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The Cartesian magnetically insulated transmission line (MITL) theory of Mendel et aL. [Appl.
Phys. 50, 3830 (1979); Phys. Fluids 26, 3628 (1983) ] is extended to cylindrical coordinates. A /ccessY-T Fo
set of equations that describe arbitrary electron flows in cylindrical coordinates is presented. -- . -

These equations are used to derive a general theory for laminar magnetically insulated electron NTIS C7 , .I

flows. The laminar theory allows one to specify the potentials, fields, and densities across a DT IC T.

coaxial line undergoing explosive electron emission at the cathode. The theory is different from UJann c d D7
others available in cylindrical coordinates in that the canonical momentum and total energy Ju .if ic at i on_
for each electron may be nonzero across the electron sheath. A nonzero canonical momentum
and total energy for the electrons in the sheath allows the model to produce one-dimensional By
flows that resemble flows from lines with impedance mismatches and perturbing structures. Distribut I on/
The laminar theory is used to derive two new self-consistent cylindrical flow solutions: A -A
(1) for a constant density profile and (2) for a quadratic density profile of the form Availability Code

p = p, [(",, , - r,)/(r, - r,)]. This profile is of interest in that it is similar to profiles Avail and/or

observed in a long MITL simulation [Appl. Phys. 50, 4996 (1979) ]. The theoretical flows are Dist Special

compared to numerical results obtained with two-dimensional (2-D) electromagnetic particle-
in-cell (PIC) codes.

I. INTRODUCTION duced. In many pulsed power systems, prolate, curtate, and
laminar orbits dominate because of inherent field nonuni-

Magnetic insulation is essential in the operation of large formities resulting from unavoidable perturbations in the
pulsed power systems. This applies especially to systems magnetically insulated flows.
with electric fields greater than approximately 20-50 MV/ There are three different types of magnetically insulated
m' because explosive electron emission occurs from surfaces (cutoff) flows3 referred to in the literature: (I ) self-limited,
subjected to such fields. These electrons will quickly short (2) load-limited, and (3) constant-flux-limited flows. Load-
out the system in the absence of magnetic insulation. There- limited magnetically insulated lines are of particular inter-
fore insuring magnetic insulation in large pulsed power sys- est. An example of load-limited magnetic insulation is
tems is necessary for the transmission of the pulse to the shown in Fig. 1. The current passing through the system is
load. limited to that which passes through the load and is responsi-

The principle of magnetic insulation is to externally ap- ble for the insulation of the upstream region.
ply or self-consistently generate magnetic fields that act per- In the following, the theory of magnetically insulated
pendicular to the electric fields found in the system in order
to confine the electrons. An example of magnetic insulation
for a self-consistently generated magnetic field in a coaxial INSULATOR
geometry is shown in Fig. 1. The current flowing in the sys- V-To ANODE 1,
tem ( generates a - B, field. The electric field is in LAMN ORBI

the minus " direction. As a result, the electrons emitted from EE PRATE ORBIT//////J E4GE / PROLATEr ORBIT

the cathode plasma sheath are pulled by the imposed electric
field toward the anode. However, the magnetic field redi-
rects the electrons back toward the cathode by means of

YXB forces. Therefore the electrons EXB drift in the + z v-0 CATHODE -le
direction while being magnetically insulated away from the
anode. In Fig. 1, various electron orbit types are shown.2  GAP
They are classified as common, laminar, curtate, and pro-
late. If the electrons are emitted from the cathode into a
region in which the fields are uniform in z and the electrons
initially have zero velocity, common orbits result. However, FIG. I. Electron orbits in magnetically insulated flow. The primary elec-
if the electrons are born in regions of nonuniform time vary- tron orbits are shown along with the directions of the anode (I.), cathode
ing fields, prolate, curtate, and laminar orbits can be pro- (,), and space charge (I,) currents in a cylindrical geometry.
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electron flows in cylindrical coordinates is extended to in- nonical momentum and total energy, taking into account a
clude flows with arbitrary distributions of canonical mo- variety of electron orbits.
mentum and total energy (corresponding to self-limited and Many other papers have been written in the more math-
load-limited flows). In Sec. II, the basic physics governing ematically tractable Cartesian coordinates 12- 17; unfortu-
the theoretical developments is presented. In addition, ex- nately, a majority of experiments and applications involving
pressions for the drift velocity and sheath edge fields for elec- magnetic insulation utilize cylindrical electrode geome-
tron flows with arbitrary electron orbits are obtained, tries. 11-21 In practice, cylindrical systems can be rather accu-

In Sec. III, laminar electron flows are considered and a rately approximated by a Cartesian theory up to a vacuum
general theory governing such flows in coaxial geometries is impedance of about 15 fl. For impedances larger than this
derived. It is found that for all laminar coaxial flows the cylindrical effects must be considered. For this reason, it is
relativistic factor for electrons at the sheath edge is given by desirable to carry out new theoretical developments in cylin-
y, = I,1lc. This is consistent with laminar and quasila- drical coordinates. Creedon and Wang were able to extend
minar flows previously obtained.4 5  the laminar Brillouin flow theory to cylindrical coordinates.

In Sec. IV, the laminar theory is used to derive two new Bergeron did some nonrelativistic single species analysis of
flow solutions: ( 1) a constant electron density flow and (2) quasilaminar flows in which he showed that an equilibrium
a flow with a quadratic density profile of the form solution did not exist in the case of an inner cathode. In
p pP [ (r,, - r:)/ ( r , - r,) I (corresponding to a long addition, he did two species work in coaxial geometries in
magnetically insulated transmission line (MITL) simula- which he developed a computational scheme capable of pre-
tion 6 ]. In addition, it is shown how the Brillouin flow solu- dicting self-consistent flows in the regions in which an equi-
tion can be easily obtained from the general laminar theory. librium solution exists. His model is also capable of predict-
Finally, the flow solutions are compared. ing the regions of existence or nonexistence of a solution. 26

In Sec. V, results from a particle-in-cell (PIC) code that Swegle attempted to extend the relativistic single species
emphasize the importance of laminar non-Brillouin flows work of RMR to cylindrical coordinates, but once again
are presented. Then the flow solutions are compared to PIC found that an equilibrium "quasilaminar flow solution" did
code simulations of coaxial load-limited magnetically insu- not exist.27 In an APS talk,2" Rosenthal and Mendel present-
lated transmission lines (MITL). The constant density and ed a pressure balance analysis in cylindrical coordinates and
quadratic density MITL solutions match the PIC code re- were able to obtain voltage contours for nonlaminar MITL
sults more closely than the Brillouin flow solution. In Sec. flows with constant electron density profiles. This consti-
VI, a summary of results is presented. tutes the first step in extending Mendel's Cartesian theory to

cylindrical coordinates. This paper extends more of Men-
II. GENERAL THEORY del's work' to cylindrical coordinates in a form that pre-

The theory of magnetic insulation begins with Hull's serves information previously lost in the pressure balance

first Cartesian, nonrelativistic single-particle treatment of approach. It also presents a general theory governing lami-

magnetron cutoff.7 In addition, much early nonrelativistic nar magnetically insulated electrons flows in coaxial geome-
in this area by Brillouin (Brillouin flow the- tries. The laminar theory is different from others presentedworkwas onein cylindrical coordinates in allowing the canonical momen-

ry).' Relativistic, self-consistent, Cartesian treatments be-

gan around 1973 when Lovelace and Ott found a condition tum and total energy of the electrons to be nonzero across

governing constant-flux magnetic insulation of a diode.9  the flow.

Also, at about this same time, Ron, Mondelli, and Rostoker
(RMR) developed the "quasilaminar flow theory" employ-
ing common orbits (see Fig. 1) in Cartesian coordinates."0  A. Basic physics
In the work of RMR, it is assumed that the total energy and The electron flows in MITL's are often relativistic and
canonical momentum of each electron is equal to the total collisionless. This is true for the electron flows being consid-
energy ( W = 0) and momentum (P, = 0) of an electron on ered here. Therefore the relativistic Vlasov equation is used
the cathode. With this assumption, they find the electric and as a starting point for theoretical developments. It is given by
magnetic fields across the sheath, which are expressed nicely Eq. ( 1):
in terms of elliptic functions. A laminar flow theory for mag- a a
netically insulated transmission lines (MITL) was present- , + v - - e(E + vXB) --- (xp,t) = 0.
ed by Creedon in 1975 for Cartesian, cylindrical, and conical Ax
geometries.4 This theory also assumes that the total energy The relativistic electron momentum is
and canonical momentum of all electrons across the flow are p = ymv (2)
equal to zero. It is commonly referred to as the Brillouin flow and the relativistic weighting factor is
theory.'" Wang, in 1977, using a simple transformation,
showed how the equations governing Brillouin flows could y= I - v .v/c) '. (3)

be transformed into Laplace's equation." This allows for Here v is the directional velocity of the electron.flx,p,a) is
2-D (arbitrary cathode/anode cross sections) Brillouin the electron distribution function, E is the electric field, and
flows that are independent of the flow direction. In 1979, B is the magnetic induction.
Mendel' proposed a theory in Cartesian coordinates that The E and B fields are self-consistently determined via
allows the electrons to have arbitrary distributions of ca- Maxwell's equations:
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V- B =0, (4) VXA= ('A,-aA). (10)

VXB = - eofd3pvf+ - E, Since there is no electron flow loss in the radial direction

there is no net radial electron flow as a function of r. This is
VEf pf (6) because for every electron moving toward the cathode there

Co is one moving toward the anode in every microscopic volume

VXE= d B (7) element. As a result A, = 0. Therefore

Assuming a steady-state solution allows one to drop the de- B(r)b= - A)Y (11)
rivatives with respect to time in Eqs. (1), (5), and (7). r

The physics embodied in the relativistic Lagrangian will
be the basis for much of the following. The relativistic La- VXB = V'AZ, =/zoJ. (12)
grangian is To solve Eqs. (9) and (12) simultaneously requires a

L = - mc 2/'y + eq(x,t) - ev . A(x,t), (8) knowledge of the electron density and the current distribu-

where q)(x,t) is the electrostatic potential and A(x,t) is the tion defined in terms of the canonical momentum and total

vector potential. energy. First the canonical momentum and total energy will
be defined using the cylindrical Lagrangian:

L = -MC2[l _- ( 2 + ;2)IC
2 ]11/2 + eT(r) - eA, (r).

B. Gauss' and Amptre's laws in terms of the total (13)
energy and canonical momentum The z component of canonical momentum and momentum

The nature of the problem to be solved is shown in Fig. are, respectively,
1. A voltage difference (in the MV regime) is set across a dL
coaxial transmission line and after a few nanoseconds a qua- P = - = mrz - eA, (r) (14)
siequilibrium magnetically insulated state is established. di

The electrons that are emitted from the cathode in a space- and
charge-limited (E, = 0) fashion enter a variety of orbits; P= myi = p . + eA. (r). (15)
common, curtate, prolate, laminar, etc., depending on nonu- The r component of canonical momentum and momentum
niformities in the fields.

Since the net flow of current inside the transmission line
is in the - . direction (Fig. 1), and there is azimuthal sym- L(16)
metry, the magnetic field between the anode and cathode Xr

will be an r-dependent field in the b direction: B = B(r) 9. In The total energy is easily shown to be
addition, the gradient of the applied potential yields an r- (17)
dependent electric field: E = E(r) . Because an equilibrium w = (, - 1 )mc2 

- eq(r).
state is being considered, all time-dependent terms are Now, the electron density with canonical momentum
dropped at the start of the theoretical development, between p, and pc + dp,7 and energy between w and

Now, applying Gauss' law [from Eq. (6)] in conjunc- w + dw at r is (from conservation of charge)
tion with the relativistic Vlasov equation [Eq. (1) ] implies dn(pc,w) 1 21j(pc ,w)i
(note that the following derivation partially extends the Car- (18)

tesian treatment 2'5 of Mendel et aL. to cylindrical coordi-
nates) where I j(p,w) I is the one way current density per momen-

tum interval per energy interval per radian (in azimuth)
V. E =Vq(r) normalized to m2c3 . The factor of 2 comes from realizing

p(r) = e P, f(. P (9) that for every charge moving in the + ?direction there is one
r = f dp, f p moving in the - direction. Here is a funct on p, and w

where V~ 1/r){I (d dr)t[ r(.3/ldr) I (r) is the poten- and is given by [see Eqs. (14) and (16) ]

tial as a function ofr across the transmission line, p(r) is the = - i = - (c/y) 2 (p,. + eA. -. (19)
electron charge density, E, is the permittivity of free space, e Substituting in Eq. (3) and eliminatiTg v2 gives
is the electron charge, p, andp, are the z and r components c 22 (p,., + eA, )2]

1 /2
of momentum, respectively, andf(pr,pz ) is the phase space k= + (20)
electron density. Y m )2  1 -m"/(2

It is also true that if B = B(r)0 then Substituting (20) into (18) implies

dp(p~,w) = -edn(p, 2 ,w) = - 2Ij(pc2w) I(w + + mc2)dp w d2
(mC)3r{[(w+eq,+mC 2 )/mC2 ]2_ I - [(pr. +eA,)/mcI 2 "2  (21)

The current density per momentum and energy interval is dp times z(r). When one defines z(r) in terms of the total energy
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and canonical momentum [from Eq. (14) 1 the current density is given by

d (P~,W = - 2 (pC, + eA,) Ij(pz,w)dp,, dw
m(mc 2 )2r{[ (w + eq + mc 2)/mc 2]2 - I (pc' + eA 2)/mc]

2 }1 / 2

Now, from Poisson's equation and Eq. (21 )

2 ff I [(pz,w)I(w + e + mc2 )dpc, dw

S+ r{[(w e+mC 2)/mC2 2 - 1- [(p + eA)/mc / 2  (23)

From Amp~re's law, the restrictions placed on the electron flow given earlier in this section, and Eq. (22), one obtains

V2 2 f f Ij(p,w)I(p, + eA)dpc dw
2 ,  = E0(mc

2
) 

3  r [(w+e7+mc2)/mc2]2 - 1 - [(pc +eA,)/mc] 2}1 1/ 2  (24)

The electron distribution function is defined to be where the subscripts m and c refer to the sheath edge and

2 cathode radii, respectively. Now, assuming space-charge-
F(pm,w) =  , Ij(p,w)l. (25) limited emission, Ec = 0. If one then writes Eq. (31) in

terms of the anode and cathode currents with
One should also note that in Eqs. (23) and (24), the inte- B = pI./2irr, and Bc =pJ/21rrc (by Ampere's law,
grals are performed in the canonical momentum and energy where I, is the cathode current and I. is the anode current),
phase space. The variable r is independent of this space and
can be pulled out of the integrals. In order to avoid rewriting E, = C/I° (I2 _2 )I/2
the large integral arguments of (23) and (24) the following 27rr, a

definition is given: x[l 1 2

--A2f/[ W + eq? + MC _IW _12 ', (32)
G(.(A ,'w)[ m ")2mcp 1 w ( meoC ( 12 --- IC)

A 1 
1/2where E. is the electric field at the sheath edge (r,). It is

CZ /j 1  dp,, dw. (26) also true that if the electron charge per unit length is r, then

Fr= 21rmrEm, Ud Fr= Io-
This allows one to write (23) and (24) as

and therefore
S1dG(q,A) (27) Em, = [(I. -- I)/2rEor. v-], (33)
r 

Vd

and where vd is the average drift velocity of the electron flow.

C2V I G(q,A28) From Eqs. (32) and (33) one sees that

r A -= c( 1. -I1 2 - 2T (34)Now, multiplying Eq. (27) by dq. /dr and Eq. (28) by vd + (Co (Io- 1)

- dA dr and adding (with d )dr=' ) gives I. +)J - (
- dA,/dr and adding with d/ ;)2 geIt is also obvious that the electric field at the anode is given

[r(q'2 - (cA ;) 2 )], + [,_(cA) 2 ] = 2G'. by

Noting that = - E(r) and that A = - B (r) = - B E. = r.E,./r. (35)
allows one to recast this equation as follows:

[r(E 2 - (cB) 2)] '-+ [E 2 - (cB) 2 ] = 2G'. (29) I LAMINARTHEORY
Another useful equation in the following work is obtained by Up to this point, the theoretical developments have ap-
multiplying Eq. (29) by rand regrouping: plied to all types of orbiting electrons. From this point on,

[r2(E 2 - (cB) 2 )]' = 2[(rG)' - G 1. (30) laminar electron flows are considered. Laminar flows are

characterized by electrons that have a zero r component of
C. Expressions for drift velocity and sheath edge field velocity. For laminar flows, the integrand of G [ Eq. (26) 1 is

From the above, it is possible to obtain expressions for zero; therefore P, must be zero. Flows for which P,,, is ap-
the electron drift and sheath edge electric field regardless of proximately zero may be common in numerical and real
the electron orbit types. First, integrating Eq. (30) from the world experiments. A few MASK 2' calculations have been
cathode (r,.) to the sheath edge (r,,) yields done in the 2 MV regime that indicate that often the electron

r., [E - (cB,) _ 2 E - (cB, )2 drift velocities and fields only differ by a few percent from
)] r[the laminar flow values. This is discussed in more detail in

- 2 Gdr - P, (31) Sec. V, where the MASK calculations are presented. These
Jr simulations partially justify setting P, equal to zero and de-
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veloping a general laminar flow theory. is simply the total charge (q) in the sheath per unit length in
The laminar nature of the electron flows observed with z. From Eq. (32) with P. = 0 and Gauss' law the total elec-

MASK (discussed in Sec. V) in cylindrical coordinates is con- tron sheath space charge per unit length is given by
sistent with MAGIC 30 two-dimensional electromagnetic PIC (42)
code results done in Cartesian coordinates at Sandia. In the a =

Sandia simulations, it was found that MITL flows in Carte- Substitutingf(r,) 1 and q into Eq. (40) results in

sian coordinates are laminar in nature but non-Brillouin °  V(r,) = c(I, - IC ) /2,
By non-Brillouin it is meant that the canonical momentum which when substituted into the relativistic factor evaluated
and total energy of the electrons are nonzero across the elec- at the sheath edge results in
tron sheath. The assumption of a canonical momentum and
total energy equal to zero across the sheath is fundamental to Y,= /Ic, (43)

the well known Brillouin flow theory. In this paper, the non- as expected.
Brillouin nature of the flow is ascertained in cylindrical co-
ordinates by examining a laminar flow and comparing it to
the Brillouin solution of Wang and Dicapua.3 " In order to B Laminar flow equations
more accurately model laminar MITL flows in cylindrical
coordinates a theory is developed in the next section that Given a density profile and the corresponding velocity
allows for nonzero canonical momentum and total energies profile [ Eq. (40) 1, the self-consistent MITL flow solution is
across the flow. easily obtained via Maxwell's equations. The resulting equa-

tions are collected below in a convenient form. Given the
charge density [p(r) I and the velocity [from Eq. (40)] the
current density is

A. Presentation of general laminar flow theory

The general theory is obtained via an interesting relation p(r)v(r). (44)

between the density and velocity profiles for relativistic The electric field is

MITL flows. A specification of the density profile implies a .fr p(r)r dr f(r)
particular velocity profile and vice versa. This was first pre- E(r) - r = r,,Er (45)

sented in a rather long derivation by one of the authors) 2 A Er p
much simpler derivation is presented here utilizing Eq. (30) wheer =0 ecase The cathodi a echage pi-
and Gauss' law. First, integrating (30) from the cathode to tedtemit
some arbitrary r with G = 0 implies tential is

(rcB)2 = (rccB,) 2 + (rE)2. (36) q(r) = - E(r)dr, (46)

From Gauss' law one obtains
where q(r, ) is chosen to be zero. The magnetic induction is

rE = c - fprdr = r,,E,,j(r), (37) simply written as

which from (36) is B(r) = / (- j(r)rdr +
= (r,cB, )2 -_ (rccB,) 2]'112f(r). (38) r( 1

However, Eqs. (36) and (37) allow one to express B(r) even

Finally. one notes for laminar flows (dridr = 0) that more simply:

v(r) = E/B. (39) B(r) = (/.L//2rr){l + [(I2 1I/)/I2f(r)}"
/29.

Therefore, if one substitutes Eqs. (36) and (38) into (39), (47)
the following equation results: The vector potential is

v(r) = C{(12 - I2)f(r)2/[I + (I2 - PI)f(r)21} 11 22,(40) A(r) = -j B(r)dr., (48)

where I is the anode current, I is the cathode current, andf(r) is the normalized weighted density profile and is given where A (r,.) = 0 is chosen to equal zero at the cathode.
y iNow, from Eqs. ( 14), (17), (38), and (40) the canoni-by cal momentum and total energy of electrons at rare given by

=fp(r)rdr () p,, (r) = myv(r) - eA(r)
A~r) = £,p( .(41)

f,,p(r)rdr = mc[ rE(r) /rcB,1 -eA(r). (49)

The total energy is
An interesting result easily proved using the above rela- w( r) = - mc2{ I - [I - v2 ( r)/c 2 I - 1/2} - eq( r)

tions is that y,. = 1.o/1 at the sheath edge for all cylindrical
laminar flow solutions. First one needs to note that = mc2 [rB(rS/r B, - !] - eq (r). (50)
r(rm ) = I at the sheath edge [see Eq. (41) 1. In examining If the sheath edge radius (r,.) in Eq. (41) is unknown it
Eq. (41) one needs to realize that the integral 2rf"p(r)rdr is easily found given I., I, the applied voltage across the gap
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(Vo),and Eqs. (40), (45), and (46). From an experimental q(r) = (Jp1/4E0)[r' - r - 2 ln(r/r,)], (55)
point of view, it is much more desirable to have the MITL E(r) = [ - IPI(r 2 - r,)/2Eor] , (56)
flow as a function ofI, I<, and V rather than I, I, and r,,.
This is because the applied voltage across the diode is usually A (r) = - (/so//2izr)K r), (57)
known, but the outer sheath edge radius of the electron flow and
is not. 1 _JB(r) = [(12 12)( J .2 + 0 O, (58)

IV. LAMINAR THEORY APPLIED-TWO NEW where
SOLUTIONS

In order to demonstrate the general theory of laminar K(r)= 1 [(x) + bln[2o 2 p(X) +2ax+b
flows an outline of how one obtains the Brillouin flow solu- 2 P /2

tion from the above is included. Then two new MITL flow 1/2 2c V' 2P(x) + bx + 2c, ]2r

solutions are derived. The theory is used to generate a new - c, In( x )J2r2, (59)

self-consistent cylindrical MITL flow solution for flows with
constant density profiles. This is done because in simulations P(x) = (ax2 + bx + c()6 2 a- =/4,0)
of short MITL's, quasiconstant density profiles were ob- b - c3 r. cI = c3re, + 1,
served. The theory is then used to produce a new analytic C= [(2 _ J2 )/21 (r

2  
r22

.  (61)
flow solution similar to that observed in a long MITL simu-
lation. 6 The density profile is given by a quadratic: In a like manner the fields and flow quantities can easily be. The~ densit p/rofile is g~.Finy he constatic: obtained from the sheath edge to the anode (r,, <r<r. ).p = p c [ ( r L, - r 2 ) / ( r 2 . - r ) I . F in a lly , th e c o n s ta n t d e n -N e t o n m u t c si r t h el t o n d s t y p f l .sity and Brillouin flow results are compared to a MASK simu- Next, one must consider the electron density profile.
sitylatond (Se. low eshrts I .coadto, ta quadratic Thus far, all that is known is that it is constant out to thelation (Sec. V) of a short MITL. In addition, the ua sheath edge where it drops to zero. The magnitude of the
MITL flow solution is compared with a long MITL simula- electron density and the sheath edge radius can be self-con-
tion. sistently determined from the theory. The electron density is

A. Outline of the Brillouln flow derivation obtained from Eqs. (32) and (56) evaluated at the sheath
edge, which gives

As a check on the theory of laminar flows derived in the e w
previous section, one can use it to derive the well known p = - (I . - 2 I )I 2/cmr( r, - _). (62)

Brillouin flow theory. Starting from Eqs. (26) and (29), The sheath edge radius (r,,) is obtained by equating the
while restricting the canonical momentum and total energy expression for the potential at the anode to the anode voltage
of each electron equal to zero, it is easy to show that the (V ). The resulting expression is
Brillouin density profile will have the following form:

p(r) - (mc 2iE /e)(A 2 1r2)cosh[A, In(r/r)].( r-- )- I = ]

(51) 
r

From Eq. (51 ), Eq. (41) becomes . exp .5- 2reoc V0 . (63)
f(r) = sinh [, .ln(r/r,)]/sinh [A,, In(r,,/Ir)] (52) rc (1 c¢

Withf(r) given, the velocity is obtained from Eq. (40), the Therefore r, is obtained iteratively given the anode and
current density from Eq. (44), the electric field from (45), cathode currents, along with the anode and cathode radii,
etc. If one carefully compares the resulting equations to and the voltage difference across the diode. Once r,, is
those described by Wang and DiCapua3  it can be seen that known all other quantities defined in Eqs. (53)-(62) are
the formulation and source of the constants is different but given. In typical experiments r., r, I., and V. are known; I,
the Brillouin flow solution is reproduced. is a little harder to obtain, but can be found using a magnetic

probe next to the cathode. 3

B. Constant density flow

In various MASK calculations of short MITL's (Sec. V),
it has been noted that the density as a function of radius is C. Quadratic flow
often relatively constant out to the sheath edge, where it In 1979, Bergeron and Poukey' presented PC code re-
drops to zero. For this reason, a self-consistent MITI flow sults showing the electron density profile for long MITL's.
solution for a constant density profile is given below in de-tail. Substituting a constant density profile into relation (41) The density profile is non-Brillouin in nature. In this section,
tand. employtuing Eqst40)andensity (45) ) beat n (4 p the long MITL density profile is approximated by a quadrat-and employing Eqs. (40) and (45) -(48) between rc, <r< r, ic:
result in

f~)=('-r'1r ,,(53) P)=,[(1. llr- l (64)

v (r)- ( - ) (r- _ ) 1 2 2 This relation is used in conjunction with Eqs. (40)-(50) toa { a c derive a self-consistent flow solution. In the region r ,r<r,,

X (r 2 _ l)I + i (r2 _ r2)2] L  (54) f(r) is given by
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f(r) = [r2(2r,, - r2) - r,(2r2, - r,)]/(r. --. 2)2 = -2.43x 104 A,

(65) Va 2.49x 106 V,

This quickly yields the velocity, current density, and electric ra = 0.08 m,
and magnetic fields. To determine p, we need only evaluate r, = 0.07 m.
the relation for the electric field [integral form of Eq. (45)1 The reason for comparing the flow solutions here is in order
at r and set it equal to the E. given by Eq. (38). Following that one might see the differences in the flow solutions when

all are applied self-consistently. In Sec. V, when the theory is
= - (2/er) [ (12 - I ) /2/(r2, - )]. (66) compared to MASK simulations the Brillouin flow solutions

To determine the sheath edge radius one integrates minus cannot simultaneously match the currents and potentials ob-
the electric field from the cathode to the anode and sets the served in the simulations. This, of course, stems from the fact
potential thus obtained equal to the potential applied at the that the Brillouin flow solution is completely determined
anode. The resulting equation can be solved iteratively for rm given the anode and cathode currents. The good thing about
and is given by this is that the Brillouin solution can be used to predict the

( -3(/r anode voltage given the anode and cathode currents (or giv-
,) _.exp I C r) en any two it can predict the third). The bad thing is that we

) 4[ (r2/Irc2)- Imay have trouble using it to match experimental and simula-

ra - 2 7rEo V c tion results (to within a few percent, see Sec. V B) that have
= exp 2 - 1/2 . (67) electrons whose canonical momentum and total energy

\\ acJ C change as a function of r, and therefore have non-Brillouin

With r_ determined by (67) self-consistent solutions for density and field profiles as well as differing values of the
flows with quadratic electron density profiles are obtained, anode potential (given the currents).

In the following we note the similarities and differences
D. Comparison of the three flow solutions in the three MITL solutions. In Fig. 2(a) the charge densi-

In the following, the Brillouin flow, the constant, and ties as a function of radius are compared. The Brillouin flow
the quadratic density MITL solutions are plotted together. is the flow with the smallest sheath edge radius and most
The charge and current densities are shown in Figs. 2(a) and charge out close to the sheath edge. The quadratic MITL
2(b), respectively. The different MITL solutions have the flow has the largest sheath edge radius and most charge next
following inputs: to the cathode. In Fig. 2(b), the greatest peak current den-

Ia = 4.5 X 10' A, sity corresponds to the Brillouin flow and the lowest peak
density corresponds to the quadratic MITL flow solution. It
is also interesting to note that the peak curreni deusity oc-
curs at the sheath edge for the constant density and Brillouin

00- flows, but about one-third of the way between the cathode
and sheath edge for the quadratic MITL flow.

Z j The electric and magnetic fields follow from the density
-04- . profiles. As predicted by Eq. (32), with P_ equal to zero, the
-06 "electric fields are the same from the outermost sheath edge to

Z
"080 - 4 - BRILLOUIN the anode. By Ampre's law the magnetic induction will be
o- CONSTANT the same at the cathode and the same from the outermost

., I, • QUADRATIC Isheath edge to the anode.
-02L

LI (a)

-04'
0070 0072 074 RM076 0078 0080 V. LAMINAR THEORY COMPARED TO SIMULATIONS

A computational tool based on Eqs. ( 1 )-(7) is used to
help justify the theoretical developments of Secs. II-IV. It is

o ... the two-dimensional electromagnetic particle-in-cell (PIC)
j 1 "*oV 10.. code MASK. 29 First, it is used to generate electron orbit his-

... i.."tories in typical load limited MITL's. These orbits are seen
to be very laminar in nature (Fig. 3). In addition, Table I
presents a few MASK calculations done in the 2 MV regime

-D 200-"- BRLLOUN showing the percent difference of MASK's anode electric field
Z CONSTANT from the laminar theory predictions. Then, Eq. (30) is usedS-250- *QUADRATIC

QUADRATIC to evaluate, as a function of racross the MITL. the difference
o-30- - IN] between MASK simulation (#5) and an arbitrary laminar

0070 0072 0074 0076 0078 000 flow (Fig. 4). The differences are once again small (except
R(MI at the sheath edge), which partially justifies developing a

FIG. 2. Comparison of the charge and current density profiles for the Bril- general laminar flow theory. After checking simulation # 5
Iouin, constant density, and quadratic MITL flow solutions, to see that a laminar flow should model it well (data in Table
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FIG. 3. The MASK semilaminar flow (simulation #0). FIG. 4. Comparison of the quantity rP(c'B' - E 2) from MASK (dashed-

dotted curve) to what would be expected for a pure laminar flow [(rccB, )2
-the solid line] from the cathode to the anode.

I and Fig. 4), its electric field and magnetic induction pro-
files are compared to the Brillouin and constant density flow
profiles (Fig. 5). Finally, the quadratic MITL flow theory compared to the laminar flow predictions. Even for MITL's
is compared to a simulation performed by Bergeron and with tightly trapped flows, load impedance one-third of self-
Poukey (Fig. 6).6 limited impedance of the line, the anode electric fields only

differ by 6% or 7% (see Table I) from the laminar flow
A. Laminar nature of electron orbits solution. In examining the results of these MASK calculations

The laminar nature of electron orbits in a MITL is it appears that the smaller the load impedance (the closer I
shown in Fig. 3. These electron orbits were generated using comes to I. ), the larger the difference between the MASK and
the PIC code MASK. The figure corresponds to an axial slice laminar flow predictions (see % Diff of Table I). This in-
of a coaxial symmetric system with an interior cathode. The crease in % Diff has been noted to correspond to a larger
potential ( Va ) across the cathode/anode gap is 2 MV, the percentage of electron orbits with smaller Larmor radii in
diode gap (d. ) is 0.02 m, the cathode radius (re) and anode the calculations. This is not surprising when one notes that
radius (r.) are 0.025 and 0.05 m, respectively, and the anode the magnetic fields increase with decreasing loads (Z,). The
current is 7.97X 104 A. increase of structure in the flow should cause P. (which is a

It is clear that many of the emitted electrons are travel- measure of the laminar nature of the flow) of Eq. (31 ) to
ing 0.15-0.2 m before returning to the cathode. For common increase and as a result reduce the anode electric field from
orbits (see Fig. 1), the electrons will travel approximately the expected laminar flow value. This is what one observes in
two Larmor radii in the i direction before returning to the Table I. Nevertheless since it is often desirable to run pulsed
cathode. For this problem, the average Larmor radius is ap- power devices with the largest possible load impedance
proximately r, = 0.0035 m. This means the electrons are while maintaining insulation, researchers often work close
traveling approximately 60 Larmor radii in the 2 direction to the magnetic insulation limit of the MITL.3 '," In this
before returning to the cathode. The electrons have little region, the laminar theory's prediction of the anode electric
average radial momentum, and the flow is fairly well ap- field (Eo) differs from MASK by about a percent or less.
proximated by a laminar flow. Here Z-dependent electric Simulation # I of Table I illustrates the situation in which
field gradients along with a variety of other perturbations the MITL is operated at the magnetic insulation thresh-
can result in such laminarlike flows. old.31' 32

The laminar nature of the electron orbits cited in the Finally, by integrating Eq. (30) from the cathode to
above example was typical of a large number of MASK simu- some arbitrary r in the sheath, the difference between a lami-
lations done in cylindrical coordinates. In Table I, the anode nar flow as a function of r and a PIC code simulation MASK
electric field for several calculations in the 2 MV regime are simulation # 5) is presented. These results are shown in Fig.

TABLE 1. A comparison of the anode electric field obtained by MASK to that obtained using the laminar flow theory. These simulations are for a cathode
radiu .f 0.025 m, anode radius of 0.05 m, and an applied potential of 2 MV. Here Z,/Zo is the ratio of the load impedance over the line impedance. As this ra-
tio decreases for the given voltage, it appears that the validity of the laminar flow assumption also decreases.

Laminar
Simulation 1. (A) 1, (A) ZI/ o  E. (V/m) E. % Diff

I 7.96x 10' - 3.5X 104 0.6 - 8.5X 10' - 8.6X 10' 1.0
2 9.85X 104 - 8.4X 10' 0.5 - 6.3x 10' - 6.2)X 10' - 1.6
3 1.324X 10 - 1.215X 10' 0.36 - 6.Ox 101 - 6.3x 10' 5.0
4 1.56x 105 - 1.46x 10' 0.31 - 6.1 x 10' - 6.6X 10' 7.5
5 8.50X 10' - 5.81 X10' 0.57 - 7.5x 10' - 7.4X 10' 0.8
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C)-00-
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to 0.50 -BRILLOUIN
x CONSTANT DENSITY FIG. 6. Long MITL simulation3

" versus theory. (a) Charge density. (b)

o MASK Current density.

(b)-0.60,

0.0250 0.0300 0.0350 0.0400 0.0450 0.0500 often be appropriate and give results to within a few percent
RADIUS (M) of the simulation (except perhaps at the sheath edge). As

indicated in Table I, the laminar theory appears to be less
FIG. 5. A MASK short MITL simulation (#5) versus theory. (a) Electric applicable with tightly trapped flows (Z 1/Zo less than one-
field. (b) Magnetic induction. half the magnetic insulation threshold valuc).

B. Comparison of Brlllouln and constant density
solutions to a MASK simulation

4 and are representative of several MASK simulations. For
laminar flows (G = 0) Eq. (36) implies In many short cylindrical MITL simulations, nonuni-

r2 (cB 2 - E 2 ) = (rccB 2. (68) formities in the electric fields (usually E,) sometimes result
in laminar flows with density profiles that are nearly con-

Now, the electric and magnetic fields along with r for simu- stant. In the following, MASK simulation # 5 is compared to
lation # 5 are substituted into the left-hand side of Eq. (68) the constant density and Brillouin flow theories. The electric
and are compared to the constant (rcB )2. If the MASK field and magnetic induction are compared as seen in Figs.
simulation electron flow is completely laminar the difference 5 (a) and 5 (b), respectively. The simulation gave the follow-
between the left and right side of Eq. (68) would be zero. In ing boundary conditions:
Fig. 4, it can be seen that for simulation #5 excluding the
sheath edge region the percent difference is not zero but is
small: - 5.5%-7.0% different from the laminar flow pre- I, = - 5.813X 104 A,
diction. The solid line of Fig. 4 corresponds to the pure lami- V = 2.0 X 106 V,
nar flow value. The dashed line corresponds to the MASK
calculation. At the sheath edge, between 0.0315 and 0.036
m, the percent difference between the laminar flow predic- r, 0.025 m.

tion and the MASK simulation diverge (maximum difference In Fig. 5(a), one should note that the electric field from
of 40% for this simulation). This is being studied in greater the outermost sheath edge to the anode should match [see
detail, but may be due to appreciable values for G in the Eq. (32)] for a laminar flow. The Brillouin flow solution
region, or it may simply be due to the inability of the code to and the constant density solution do match. The MASK cal-
resolve the fields in the sheath region for the given number of culation is low out to about 0.038 m. From that point on, the
computational cells and particles. Nevertheless the simula- MASK electric field oscillates about the laminar flow expect-
tion results indicate that the laminar flow assumption may ed electric field. From the cathode to the sheath edge the
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constant density flow solution more accurately predicts the and decreases slowly as the sheath edge is approached end-
electric field. The reason for this is that with the currents as ing in a Gaussian tail. The profile used in this paper does not
specified, the Brillouin flow solution overestimates the ap- include the rounding at the cathode or the Gaussian tail at
plied potential. In fact, for this case the Brillouin flow corre- the sheath edge, although it does duplicate the gross features
sponds to a potential of 2.31 X 106 V. This is off by about of the curve. As a result, the theory neglects the tail and
+ 15.5% from that given in the simulation. underestimates the sheath edge radius. If one generated a

In Fig. 5(b), one notes that the constant density solu- function that fit the density profile of the simulation more
tion is doing a pretty good job of matching the magnetic closely, the laminar theory [Eqs. (40)-(50) ] could be used
fields of the simulation. One should note that the MASK mag- to generate a better self-similar MITL flow solution for this
netic induction oscillates about the constant density induc- long MITL.
tion from the constant density sheath edge to the anode. It
should also be noted that the constant density sheath edge is
at 0.033 m, which corresponds rather closely to the MASK Vl. SUMMARY
sheath edge. The Brillouin flow solution seems to be under- Mendel's Cartesian MITL flow theory is partially ex-
estimating the distance from the cathode to the MASK sheath tended to cylindrical coordinates. A set of equations that
edge by nearly 50%. describe electron flows of arbitrary orbits in cylindrical co-

ordinates is presented [Eqs. (29)-(35)]. The resulting

C. Comparison of quadratic MITL solution to simulation equations are used to derive a new and general theory gov-
erning laminar flows in coaxial MITL's. This is done be-

In 1979, Bergeron and Poukey did a series of simula- enn aia lw ncailMT'.Ti sdn e
cause many experiments are performed using coaxial sys-

tions of long MITL's. In one of their papers6 they presented tems in which laminar flows are believed to be important. It
the charge and current density profiles of ore simulation of should be emphasized that in the new laminar theory the
interest. They also compared the simulation results to the canonical momentum and total energy of the electrons are
Brillouin flow solution. It was a poor match except they not- not restricted to zero across the electron sheath, as in the
ed that the areas under the curves were about the same. Now, Brillouin theory. This allows one to consider one-dimension-
the area under the charge density curve corresponds to the al electron flows that may have much in common with real
total charge per unit length, which was previously shown [in world flows in which impedance mismatches and perturbing
Eq. (42) 1 to be structures cause the electrons to have nonzero canonical mo-

q= (1 12 )1/2/c. mentum and total energy profiles.

The area under the current density curve corresponds to the The laminar flow theory is checked by considering the

total current (I,) flowing within the sheath, which is simply case in which each electron has zero canonical momentum
and total energy across the flow-the well-known Brillouin
flow theory results. The theory is then used to obtain a new

Since I and Ic are the same for the simulation and the Bril- analytic self-consistent MITL flow solution with a constant
louin flow solution the areas under the curves must be equal, electron density profile. The constant density solution com-
assuming a laminar flow. This implies that the simulation pares favorably with a short MITL MASK simulation (repre-
done by Bergeron and Poukey may be modeled fairly accu- sentative of several simulations). In addition, a new analytic
rately as a non-Brillouin laminar flow, which makes it of flow solution with a quadratic density profile is presented. It
interest here. is compared to a long MITL simulation and found to do a

In Figs. 6(a) and 6(b), the charge and current densities good job of matching flow quantities. The new flow solutions
obtained in the simulation6 are compared to those predicted are compared with each other and with Brillouin flows. It is
by the quadratic MITL solution [Eqs. (66)-(69), (40),and noted that the constant density and quadratic MITL solu-
(44) 1. The simulation gave the following boundary condi- tions are more flexible than the Brillouin flow solution. It is
tions: also interesting to note that the theory predicts y,,, = I /I

ia = 4.5 x I W A, at the sheath edge for all cylindrical laminar flows as expect-
ed.

I, = - 2.4 X 10' A, This research can be applied to various additional areas.

Va =2.4 x 106 V, For instance, one could use the general theory to obtain the

r. = 0.08 m, magnetic insulation threshold for a variety of non-Brillouin
flows. The general theory could also be used to generate new

r, = 0.07 m. laminar MITL flow solutions for a variety of electron den-

It is clear from the figures that the theory is doing a sity profiles. This might be especially useful to the researcher
fairly good job of matching the simulation results. It is doing who intends to match simulation or experimental results to
a much better job than the Brillouin flow solution, which is theory and is not satisfied with the Brillouin flow solution.
shown for this case in Fig. 2. The general theory could be used in conjunction with a PIC

Even though the quadratic MITL solution is much code to determine how laminar the flows from a given MITL
more consistent with the simulation than the Brillouin, the are as a function of the radius. In this context, it could also be
simulation results show a charge density distribution that is used to determine G(r) for a given configuration. Finally,
Gaussian in nature I Fig. 6(a) 1. It is rounded at the cathode Eqs. (29)-( 35) might be used to predict fields and flow vari-
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