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The Cartesian magnetically insulated transmission line (MITL) theory of Mendel et al. [ Appl.
Phys. 50, 3830 (1979); Phys. Fluids 26, 3628 (1983)] is extended to cylindrical coordinates. A
set of equations that describe arbitrary electron flows in cylindrical coordinates is presented.
These equations are used to derive a general theory for laminar magnetically insulated electron
flows. The laminar theory allows one to specify the potentials, fields, and densities across a
coaxial line undergoing explosive electron emission at the cathode. The theory is different from
others available in cylindrical coordinates in that the canonical momentum and total energy
for each electron may be nonzero across the electron sheath. A nonzero canonical momentum
and total energy for the electrons in the sheath allows the model to produce one-dimensional
flows that resemble flows from lines with impedance mismatches and perturbing structures.
The laminar theory is used to derive two new self-consistent cylindrical flow solutions:

(1) for a constant density profile and (2) for a quadratic density profile of the form

p=p (P, —P)/(r}, — r2)]. This profile is of interest in that it is similar to profiles
observed in a long MITL simulation [ Appl. Phys. 50, 4996 (1979)]. The theoretical flows are
compared to numerical results obtained with two-dimensional (2-D) electromagnetic particle-
in-cell (PIC) codes.
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duced. In many pulsed power systems, prolate, curtate, and
laminar orbits dominate because of inherent field nonuni-

Dist

I. INTRODUCTION

Magnetic insulation is essential in the operation of large
pulsed power systems. This applies especially to systems
with electric fields greater than approximately 20-50 MV/
m' because explosive electron emission occurs from surfaces
subjected to such fields. These electrons will quickly short
out the system in the absence of magnetic insulation. There-
fore insuring magnetic insulation in large pulsed power sys-
tems is necessary for the transmission of the pulse to the
load.

The principle of magnetic insulation is to externally ap-
ply or self-consistently generate magnetic fields that act per-
pendicular to the electric fields found in the system in order
to confine the electrons. An example of magnetic insulation
for a self-consistently generated magnetic field in a coaxial
geometry is shown in Fig. 1. The current flowing in the sys-
tem (/,,1,.1.) generatesa — B, field. The electric field is in
the minus 7 direction. As a result, the electrons emitted from
the cathode plasma sheath are pulled by the imposed electric
field toward the anode. However, the magnetic field redi-
rects the electrons back toward the cathode by means of
v X B forces. Therefore the electrons E X B drift in the + 2
direction while being magnetically insulated away from the
anode. In Fig. 1, various electron orbit types are shown.’
They are classified as common, laminar, curtate, and pro-
late. If the electrons are emitted from the cathode into a
region in which the fields are uniform in z and the electrons
initially have zero velocity, common orbits result. However,
if the electrons are born in regions of nonuniform time vary-
ing fields, prolate, curtate, and laminar orbits can be pro-

629 Phys. Fluids B 2 (3), March 1990 ~ 1, (\ ,

formities resulting from unavoidable perturbations in the
magnetically insulated flows.

There are three different types of magnetically insulated
(cutoff) flows’ referred to in the literature: (1) self-limited,
(2) load-limited, and (3) constant-flux-limited flows. Load-
limited magnetically insulated lines are of particular inter-
est. An example of load-limited magnetic insulation is
shown in Fig. 1. The current passing through the system is
limited to that which passes through the load and is responsi-
ble for the insulation of the upstream region.

In the following, the theory of magnetically insulated

INSULATOR
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'/ E| peo LAMINAR onarr
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FIG. 1. Electron orbits in magnetically insulated flow. The primary elec-
tron orbits are shown along with the directions of the anode (7, ), cathode

(7.}, and space charge (/,) currents in a cylindrical geometry.
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electron flows in cylindrical coordinates is extended to in-
clude flows with arbitrary distributions of canonical mo-
mentum and total energy (corresponding to self-limited and
load-limited flows). In Sec. II, the basic physics governing
the theoretical developments is presented. In addition, ex-
pressions for the drift velocity and sheath edge fields for elec-
tron flows with arbitrary electron orbits are obtained.

In Sec. 111, laminar electron flows are considered and a
general theory governing such flows in coaxial geometries is
derived. It is found that for all laminar coaxial flows the
relativistic factor for electrons at the sheath edge is given by
¥m =1,/1.. This is consistent with laminar and quasila-
minar flows previously obtained.*?

In Sec. 1V, the laminar theory is used to derive two new
flow solutions: (1) a constant electron density flow and (2)
a flow with a quadratic density profile of the form
p=p.[(rt,—r)/(r —r2)] [corresponding to a long
magnetically insulated transmission line (MITL) simula-
tion®]. In addition. it is shown how the Brillouin flow solu-
tion can be easily obtained from the general laminar theory.
Finally, the flow solutions aré compared.

In Sec. V, results from a particle-in-cell (PIC) code that
emphasize the importance of laminar non-Brillouin flows
are presented. Then the flow solutions are compared to PIC
code simulations of coaxial load-limited magnetically insu-
lated transmission lines (MITL). The constant density and
quadratic density MITL solutions match the PIC code re-
sults more closely than the Brillouin flow solution. In Sec.
VI, a summary of results is presented.

ll. GENERAL THEORY

The theory of magnetic insulation begins with Hull’s
first Cartesian, nonrelativistic single-particle treatment of
magnetron cutoff.” In addition, much early nonrelativistic
work was done in this area by Brillouin ( Brillouin flow theo-
ry).* Relativistic, self-consistent, Cartesian treatments be-
gan around 1973 when Lovelace and Ott found a condition
governing constant-flux magnetic insulation of a diode.®
Also, at about this same time, Ron, Mondelli, and Rostoker
(RMR) developed the “quasilaminar flow theory” employ-
ing common orbits (see Fig. 1) in Cartesian coordinates.'®
In the work of RMR, it is assumed that the total energy and
canonical momentum of each electron is equal to the total
energy (W = 0) and momentum (P, = 0) of an electron on
the cathode. With this assumption, they find the electric and
magnetic fields across the sheath, which are expressed nicely
in terms of elliptic functions. A laminar flow theory for mag-
netically insulated transmission lines (MITL) was present-
ed by Creedon in 1975 for Cartesian, cylindrical, and conical
geometries.* This theory also assumes that the total energy
and canonical momentum of all electrons across the flow are
equal to zero. It is commonly referred to as the Brillouin flow
theory.** Wang, in 1977, using a simple transformation,
showed how the equations governing Brillouin flows could
be transformed into Laplace’s equation.'' This allows for
2-D (arbitrary cathode/anode cross sections) Brillouin
flows that are independent of the flow direction. In 1979,
Mendel® proposed a theory in Cartesian coordinates that
allows the electrons to have arbitrary distributions of ca-
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nonical momentum and total energy, taking into account a
variety of clectron orbits.

Many other papers have been written in the more math-
ematically tractable Cartesian coordinates'>!"; unfortu-
nately, a majority of experiments and applications involving
magnetic insulation utilize cylindrical electrode geome-
tries."®?" In practice, cylindrical systems can be rather accu-
rately approximated by a Cartesian theory up to a vacuum
impedance of about 15 (1. For impedances larger than this
cylindrical effects must be considered. For this reason, it is
desirable to carry out new theoretical developments in cylin-
drical coordinates. Creedon and Wang were able to extend
the laminar Brillouin flow theory to cylindrical coordinates.
Bergeron did some nonrelativistic single species analysis of
quasilaminar flows in which he showed that an equilibrium
solution did not exist in the case of an inner cathode. In
addition, he did two species work in coaxial geometries in
which he developed a computational scheme capable of pre-
dicting self-consistent flows in the regions in which an equi-
librium solution exists. His model is also capable of predict-
ing the regions of existence or nonexistence of a solution.*®
Swegle attempted to extend the relativistic single species
work of RMR to cylindrical coordinates, but once again
found that an equilibrium “quasilaminar flow solution™ did
not exist.”” In an APS talk,”® Rosenthal and Mendel present-
ed a pressure balance analysis in cylindrical coordinates and
were able to obtain voltage contours for nonlaminar MITL
flows with constant electron density profiles. This consti-
tutes the first step in extending Mendel’s Cartesian theory to
cylindrical coordinates. This paper extends more of Men-
del's work® to cylindrical coordinates in a form that pre-
serves information previously lost in the pressure balance
approach. It also presents a general theory governing lami-
nar magnetically insulated electrons flows in coaxial geome-
tries. The laminar theory is different from others presented
in cylindrical coordinates in allowing the canonical momen-
tum and total energy of the electrons to be nonzero across
the flow.

A. Basic physics

The electron flows in MITL's are often relativistic and
collisionless. This is true for the electron flows being consid-
ered here. Therefore the relativistic Vlasov equation is used
as a starting point for theoretical developments. It is given by
Eq. (1):

a a d
—+v-——e(E+va)-—)f(x, ) =0. (n
(a: o YA
The relativistic electron momentum is

p=ymv (2)
and the relativistic weighting factor is

y=(1—ve/ch) ‘2 (3)
Here v is the directional velocity of the electron. f{x.p.7) is
the electron distribution function, E is the electric field, and
B is the magnetic induction.

The E and B fields are self-consistently determined via
Maxwell’s equations:
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V-B=0, (4)

14
VXB= — fd’ —=—LE, 5
X el PV + pipy (5
€
JB
VXE= - —. 7
X o N

Assuming a steady-state solution allows one to drop the de-
rivatives with respect to time in Eqgs. (1), (5), and (7).

The physics embodied in the relativistic Lagrangian will
be the basis for much of the following. The relativistic La-
grangian is

L= —mc*/y+ ep(x,t) —ev+ A(x,l), (8)

where @(x,?) is the electrostatic potential and A(x,¢) is the
vector potential.

B. Gauss’ and Ampeére’s laws in terms of the total
energy and canonical momentum

The nature of the problem to be solved is shown in Fig.
1. A voltage difference (in the MV regime) is set across a
coaxial transmission line and after a few nanoseconds a qua-
siequilibrium magnetically insulated state is established.
The electrons that are emitted from the cathode in a space-
charge-limited (E. = 0) fashion enter a variety of orbits;
common, curtate, prolate, laminar, etc., depending on nonu-
niformities in the fields.

Since the net flow of current inside the transmission line
isin the — Zdirection (Fig. 1), and there is azimuthal sym-
metry, the magnetic field between the anode and cathode
will be an r-dependent field in the 8 direction: B = B(r)8.In
addition, the gradient of the applied potential yields an r-
dependent electric field: E = E(r)#. Because an equilibrium
state is being considered, all time-dependent terms are
dropped at the start of the theoretical development.

Now, applying Gauss’ law [from Eq. (6)] in conjunc-
tion with the relativistic Vlasov equation [Eq. (1)] implies
(note that the following derivation partially extends the Car-
tesian treatment”® of Mendel et al. to cylindrical coordi-
nates)

V-E=Vip(r)

- e ifdp,fdp,f(pnp,), 9
€ €

where V2 = (1/r){(3/3r)[r(3/3r)]}, ¢(r) is the poten-
tial as a function of r across the transmission line, p(r) is the
electron charge density, €, is the permittivity of free space, e
is the electron charge, p, and p, are the z and r components
of momentum, respectively, and f(p, ,p, ) is the phase space
electron density. X

It is also true that if B = B(r)@ then

aJ a 2
VXA=|—A4, — —A4.,16. 10
X (az " or ') a0

Since there is no electron flow loss in the radial direction
there is no net radial electron flow as a function of 7. This is
because for every electron moving toward the cathode there
is one moving toward the anode in every microscopic volume
element. As a result 4, = 0. Therefore

B(r)f= —(iA,)é. (11)
ar

This means Ampére’s law [Eq. (5)] becomes
VXB =V24,2 = pu,d. (12)

To solve Eqs. (9) and (12) simultaneously requires a
knowledge of the electron density and the current distribu-
tion defined in terms of the canonical momentum and total
energy. First the canonical momentum and total energy will
be defined using the cylindrical Lagrangian:

L= —mc*[1 — (P + ) /)2 + ep(r) —ed, (r).

(13)

The z component of canonical momentum and momentum
are, respectively,

JL

=— =my:—eA,(r) (14)
oz

€z

and
p. =myz=p; +ed,(r). (15)
The r component of canonical momentum and momentum
are given by
P = L myr=p,.
ar
The total energy is easily shown to be

(16)

(17
Now, the electron density with canonical momentum
between p., and p., +dp., and energy between w and
w + dw at r is (from conservation of charge)
1 2/j(pe )]
m?c? err

w=(y— 1)mc® — ep(r).

dnpew) _ (18)

dp., dw
where | j(p_,,w)| is the one way current density per momen-
tum interval per energy interval per radian (in azimuth)
normalized to m’c>. The factor of 2 comes from realizing
that for every charge moving in the + Fdirection there is one
moving in the — F direction. Here 7 is a funct'on p_, and w
and is given by [see Egs. (14) and (16)]

P=12 =2 =0~ (c/7)* (P, +eA.)".
Substituting in Eq. (3) and eliminating v” gives

(19)

252 . A 27172
i=i{(w+e¢;mc) _l_(pl,+e,)] . (20)
Y mc me
Substituting (20) into (18) implies
J
2| j(p.,w) | (w + e@p + mc?)dp,. dw -

dp(p,w) = —edn(p,w)= —

(me’r{[(w + e@ + m*)/m)? — | — [ (., + ed,)/mc]?}"*

The current density per momentum and energy interval is dp times z(r). When one defines 2(r) in terms of the total energy
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and canonical momentum [from Eq. (14)] the current density is given by

2(p., + ed,)| j(p.,w)|dp,, dw

dj(Pcz’W) = -

Now, from Poisson’s equation and Eq. (21)

2

m(m?)*r{[(w + ep + mc®)/mc*) — 1 — [(p, + eA,)/mc]z}”z'

| j(Peostt) | (w + e@ + mc*)dp,, dw

(22)

(23)

V,p=

o)
€(mc*)? Hl(w + ep + m)/me?): — | — [(p., + ed.)/mc]*}*

From Ampeére’s law, the restrictions placed on the electron flow given earlier in this section, and Eq. (22), one obtains

| J(Pezsw) | (P, + €A,)dp,, dw

2
a o] -
€(mc?)? H{l(w+ e@ +mc?)/mc*)* — 1 — [( p,, + ed,)/mc]*}'"?

The electron distribution function is defined to be
2

ee mc’
One should also note that in Egs. (23) and (24), the inte-
grals are performed in the canonical momentum and energy
phase space. The variable 7 is independent of this space and
can be pulled out of the integrals. In order to avoid rewriting
the large integral arguments of (23) and (24) the following
definition is given:

2
G(wAz)s”F(pmw)[(“’—“’i?i"-‘—)z —1

F(p.,w)= (25)

]j(pcz’w)|'

mc*
A 23172
mc¢
This allows one to write (23) and (24) as
aG
Vip= 1 (@ A,) Qan
r dp
and
aG
V4, = — l_ﬂ_’A_’)_ (28)
r 0A,

Now, multiplying Eq. (27) by dg /dr and Eq. (28) by
— dA,/dr and adding (with d /dr=") gives
[Ap? — (cAH)D]) + [47 — (c4.)’] =2G".
Noting thatg' = — E(r) andthat 4, = — By,(r)= — B
allows one to recast this equation as follows:
[HE? — (¢B))] + [E* — (¢B)}] =2G . (29)
Another useful equation in the following work is obtained by
multiplying Eq. (29) by r and regrouping:

[F(E? = (cB))] =2[(rG) — G . (30)

C. Expressions for drift velocity and sheath edge field

From the above, it is possible to obtain expressions for
the electron drift and sheath edge electric field regardless of
the electron orbit types. First, integrating Eq. (30) from the
cathode (r, ) to the sheath edge (r,,) yields

7 EY — (cB,)) — £ [E — (cB.)]

- —2JMGdr=—Pm, (31)
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(24)

—

where the subscripts m and c refer to the sheath edge and
cathode radii, respectively. Now, assuming space-charge-
limited emission, E. = 0. If one then writes Eq. (31) in
terms of the anode and cathode currents with
B, =uol,/2nr, and B, = u Il /27r. (by Ampére’s law,
where I, is the cathode current and /, is the anode current),
E,= — -2 (12
TP e

2 P 172
x[l - () ] A
cuo/ I3 —17)
where E,, is the electric field at the sheath edge (r,,). It is
also true that if the electron charge per unit length is I', then
I =2nes E,, vy0=I -1,
and therefore

E, = [, = 1)/ 2meyr,, vi ]

— I

(32)

(33)

where v, is the average drift velocity of the electron flow.
From Eqgs. (32) and (33) one sees that

. I — I\ 2 P -172

ey =c( . ) [1— (2—”) ——"—] NET
I, +1, cuy) (12 —1%)

It is also obvious that the electric field at the anode is given

by
E,=r,E,/r,.

(35)

Iit. LAMINAR THEORY

Up to this point, the theoretical developments have ap-
plied to all types of orbiting electrons. From this point on,
laminar electron flows are considered. Laminar flows are
characterized by electrons that have a zero r component of
velocity. For laminar flows, the integrand of G [ Eq. (26) ] is
zero; therefore P, must be zero. Flows for which P, is ap-
proximately zero may be common in numerical and real
world experiments. A few MASK™® calculations have been
done in the 2 MV regime that indicate that often the electron
drift velocities and fields only differ by a few percent from
the laminar flow values. This 1s discussed in more detail in
Sec. V, where the MAsK calculations are presented. These
simulations partially justify setting P,, equal to zero and de-
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veloping a general laminar flow theory.

The laminar nature of the electron flows observed with
MASK (discussed in Sec. V) in cylindrical coordinates is con-
sistent with MAGIC*® two-dimensional electromagnetic PIC
code results done in Cartesian coordinates at Sandia. In the
Sandia simulations, it was found that MITL flows in Carte-
sian coordinates are laminar in nature but non-Brillouin.*
By non-Brillouin it is meant that the canonical momentum
and total energy of the electrons are nonzero across the elec-
tron sheath. The assumption of a canonical momentum and
total energy equal to zero across the sheath is fundamental to
the well known Brillouin flow theory. In this paper, the non-
Brillouin nature of the flow is ascertained in cylindrical co-
ordinates by examining a laminar flow and comparing it to
the Brillouin solution of Wang and Dicapua.®' In order to
more accurately model laminar MITL flows in cylindrical
coordinates a theory is developed in the next section that
allows for nonzero canonical momentum and total energies
across the flow.

A. Presentation of general laminar flow theory

The general theory is obtained via an interesting relation
between the density and velocity profiles for relativistic
MITL flows. A specification of the density profile implies a
particular velocity profile and vice versa. This was first pre-
sented in a rather long derivation by one of the authors.>> A
much simpler derivation is presented here utilizing Eq. (30)
and Gauss' law. First, integrating (30) from the cathode to
some arbitrary r with G = 0 implies

(reB)? = (r.cB.)? + (rE)™ (36)
From Gauss’ law one obtains

rE:eo"fprdr=r,"EJ(r), (37)
which from (36) is

= [(r.cB,)? — (r.cB)?])"*f(r). (38)
Finally, one notes for laminar flows (dr/dt = 0) that

vir)= —E/B. (39)

Therefore, if one substitutes Egs. (36) and (38) into (39),
the following equation results:

v(ry =c{(I2 = )N 12+ (12 = [)f(r?] P8,
(40)
where I, is the anode current, I, is the cathode current, and

f(r) is the normalized weighted density profile and is given
by

5. p(ryrdr

fir) = — )
S, p(ryrdr

(41)

An interesting result easily proved using the above rela-
tions is that y,, = J,/]_ at the sheath edge for all cylindrical
laminar flow solutions. First one needs to note that
S(r,,) =1 at the sheath edge [see Eq. (41)]. In examining

Eq. (41) one needs to realize that the integral 27§ ,"p(r)r dr
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is simply the total charge (q) in the sheath per unit length in
z. From Eq. (32) with P,, = 0and Gauss’ law the total elec-
tron sheath space charge per unit length is given by

g=UL—1)"/e
Substituting f(r,,) = 1 and q into Eq. (40) results in
V(r,)=c(I? —I1))"¥YI,

which when substituted into the relativistic factor evaluated
at the sheath edge results in

7/m = Ia/Ic’

as expected.

(42)

(43)

B. Laminar flow equations

Given a density profile and the corresponding velocity
profile [ Eq. (40) ], the self-consistent MITL flow solution is
easily obtained via Maxwell's equations. The resulting equa-
tions are collected below in a convenient form. Given the
charge density [p(7)] and the velocity [from Eq. (40)] the
current density is

J=pnvin. (44)
The electric field is
§Top(nyrdr
Ern = 20, g D (45)

€yr r

where E(r,.) = 0, because the cathode is a space charge lim-
ited emitter of electrons. The corresponding electrostatic po-
tential is

@(r)= - j E(r)dr, (46)

where @ () is chosen to be zero. The magnetic induction is
simply written as

r ] R
B(r) = @U j(r)rdr+-‘—)0.
r \J, 27

However, Eqs. (36) and (37) allow one to express B(r) even
more simply:

B(r) = (uod.27n) {1 + [(J2 = ID)/IL]fin)*}? F
(47)
The vector potential is

A(r) = -—J‘B(r)dré, (48)

where A(r.) = 0is chosen to equal zero at the cathode.
Now, from Eqgs. (14), (17), (38), and (40) the canoni-
cal momentum and total energy of electrons at r are given by

P (r) = myu(r) — eA(r)

=mc(rE(r)/r.cB. | — eA(r). (49)
The total energy is
wr) = —mc {1 — [1 = v (r)/c’] '} — e@(r)
=mc*(rB(rV/r.B, — 1] — eq(r). (50)

If the sheath edge radius (r,, ) in Eq. (41) is unknown it
is easily found given I, I_, the applied voltage across the gap
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(V,),and Eqgs. (40), (45), and (46). From an experimental
point of view, it is much more desirable to have the MITL
flow as a function of /,,, I, and V, ratherthan/,, I, ,andr,,.
This is because the applied voltage across the diode is usually
known, but the outer sheath edge radius of the electron flow
is not.

IV. LAMINAR THEORY APPLIED—TWO NEW
SOLUTIONS

In order to demonstrate the general theory of laminar
flows an outline of how one obtains the Brillouin flow solu-
tion from the above is included. Then two new MITL flow
solutions are derived. The theory is used to generate a new
self-consistent cylindrical MITL flow solution for flows with
constant density profiles. This is done because in simulations
of short MITL’s, quasiconstant density profiles were ob-
served. The theory is then used to produce a new analytic
flow solution similar to that observed in a long MITL simu-
lation.® The density profile is given by a quadratic:
p=p.[(rt, — )/ (r: —r2)]. Finally, the constant den-
sity and Brillouin flow results are compared to a MASK simu-
lation (Sec. V) of a short MITL. In addition, the quadratic
MITL flow solution is compared with a long MITL simula-
tion.

A. Outline of the Brillouin flow derivation

As a check on the theory of laminar flows derived in the
previous section, one can use it to derive the well known
Brillouin flow theory. Starting from Egs. (26) and (29),
while restricting the canonical momentum and total energy
of each electron equal to zero, it is easy to show that the
Brillouin density profile will have the following form:

p(r) = — (mc’e/e)(A’/P)cosh[A, In(r/r.)].
(51)

From Eq. (51), Eq. (41) becomes
S(r) =sinh[A4, In(r/r,)]/sinh[4, In(r,/r.)]. (52)

With f(r) given, the velocity is obtained from Eq. (40), the
current density from Eq. (44), the electric field from (45),
etc. If one carefully compares the resulting equations to
those described by Wang and DiCapua®’ it can be seen that
the formulation and source of the constants is different but
the Brillouin flow solution is reproduced.

B. Constant density flow

In various MAsK calculations of short MITL's (Sec. V),
it has been noted that the density as a function of radius is
often relatively constant out to the sheath edge, where it
drops to zero. For this reason, a self-consistent MITL flow
solution for a constant density profile is given below in de-
tail. Substituting a constant density profile into relation (41)
and employing Eqgs. (40) and (45)-(48) between r.<r<r,,
result in

fin = =)/ -rd), (53)
vinn=c{}-I1H(P-A)Y/[UL-T1Y)
X(P =Py 4127 - )] )2 (54)
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o(r) = (|pl/ae) [P — 2 =272 In(r/1r) ], (55)
E(r) = [ — |pl(# — 72)/2¢6,r]?, (56)
A(r) = — (ol /2m)K (1), (57)
and
pol. [ (12 —13) r-r ) ]
B(r) = 1| 6, 58
(r Sy [( 0z ('f.,—rf + (38)

where

In{2a"?P(x) + 2ax + b ]

K(r) =% [P(x) +

20”2
—cl? ]n(2c}’2P(x) +ox+ ZC')]# ,  (59)
x 272
P(x) = (ax* 4+ bx + ¢,)'?, a=c./4,
R (60)
b= —c,. c;=ct +1,
ey= [T =TI/ (A -2 (61)

In a like manner the fields and flow quantities can easily be
obtained from the sheath edge to the anode (r,, <7<r,).

Next, one must consider the electron density profile.
Thus far, all that is known is that it is constant out to the
sheath edge where it drops to zero. The magnitude of the
electron density and the sheath edge radius can be self-con-
sistently determined from the theory. The electron density is
obtained from Eqgs. (32) and (56) evaluated at the sheath
edge, which gives

p= — U =I)"/em(P, —1). (62)

The sheath edge radius (r,,) is obtained by equating the
expression for the potential at the anode to the anode voltage
(¥,). The resulting expression is

r, \[1 - 1"
(’C )

rﬂ
= — exp(O.S
r

<

2 V
_7526_“_) (63)

- (12‘, __13)1/2

Therefore r,, is obtained iteratively given the anode and
cathode currents, along with the anode and cathode radii,
and the voltage difference across the diode. Once r,, is
known all other quantities defined in Eqgs. (53)-(62) are
given. In typical experiments r,, r., I,, and ¥, are known; I,
is a little harder to obtain, but can be found using a magnetic
probe next to the cathode.*

C. Quadratic flow

In 1979, Bergeron and Poukey® presented PIC code re-
sults showing the electron density profile for long MITL's.
The density profile is non-Brillouin in nature. In this section,
the long MITL density profile is approximated by a quadrat-
ic:

p(r) =p [ =)/ - )] (64)

This relation is used in conjunction with Eqgs. (40)-(50) to
derive a self-consistent flow solution. In the region 7. <r<r,,,
J(r) is given by
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fin =[PQr, —r) —rQ@, - /5, -2
(65)

This quickly yields the velocity, current density, and electric
and magnetic fields. To determine p. we need only evaluate
the relation for the electric field [integral form of Eq. (45)]
at r,, and set it equal to the E,, given by Eq. (38). Following
this procedure gives

pe= — QRlem)[UL =TI/ (7 —1)]. (66)
To determine the sheath edge radius one integrates minus
the electric ficld from the cathode to the anode and sets the
potential thus obtained equal to the potential applied at the

anode. The resulting equation can be solved iteratively for r,,
and is given by

(,m )[1—(&/&,)]’ ( 1=3(2/7) )
m exp| —————
r. a{(r,/r) —1]

r, —2me,V,c
- o) 7

With r,, determined by (67) self-consistent solutions for
flows with quadratic electron density profiles are obtained.

D. Comparison of the three flow solutions

In the following, the Brillouin flow, the constant, and
the quadratic density MITL solutions are plotted together.
The charge and current densities are shown in Figs. 2 (a) and
2(b), respectively. The different MITL solutions have the
following inputs:

1,=45X 10° A,
00+ r 2
t °
'é -02F L
e 04+ (o
: A
g "06+
w |
w -08 ; — BRILLOUIN
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g -I0k . ° QUADRATIC
© £ ]
-02k+ . .
| @}
-04L__ L s L L 1 i |
0070 0072 0074 0076 0078 0080
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0013 ‘ ; ..
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-300+ i
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FIG. 2. Comparison of the charge and current density profiles for the Bril-
louin, constant density, and quadratic MITL flow solutions.
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L= —243X10°A,
V, =249x10°V,

r, =0.08 m,
r. =0.07m.

The reason for comparing the flow solutions here is in order
that one might see the differences in the flow solutions when
all are applied self-consistently. In Sec. V, when the theory is
compared to MASK simulations the Brillouin flow solutions
cannot simultaneously match the currents and potentials ob-
served in the simulations. This, of course, stems from the fact
that the Brillouin flow solution is completely determined
given the anode and cathode currents. The good thing about
this is that the Brillouin solution can be used to predict the
anode voltage given the anode and cathode currents (or giv-
en any two it can predict the third). The bad thing is that we
may have trouble using it to match experimental and simula-
tion results (to within a few percent, see Sec. V B) that have
electrons whose canonical momentum and total energy
change as a function of 7, and therefore have non-Brillouin
density and field profiles as well as differing values of the
anode potential (given the currents).

In the following we note the similarities and differences
in the three MITL solutions. In Fig. 2(a) the charge densi-
ties as a function of radius are compared. The Brillouin flow
is the flow with the smallest sheath edge radius and most
charge out close to the sheath edge. The quadratic MITL
flow has the largest sheath edge radius and most charge next
to the cathode. In Fig. 2(b), the greatest peak current den-
sity corresponds to the Brillouin flow and the lowest peak
density corresponds to the quadratic MITL flow solution. It
is also interesting to note that the peak curreni density oc-
curs at the sheath edge for the constant density and Brillouin
flows, but about one-third of the way between the cathode
and sheath edge for the quadratic MITL flow.

The electric and magnetic fields follow from the density
profiles. As predicted by Eq. (32), with P,, equal to zero, the
electric fields are the same from the outermost sheath edge to
the anode. By Ampere’s law the magnetic induction will be
the same at the cathode and the same from the outermost
sheath edge to the anode.

V. LAMINAR THEORY COMPARED TO SIMULATIONS

A computational tool based on Eqgs. (1)-(7) is used to
help justify the theoretical developments of Secs. II-1V. It is
the two-dimensional electromagnetic particle-in-cell (PIC)
code MASK.? First, it is used to generate electron orbit his-
tories in typical load limited MITL’s. These orbits are seen
to be very laminar in nature (Fig. 3). In addition, Table 1
presents a few MASK calculations done in the 2 MV regime
showing the percent difference of MASK's anode electric field
from the laminar theory predictions. Then, Eq. (30) is used
to evaluate, as a function of r across the MITL, the difference
between MASK simulation (#5) and an arbitrary laminar
flow (Fig. 4). The differences are once again small (except
at the sheath edge), which partially justifies developing a
general laminar flow theory. After checking simulation #35
to see that a laminar flow should model it well (data in Table
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FIG. 3. The MAsk semilaminar flow (simulation #0).

I and Fig. 4), its electric field and magnetic induction pro-
files are compared to the Brillouin and constant density flow
profiles (Fig. 5). Finally, the quadratic MITL flow theory
is compared to a simulation performed by Bergeron and
Poukey (Fig. 6).%

A. Laminar nature of electron orbits

The laminar nature of electron orbits in a MITL is
shown in Fig. 3. These electron orbits were generated using
the PIC code Mask. The figure corresponds to an axial slice
of a coaxial symmetric system with an interior cathode. The
potential (¥, ) across the cathode/anode gap is 2 MV, the
diode gap (d, ) is 0.02 m, the cathode radius (7. ) and anode
radius (7, ) are 0.025 and 0.05 m, respectively, and the anode
current is 7.97 X 10* A.

It is clear that many of the emitted electrons are travel-
ing 0.15-0.2 m before returning to the cathode. For common
orbits (see Fig. 1), the electrons will travel approximately
two Larmor radii in the 2 direction before returning to the
cathode. For this problem, the average Larmor radius is ap-
proximately r, = 0.0035 m. This means the electrons are
traveling approximately 60 Larmor radii in the 2 direction
before returning to the cathode. The electrons have little
average radial momentum, and the flow is fairly well ap-
proximated by a laminar flow. Here Z-dependent electric
field gradients along with a variety of other perturbations
can result in such laminarlike flows.

The laminar nature of the electron orbits cited in the
above example was typical of a large number of MASK simu-
lations done in cylindrical coordinates. In Table I, the anode
electric field for several calculations in the 2 MV regime are

e
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FIG. 4. Comparison of the quantity #(c?B? — E?) from MASK (dashed-
dotted curve) to what would be expected for a pure laminar flow [(r.cB,)?
—the solid line] from the cathode to the anode.

compared to the laminar flow predictions. Even for MITL’s
with tightly trapped flows, load impedance one-third of self-
limited impedance of the line, the anode electric fields only
differ by 6% or 7% (see Table I) from the laminar flow
solution. In examining the results of these MAsK calculations
it appears that the smaller the load impedance (the closer I,
comes to I,, ), the larger the difference between the MAsK and
laminar flow predictions (see % Diff of Table I). This in-
crease in % Diff has been noted to correspond to a larger
percentage of electron orbits with smaller Larmor radii in
the calculations. This is not surprising when one notes that
the magnetic fields increase with decreasing loads (Z,). The
increase of structure in the flow should cause P, (whichisa
measure of the laminar nature of the flow) of Eq. (31) to
increase and as a result reduce the anode electric field from
the expected laminar flow value. This is what one observes in
Table I. Nevertheless since it is often desirable to run pulsed
power devices with the largest possible load impedance
while maintaining insulation, researchers often work close
to the magnetic insulation limit of the MITL.?>'? In this
region, the laminar theory’s prediction of the anode electric
field (E,) differs from MASK by about a percent or less.
Simulation #£1 of Table I illustrates the situation in which
the MITL is operated at the magnetic insulation thresh-
Old.3l'32

Finally, by integrating Eq. (30) from the cathode to
some arbitrary r in the sheath, the difference between a lami-
nar flow as a function of 7 and a PIC code simulation MASK
simulation #5) is presented. These results are shown in Fig.

TABLE I. A comparison of the anode electric field obtained by MASK to that obtained using the laminar flow theory. These simulations are for a cathode
radiu- 2f0.025 m, anode radius of 0.05 m, and an applied potential of 2 MV. Here Z,/Z, is the ratio of the load impedance over the line impedance. As this ra-
tio decreases for the given voltage, it appears that the validity of the laminar flow assumption also decreases.

Laminar
Simulation I,(A) I.(A) Z,/2Z, E,(V/m) E, % Diff
| 7.96 10 -35x%x10* 0.6 —8.5%x 107 —8.6x10’ 1.0
2 9.85x 10° - 84x10 0.5 - 6.3%10’ - 6.2%10’ - 1.6
3 1.324% 10° —1.215%x10° 0.36 - 6.0%10’ ~6.3%10’ 5.0
4 1.56x 10° — 146x10° 0.34 -6.1x10 - 6.6x10’ 1.5
5 8.50% 10* — 5.81x10* 0.57 —1.5x10’ —7.4%107 08
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FIG. 5. A MasK short MITL simulation (#5) versus theory. (a) Electric
field. (b) Magnetic induction.

4 and are representative of several MASK simulations. For
laminar flows (G = 0) Eq. (36) implies

P(c*B* —~ E?) = (r.cB,)% (68)
Now, the electric and magnetic fields along with 7 for simu-
lation # 5 are substituted into the left-hand side of Eq. (68)
and are compared to the constant (r.cB,)> If the MASK
simulation electron flow is completely laminar the difference
between the left and right side of Eq. (68) would be zero. In
Fig. 4, it can be seen that for simulation #35 excluding the
sheath edge region the percent difference is not zero but is
small: — 5.5%-7.0% different from the laminar flow pre-
diction. The solid line of Fig. 4 corresponds to the pure lami-
nar flow value. The dashed line corresponds to the MASK
calculation. At the sheath edge, between 0.0315 and 0.036
m, the percent difference between the laminar flow predic-
tion and the MASK simulation diverge (maximum difference
of 40% for this simulation). This is being studied in greater
detail, but may be due to appreciable values for G in the
region, or it may simply be due to the inability of the code to
resolve the fields in the sheath region for the given number of
computational cells and particles. Nevertheless the simula-
tion results indicate that the laminar flow assumption may
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often be appropriate and give results to within a few percent
of the simulation (except perhaps at the sheath edge). As
indicated in Table I, the laminar theory appears to be less
applicable with tightly trapped flows (Z,/Z, less than one-
half the magnetic insulation threshold valuc).

B. Comparison of Brillouin and constant density
solutions to a Mask simulation

In many short cylindrical MITL simulations, nonuni-
formities in the electric fields (usually E, ) sometimes result
in laminar flows with density profiles that are nearly con-
stant. In the following, MASK simulation # 5 is compared to
the constant density and Brillouin flow theories. The electric
field and magnetic induction are compared as seen in Figs.
5(a) and 5(b), respectively. The simulation gave the follow-
ing boundary conditions:

I, =8.5x10"A,

I. = —5813x10%A,
V,=20x10°V,

r, =0.05m,

r. =0.025m.

In Fig. S(a), one should note that the electric field from
the outermost sheath edge to the anode should match [see
Eq. (32)] for a laminar flow. The Brillouin fiow solution
and the constant density solution do match. The MASK cal-
culation is low out to about 0.038 m. From that point on, the
MASK electric field oscillates about the laminar flow expect-
ed electric field. From the cathode to the sheath edge the
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constant density flow solution more accurately predicts the
electric field. The reason for this is that with the currents as
specified, the Brillouin flow solution overestimates the ap-
plied potential. In fact, for this case the Brillouin flow corre-
sponds to a potential of 2.31x 10° V. This is off by about
+ 15.5% from that given in the simulation.

In Fig. 5(b), one notes that the constant density solu-
tion is doing a pretty good job of matching the magnetic
fields of the simulation. One should note that the MASK mag-
netic induction oscillates about the constant density induc-
tion from the constant density sheath edge to the anode. It
should also be noted that the constant density sheath edge is
at 0.033 m, which corresponds rather closely to the MAsk
sheath edge. The Brillouin flow solution seems to be under-
estimating the distance from the cathode to the MASK sheath
edge by nearly 50%.

C. Comparison of quadratic MITL solution to simulation

In 1979, Bergeron and Poukey did a series of simula-
tions of long MITL’s. In one of their papers® they presented
the charge and current density profiles of one simulation of
interest. They also compared the simulation results to the
Brillouin flow solution. It was a poor match except they not-
ed that the areas under the curves were about the same. Now,
the area under the charge density curve corresponds to the
total charge per unit length, whicl, was previously shown [in
Eq. (42) Jtobe

g=U; 1"/

The area under the current density curve corresponds to the
total current (7, ) flowing within the sheath, which is simply

IL=1,—1.

Since I, and I, are the same for the simulation and the Bril-
louin flow solution the areas under the curves must be equal,
assuming a laminar flow. This implies that the simulation
done by Bergeron and Poukey may be modeled fairly accu-
rately as a non-Brillouin laminar flow, which makes it of
interest here.

In Figs. 6(a) and 6(b), the charge and current densities
obtained in the simulation® are compared to those predicted
by the quadratic MITL solution [Egs. (66)-(69), (40), and
{44)]. The simulation gave the following boundary condi-
tions:

[, =45%10° A,
I.= —24X10°A,
V,=24X10°V,
r, =008 m,

r. =0.07m.

It is clear from the figures that the theory is doing a
fairly good job of matching the simulation results. It is doing
a much better job than the Brillouin flow solution, which is
shown for this case in Fig. 2.

Even though the quadratic MITL solution is much
more consistent with the simulation than the Brillouin, the
simulation results show a charge density distribution that is
Gaussian in nature [Fig. 6(a) ]. It is rounded at the cathode
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and decreases slowly as the sheath edge is approached end-
ing in a Gaussian tail. The profile used in this paper does not
include the rounding at the cathode or the Gaussian tail at
the sheath edge, although it does duplicate the gross features
of the curve. As a result, the theory neglects the tail and
underestimates the sheath edge radius. If one generated a
function that fit the density profile of the simulation more
closely, the laminar theory [Egs. (40)~(50)] could be used
to generate a better self-similar MITL flow solution for this
long MITL.

Vi. SUMMARY

Mendel’s Cartesian MITL flow theory is partially ex-
tended to cylindrical coordinates. A set of equations that
describe electron flows of arbitrary orbits in cylindrical co-
ordinates is presented [Eqs. (29)-(35)]. The resulting
equations are used to derive a new and general theory gov-
erning laminar flows in coaxial MITL’s. This is done be-
cause many experiments are performed using coaxial sys-
tems in which laminar flows are believed to be important. It
should be emphasized that in the new laminar theory the
canonical momentum and total energy of the electrons are
not restricted to zero across the electron sheath, as in the
Brillouin theory. This allows one to consider one-dimension-
al electron flows that may have much in common with real
world flows in which impedance mismatches and perturbing
structures cause the electrons to have nonzero canonical mo-
mentum and total energy profiles.

The laminar flow theory is checked by considering the
case in which each electron has zero canonical momentum
and total energy across the flow—the well-known Brillouin
flow theory results. The theory is then used to obtain a new
analytic self-consistent MITL flow solution with a constant
electron density profile. The constant density solution com-
pares favorably with a short MITL MAsK simulation (repre-
sentative of several simulations). In addition, a new analytic
flow solution with a quadratic density profile is presented. It
is compared to a long MITL simulation and found to do a
good job of matching flow quantities. The new flow solutions
are compared with each other and with Brillouin flows. It is
noted that the constant density and quadratic MITL solu-
tions are more flexible than the Brillouin flow soiution. It is
also interesting to note that the theory predicts y,, = 1,,/1,
at the sheath edge for all cylindrical laminar flows as expect-
ed.

This research can be applied to various additional areas.
For instance, one could use the general theory to obtain the
magnetic insulation threshold for a variety of non-Brillouin
flows. The general theory could also be used to generate new
laminar MITL flow solutions for a variety of electron den-
sity profiles. This might be especially useful to the researcher
who intends to match simulation or experimental results to
theory and is not satisfied with the Brillouin flow solution.
The general theory could be used in conjunction with a PIC
code to determine how laminar the flows from a given MITL
are as a function of the radius. In this context, it could also be
used to determine G(r) for a given configuration. Finally,
Egs. (29)-(35) might be used to predict fields and flow vari-
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ables in cylindrical pulsed power systems in which the fields
and flow quantities are significantly affected by nonlaminar
electron orbits.
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