- 607

11. 10012

- 214

12. 8001
—c 4543

=1 -2 <redo ~1> <zedo -2> -3

Ideal:

-1

-2

-3

Paul rewrites his first two answers, apparently because they were illegible.
The idealized protocol omits these rewrites.

-1
-1
s2
s2
s2
s2
s2
s2
82

82

Ideal:

-2

-2

Al

Al

Al

Al

Al

Al

Al

Production System

-3

-3

-1

-4

D2

D2

D2

D2

D2

D2

-2 -3

83 A2 D3 -2
83 A2 -2 D3
S3 A2 -2 D3

-2 84 A3 D4

S84 A3 -3 D4 -4
f3
-3 -4

-3 -4

~1 D2 S5 DS A4 3¢ U< A3 S3 D3 A2 -2 -3 -4
S2 Al -1 D2 S5 DS A4 S4 D4 A3 S3 D3 A2 -2 -3 -4 -5

Paul suppresses the answer's leading zero; the idealized protocol does not.
S4 D4 A3 83 D3 A2 $2 D2 Al -1 ~2 -3 -4

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Add10 i), (ColumnDifference 1i).

If the goal is (ProcessColumn 1),
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then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (Addl0 i), (BorrowFrom i).

If the goal is (BorrowFfrom i),
then sat the goals (Slash i), (Decrement i).
Goal selection straiegy
1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Addl0 i) over (X i), for X in {(BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decremant i).
S. Prefer (ProcessColumn i) over (ProcessColumn i+j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. If (BFZinProgress)
then prefer (X i) over (ColumnDifference j) for X in BorrowingGoals
else prefer (X i) over (ColumnDifference j)
for X in the set (BorrowFrom, Addl0, Slash}.
8. Prefer (ColumbDifference i) over (ProcessColumn j).
9. If (B¥rZinProgr:esr) . K A )
then prafer (¥ i47%) ovar (Y i) £c» X, Y in the set RorrowingGoal: .
else
prefer (BorrowFrom i+l) over (Addl0 i), and

prefer (Slash i+l) over (Addl0 i), and
prefer (Addl0 i) over (Decrement i+l).

Pete

Pete has a standard, correct production system. Pete seems to learn a new scheduling
strategy somewhere in the vicinity of problem 10. On problems 1 though 9, he exhibits the same
pattern of borrow permutations that Paul does; see the section on Paul for discussion. Qg problem
10, Pete exhibits a transitional strategy that is like the pattern for borrowing from zero, but it is
applied to a problem that has no borrowing from zero. We do not model Pete’'s solution to this
problem. On problems 11 through 13, Pete exhibits a horizontal scheduling strategy. Also, Pete
exhibits two permutations of his borrowing actions during problems 11 through 13. For borrows
into the leftmost column, he uses the order Slash-Decrement-Add10. For other columns, he uses

Slash-Add10-Decrement. To represent this, we use the ad hoc predicate (Penultimate i),




which is true it i is the next t0 last column in the problem.

Protocols

1. 647

- 45

2. 885

- 205

3. 83

- 44

2. 8305

- 3

5. 50

- 23

6. 562

- 3

7. 742

- 136

8. 106

=70

9. 106

- 70

10. 3
=2

11. 6591

- 2697

«1 =2 -3 <redo -2>
Ideal: -1 -2 -3

Pete rewrites his answer to the tens column. The idealized protocol omits this.
-1 -2 -3

82 Al D2 -1 -2
-1 -2 -3 -4
S2 Al -1 D2 -2

Facts error in column 1: 10-3=6.
82 A1 D2 -1 -2 -3

-1 -2 -3

Pete fails to notice that a borrow is necessary in the units column. Since we
do not know what his scratch marks would.be in this case, the idealized
protocol pretends the problem is 742-131, which requires no borrowing:

§3 A2 D2 82 A

Pete makes se -lips on this problem, and ultimately gives up, copiés the
problem (which irs as 9 below) and tries again. His slips are borrowing
for the units co: leaving out the decrement in the hundreds column, and

switching the sl . and the decrement in the tens column. This problem's
solution is excluded from the idealized protocol.

83 A2 D2 Al -1 -2
Ideal: S3 D3 A2 82 D2 A1 -1 -2 -3

Pete again makes several slips on this problem: borrowing for the units
column, leaving out the decrement in the hundreds column, and leaving out
the slash inthe tens column. Also, he suppresses the answer’'s leading zero.
~This problem IS the best evidence in the protocol that Pete knows about
borrowing from zero, so it is necessary to leave it in. Thus, the idealized .
protocol pretends the problem is 106-79, which requires a borrow in the units
column. The idealized protocol rectifies Pete's other slips and does not
suppress the leading zero. -

83 D3 A2 82 D2 Al -1 -2 -3

82 Al D2 83 A2 D3 84 D4 A3 -1 -2 -3 ~4

Facts error in the units column: 11-7=S.
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12. 1564 S2 A1 D2 S3 A2 D3 S4 D4 A3 -1 -2 -3
- 887 Ideal: S2 Al D2 S3 A2 D3 S4 D4 A3 -1 -2 -3 -4
Pete suppresses the answer's leading zero; the idealized protocol does not.
Facts emor in the hundreds column: 14-8=7.
13. 716 S2 A1 S3 D3 D2 A2 -1 -2 -3
- 598 Ideal: S2 D2 Al S3 D3 A2 -1 -2 -3
Pete seems to forget to do the decrement in the tens column, but he catches
his mistake just before adding ten in the tens column. The idealized protocol
does not make this slip.
Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottoem i),
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (Addl0 i), (BorrowFrom 1).

If the goal is (BorrowFrom 1),
then set the goals (Slash i), (Decremant 1i).

-

Goal ¢::iuctioii strategy
1. 2rafer (X i) over (ProuseaColuwmm 1), s0r X in tha cet Borrovingiools.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Addl0 i) over (X i), for X in {BorrowFrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement 1i).
5. Prefer (ProcessColumn i) over (ProcessColumn i+j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7a. If (BFZinProgress)

then p¥efer (¥-1) over (ColumnDifference j) for X in BorrdwingGoals

else prefer (X i) over (ColumnbDifference j)

for X in the set {BorrowFrom, Addli0, Slash}.

7b. If (Problem (5})

then prefer (ColumnDifference i) over (Decrement j)

else prefer (Decrement j) over (ColumnDifference i).
8. If (Problem (11, 12, 13})

then prefer (ProcessColumn i) over (Columndifference j),

else prefer (ColumnDifference j) over (ProcessColumn i),

9. If (BriinProgress) or
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((Problem (11, 12, 13}) and (Penultimate i))
then prefer (X i+j) over (Y i) for X, Y in the set BorrowingGoals
else

prefer (BorrowFrom i+l) over (AddlQ i), and

prefer (Slash i+l) over (Addl0 i), and

prefer (Addl0 i) over (Decrement i+l).

10. Prefer (ColumnDifference i) over (ColumnDifference i+j).

Robby

Robby seems to have a common bug, called Stops-Borrow-At-Zero. (There is a second
analysis, which attributes to him a procedure that does not know how to borrow across zero. When
given a borrow-from-zero problem, he reaches an impasse when he tries to decrement a zero. On
two problems (10 and 11), he repairs by skipping the BorrowFrom goal. On another problem (13),
he repairs by relocating the BorrowFrom leftwards. However, the evidence for a relocation repair'in
problem 13 is weak, because Robby only does the slash and not the decrement of the supposedly
relocated BorrowFrom.) Robby's scheduling strategy is usually the standard one, but on two
problems (6 and 7), he delays doing "hard” column ditferences until the end of the problem, where
*hard" appears to mean that the top digit in the column is ten or more. Also, Robbty exhibits several
pwiinutations of the borrowing operations, which we model by geleting';standard preferences 7 and
9, and adding a new preference, 10. The new‘ preference causes slash-decrement pairs to be
executed continguously, with no intervening actions. Robby is by far the sloppiest student in the

experiment. He makes many facts errors, and he frequently omits parts of the borrowing

subprocedure.
Protocols
1. 88s -1 -2 -3
- 205
2. 8305 -1 -2 -3 -4
- 3
2~ - ~-
3. 83 82 D2 Al -1 -2
- 44
4. 967 -1 -2 -3
- 607
Facts slip in hundreds column: 9—6=4.
5. 106 -1 A2 83 D3 -2 <redo -2> -3
- 70 Ideal: -1 A2 83 D3 -2 -3

Robby correctly answers the tens column, then "corrects” it to 10-7=4.
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6. 6591 Al S2 D2 -2 A3 S4 D4 -4 -3 -1
- 2697
Robby mistakenly omits the borrow in the tens column. Since it is not clear
what he would have done if he had notice the borrow there, the idealized
protocol keeps his action sequence and pretends that the problem is
6591-2677, which requires no borrow in the tens column.
7. 108 -1 A2 83 D3 -3 -2 <redo -2>
- 60 Ideal: -1 A2 83 D3 -3 -2
Robby makes a facts error in the tens column, detects i, ;lnd redoes the
column difference. The idealized protocol gets it right the first time.
8. 1236 Al S2 -1 A2 S3 -2 A3 -3 -4
- 497 Ideal: Al S2 D2 -1 A2 S3 D3 -2 A3 S4 D4 -3 -4

Robby makes several slips, which are rectified in the idealized protocol. He
omits D2, D3 and the whole of (BorrowFrom 4). Also, he makes a facts error
in column 2 (12-9=4) and in column 3 (11-4=4).

9. 1813 Al -1 -2 S3 D3 -3 -4
- 213 Ideal: Al -1 S2 D2 A2 -2 83 D3 -3 -4

Facts error in the units column: 13-5=7. Robby does not write the
(BorrowFrom 2) and A2, but he acts as if he did, and give 10-1=9 as the
answer in column 2.

10. 102 Al -1 A2 83 D3 -2 -3
- 39
Facts error in the units column: 12-9-4. L e
11. 9007 -1 &2 -2 &3 -3 S4 D4 -4
- 6880 . : ,
Facis emror in the thousands column’s decrcrnent: 9-1a7. -
12, 4015 Al -1 D2 -2 A3 S4 D4 -3 -4
- 607 Ideal: Al -1 S2 D2 -2 A3 S4 D4 -3 -4
Robby omits the S2.
13. 104 S3 Al -1 A2 -2 -3
- 27 Ideal: Al -1 A2 -2 -3

The initial Slash may be due to a repair to the decrement-zero impasse, or it
may be a slip of some kind. The idealized protocol omits it.

Production System

If the go:i is (Su’l;ttact)
then for each column i, set the goal (ProcessColumn i).

-~

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Addi0 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference 1i).

If the goal is (BorrowFfzom 1), and (Top i)=0,
then do nothing.




If the goal is (Borrowfrom 1),

then set the goals (Slash i), (Decrement 1i).

Goal selection strategy

1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X i) over (ColumnDifference i), for X in BorrowingGoals.

3. Prefer (Addl0 i) over (X i), for X in {BorrowFfrom, Slash, Decrement}.
4. Prefer (Slash i) over (Decrement i).

S. Prefer (ProcessColumn i) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.

8. If (Top i)>9 and (Problem (6, 7})
then prefer (ProcessColumn j) over (ColumnDifference i)
else prefer (ColumnDifference 1) over (ProcessColumn Jj).

10. Prefer (Decrement i) over (X jJ),
for X in (Addl(, ColumnDifferesnce, BorrowFrom}.

Tanya

Tanya has a moderately common bug, called ‘Diff-o-N-O-Except-Aﬂer—Borrow. which merely
writes zero in the answer instead of borrowing whenever a column has zero as its top digit, and the
zero is from the original top row rather than being created by an earlier borrow that decremented a
one. This bug is represented by adding an extra condition -- that the original value of the top digit
in the column be non-zero -- to the production that initiates borrowing, and assuming that
ColumnDitference always takes the absolute difference of the digits in the column. Also, Tanya
has the same version of borrowing from zero as Janine -- see the comments m Janmo 8 section for
disZuwss;t; Tanya's scheduling strategy is aimost perfectly stable. She always uses the horizontal
convention, which completes all borrowing before doing any column-answering. This is
represemted by reversing standard preference number 8. Tanya systematically employs two
permutations of the borrowing goals. If the borrow originates in the units column, Tanya does the
Add10 first; it the borrow originates in the tens column, she does the BorrowFrom first. Only
problem 11 is an exception, and the exce‘ption may be due to a slip. Tanya’s policy on borrowing
permutations is represented by putting a condition around standard preference number 9.
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Protocols
1, 647 -1 -2 -3
- 458
2. 885 -1 -2 -3
- 205
3. 83 Al S2 D2 -1 -2
- 44
4. 8308 -1 -2 -3 -4
- 3
5. 50 -1 -2
- 23
6. 106 -1 -2 -3 <redo -3>
- 70 -1 -2 -3
Tanya first writes 1 in the units column answer, then "corrects” it to 0. Ideal
protocol leaves it as 1.
7. 716 Al S2 D2 S3 D3 A2 -1 -2 <redo -2> -3
- 598 Ideal: Al S2 D2 83 D3 A2 -1 -2 -3
Tanya rewrites her answer to column 2; the idealized protocol does not.
8. 311 Al 82 D2 S3 D3 A2 -1 -2 -3
- 214
Facts error in colurmi 1: 11-4=6.
9. 102 £1 N2 83 D* 1 -2 -3
= 3°
Facts error in column 1: 12-9=x9,
10. 9007 -1 -2 -3 -4
- 6880
11. 4015 Al S2 D2 A2 N3 -1 -2 -3 -4
- 607 Ideal: A1 82 D2 -1 -2 -3 -4
Tanya slips, starts a borrow in the tens column, but stops before completing it.
The idealized protocol omits the borrow.
12. 702 Al N2 83 D3 -1 -2 -3
- 100w < = - - ‘o
13. 208 -1 -2 -3
- 30
Siip in column 3: writes 1 in answer.
14. 100 -1 -2 -3
-__60

Ship in column 3: writes 0 in the answer.
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Production System

If the goal is (Subtract)
then for esch column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
and (OriginalTop i) is not equal to zero,
then set the goals (BorrowFrom i+l), (Addl10 i), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i..

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (WriteNine i).

If the goal is (BorrowFzrom 1),
then set the goals (Slash i), (Decremeant i).

Goal selection strategy
1. Prefer (X i) over (ProcessColumn i), for X in the set BorrowingGoals.
2. Prefer (X 1) over (ColumnDifference i), for X in BorrowingGoals.
3. Prefer (Addl0 i) over (X i), for X in (BorrowFrom, Slash, Decrement}.
4a. Prefer (Slgsh 1)'?v.; (Decrement 1i).
4b. Preffor (Slash i) év;t (Weite9 1i).
S. Preofex (ProccsuColumn i) over (ProcassColumn i+j).
6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.
7. Prefer (X i) over (ColumnDifference j), for X in BorrowingGoals.
8. Prefer (ProcessColumn i) over (ColumnDifference j).
9. If i=l or (BFriinProgress)
then prefer (X i) over (Y i+l1l) for X, Y in the set BorrowingGoals,

else prefer (Y i+l) over (X 1) for X, ¥ in the set BorrowingGoals.

10. Prefer (ColumnDifference 1) over (ColumnDifference i+j).

. M- - h

Trina

Trina has a common bug, called Don't-Decrement-Zero, which makes her borrow from zero
routine incorrect. The correct procedure is to add ten to the zero and then later to decrement;
Trina's bug omits the decrementing. Trina's strategy for processing columns is generally standard,
except on problems 9, 10 and 12. On those problems, as soon as the actions of the last possible
borrow are completed, she answers the remaining columns in left to right order. This aspect of her
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strategy is represented by wrapping a conditional around standard preference number 5. In

problem 10, she delays the column difference in the tens column, so standard preference 8 also

has a condition wrapped around it. Trina also shifts unsystematically between three permutations

of the borrowing actions, which is represented by deleting standard preferences numbers 7 and 9,

and adding a new preference, 10. The effect of the new preference is to cause slash-decrements

to be executed continguously, with no intervening actions.

Protocols
1. 50
- 23

2. 562
- 3

3. 742
- 136

4. 106
- 70

5. 716
- 598

6. 102
- 39

7. 9007
- 6880

8. 4015
- 607

9. 702
- 108

10. 2006
- 42

11. 10012
- 214
12. 8001
- 43

S2 D2 Al -1 -2
Al -1 82 D2 -2 -3
Al -1 s2 p2 -2 -3

-1 <redo -1> Al -2 83 p3
Ideal: -1 Al -2 83 D3 -3

Trina rewrites her answer in column 1, and she suppresses the answer's
leading zero. The idealized protocol does neither.

Al -1 S2 D2 83 D3 A2 -2 -3

Al -1 A2 S3 D3 -2
Ideal: Al -1 A2 £7 D3 -2 -3 U

Trina supresses the leadmg 2ero. The udeal protocol does not.
-1 A2 A3 S4 D4 -2 -3 -4

Al -1 S2 D2 -2 A3 -3 sS4 D4 -4

82 D2 Al -1 A2 83 D3 -3 -2
Ideal: Al -1 A2 83 D3 -3 -2

Trina inexplicably begins by slashing the top zero in the tens column and
“decrementing” it to zero. The idealized protocol omits these actions. Both
Trina and the ideal protocol do 10-0=0 in the tens column. That is, they both
omit carrying.

-1 A2 A3 S4 D¢ -4 -3 -2

Both Trina and the ideal protoco! omit carrying from the hundreds column.

Al -1 82 D2 A3 A4 SS DS A2 -2 -3 -4 -5

Al -1 S2 A3 84 D4 -4 -2 <Nzite 10 abnve column 2>
Ideal: Al -1 A2 A3 84 D4 -4 -3 -2
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Trina makes two slips. which the ideanzed protocol rectifies. First, she fails to
answer the hundreds column. Second, she does an S2 instead of an A2.
Apparently, she catches this error later, because her answer to the second
column is 6, indicating that she interpreted the slash mark as an Add10.
Nonetheless, she changes her slash to a "10" after she has already completed
the problem.

Production System

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i),
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference i). .

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (Addi0 4).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Deczement i).

Goal selection strategy
1. Prefer (X i) over (ProcessColumn i), for X in the set Bo:towinqcoa;s.
2, groto:, (X 1) over (ColumnDifforence i), for X in BorrowingGoals.
3 Prefear (Addl0 i) over (X i), for X in (BorrowFrom, SIash,‘_ch:"munt'}.
é. PreaZer (Slagsh i) over (Decremant 1i).
S. If (Problem {9, 10, 12})
and there is a slash-decrement in the leftmost column,
then prefer (ProcessColumn i+3) over (ProcessColumn i)

else prafer (ProcessColumn i) over (ProcessColumn i+j).

6. Prefer (X i) over (ProcessColumn j), for X in the set BorrowingGoals.

8. If (Not (Problem (10}))
then prefer (ColumnDifférence i) over (ProcessColumn j). -~

—— i

10. Prefer (Decrement i) over (X §), T
for X in {(Addl10, ColumnDifference, Borrowlrom).
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7. Appendix 2: LIFO models

This section presents LIFO models for the 8 non-standard students. The models are
expressed as hierarchical production systems. The notational conventions used in the non-LIFO
models are used here, with one moditication. If a production creates several goals, the default
interpretation is that the goals are to be completed in the order of their occurrence in the rule.
Thus, the production If C then set the goals A, B Mmeans to complete goal A before
starting to work on B. This default interpretation can be overridden by preferences attached to the
production. The production If C then set the goals A, B. If (Problem (12, 13})
then prefer B over A means to finish goal A before starting on B for all problems except
poblems 12 and 13; on those problems, goal B is to be finished before wik begins on goal
A. Similarly, the default interpretation of an action side of the form “foreach column i, set the
goal....” is to select the goals in right-to-left order by their arguments; but preferences can modify
this order. The preferences attached to a production can only mention goals that appear in the
action side of the production. Thus, this notation is strictly iess powerful than the non-LIFO
notation.

Angala

If the goal ig (Subtract)

then for cach columm i, set the goal (ProcassColumn i)
If (ColvmnSeersHard i) : . . .
then piufer (ProcessColumn i+j) over (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom i)
then set the goals (BorrowFfrom i+l), (Addl0 i), (ColumnDifference i).

If the goal is (ProcessColumn 1),
then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i) and (Top 1i)=0,
then set the goals (Borrowfrom i+l), (Add10 i), (BorrowFrom i).

If the goal is (Borrowfrom i),
then set ®Re goals—{Slash i), (Ddcrement i). ] T~

Hilda

If the goal is (Subtract)
then for each column i, set the goal (ProcessColumn i);

If the goal is (ProcessColumn i), and (Top i)<(Bottom i)

then set the goals (Slash j), (Add10 i), (Decrement j), (ColumnDifference i),
where j is the first column to the left of i that has a non-zero top digit.
If (Problem {5, 8)) then prefer (Decrement j) over (Addl0 i),

else if (Problem (7, 9)) then prefer (ColumnDifference i) over (Decrement j).
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If the goal is (ProcessColumn i),
then set the goal (ColumnDifference 1i).

Janine

If the goal is (Subtract) and (Problem {1,2,4,8}),
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom 1),
then set the goals (Addl0 i), (BorrowFrom i+l), (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference 1).

If the goal is (BorrowFfrom i), and (Top i)=0,
then set the goals (Slash i), (WriteNine i), (BorrowFrom i+l).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decremant i).

If the goal is (Subtract) and (Problem (5,6,11,12}),
then set the goals (DoAllBorrows), (DoAllAnswers).

If the goal is (DoAllBorxows),
then for each column i, set the goal (Borrow i).

If the goal is (Borrow i) and (Top i)<{(Bottom i),
then set th~ coals (Addl0 i), (BorrowFrom i+l1).

If thc gosl is (Borrow i),
then de nntlidvug.

If the goal is (QoAllAnywers),

then for each column i, set the goal (ColumnDifference 1i).

If (Problem (12})

then prefer (ColumnDifference i+j) over (ColumnDifference i).

'If the goal is (Subtract) and (Problem {3,7,9}),
then for each column i, set the goal (Vertical i).

If the goal is (Vertical i) and (Top i)=0 and (IncomingBorrow i),12
then set the goals (Slash i), (WriteNine i), (ColumnDifference i).

If tha goal is _LVQrticaf i) and (Top i)>(Bottom i) and (IngomingBorrow i),
then set the goals (BorrowFrom i), (ColumnDifference i).

If the goal is (Vertical i) and (IncomingBorrow 1),
then set the goals (BorrowFfrom i), (Addl0 i), (ColumnDifference 1i).

If the goal is (Vertical i) and (Top i)<(Bottom i),
then set the goals (Addl0 1), (ColumnDifference 1i).

'2The predicam (IncomingBorrow i) is true if there is a column -1 and either the action Add10 oF the action
WriteNine has been performed on it.
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If the goal is (Vertical i),
then set the goal (ColumnDifference 1).

Paul

If the goal is (Subtract)
then for «ach column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i) and (Top i)<(Bottom i) a1 (Top i+l)=0,
then set the goals (BorrowFrom i+l), (Addl0 i), (ColumnDifference i).

If the goal is (ProcessColumn i) and (Top i)<(Bottom i),

then set the goals (Slash i+l), (Addl0 i), (ColumnDifference i), (Decrement i+l).
If either (Problem (7)) and i=2 or (Problem (10}) and i=3,

then prefer (Decrement i+l) over (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (BoxrowFrom i), and (Top i)=0,
then set the goals (BorrowFrom i+l), (Add10 i), (BorrowFrom i).

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decrement i).

Pete

If thce goal icr (Subtract) znd (Problem {1,2,3,4,5,6,7,9},
then for each coluun i, set the goal (ProcessColumn i).
if the goal is (ProncssColumn i) and (Top i)<(Bottom i) :..& (Top i+1)=,
then set the goals (BorrowFrom i+l), (Addl10 i), -(ColumnDifference i).

If the goal is (ProcessColumn i) and (Top i)<(Bottom i),
then set the goals (Slash i+l), (Addl0 i), (ColumnDifference 1), (Decremant i+l).
If (Problem {3, 6}) then prefer (Decrement i+l) over (ColumnDifference i).

If the goal is (ProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (Borrowfrom i), and (Top i)=0,
then set the goals (BorrowFfrom i+l), (Addl0 i), (BorrowFrom i).

If tha “godl is (BSErowFrom i), T~
then set the goals (Slash i), (Decrement i).

If the goal is (Subtract) and (Problem (11, 12, 13}),
then (DoAllBorrows), (DoAllColumns)

If the goal is (DoAllBorrows),
then for each column i, set the goal (Borrow 1i).

If the goal is (Borrow i) and (Top i)<(Bottom i),
then set the goals (Slash i+l), (Add10 i), (Decrement i+l).
If (Penultimate i), then prefer (Decrement i+l) over (Addl0 i).




If the goal is (Borrow i),
then do nothing.

If the goal is (DoAllAnswers),
then for each column i, set the goal (ColumnDifference i).

Robby

If the goal is (Subtract) and (Problem (1,2,3,4,5,8,9,10,11,12,13)}),
then for each column i, set the gcal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom 1),

then set the goals (Addi0 i), (BorrowFrom i+l), (ColumnDifference i).
If either (Problem (9, 11})}) or both i=2 and (Problem {12}),

then prefer (ColumnDifference i) over (BorrowFfrom i+l),

else if (Problem (3}),

then prefer (BorrowFrom i+l) over (Addl0 i).

If the goal is (ProcessColumn 1),
then set the goal (ColumnDifference 1i).

If the goal is (BorrowFrom i), and (Top i)=0,
then do nothing.

If the goal is (BorrowFrom 1),
then set the goals (Slash i), (Decrement i).

If the goal is (Subtract) and (Problem {6,7}),
thaen (DoColumns), (FinishUp).

If the goal is (DoColumns),
then for each column i, sot the goal (DoProcessColumn 1i).

If the goal is (DoProcessColumn i) and (Top i)<(Bottom 1),
then set the goals (Addl0 i), (BorrowFrom i+l).

If the goal is (DoProcessColumn i),
then set the goal (ColumnDifference i).

If the goal is (FinishUp),
then for each column i, set the goal (CheckéAnswer i),
wvhere i goes rightward from the leftmost column.

It ﬁh‘hboal is (CheckéAnswer i) and the answer place of 1 1s blank,
then set the goal (ColumnDifference 1). .

If the goal is (CheckéAnswer i),
then do nothing. )

Tanya

If the goal is (Subtract)
then set the goals (DoAllBorrows), (DoAllAnswers).

If the goal is (DoAlliBorrows),
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then for sach column i, set the goal (Borrow i).

If the goal is (Borrow i), and (Top i)<(Bottom i),
and (OriginalTop 1) is not equal to zero,

then set the goals (BorrowFrom i+l), (Addl0 i).

If i=1, then prefer (Addl0 1) over (BorrowFrom i+l).

If thae goal is (Borrow i),
then do nothing.

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (WriteNine 1), (BorrowFrom i+l1).

If the goal is (BorrowFrom 1),
then set the goals (Slash i), (Decrement i).

If the goal is (DoAllAnswers)
then for each column i, set the goal (ColumnDifference i).

Trina

If the goal is (Subtract) and (Problem (1,2,3,4,5,6,7,8,11})
then for each column i, set the goal (ProcessColumn i).

If the goal is (ProcessColumn i), and (Top i)<(Bottom 1),

then set the goals (Addl10 i), (ColumnDifference i), (BorrowFrom i+l).
If either (Problem (1}) or both i=2 and (Problem {(5,1l1l}),

then prefer (BorrovFrom i+l) over (Addl0 i),

else if (Probleu {7}), . . .
tiien prerfer (BorrouwFrom i+l) over (ColumnDifference i). - e’
if the goal i¢ (ProcessColvmm i), . - " -

then set the goal (ColumnDifference i).

If the goal is (BorrowFrom i), and (Top i)=0,
then set the goals (Addl0) i). (BorrowFfrom i+l)

If the goal is (BorrowFrom i),
then set the goals (Slash i), (Decremant i).

If the goal is to (Subtract) and (Problem (9,10,12}),
then set the goal (RacursiveSub 1).

If the goal is (RecursiveSud i) and the leftmost column has a slash in it,
then 3% €¥ich coluhn i, set the goal (ColumnDifference i), whale
1 goes from the leftmost column to the rightmost unanswered column.

If the goal is (RecursiveSub i) and (Problem {10}) and i=2,
then (Adal0 1), (BorrowFrom i+l), (RecursiveSub i+l).

If the goal is (RecursiveSub i),
then set the goals (ProcessColumn i), (RecursiveSub i+l).
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