T FILE copy - @

Applied Research Laboratory

F

8 Technical Report

i~ A DECISION SUPPORT SYSTEM FOR
= CONTROL AND AUTOMATION OF
N DYNAMICAL PROCESSES

; :

Q Steve Nann

DTIC

ELECTE
s MAR 19 990

R P S

DISTRIBUTION STATEMENT A

Approved for public release;

PENNSTATE Disibusen Unlimited

90 03 19 076

: The Pennsylvania State University
APPLIED RESEARCH LABORATORY
P.O. Box 30
State College, PA 16804

A DECISION SUPPORT SYSTEM FOR
CONTROL AND AUTOMATION OF
DYNAMICAL PROCESSES
by

Steve Nann

Technical Report No. TR 90-002
March 1990

Supported by: LR. Hettche, Director
Space and Naval Warfare Systems Command Applied Research Laboratory

Approved for public release; distribution unlimited

UNCLASSIFIED

ECURITY CLASSIFICATION i

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
TR-90-002

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Applied Research Laboratory

The Pennsylvania State Univergity

6b OFFICE SYMBOL
(If applicable)

ARL

7a. NAME OF MONITORING ORGANIZATION

6¢ ADDRESS (City, State, and 2iP Code)
P. 0. Box 30

State College, PA 16804

7b. ADDRESS (City, State, and 2IP Code)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION
Space and Naval Warfare Systegs
{—Lammand

8b. OFFICE SYMBOL
(If applicable)

SPAWAR

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢ ADDRESS (City, State, and 2IP Code)
Department of the Navy

Washington, DC 20363

10. SOURCE OF FUND!NG NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

Y1 TITLE (Iinclude Security Classification)

A Decision Support System for Control and Automation of Dynamical Processes

12 PERSONAL AUTHOR(S)
Steven P. Nann

13a° TYPE QF REPORT 13b. TIME COVERED

‘4. DATE OF REPORT (Year, Month, Day) S. PAGE EOS%NT

M. S. Thesis FROM TO
P e
'6 SUPPLEMENTARY NOTATION
17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)
FIELD GROUP SUB-GROUP

The software system's architecture has been

system for real-time control and automation of dynamic processes.
known as DECA (Diagnostic Evaluation and Corrective Action), will
of the computer's ability to manipulate vast amounts of data, and
reasoning for the monitoring and diagnosis of dynamical processes
constrained, routine, and emergency situations where an immediate
necessary to avoid catastrophic failure of the system.

be applied to any dynamic process without reprogramming.
was verified using the data from the Three Mile Island Nuclear Reactor Accident.

IKFBSTRACT (Continue on reverse if necessary and identify by block number)
he thesis presents the concept and development of a diagnostic decision support

This system,

take advantage
employ qualitative
during time-
response 1is

structured in such a manner that it can
DECA is written in Lisp and

20 OISTRIBUTION / AVAILABILITY OF ABSTRACT

B uncuassirieounumited [SaME As RPT {J omic USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Inciude Area Code) | 22¢. OFFICE SYMBOL

(814) 865-6344

DD FORM 1473, 8a MAR

83 APR edition may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.

UNCLASSIFIED

ABSTRACT

The thesis presents the concept and development of a
diagnostic decision support system for real-time control and
automation of dynamic processes. This system, known as DECA
(Diagnostic Evaluation and Corrective Action), will take
advantage of the computer’s ability to manipulate vast
amounts of data, and employ qualitative reasoning for the
monitoring and diagnosis of dynamical processes during
time-constrained, routine, and emergency situations where an
immediate response i1s necessary to avoid catastrophic
failure of the system.

The software system’s architecture has been structured
in such a manner that it can be applied to any dynamic
process without reprogramming. DECA is written in Lisp and
was verified using the data from the Three Mile Island

Nuclear Reactor Accident.

. AccesTinan Typ

il S Y
NTIS c7oey
DIl . i

U -]
Jusiit . L ln

DS U —

By
Distrit i io=/

Avail.™t it Codedy |

.

Dist seclal

Al

i

TABLE OF CONTENTS

LIST OF FIGURES...... e s e e et e s s e aas s e oo s eaesaneeene .
LIST OF TABLES.....cv'eunu. et ettt e teeee e .
GLOSSARY st et s e e s v e e e e nen Cevreaens
ACKNOWLEDGEMENTS . .ttt v e nvens C et teeeeccee e eeee .
Chapter 1. Introduction............ c et e s e e
1.1 MOLIVALION. i ittt ieeeteneeceneeecennensssossosnssnass .
1.2 The DECA SystemM.....ueivereenoceasnenanans ce v e
1.3 0verview of DECA.ttt ieeeonsscesasssnnnses .
1.4 Areas of Application........ Ce et tesessesaenaneanae
1.5 Application to Evaluate System......c.cceevevennns .
1.6 Contribution of the Thesis. .. vcceeresnn Cee e
1.7 Implementation of DECA.ve.vveeeesnones cees e
1.8 Organization of Thesis.......vievreereensennnns “es
Chapter 2. Milne’s Theory of DiagnNoSiS..c.eerevneencenen
2.1 Levels Of DiagnoOS TS . v.eeeeeeeanssenannsnacssncanns
2.2 Correlation Between M1]ne s Leve]s and DECA ce
Chapter 3. Detailed Description of the DECA Kernel.....
3.1 Design Goals for DECA..... e e e ceceseaneens .
3.2 Process Flow Chart.....veceescecnscnes ceverenns
3.3 System Inputs..... ctcereanaaa cesessesnesnaenea e e
3.3.1 On-Line Information......oeeees e e es et
3.3.2 Setpoint Database......ccceueu. S e eseseseenenns
3.4 Evaluating Sensor Data, Diagnostic=1.....c.veeuuvs
3.5 DECA’S Knowledge BaSe.......cvoeeeeensncocsnsaneane
Chapter 4. Inference ENQinN@.......cvevveireecnenesaaans

Parameter Prioritization.
Determining a Sqution...

R R N R N

b wWwhN -

iv

Lookahead Mechanism and Scenario Evaluation.......
Solution Search.cceeveese
Context Trees and Scenario Rank1ng

17
17
25

26
27

28
33

37

37
38
40
41
43

Chapter 5. Implementation of the DECA System........... &6

5.1 Selection of Lisp as the Programming Language..... 46
5.2 Speed Considerations......... e e e reeeea e 48
5.3 Computer Input/Output..... et e ot et tet et 49
5.4 Dynamic Databases..... et s e e e s s e e st e e et enes 0o 51
5.5 Separation of the Knowledge Base and
Inference Engine............ Gt e et st e et e 51
5.6 DECA Architecture Planning...... Cr s ecsiee s ent et 53
Chapter 6. Results and ConcluSionNS. ..ccceenes.. e s e e 55
6.1 Test Runs...... e et s e e s et eean e aenns e e s e s e eeaeenas 55
6.2 RUNLIME LOG. .ttt tveveesecnonnescnnsnnnsen s e eoc e e as 59
6.3 Experimentation of DECA w1th TMI 2 Data.....ccune 62
6.4 Computational Requirements. ceoeceeneascsacacssas 63
6.5 CONCTUSTONS. c v tcvvvenncoennnsns s e e e s aees et saesesans 66
Chapter 7. Future Research.......cceeeuees ceeesansene s 69
7.1 Solution GeneratioN.....cceeeseetostssescsensasass 69
7.2 Fuzzy Logic..................................... 70
7.3 Source Code TranslationN....vceceeeroncnenncs ceeseses 10
7.4 Integrating Analytical Modules Y
7.5 Distributed Processing......cceeeeesvenccans Y 4
7.6 Operator Interface........... cereestcevaneans ceeee. 12
REfEerenCeS. . cvioeeeenoceesncsnasssosessansncas veseosnncsses 14

Appendix A. The System Query Language.......ccvesseee.. 17
Appendix B. MYCIN’s Countrol Mechanisms...... B -2
Appendix C. The CKW Local Optimization Algorithm...... 87
Appendix D. Runtime Output Data.........cceevveueeeess 90

D.1 Test Runliill.....'....I.I.l‘ll.l..".. 90
D'2 TMI-2 Run.'ll'll.l‘..ll.'..l..ll..I...ll.l'l'.'..I 96

Appendix E. DECA Knowledge Base for TMI-2 Accident.... 109

E.1 Scenario-description.data File.....cceevtreneaneas 111
E.2 Parameter-expect.data File........ceeieeennn. ceees 112
E.3 Scenario-tendency.data File.....c.cuerneerecacce.. 116
E.4 Scenario.data File......cicceetreeotesasocencnsasaes 118
E.5 Setpoint.data File.. ...ttt eeinenrcnnncestseacsarss 119
E.6 Sensor.data File.....cceeeevecone sessesesassesssecs 121

Appendix F. DECA Program Listing.....ictecrieesnessnsres 122

LIST OF FIGURES

Overview of DECA System.......cceveveennn s eeeaa 4
Levels of Diagnostic Reasoning.........oceeeeeeneas 13
DECA Process Flow.......... e esesaacccscenconne o .. 19
Qualitative Match for Scenarios..... et 41
MONITOR Mechanism....... e et ieeees et e et eenan 83
FINDOUT Mechanism.......civevesenennnnenns B -7
TMI-2 SchematiC.....cve0.u i eesseasens cessessaas 110

vi

LIST OF TABLES

On-1ine Information Database€.....coeeeeeee. R

Setpoint Database (SDB)......eeveneceennnonnrss

Scenario - Parameter Relation Chart............
Parameter - Scenario List.....c.ccvee.. e e en s
Parameter Priority Database for PZR-P..........

Combining Parameter and Scenario Priorities....
Function variable Reference........... s eeseaves

Setpoint Data Relation Table......ccieevevenens

vii

26
27
35
36
42
45
61

79

Al

ES
DECA
TMI-2
CKW
oosB

OLI

soB

SQL

DML

Input
PZR-P
PZR-L
HL1-T
SG1-P
SG1-L
QNT-P
SG2-P
SG2-L

cL1-T

GLOSSARY OF TERMS

- Artificial Intelligence

- Expert System

Diagnostic Evaluation and Corrective Action

Three Mile Island Unit 2 reactor
- Local Optimization Algorithm
- Out Of Bounds, refers to system operating conditions
- On-Line Information database, contains sensor
readings
- Setpoint Database
LLL - gqualitative range below predetermined value
HHH - qualitative range above predetermined value
- System Query Language

- Data Manipulation Language

parameters for the TMI-2 accident test scenario
Pressurizer Pressure
Pressurizer Level
Hot Leg 1 Temperature
Steam Generator 1 Pressure
Steam Generator 1 Level
Drain Tank Pressure
Steam Generator 2 Pressure
Steam Generator 2 Level

Cold Leg 1 Temperature

viii

Scenario numbers and descriptions.

1 Pressurizer Leak

2 Block Valve Leak

3 Pipe Rupture - (drain tank)

4 Drain Tank

5 Pipe Rupture - Hot Leg, Primary Coolant System
6 Pipe Rupture - Cold Leg, Primary Coolant System
7 Reactor Pump

8 Steam Generator - Primary Coolant System

9 Steam Generator - Secondary Coolant System

10 Pipe Rupture - Secondary Coolant System

11 Feedwater Pump -~ Secondary Coolant System

12 Turbine Trip - Secondary Coolant System

X

ACKNOWLEDGEMENTS

Any major undertaking, such as this thesis, requires
the devotion of much time and effort to insure its
successful completion. I would like to express my deepest
appreciation to those whose assistance enabled me to
complete this work.

I would l1ike to thank my Advisor, Asok Ray, for giving
me the opportunity to become involved in the Artificial
Intelligence field, and for his guidance in developing this
thesis.

Also, I would like to thank Jim Stover for his help and
advice on techniques for the development of Expert Systems.
I am grateful to Ron Gibson for his help with the

generation of the computer output and file transiations.

Most of all, I would like to express my deepest
appreciation to Soundar Kumara whose help and insight were
instrumental in the completion of this research.

Finally, I would like to thank the Applied Research
Laboratory for offering an assistantship which enabled me to
pursue my Master of Science degree in Mechanical

Engineering.

Chapter 1

Introduction

Expert Systems have been proclaimed as the panacea for
Industry’s problems in recent years. They are said to
incorporate vast amounts of knowledge, learn and use this
knowledge, all in a broad domain. While in the realm of
implementations, the past history shows that the most useful
Expert Systems have heen applied to a specific domain to
carry out a set of specific tasks. Some examples of
successful Expert Systems are MYCIN [Bucha84] and R1
[McDers82]. 1In the realm of real-time processing, some
successful Expert Systems are Picon [Leinw87], Falcon
[shir187], and Ecesis [Dicke84]. The reason for their
success is that they have a workable size knowledge base and
the complex interactions are not beyond the computational

power currently available.

1.1 Motivation

The advent of powerful computers has created useful
applications for dynamic control. The computer’'s ability to
handlie vast amounts of information efficiently makes it
ideal for monitoring large dynamical systems.

Earlier work has been in the area of dynamic
programming, where the globally optimal solution to the

problem is used. As the system’s complexity increases in the

number of parameters, processing time required to ind the
optimal solution increases exponentially. The increased
processing time required makes the dynamic processing
methods impractical for dynamic process control or
monitoring systems in real-time.

Previous research concentrated on developing a locally
optimal solution which will enable the real-time monitoring
of dynamic processes. Jow’s work [Jow84] in the
implementation of the CKW local optimization algorithm
(appendix C) makes real-time monitoring of many parameters
in a complex dynamic process feasible.

In r _cent years, with the development of efficient
computers for running Artificial Intelligence (AI)
applications, the development of AI based applications for
monitoring and control of complex dynamic processes in
real-time has become a possibility. This thesis explores one
possible way to monitor these dynamic systems using Al and
Expert System techniques. It builds upon Jow’s work, but
instead of an algorithmic approach, it uses qualitative
reasoning. This thesis uses some of the fundamental notions

of Milne's theory of diagnhosis [Milne87].

1.2 The DECA System

In this thesis, the domain of dynamical processes is
considered as a candidate for real-time monitoring and

information prioritization. If the common elements of all

dynamical prccesses are focused upon, it appears feasible to
be able to develop a generic Expert System that can be used
with these various systems. The outcome is expected to be
largely similar to the project presented here; DECA,
Diagnostic Evaluation and Corrective Action. DECA is
designed to implemsnt a control strategy for dynamical
processes during routine, time-constrained, and emergency
situations. The goal is to develop DECA into a general
purpose shell which would be versatile and sufficiently
autonomous in the sense that it would be capable of handling
the computer operational details and execute the processes
in real-time while the human user would concentrate on
setting up the knowledge base for the particular application
at hand. DECA can be interfaced with simulators or with the
plant under control. The major objective of DECA is to
support human operators in the decision making process. 1In
the hierarchical decision structure, DECA will function less

autonomously at higher levels.

1.3 Overview of DECA

The system is a multi-stage one. Given the current
state of the system, in real time, DECA tries to diagnose
the causes for any malfunction, based on qualitative
reasoning [DeKle83]. At the lower level, for the given
diagnosis, DECA tries to identify the relevant variables

along with more detailed analysis of the current state so

that any impending disaster can be avoided by effectively
implementing a set of corrective actions.

There are three main levels in the DECA system:
Diagnostic-1, the Classifier; the Prioritizer; and
Diagnostic-2, the Corrective Action implementor. Figure 1.1
shows the system structure. Chapter 3 gives a detailed

process flow diagram and explanation of the system.

INPUT
DATA

DIAGNOSTIC-1

CLASSIFIER
' J > DoMAIN
l; KNOWLEDGE
PRIORITIZER DOMAIN
G——— > DATABASE

!

DIAGNOSTIC-2 CONTEXT
CORRECTIVE [—D| TREES
ACTION

OUTPUT

DATA

Figure 1.1 Overview of DECA System

In the first level, the Classifier, DECA reads the input
data, determines what parameters are beyond normal operation
and their severity. The second stage, the Prioritizer,

evaluates the parameters and finds their importance as well

as searches the database for possible disaster scenarios.
The third stage, Corrective Action, pulls together the
parameter priority, scenario likelihood and determines the
cause of the emergency. Once the scenario is selected, it
searches its knowledge base for a likely solution or action

for the operator to implement.

1.4 Areas of Application

DECA is particularly suitable for dynamical systems
where many parameters need to be monitored continuously. For
example, the Space Station will need constant monitoring of
its vibrational characteristics and stability [Firsc86,
Ray87]. Another area of application is the control of
advanced fighter aircraft [Ander84, Pisan84]. While in a
combat situation, the pilot not only has to fly the plane,
but also has to keep track of the weapons systems and
targets. An Expert System can be used to monitor all the
rudimentary lower level controls, allowing the pilot to
concentrate on the immediate danger at hand - the enemy.
Chemical and nuclear processes can also benefit from DECA in
a similar way.

The system’s control process can be invoked via manual
intervention or through an automatic mode. In the former
case, the diagnostic system will serve as an overall
advisor. In the latter case, it, by virtue of proper

interfaces would be able to control the process. For

example, a space probe in the outer reaches of the solar
system would be able to take some emergency actions to

preserve itself.

1.5 Application to Evaluate System

The general framework of DECA and its efficacy have
been tested using real world problem of the Three Mile
Island nuclear power plant number 2 (TMI-2) accident. This
particular example was considered due to the availability of
data and earlier reports [NSAC-1, NSAC-1S] which can be used
for evaluating the performance of DECA.

The main problem which plagued the accident was
information overload. Studies have shown that the average
human can handle about seven pieces of information before
reaching information overload [Mille56]. This is exactly
what happened at TMI. The reactor shut itself down after a
turbine tripped, and soon after, a block valve opened and
stuck open on the primary cooling system. With the draining
of primary coolant and other events going on, the number of
alarms that were being tripped in the control room caused
the operators to overlook the real culprit - the stuck block
valve. It was not discovered for over two hours, after the
damage was done.

DECA could have been of value in TMI because it has the
capability to keep track of many parameters, figure out

which are the most critical, and take corrective action or

give the operator a summary of its knowledge. With this
knowledge, the operators will be able to solve the root of

the problem and the side effects will resolve themselves.

1.6 Contribution of the Thesis

The objective of this thesis is to develop a kernel of
a future Expert System for autonomous dynamical process
control. As it is refined, more capabilities will be added
to enable it to automatically control a simulated or
physical system. 1In its current stage of development, DECA
plays the role of an advisor to the system operators.

This thesis demonstrates an inference engine that can
be used for the automation of monitoring dynamical processes
in real-time. The contribution of the DECA system is as
follows:

1-Develop and implement a new architecture specifically

designed to automate the monitoring and control of

dynamical processes.

2-The capability to run in real-time.

3-Develop the system’s diagnostic capabilities to

utilize qualitative reasoning.

4-Give DECA the ability to integrate analytical models

along with the qualitative models.

5-Keep the system modular to enhance software
maintenance.
6-Develop the system in such a manner to insure

portability.
1.7 Impiementation of DECA

DECA is being implemented on a Symbolics 3670 using‘
common LISP in conjunction with Flavors [Weinrs8o0].
Currently, the system development uses the Three Mile Island
reactor accident data. However, the framework of DECA is
general enough to be applied to a variety of dynamic control

situations.
1.8 Organization of Thesis

This thesis consists of seven chapters, a list of
references, and six appendices.

Chapter 2 discusses theoretical issues and draws
parallelisms to Milne’'s theory of diagnostics. In chapter 3,
a detailed description of DECA's structure is given and a
discussion of the inference engine is located in chapter 4.
Chapter 5 provides the details of developing the DECA
program on the Symbolics computer. Chapter 6 reviews and
discusses the results from the test runs of the software and
draws conclusions about the system. In chapter 7, the goals

of future research are given.

A l1ist of the references is provided after chapter 7.
Appendix A provides background information about the System
Query Language. Additional background information is given
in appendix B and C. Appendix B describes the control
strategies in MYCIN, while appendix C discusses the CKW
algorithm for the local optimization of systems in real
time. Appendix D consists of the data from the execution of
the DECA program for the test run and for the Three Mile
Island Reactor Accident. Appendix E describes the knowledge
base for the Three Mile Isiand Reactor and gives listings of
the files which contain the data. Finally, appendix F gives

the listing of the DECA program.

10

Chapter 2

Milne’'s Theory of Diagnosis

In recent years there has been a tremendous leap
forward in technology leading to new applications of
Artificial Intelligence and Expert Systems, especially in
the area of diagnostics. According to Milne [Milne871,
there are many new techniques available giving us the
ability to build and reason about models dealing with a
large domain of information (e.g. learning from experience,
probabilistic information, and learning from examples). The
DECA system’s architecture in many respects, parallels

Milne’s concept of diagnostics and reasoning.

2.1 Levels of Diagnosis

In a diagnostic system, the key to a successful
implementation is through the system’s ability to be
flexible in its interface with the physical system. The
ability to accept input data in a format or description that
is most logical with a particular domain is also critical
for a successful implementation.

The manner in which Milne creates this is by having a
network of different levels which can readily pass data
between one another giving it modularity. This flexibility
makes the approach "generic”, and usable, for a wide variety

of diagnostic applications.

In the subsequent discussion Milne's framework is
explained and its parallel with DECA is illustrated.
In Milne's diagnostic scheme [Milne87] there are four

levels that are layered together. They are:

- Structural
- Behavioral
Functional
Pattern Matching

HLWN
|

The four levels are connected together serially 1-2-3-4, and
each level has both input and output. With this setup, one
“can build a diagnostic system based on knowledge which has
been input at any level and stop at any level” [Milne87 p.
334]. Figure 2.1 graphically depicts the interrelationships
between the levels and system input/output (i/o).

In the first level of diagnosis, the system uses the
knowledge about the system structure for diagnosis. The
system contains a small number of hypotheses of what is
wrong. It will derive tests to discriminate between the
hypotheses. In the structural level the expert system uses
the structural knowledge about the process and system to
simulate possible faults and compare the results to an
on-line library. From the results of the simulation, it will
use forward reasoning to qualitatively select the proper
diagnosis. The qualitative reasoning capability is not
extensive in the first stage, and the depth of knowledge
about the system is generalized. Since this is not an

extensive model of the systems, a diaghostic system using

11

only the first stage is called a "shallow"” knowledge
system.

The second stage of Milne's diagnostic architecture is
the behavioral stage. It performs the following function:
"Given a representation of the behavior of components of the
devices, system, and a representation of the components, the
ability to generate the behavioral description of the device
as a whole is an important part of causal reasoning”
[(Milne87, p. 83]. In the second stage the reasoning becomes
much more complex than in the first. There are two methods
to carry out the reasoning: qualitative simulation, and the
consolidation method [Dekle83].

In general, for the diagnosis of a simple system, only
the first two stages are needed. They give a fragmented
evaluation of the interrelationships of the devices in a
larger system. If the application is a very complex system,
there will likely be a need to tie together the fragmented
information in a hierarchical structure. On a large system
one "“can often put together function of the device and
relationship to its structure” [Milne87, p. 334] using the

two lowest levels.

12

13

Shallow Assertions Rule Based
-‘-§~““ﬁ><Comp11ed Patterﬁ}:j““_——_____D
____________——{> Matching . :
Feature f? Experience
Space Cases

Compilation

Functional Model Based
Simulation Systems
D Function\>Af >

Telelogical
Reasoning

Qualitative Model Based

Mode System
—>{ Behavior D>
Qualitative
Reasoning
Structural
Connectivity Isolation
—{>{ Structure —>

Figure 2.1 Milne’'s Levels of Diagnostic
Reasoning [Milne87, p. 334]

The third stage is the functional level. Sometimes the
knowledge deduced by the first two stages is enough to
diagnose a problem in a device of the system, but not the
complete evaluation of the whole system. To perform a
diagnosis it may be necessary to have the behavior of the
device go through an abstraction to a higher level of
knowledge representation. The higher level generally relates
the interactions between function and structure. It can also
be patterned into a hierarchy of the interrelationships
between the devices in the system.

The fourth stage is what Milne refers to as the "Deep
Function Model-Based Diagnosis System” [Milne87, p. 335].
Taking the model and having a knowledge representation to
relate function, behavior, and structure, it can perform the
top-level pattern-matching.

The deep function model-based diagnostic system would
enable the information to enter at any of the four levels,
utilize the strengths of one or more level and exit at any
level. This would basically yield any of four types of

diagnostic systems available.

2.2 Correlation Between Milne’s Levels and DECA

Milne's frame work forms the basis for DECA’s
architecture. Referring to figure 2.1, it is apparent that
DECA employs the concepts of Milne’'s first three levels,

Structure, Behavior, and Function. Essentially the

14

correlation between DECA and Milne is as follows; DECA’s
Classifier is the same as Milne’'s Structure, Prioritizer is
equivalent to the Behavior, and the Corrective Action module
is equivalent to Milne's Function level.

The Classifier uses the system structure to determine
where the problems are arising on a subsystem level, and
selecting general scenarios which may be feasible. It then
feeds this data to the Prioritizer.

The Prioritizer section correlates well with Milne’s
Behavior level, for the Prioritizer decides which parameters
are the most critical from the data given to it about the
system. It also takes into account the interactions of the
elements of the system and general tendencies of the
system’s components under a given condition. The Prioritizer
will determine the priority of the system parameters and
select a few most likely scenarios as to what the
malfunction is.

The Corrective Action segment of the DECA’s inference
engine closely correlates with Milne’s Function layer. The
duty of the corrective action layer is to determine which of
the scenarios chosen by the Prioritizer is the actual system
malfunction and then figure out what would be the best
remedy to implement. In the event that DECA cannot find a
solution, the Corrective Action segment will give the
operator a list of the parameter priorities and a brief
description of which part of the system he should

concentrate his efforts on.

15

In summary, one can see that DECA’s structure closely
parallels Milne’s. DECA's ability to adapt its structure
and internal function, and its modularity make it feasible
to be implemented in a variety of applications in automatic

diagnosis and control for dynamical systems.

16

17

Chapter 3

Detailed Description of the DECA Kernel

This chapter gives a detailed description of DECA's
internal architecture and process flow. An overview of the

major components of DECA are discussed in section 1.3.
3.1 Design Goals for DECA

When the DECA architecture was developed, the following
objectives were incorporated into the system. They are:

1- For DECA to monitor many parameters in a real-time

fashion.

2- The ability to quickly separate all relevant data

from extraneous information.

3- Diagnose the system’s malfunction/abnormality, and

if not possible

4- Output the relevant parameters and their priority in

order to focus the operator’'s attentions to the part of

the system which the problem emanates from, thus

eliminate side effect distractions.

3.2 Process Flow Chart

Figure 3.1, contains a detailed process flow diagram of

the DECA system. 1In subsequent discussion, a detailed

explanation of DECA kernel is given.

From the DECA process flow, it can be seen that the
knowledge bases for the application problem have been kept
separate from the inference engine. This has been done for
two reasons. First, keeping the domain data in a separate
database enables the operator to easily update the system to
represent any changes in the physical system. Secondly, with
a separate inference engine, DECA can be adapted to a great
many different dynamical processes. Only the domain
knowledge needs to be incorporated for each new
application.

The modular structure will also help improve DECA’'s
versatility, for the reference databases need only be
changed when DECA is applied to another problem domain.
Also, DECA can be modified to run subroutines instead of
referencing data in certain databases. For example, DECA can
be told to access an analytical model or run a simulation
for retrieving setpoint data instead of looking up a data
table. It can interact with its databases, analytical
models and simulation modules in a coherent manner. The data
and subroutines do not even have to be resident in the same
computer, enabling DECA to use distributed computing
techniques. This also allows DECA to take advantage of
previous information without recoding it.

The following pages deal with the detailed analysis of
the DECA kernel. Figure 3.1 contains the flowchart for

DECA.

18

[::}—4>(Read in <F

Set flag for
setpoint database

Compare data with
setpoints. Flag

out of bounds (oob)
parameters.

Set severity for
parameters that
are oob.

Sensor Data
(has been verified)

<F—{>| Setpoint database

Could be LISP,
SQL, Simulation or
analytical models.

End of DECA level 1

Fig. 3.1 DECA Process Flow

19

r— —|— — — — -— Lookahead Mechanism — — —1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

oob parameter‘.'q

<?oop for each

Lookahead Database
Parameter/Scenario
retations

Put the scenarios
from the SDB

which must be
searched in a list

\V4

Loop thru each
oob parameter.

(e.g. PZR-L)
Loop thru each of
its scenario list

(e.g. 51, etc.)
to lookahead at.

l

Check scenario context to
see i1f the expected tendency
QF or value of the parameters

matches actual data.

Fig. 3.1 continued

20

Loop thru all
scenarios that were

mentioned by the

Lookahead mechanism

v

v

Determine the priority
(quatlitatively) of the
scenarios.

i.e. Major, Minor, Improbable

!

Check how closely the
data matches the expected
value for the scenario.
Store results.

F$==$>Match

Scenario

Database

<foop thru eacﬁ><}

oob parameter.

21

v

Make a list of the

Major match value.

v

scenarios which have

la Minor match value.

Compare the lists with
the parameter expectation
table for the parameter.

v

Retrieve the record that
matches exactly (or best).

<F;:£>Database

v

Assign the parameter
priority number to the
parameter being evaluated.

—

scenarios which have a <F====4>8cenarios

associated
with the
parameter

Make a list of the k——=p from the

soB

Parameter
Priority

Fig. 3.1 continued

Sort the parameters that

are oob by priority
number. Store the
results.

<F===¢>Sorted oob

IF any
parameters have

22

parameters

'Rank the
~l|parameters

same priority
number

with a higher
severity first.

Qualitatively sort

Scenario match
scenarios. = database (sorted)
(major, minor, improbable)

Store results.

Retrieve the priority
ranking of the parameters
and of the scenarios,

and =D Sorted oob
rank in order the best parameters
fit scenario and parameters
combinations. (data that
fits best with
expected results).

Scenario match
= database (sorted)

Fig. 3.1 continued

NO

scenarios are
of minor,
match with

or poor

Dl output

No scenario
selected, DECA
does not have
the confidence.

List the results

1- parameters in
priority.

2- Closest matched
Scenario.

3- Fact that not
selected and
why.

Return to process
next set of data.

Fig. 3.1 continued

23

Select the scenario.
Output the scenario chosen
explain why.

(parameters match, etc.)

Search the context tree Context Trees for
of the scenario solutions (Scenario solutions._

AV

Output DECA’'s proposed
solution and suggested
action to implement to
resolve the situation.

!

Return to process
next set of data.

he arrow

_ Program

Flow

T Data Storage

and Retrieval

Fig. 3.1 continued

24

3.3 System Inputs

25

The input to the system is through on line sensors. For

the example run of Three Mile Island Unit Two (TMI-2) there

are nine parameters.

PZR-P
PZR-L
HL1-T
CL1-T
SG1-P
SG1-L
SGa2-P
SG2-L

QNT-P

Pressurizer Pressure
Pressurizer Level

Hot Leg Temperature

Cold Leg Temperature

Steam Generator #1 Pressure
Steam Generator #1 Level
Steam Generator #2 Pressure
Steam Generator #2 Level

Drain Tank Pressure

psig

inches
deg F
psig
inches
psig
psig
inches

deg F

The data comes into the system in a set order known a

priori. That is,

we assume that the control processor

gathers the data, checks the accuracy and validity of the

data and sends out a stream of numbers.

Since the data has

been authenticated by the instrumentation, DECA assumes that

the data is accurate through the instrumentation’s use of

fault detection and verification.

26

3.3.1 On-Line Information
As the sensor data is read into DECA, it is stored in
an On-line Information database (OLI). Table 3.1 shows a

sample of the OLI database for time period 0 to tx.

Table 3.1 On-1line Information Database

ORDER PZR-P PZR-L HL1-T SGt-P SG1-L SG2-P SG2-L QNT-P CL1-T

0 2145 218 607 944 123 930 116 559

3
15 2260 253 611 1022 79 6.3 1012 80 571
30 1905 182 587 998 26 7.8 987 30 577
45 1855 160 579 1000 17 9.3 993 20 576
60 1790 158 378 990 14 12 969 18 576
75 1760 1£2 577 i011 10 14.3 997 16 576
90 1725 175 578 1023 11 17.5 1005 16 577
105 1685 187 579 1021 11 19.6 1005 16 577
120 1650 200 579 1011 11 22.2 1000 16 579
tx data for time x
o, 15, 30,...,tx is the index for OLI. For our example, the

values of tx will correlate to the time intervals during the
TMI-2 accident. Even though we will only be concerned with
the present record (or data sample for a given time), having
the history will enable DECA to determine the relative
speeds of the transients which will contribute information
towards qualitatively deducing an urgency for various

parameters.

27

3.3.2 Setpoint Database

Processing of information will begin once the OLI

database has been established. First it takes a record tn

which corresponds to the data at the instant of time under
investigation (usually the most recent), and checks each
parameter against the setpoints for normal operation. For
normal reactor operation the relational data base for

setpoints (SDB) is as follows [Jow84, p. 5-13]:

Table 3.2 Setpoint Database (SDB)

VARIABLE LLL LL L N H HH HHH UNITS

PZR-P 1200 1900 2055 2150 2250 2355 2400 psig
PZR-L 45 160 200 222 240 260 280 inches
HL1-T 300 400 500 606 610 619 630 deg F
SG1-P 800 850 900 940 1050 1070 1105 psig

SG1-L 10 30 45 160 170 180 190 inches
QNT-P 1 2 2.5 3 35 80 122 psig
SG2-P 800 850 900 940 1050 1070 1105 psig
SG2-L 10 30 45 160 170 180 190 inches

CLI-T 300 400 500 558 610 619 630 deg F

The versatility of the system can be enhanced by utilizing
DECA’s ability to access different setpoint databases. When
DECA looks at a setpoint database, it must check a system
flag to determine where to look for the data. The system
flag is set from an external source, such as data
acquisition equipment or from the operator’'s console. The
value of the flag reflects the present state of operation

the system is in (e.g. normal, reactor shutdown, etc.). For

example, the database shown above (Table 3.2) is for normal
operating mode. If the reactor were to be shut down or
reduce power output, there would be some transients which
are normal to this action, but DECA would trigger alarms
because some values are indicated as being out of bounds.
With the flag set, DECA will be directed to look at a
shutdown database, or it will be directed to call a
subroutine which contains an analytical model to determine
the appropriate setpoints for the present state of the
system. This ability to switch between setpoint databases
will alleviate the triggering of false alarms, thus letting

DECA focus its attention on the problem.

3.4 Evaluating Sensor Data, Diagnostic-1

When processing a record of parameter values from the
OLI database, the system will take the parameter data and
compare it with its setpoint value. Retrieval of data in
the SDB can be done, uniquely through the variable name as
the key. By comparing the data against the setpoints, DECA
determines whether it’s in normal operating range or beyond
its normal range. If it is normal, the parameter is left
alone, but if out of bounds, DECA wil)l determine the degree
to which it is out (e.g. L, LLL, HH, etc.). This flag and
corresponding thresholds indicate the severity associated
with the system parameters. Also, DECA can incorporate

fuzzy set thecry into the system, and the degree to which

28

29

each parameter is bound can be more accurately determined.
For example, if a parameter has a severity of H (for High),
then employing a blending function [Zadeh65, 86] can assignh
a value indicating the degree of membership. For example,
0.25 would indicate that it is only slightly over the High
threshold. This degree of membership is loosely analogous
to its "percentage of highness"”, but is an excellent way of
quantifying the abstract.

There are several ways in which the comparison of
parameter data and setpoint data can be retrieved and
analyzed. This versatility is necessary to keep DECA in a
generic format enabling it to be used in a variety of
dynamic processes. As an illustration, for the first part of
the monitoring, DECA takes the sensor data and compares it
to the values in the setpoint database to determine if the
parameters are out of bounds. The system uses two rules
which would be applied to each of the system parameters.

Rule one: read the value of the parameter and compare
it to the values for H and L in the SDB. If the parameter
is greater than H or if the parameter is less than L tag the
parameter as being out of bounds.

Rule two: if the parameter is flagged as being out of
bounds, then compare it to the SDB values for LLL, LL, L, H,
HH, HHH and determine which range they fall in. This range
(e.g. LL) will be used as the severity of out of bounds.

In an algorithmic fashion, the rules would be as

follows:

Rule 1: Read the value of the parameter := P1;
Call procedure comparison;

Procedure comparison;
Retrieve SOB;
if Pt > H and

P1 < L
out of bounds = true;
return;

Rule 2: Read the value of the parameter
which 1is out of bounds := P1;
Call procedure comparison;

Procedure comparison;
Retrieve SDS;
If Pt is in range
LLL to L or

H to HHH
Severity := LLL, LL, L,
H, HH, HHH;
return;

Also, if most of the setpoint data was stored in a
typical relational database, one could use SQL data
retrieval language to access the data (see appendix A for
detailed description of SQL). The rules necessary to
compare the data are shown below in the SQL format. These
rules would be applied to each of the monitored parameters
of the system.

Rule to flag a parameter:

SELECT TIME, VARIABLE, PARAM
FROM OLI
WHERE PARAM IN

SELECT x

FROM SDB

GROUP BY VARIABLE

HAVING PARAM < L

OR PARAM > H

Rule to assign the severity:

CREATE TIME, VARIABLE, PARAM, SEVERITY
FROM OLI
WHERE PARAM IN

SELECT P11, x

30

FROM sSDB
GROUP BY VARIABLE
HAVING Pt < LLL
CREATE P1, SEVERITY='LLL’

OR P1 > LLL AND P1 < LL
CREATE P1, SEVERITY=’'LL’
OR P1 > LL AND P1 < L
CREATE P1, SEVERITY='L’
OR Pt > H AND P1 < HH
CREATE P1, SEVERITY='H’
OR P1 > HH AND P1 < HHH
CREATE P1, SEVERITY='HH’
OR P1 > HHH

CREATE Pt1, SEVERITY='HHH'

A11 the data values are retrieved from the setpoint database
(sDB) and the on-line information database (OLI), and
reference the current time frame the system is monitoring.

Taking a rule-based approach more analogous to a
structured programming language, some of the comparison
rules would 1ookAmore like the following in the
if..then..else format:

Rule: Take sensor value of parameter and retrieve SDB data
for the parameter

IF DATA < L OR
DATA > H

THEN
FLAG PARAMETER

The above rule is applied to each parameter in the OLI data
record. Then the following rule will be applied to only

those parameters which are flagged.

Rule IF flagged THEN

IF data <= L THEN

IF data > LL THEN
severity = L

ELSEIF data > LLL THEN
severity = LL

ELSEIF gata <= LLL THEN
severity = LLL

ENDIF

ELSEIF data

>= H THEN

IF data < HH THEN

severity = H
ELSEIF data <

HHH THEN
severity = HH
ELSEIF dava >= HHH THEN
severity = HHH
ENDIF
ENDIF
ENDIF

32

In a LISP implementation the ruies would be as follows:

(Defun Flag-Rule (parameter-looking-at)
(Let ((data (value-of-data parameter-looking-at))

(L
(H

(cond ((or (< data L)

(> data H))

(value-of-SDB Low))
(value-of-SDB High)))

(Flag-the-parameter parameter-looking-at)))))

The rule for determining severity:

{Defun Severity-Rule (data LLL LL L

(Cond ((<= data L)

(Cond ((> data
((> data
((<= data

((>= data H)

(Cond ((< data
((< data
((>= data

This finishes the first phase of the DECA system.

LL)
LLL)
LLL)

HH)
HHH)
HHH)

(setq
(setq
(setq

(setq
(setq
(setq

H HH HHH)

L))
LL))
LLL))))

severity
severity
severity

H))
HH))
HHH))))))

severity
severity
severity

At

this point, all the flags have been set for the out of bound

parameters, and the severity of out of boundedness has been

determined.

3.5 DECA’s Knowledge Base

Next, the submodules must be defined (listed in
appendix E). The submodules consist of the encoded knowledge
of possible disaster scenarios which could occur. These
submodules only represent what the "expert” has anticipated
as possible disasters, and the completeness of the knowledge
base depends greatly upon the knowledge of the expert, the
thoroughness of the system design, and the completeness of
the analysis and coding. 1In general, this will not be
enough to cover everything possible and that is where the
second key objective of DECA comes in. The second objective
of DECA is to discriminate between the root cause and the
side effects. Since these large systems have built in
redundancies, usually there will be only one piece of
equipment failing at a time. After DECA has ascertained
what is really important, it can then point the operator in
the right direction even though it has not found out what
the exact cause of the problem is.

One important facet of DECA is its ability to direct
the user toward the source of the problem if it can not
figure out the exact cause of the problem. This feature is
important for 2 reasons: 1) People can not think of all the
possibilities of what might go wrong with a large system,

and 2) The system will "ignore"” the side effect alarms and
give the operators the guidance so they can focus their

attention on the problem. Also this direction will prevent

34

the operators from being overburdened with “too much
information”. When DECA fails to clearly diagnose the
malfunction in the system, it will list the parameters,
their priorities, and where the operators should concentrate
their efforts. This is something that was needed during the
TMI-2 accident, for there were so many side-effect alarms
going off, that the operators failed to notice the block
valve was stuck open until after the damage was done to the
reactor core.

In the example of TMI-2 (appendix E), there are only
nine parameters monitored, so there are not that many
scenario submodules defined, but enough to prove the
validity of the system. Table 3.3 shows a list of scenarios
and the parameters which would be affected for the TMI-2
accident. For example, the scenario 9 and 10 are affected by

the parameters SGt1-P, SGi-L, SG2-P, SG2-L, and CLt-T.

Table 3.3 Scenario - Parameter Relation Chart

]]
' PARAMETERS '
1]
, P P H S s Q@ s s ¢ !
H Z 2 L G G N G G L '
' R R 1 1 1 T 2 2 1 '
t - - - - - - - - -]
¥]
! P L T P L P P L T !
[}]
0 :
Scenario ! '
(] (]
1 Pressurizer Leak X X X X X X !
2 Block valve Leak TX X X X X X X !
i §
3 Pipe Rupture (Drain) D G { X !
4 Drain Tank VX X X '
]]
5 Pipe Rupture PCS hot ! X X X X x !
6 Pipe Rupture PCS cold , X X X X X H
i]
7 Reactor Pump ' X X X X
8 Steam Generator PCS : X X X X x X !
t]
9 Steam Generator SCS H X X X X X |
10 Pipe Rupture SCS H X X X X X
] [}
11 SCS Feedwater Pump H X X X X X !
12 8CS Turbine Trip : X X X X x !

35

36

In a format more conducive to list processing (Lisp) we

arrange the parameters in the following manner:

Table 3.4 Parameter - Scenario List

PARAMETER POSSIBLE SCENARIO

PZR-P 12 3 4

PZR-L 1234

HL1-T 6 7 8

SG1-P 12567 8 9 10 11 12
SG1-L 12568 9 10 11 12
QNT-P 2 3 4

5G2-P 126567 8 9 10 11 12
SG2-L 12568 9 10 11 12
CL1-T 57 89 10 11 12

These are the submodules which will have to be searched via
the lookahead capability (see appendix E) of DECA because of
the out of bounds condition in the parameters. The object
is to see how closely actual data matches the expectations

and draw conclusions from these correlations.

37

Chapter 4

Inference Engine

The previous chapter explains the knowledge base
structure and the mechanism to assign severity. The possible
scenarios (disasters) have also been defined. This chapter
deals with the decision mechanism and parameter usage in

DECA.

4.1 Lookahead Mechanism and Scenario Evaluation

Consider, for example, an instance of the parameter
PZR-P is 1180 psig. Through the first stage DECA will flag
PZR-P and give it a severity of LLL (qualitatively
translated as very very low). Next PZR-P is checked to see
which submodule (context tree) should be searched. From the
table it indicates the scenarios 1, 2, 3, and 4 (i.e.
pressurizer leak, pressurizer block valve, pipe rupture in
the drain line, and the drain tank). This method is similar
to the MYCIN Lookahead mechanism (Findout and Monitor; see
appendix B). What DECA does before it reaches a conclusion
(e.g. that there is a pressurizer leak), is it will look
ahead at these possible scenarios and determine if the
criterion is met for each possible scenario to occur. The
scenario which most closely fits the data will be the one
chosen by DECA as the disaster. If there isn’t a close

enough match, then DECA will predict probabie cause(s) of

38

malfunction, the parameter priority, and suggest items or
subsystems to be considered more closely. In the TMI-2
example, with PZR-P out of bounds, the lookup mechanism will
indicate that scenario #1 (pressurizer leak) is a
possibility, but the following parameters will also have to
be out of bounds: PZR-P, SG1-P, SG1-L, S8G2-P, SG2-L in order

to have a strong likelihood of occuring.

4.2 Solution Search

Next DECA executes the rules to check the severity of
the parameters to see how closely they match with the
context trees (see appendix F). If there is a good match
between the scenarios, expected data, and parameter
criticality, then a prompt would appear on the screen:

Scenario selected is;
Scenario Number 8
Scenario Description: Steam Generator -
Primary Coolant System
Confidence 5/6
If there is more than one plausible scenario considered,
DECA would list them in rank order from highest to lowest

likelihood similar to this example:

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 5/6 Steam Generator - Primary Coolant System

5 4/5 Pipe Rupture - Hot Leg, Primary Coolant
1 2/3 Pressurizer Leak

12 3/5 Turbine Trip - Secondary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System

2 4/7 Block valve Leak

39
6 2/5 Pipe Rupture - Cold tLeg, Primary Coolant
4 1/3 Drain Tank
3 1/3 Pipe Rupture - (drain tank)

If the system could not make up its mind, then it would also
1ist the out of bounds parameters on the screen in order of

highest to lowest priority.

No scenario selected, not confident enough.

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10
SG1-L 9.3
SG2-L 9.3
CL1-T 8.6
SG1-P 8.5

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 2/3 Steam Generator - Primary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
5 3/5 Pipe Rupture - Hot Leg, Primary Coolant
1 1/2 Pressurizer Leak

2 3/7 Block valve Leak

12 2/5 Turbine Trip - Secondary Coolant System
6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank

3 1/3 Pipe Rupture - (drain tank)

This way, even if the system fails to generate a solution,
it will be able to direct the operator to the source of the

trouble.

4.3 Context Trees and Scenario Ranking

If we take scenario number one (Table 3.3), the
pressurizer leak from the lookahead database, it shows that
the following parameters should not be in normal operating
mode: PZR-P, PZR-L, SG1-P, SGi1-L, SG2-P, SG2-L. The context
tree (discussion given in appendix E) contains rules to
check the parameters (i.e. High (H) or Low (L)) as well as
the severity to see how well the present data fits the
scenario.

For the pressurizer leak, encoded into the context
trees are the rules to match the data with the anticipated
data of the scenario. From this matching operation the
mechanism will determine a qualitative value of the match.
DECA gives three levels of matching: High, Medium, and Low.
These three levels will give DECA a guide for further
consideration of the scenario it is evaluating. If there is
a high match, DECA will give it major consideration; a
medium match will get a minor consideration, and for a low
match the scenario will probably not get considered. Figure

4.1 summarizes the pattern matching process.

40

PRESSURIZER LEAK

/v \
/o \
/ ' \
rules and patterns to match with data
High Match - Major Concern
Moderate Match - Minor Concern
Low Match - Improbable

Figure 4.1 Qualitative Match for Scenarios

4.4 Parameter Prioritization

At the same time, the system will look at the problem
from a parameter’s viewpoint. This perspective is as
follows: the parameter (e.g. PZR-P) gets the following data
after checking the database for possible scenarios (e.g. 1,
2, 3, 4). DECA then looks at the scenario ratio match data
to see how well each scenario correlates with the out of
bounds parameters. The better the match of the other
parameters present with these scenarios, the more likely one
of these scenarios is occurring in the process. An higher
likelihood for a given scenario will increase the parameter
importance. DECA then assigns a greater likelihood of each
of these scenarios as of being present. For the parameter
PZR-P, the Lookahead mechanism points to scenarios 1, 2, 3,

and 4 (Table 4.1).

41

42

Table 4.1 Parameter Priority Database for PZR-P

-—-

Parameter Priority

]
]
]
'l
]
t
]
A
]
L]
}
1
|
I
]
]
)
[}
L}
A

Expectation Match

1
]
]
i

HIGHEST

LOWEST

This analysis will be performed for each flagged parameter
and have a ranking of parameter priorities. In the case of
one or more parameters having the same ranking, the severity
(e.g. H, LL, etc.) will be used to determine the relative

differences in importance.

4.5 Determining a Solution

In a similar fashion now that there is a list of
parameter priorities (which will be displayed to the
operator soon), a priority ranking for each possible
scenario is given. Earlier, it was quantitatively determined
how critical the scenario is (i.e. severity). Now DECA
refines the ranking of the scenarios to find the most
critical problem. For our example with the parameter PZR-P,
the scenarios to look at (S1, S2, S3, and S4) have already
been determined. Also parameter rank for all the out of
setpoint bounds parameters have been determined. Now,
search a context tree. Table 4.2 shows the different
combinations cf the context tree for PZR-P.

DECA then takes the priority rank and the scenario
which matches the closest with the system data, and outputs
what it thinks is the most likely scenario and a list of the
parameters in rank order. Also, the output will have a
recommendaticn of how to attack the situation at hand. This
output will meet several objectives, they are: 1) the

ability to take vast amount of information of the system

43

44

state and keep only relevant data, 2) Figure out the most
likely cause of what is wrong with the system, and 3) Give a
priority of the parameters so the technicians can
concentrate the root of the problem rather than treat the
symptoms.

Another aspect of the system which will help in its
deployment in the field is the way the operators can modify
the knowledge. In the debug phase for a new application,
DECA can also display the a priori information for ranking
of the parameters, the combinations of scenarios, the
submodule data, and expectations of qualitative knowledge,
as well as all On Line Databases so the operator can be
consulted and initiate refinement of the data. This feature
can be thought of as "Off-Line Configuration”, or "Off-Line

Learning”.

45

Table 4.2 Combining Parameter and Scenario Priorities

Context:

Lookahead:

Parameter: Criticality
highest

Expectation of Scenario rank

lowest

\

Most Critical Parameter
sSt, S2, §3, S4

1 (PZR-P)
2 (PZR-L)
3 (SG1-P)
4 (SG2-P)
5 (S8SG1-L)
6 (SG2-L)
7 (QNT-P)

w.r.t. the analysis data

~

(8t Vv 82) (S3 V 84) Critical Major
S1 §2 Major
st ~ 83 Minor
ST ~ 84 Minor
§2 ~ 83 Minor
82 ~° 84 Minor
83 © sS4 Improbable

Chapter 5

Impiementation of the DECA System

The DECA system has been successfully implemented on a
Symbolics 3670 Lisp Machine using the Symbolics Common Lisp
Language and its object oriented extension Flavors. It also

has been tested using real data from the TMI-2 accident.

5.1 Selection of Lisp as the Programming Language

Lisp has been chosen as a language for implementation
for several reasons. First, the comprehensive set of tools
to work with make it ideally suited for rapid prototyping.
If a change is needed, it is quite easily implemented.
Second is the modular structure of the Lisp language. Being
able to set up many functions enables the system to be
broken up into functional parts, this in turn also helps in
the software maintenance.

Another aspect which is very important to the DECA
application is Lisp’s ability to evaluate both numbers and
symbols. The symbolic processing feature enables the
machine to run in a manner similar to the way humans think,
with symbols. DECA is able to use symbols as keywords in its
reasoning. For example, the setpoint databases contain an
item which is used to indicate what the mode of operation is
(e.g. normal). It can use symbolic data as easily as it can

use numeric data, thus the system can be designed more

46

47

closely to the way humans think. The symbolic design
facilitates the enccding of knowledge from the system
experts and the debugging of the application DECA is being
applied to.

Compared to other structured languages, Lisp has
another significant advantage, dynamic data structures.
With most languages, the programmer must set aside the
precise am&unt of space for every conceivable data structure
which the application may come across. This can be
cumbersome and tends to make the system inflexible. Lisp on
the other hand does not require this. Instead, if it needs
more space, it will dynamically allocate it. Now the
operator and programmers do not have to think of every
possible situation, and if the machine comes across with
something new it can just add it to the lists. The dynamic
data structures is one of the primary reasons why Lisp is
used for rapid prototyping applications. After the system
has been thoroughly tested, it then can be translated to a
language such as C, which interfaces with hardware better,
if necessary.

The object oriented extension, Flavors [Weinrg80)], was
incorporated into DECA. Flavors help keep track of the data
and can be organized into objects. For example, all the
setpoint values for a variable (e.g. PZR-P) were organized
into an object. Flavors arranges the data into a well
organized structure which contain the interrelationships

between the pieces of data. This organization helps

48

facilitate the rapid prototyping, and dynamic databases.

5.2 Speed Considerations

The purpose of the DECA system is to be able to monitor
large systems in real time. Unless it can do all the
calculations in the time between sensor data readings, the
system will be of little use. For the applications being
looked at in the thesis; chemical process control, nuclear
reactor control, space systems telemetry, and flight control
systems; DECA will need to have all calculations completed
in a time period of 5 - 10 seconds for the chemical and
nuclear processes, and 10 - 100 msec. for the flight
controls. The differential in time is due, in part, to the
nature of the implementation purpose. For a chemical
process, DECA will be more of a supervisor/advisor for the
system operators and humans will not react much faster than
the 5 - 10 seconds. While for the flight control systems,
DECA will be an automated system, initiating all of its own
conclusions.

To help the system meet its processing time
constraints, it must be deployed with fast hardware, for
example the Symbolics computers, Lisp on a chip
microprocessors (e.g. Symbolics Ivory, TI Explorer Chip), or
32-bit high speed microprocessors (e.g. Intel 80386,
Motorola 68030).

Another consideration for speed is the implementation

49

language. For chemical or nuclear processes (slow), Lisp
will generally work. While for a high speed dynamical
process (e.g. flight controls), specialized Lisp hardware or
a language such as C may be necessary to use, for they are
optimized for high speed execution.

Furthermore, the amount and type of sorting performed
on the data should be carefully controlled. There should not
be any more sorting than necessary, and the type of
algorithm to perform the sorting must be carefully
selected. For DECA, sorting is done only when a ranking is
needed, and it employs a modified quicksort routine.

A final consideration for execution speed is with the
data structure used. To keep calculations to a minimum,
data should be kept to a minimum. Lisp and its dynamic data
lists also help increase execution speed due to the fact
that for each cycle it only searches data structures as

large as the data contained in it.

5.3 Computer Input/Output

Computer input/output (i/0) must also be addressed
Judiciously. In general, terminal and disk i/o0 can lead to
system bottlenecks since they typically reduced throughput
compared to the processor.

When designing and evaluating the system, the i/0 must
be taken into consideration as part of the system

computational requirement. In general it means allowing

50

extra time to load up the data files containing the
knowledge of the dynamic process (e.g. setpoints, scenarios)
as well as the time to load in new system data (e.g. new
setpoints for different operating state, sensor data). At
the other end of the process is the i/o0 to the terminal
screen and/or writing the data to disk. wWhen writing to the
screen, the system is constrained for time in two ways;
first, the speed which the terminal runs is usually the
slowest of any part of the computer system. Second, any
information which must be absorbed by the operator cannot
leave the screen until the operator signals to. So if there
is more than one full screen of data, there will be a
tremendous amount of idle cpu time while the computer waits
for the operator to digest the information.

If DECA is used with a dynamic process where the
operator is advised by DECA such as a nuclear plant, then
the i/0 becomes the major bottleneck to DECA’s performance.
On the other hand, when DECA is employed in a completely
autonomous fashion, such as a space vehicle controller, then
the terminal i/0 is not employed, and the disk i/o
requirement will probably be minimal, but the time between
sensor reports will be at least 1000 times smaller, thus raw
cpu speed is the major factor. Chapter 6 shows how the

processing times differ with different i/0 loads.

5.4 Dynamic Databases

As mentioned earlier, Lisp makes it very easy to
implement dynamic databases. This is because the basic Lisp
form, the list, can be modified qQquickly and in many
different ways. It can also contain both numeric and
symbolic data, and functions can easily manipulate them.

The DECA system took advantage of Lisp’s list
manipulation abilities. For example, when processing a run,
DECA will search many lists for the appropriate data which
it may reference or it may add new data to the list. One way
it accomplishes this is by incorporating the setf function
into the code. The setf is a function in lisp which will
retrieve the part of a list which matches the structure
given (first argument) with the new structure encountered
(second argument). Functions similar to the setf function
increase the speed of data manipulation tremendously. Also,
they make the coding easier than it would be using other
languages, since one does not have to worry where the data
is stored aside from the name of the list. In C, Pascal, or
Ada, there will be a large effort just to control the data,

while Lisp will let one use the data.

5.5 Separation of the Knowledge Base and Inference Engine

During the development of the DECA system, great care

was taken to make sure that the knowledge base and the

51

52

inference engine were kept separate. There are several
reasons why the two major parts of the Expert System should
be separate.

First, it will enhance software maintainability. The
inference engine will exist in several modules. Thus if one
wants to change some function of DECA, just access the
module, make the change, and recompile. To update the
knowledge about the process, then only the data files need
be updated. Overall, the separate modular format enables,
the users to easily access any part, as well as keep
everything organized. If the knowledge and data were
threaded together in the same code, it would be nearly
impossible to maintain and update the system for a large
application.

Secondly, it makes the DECA system portable. That is,
DECA has been designed to be used in all dynamical
processes. For its demonstration of feasibility in this
thesis, DECA was applied to the Three Mile Island accident.
If one wants to apply it to monitor some other process, new
data files would have to be written which contain the
knowledge of the process to be controlled.

Finally, the separation kept the development of the
inference engine generic. More specifically, when coding the
inference engine there was not any influences on the
software design attributed to any particular application.
The structure was designed for use with any dynamical

process.

53

5.6 DECA Architecture Planning

When implementing DECA, great efforts were taken to
fully develop the design of the system architecture before
any code was written. It was important to make sure that the
whole process was carefully planned out. Some standard steps
should be taken whenever any software is being developed.
They are:

~Carefully research the topic ¢ the application, and

develop the problem thoroughly.

-Define the process flow. Developing a flowchart will

help visualize what is occurring in the system.

-Use the flowchart to develop the code. Breaking the

code into modules according to function will facilitate

software debugging and maintenance.

-Employ a top down approach to the system design, and

bottom up approach for coding.

Other features which were incorporated into DECA were
software interfaces to outside mcdels and ability to use
data and databases from multiple sources.

The incorporation of interfaces will increase the
usefulness of the software for it will enable DECA to use
other information to arrive at its decisions. For example,
in the TMI-2 example, a single setpoint database was used.
DECA has the ability to use muitiple setpoint databases

located on several computers. In TMI 2 the setpoint was

54

labeled normal, there could have been another setpoint
database for a shutdown mode. This shutdown mode database
could have been on another computer, and DECA’s
setpoint-data-list would direct DECA to the other computer.
Also, the databases do not have to be an array of numbers,
it could be an analytical model which calculates the
setpoints.

Another useful capability is to hook into simulation
models. As an example, DECA could call on a computer
simulation to validate its conclusions before it makes a
recommendation.

The ability to access other information makes DECA more
useful. DECA adds more capability to the system monitoring
without losing the benefits of the past work done in the
area. It could be considered analogous to computer hardware
being upward compatible; older software can be used on new

and improved hardware.

55

Chapter 6

Results and Conclusions

In this chapter, the runtime results of the DECA system
will be discussed. DECA was evaluated using the real time
data from the Three Mile Island accident. Appendix E

contains the data used for the knowledge base data files.

6.1 Test Runs

Before the system was executed using TMI-2 sensor data,
DECA was debugged using fictitious data which would test the
extremes which DECA might encouhter during a real
application. The following data was used for the test run

for fictitious times of 5, 10, and 15 seconds.

((05 (2150 222 606 940 160 3 940 160 558))
(10 (2260 270 606 870 42 1.9 910 42 635))
(15 (2380 282 610 870 29 0.9 860 42 635)))

The sublist associated with each system time value contains
the readings of each of the nine parameters in the TMI-2
example. The parameters are always read into DECA in the
same order. The order for TMI-2 was PZR-P, PZR-L, HL1-T,
SG1-P, SG1-L, QNT-P, SG2-P, SG2-L, and CL1-T.

The above data was used to test DECA’'s ability to work
in the middle of the road and at the two extremes. Time 05

was used to test DECA when none of the parameters were out

of bounds. Looking at the data output file, appendix D, it
is apparent that DECA just skimmed through its routines
without doing anything since everything was alright.

Time step 10 represents what could be thought of as a
typical load to DECA, that is several parameters it is
monitoring are out of bounds. The output file in appendix D
shows the intermediate values as DECA is running. For a
conclusion, DECA was not confident enough with the data to
decide on a scenario, so it just listed out the parameters,
their ranks, the scenarios and their ratios which it had

considered., DECA’s conclusions are shown below.

DECA’s conclusions for system time: 10
No scenario selected, not confident enough.

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10

sG1-L 9.3
sG2-L 9.3
CL1-T 8.6
SG1-P 8.5

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 2/3 Steam Generator - Primary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System

5 3/5 Pipe Rupture - Hot Leg, Primary Coolant
1 1/2 Pressurizer Leak

2 3/7 Block valve Leak

12 2/5 Turbine Trip - Secondary Coolant System

6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank

3 1/3 Pipe Rupture - (drain tank)

End of data evaluation for system time: 10

56

57

Time step 15 is an example of the sensor data
correlating well with DECA’s knowledge. Thus it is confident
enough to select a scenario as likely occurring in the
system at that time. For this data, it has decided that the
problem is occurring in the steam generator on the primary
coolant side. The conclusion is shown below (extracted from

the runtime output file appendix D).

DECA’s conclusions for system time: 15

Scenario selected is;

Scenario Number 8

Scenario Description (Steam Generator - Primary Coolant
System)

Confidence 5/6

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10
SG1-L 9.3
SG2-L 9.3
CL1-T 8.6
SG1-P 8.5
SG2-P 8.5

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 5/6 Steam Generator - Primary Coolant System
5 4/5 Pipe Rupture - Hot Leg, Primary Coolant
1 2/3 Pressurizer Leak

12 3/5 Turbine Trip - Secondary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
2 4/17 Block valve Leak

6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank

3 1/3 Pipe Rupture - (drain tank)

End of data evaluation for system time: 15

58

The output is useful in several ways. First, it
organizes the data for the operators. It also, displays it
in rank order. Displaying in rank order will avoid giving
the operator information overload for they can just look at
the top of the list and see what is most important. Finally,
DECA also lists the scenarijos which it considered. Looking
at the scenarios considered and seeing the ranks of the
parameters, the operators can use their system knowledge to
assess the problem. In time step 15, they would probably
concentrate on the Primary Coolant System piping, since it
was considered most often by DECA.

From DECA’'s output, it can be seen that the system has
met several of its design goals, they are:

-1t identifies and ranks the sensor data parameters 1in

order of importance.

-DECA searches for the scenario which is most likely

occurring and selects one, only if it is confident

enough in its data correlation.

~-It lists all the relevant scenarios which it

considered.

-DECA gives a summary which the operators can easily

understand the information in it and know where they

must concentrate their efforts.

6.2 Runtime Log

Since there is no relatively easy way to check the
system operation during execution (e.g. MYCIN has an
interface which the user can ask questions), a runtime log
was created. The runtime log consists of intermediate
variables written to disk during DECA’s execution. After
DECA runs through a module of code, it writes out the values
to disk. As an example, below is the listing of the log for

the variables from the test run data for time step 10.

Intermediate parameters for system time: 10

Sensor-record (2260 270 606 870 42 1.9 910 42 635)
Oob-parameters (PZR-P PZR-L SGI1-P SG1-L QNT-P SG2-L CL1-T)
Oob-parameters-values (2260 270 870 42 1.9 42 635)
Oob-severity (H HH L L LL L HHH)

Lookahead-scenarios (1 2 3 4 56 7 8 9 10 11 12)
Scenario-data-match-1ist

((1 (SG2-L SG1-L SG1-P)) (2 (SG2-L SG1~-L SGt1-P))
(3 (QNT-P)) (4 (PZR-L)) (5 (SG2-L SG1-L SG1-P))
(6 (SG2-L SG1-L)) (7 (CL1-T))

(8 (CL1-T SG2-L SGi1-L SGt1-P)) (9 (CL1-T))
(10 (CL1-T s8G2-L SG1-L)) (11 (CL1-T sG2-L SG1-L))
(12 (CL1-T SG1-P)))

Parameters-per-scenario-expect
((1 6) (2 7) (© 3) (4 3) (55) (65) (7 4) (86) (9 5)
(10 58) (11 5) (12 5))

Scenario-ratio-match-list

((1 1/2 MINOR) (2 3/7 MINOR) (3 1/3 MINOR) (4 1/3 MINOR)
(5 3/5 MINOR) (6 2/5 MINOR) (7 1/4 IMPROBABLE)
(8 2/3 MINOR) (9 1/5 IMPROBABLE) (10 3/5 MINOR)
(11 3/5 MINOR) (12 2/5 MINOR))

Scenario-major NIL

Scenario-minor ((8 2/3) (11 3/5) (10 3/5) (5 3/5) (1 1/2)
(2 3/7) (12 2/5) (6 2/5) (4 1/3) (3 1/3))

Scenario-improbable ((7 1/4) (9 1/5))

59

60

Parameter-ratio-match

((PZR-P ((4) NIL (4 3 2 1) NIL))
(PZR-L ((4) NIL (4 3 2 1) NIL))
(HL1-T NIL)
(SG1-P ((10) NIL (12 11 10 8 6 5 2 1) NIL))
(SG1-L ((9) NIL (12 11 10 8 6 5 2 1) NIL))
(QNT-P ((3) NIL (4 3 2) NIL))
(SG2-P NIL)
(SG2-L ((9) NIL (12 11 10 8 6 5 2 1) NIL))
(CL1-T ((7) NIL (12 11 10 8 5) NIL)))

Parameter-rank-1list

((QNT-P 10) (PZR-L 10) (PZR-P 10) (SG2-L 9.3) (SGi1-L 9.3)
(CL1-T 8.6) (SGt-P 8.5))

Parameter-rank-1list

((PZR-P PZR-L QNT-P 10) (SG1-L SG2-L 9.3)
(CL1-T 8.6) (SG1-P 8.5))

Parameter-rank-1ist

((PZR-L 1C) (QNT-P 10) (PZR-P 10) (SG1-L 9.3) (sG2-L 9.3)
(CL1-T 8.6) (SGt1-P 8.5))

Possible-scenarios-for-situation

((8 2/3) (11 3/5) (10 3/5) (5 3/5) (1 1/2) (2 3/7) (12 2/58)
(6 2/5) (4 1/3) (3 1/3))

End of variable log.

The parameters’ values are created while DECA is
executing a particular function. Table 6.1 contains lists of
the function names and the variables which were modified
upon execution of the function. See appendix F for the

complete listing of all of DECA’s functions.

61

Table 6.1 Function Variable References

Function Name Variables Modified
(in capitals)

COMPARE-SENSOR-DATA

oob-parameters

oob-parameters-values

oob-severity
GET-SCENARIOS

lookahead scenarios
MATCH-SCENARIO-TENDENCY

scenario~data-match-list
MAKE-LIST-OF-NUM-PARAMS-EXPECT

parameters-per-scenario-expect
SCENARIO-QUAL~-MATCH

scenario~-ratio-match-1ist
SPLIT~-INTO-MAJ-MINOR

scenario-major

scenario-minor

scenario-improbabie
MAKE-PARAMETER-COMPARISON

parameter-ratio-match

parameter-rank-1list
REFINE-PARAMETER-RANK-TOP

parameter—-rank-list
ORDER-MULTIPLES

parameter~rank-1list
PUT-SCENARIOS-TOGETHER

possible-scenario-for-situation

62

6.3 Experimentation of DECA with TMI-2 Data

After the evaluation of the test runs, it was
determined that DECA appeared to be working according to
design.

To show DECA’s efficacy, the system was run with data
from the TMI-2 accident. See appendix E for the sensor
readings data. The run consisted of nine time steps at O,
15, 30, 45, 60, 75, 90, 105, and 120 seconds after the
turbine trip occurred in the reactor.

DECA completed the run without a problem. The log and
conclusions for each time step are given in appendix D. From
those results, it can be seen that DECA consistently
directed the operators to scrutinize the subsystem where the
pressurizer, block valve, and drain tank are located in the
reactor. This is precisely where the problem was. The stuck
block valve in the pressurizer was allowing the reactor
coolant to drain out of the system. For this run, DECA was
only monitoring nine parameters, thus it did not have the
fine resolution to extract the intricate nuances present in
the system. Since the block valve, drain tank, and
pressurizer directly affect each other, having DECA select
these three problems continuously confirms its ability to
determine the area of most importance.

Also, it should be noted that the knowledge base data
for the scenarios, their tendencies, the parameter

tendencies and lookahead scenarios (that is all except the

63

setpoints and sensor data) were derived at with only the
author’s engineering experience and did not utilize anyone’s
nuclear reactor expertise. Thus having such promising
results from DECA, continuously directing the operators’
attention to the part of the reactor where the block valve
is located, demonstrates the efficacy to the methodology of
qualitative reasoning for monitoring dynamic processes.
Referring to the runtime output file (appendix D), we see
consistently the pressurizer pressure and level (PZR-P,
PZR-L) are among the most important parameters (i.e. highest
priority). These two sensors are located adjacent to the

block valve.

6.4 Computational Requirements

Having the qualitative reasoning approach working meets
one of the criteria of DECA, but the system is not very
useful unless it can meet the real time processing
requirements.

At present, DECA is in a prototype stage. That is, its
primary purpose is be able to monitor a system and advise
its operators, and to perform its task in a time limit
approaching the real time constraints. In actuality, the
DECA system is able to perform its task with impressive real
time capabilities. The execution times vary according to
input/output (i/0) load and are expliained below.

To get accurate results for the execution times of the

DECA system, Lisp’'s "time"” function was used. The time
function accurately keeps track of elapsed time, time spent
waiting for i/0 as well as the amount and type of lists
manipulated internally. DECA was tested under a variety of
i/0 loads with the same set of data in order to determine
where the bottlenecks occur during program execution. Note,
all times are in physical seconds.

The first test was a single run. The knowledge base
data files were all loaded, and then DECA evaluated the
sensor data for a single time step. DECA then displayed its
resulits on the computer terminal. The time required for this
was 14.6732 seconds.

The second test consisted of reading in the knowledge
Dase data files, evaluate a single time step, and not output
any information to the terminal. For this run, 6.1779
seconds were required.

From the first two runs, it is determined that DECA
takes about 8.5 seconds for terminal i/o for a small sized
application. The runs were repeated several times, each run
yielding consistent results due to the fact that the
Symbolics is a single user system and one does not have to
wait for other jobs unlike a timesharing system.

The third test run consisted of a single time step
evaluation without any i/0 to disk or terminal. This test is
evaluating raw computing power of the system. From the run,
the time to process the data was 0.120383 seconds, or 8.3

time steps could be evaluated per second. After the third

64

65

test run, it was determined that the computer requires about
5.9 seconds to load the TMI-2 data files from disk.

It is obvious that for a more complex process these
times will increase, but the time of 0.12 seconds to process
the data which DECA is monitoring is well within the design
goals of 5-10 seconds for the prototype. Also, the time
spent reading in the knowledge base may be eliminated if it
is loaded into active memory prior to DECA’'s operation. That
would alleviate a large portion of the overhead and make
DECA practical for some processes requiring a little faster
turnaround (e.g. 0.5 to 1.0 seconds).

In the final test run, DECA was tested with all nine
time steps. It consisted of loading in the knowledge base,
sensor data, evaluating each time step, and writing to disk
the variable log and DECA’s conclusions. For this, DECA
required 13.8393 seconds. The time interval between sensor
readings was 15 seconds or 135 seconds for all nine
readings. Since DECA did the calculations in 13.8 seconds,
the system is more than adequate in terms of meeting
computational requirements. This extra time will be eaten up
when DECA is run with applications consisting of many more

parameters and scenarios.

6.5 Conclusions

In most of the physical systems, reasoning is based on
qualitative premises. For example, when a mechanic fixes a
car, he will not hook up a vast array of sensors, devise
mathematical models of the car and employ optimization
techniques to simulate and determine what is wrong with it.
The garage has neither the time nor the money to do it.
Instead, the mechanic will use his experience and
qualitative reasoning to determine and fix the problems
afflicting the automobile.

In large dynamic systems, financial resources may be
adequate, but time will be a constraint to monitor and
evaluate the system in real time, using complex analytical
models and global optimization techniques. DECA typically
can be applied to such scenarios. It employs qualitative
reasoning to narrow down possibilities for real time
monitoring and diagnosis of dynamical processes.

An implementation of the DECA system was successfully
developed in Lisp on a Symbolics artificial intelligence
computer. Using the Three Mile Island Unit 2 Accident as a
real world application, it was shown that DECA is able to
monitor some dynamic processes in real time.

Another accomplishment derived from this research is
the development of a comprehensive software architecture for
diagnosis and evaluation of any dynamical process. This

architecture was based on past work of Milne [Milne87] and

66

67

offers flexibility in the use of knowledge in a diagnostic
expert system,

One more important point of interest is in the
development of the knowledge base. In dynamical systems,
most often the data is dynamic hence to incorporate it as a
part of the expert system's knowledge base may not be useful
from a computational point of view. DECA uses a relational
schema for the data which is interfaced with the expert
modules. This architecture is seen to be beneficial from the
standpoint of execution time.

To summarize, the experiences with DECA has led to the
following conclusions:

1- For real time monitoring, diagnosis, and control of

dynamic processes, qualitative reasoning will be of

immense use.

2- Incorporation of qualitative reasoning as opposed to

the pure optimization approaches will help in

identifying the possible critical parameters along with
their relative importance which will help reduce the
processing time required.

3- It is necessary to handle data distinct from the

knowledge base. It is apparent that a relational schema

interface with the reasoning system will be of value
due to the fact that the data is dynamic.

4- This experimentation has confirmed the fact that

Milne’s [Milne87] architecture integrated with the

structuring of a dynamic database will be of importance

68

in dynamical systems.

5~ DECA demonstrates the point that all dynamical
systems share the commonalty of prioritization and the
generic scheme developed in this research is useful in

almost every dynamical process control scenario.

Chapter 7

Future Research

Though the DECA system is a prototype, the initial
results are encouraging and provide a strong argument toward

further expansion of the system’'s capabilities.

7.1 Solution Generation

So far, the main efforts of DECA were to prove the
concepts of qualitative information prioritization. Not much
of the effort in this work was devoted to the development of
customized solutions for every detail of a process’s
operation. Most efforts went into creating the ability to
properly analyze the data and determine the critical areas
of the process application in a real-time manner. Unless the
system performs in real-time, there is little need for a
comprehensive solution generation capability. Also, the.
solution generation is more specific to the application
which DECA is being applied to, while the thrust of this
thesis is to prove the viability of DECA to all dynamic
processes.

Additional effort will be to devise a methodology in
which the recommended solution for each scenario can be
tailored according to the parameter rankings of the sensor
data. Special considerations, similar to the ones for

parameter expectancy data, would be needed to avoid a

69

70

combinatorially explosive number of solutions (i.e. one for

every single parameter combination).
7.2 Fuzzy Logic

Fuzzy mathematics [Zadeh65] have a great potential in
the application of quantifying qualitative data. Applying
fuzzy math to the evaluations of parameter and scenario
ranks would help increase the resolution of the results.

For example, at the present, DECA breaks up the l1ikelihood
of the scenarios into three categories (major, minor, and
improbable). With fuzzy mathematics more subtle points can
be brought into consideration increasing the thoroughness of

DECA’s evaluation.
7.3 Source Code Translation

DECA is presently written in Lisp. It is an ideal
language for rapid prototyping of systems and handling
abstract concepts, but it is also known for its
computational overhead though Lisp Machines such as the
Symbolics help reduce this overhead. Since a primary concern
of DECA is for real-time processing, and the system will
eventually be interfaced with physical controllers and
sensors, another language has been targeted for the second
stage of DECA’s development. The language chosen is C. A

couple of desired traits of C are its very fast and

71

efficient execution, and there are many controllers set up
to be easily interfaced with it.

The main problem to be addressed in this conversion is
C does not have dynamic database capabilities like Lisp. If
not done carefully, unwieldy data structures could add an

unacceptable burden on the processor.

7.4 Integrating Analytical Modules

Though large analytical models may require too much cpu
time, a simplified model or simulation of a subsystem can
yield valuable insight into the current state of a process
or subsystem. Also, a great deal of effort has been spent on
the development of analytical methods. Future work on DECA
can concentrate on implementing several analytical models
which could run in parallel with DECA’s qualitative model.
The analytical models could be used as a verification to
DECA’s proposed conclusions.

Another aspect where the use of analytical models would
be beneficial is to simulate the proposed solution before
implementing it on the real system. This way DECA could
avoid a potentially catastrophic mistake for it would be
caught in the simulation.

Overall, the application of analytical elements in the
DECA system would complement its qualitative abilities and

increase the system’s reliability.

72

7.5 Distributed Processing

DECA is being developed to monitor large scale systems
with hundreds or thousands of parameters. Ir. order for it to
be successful 1n this area, the application process should
pe divided up into its subsystem with a separate DECA system
monitoring each subsystem. To integrate all the distributed
processors together into one working entity, there will be
another DECA system overseeing all the DECA subsystems in a
meta level fashion. It will monitor, evaluate, and rank all
the conclusions of every subsystem. The meta level will work
with the whole system and allow each subsystem to run
independently, but have an override capability to resolve
conflicts between subsystems.

The distributed processing scheme is a methodology to
incorporate extra cpu power via multiple processors, yet
still maintaining control =ver the entire dynamic process

being monitored.

7.6 Operator Interface

DECA 1s acting as an advisor to the operators of the
dynamic process being monitored. Thus it is very important
to be sure that the transfer of information between DECA and
the operators is being correctly interpreted. During future
development phases, investigations will be made to see what

is the best way to present the information, especially in

73

large scale applications.

Another area to be developed is a user friendly
interface to be used by the process experts, who may not be
computer experts, to facilitate DECA’s acquisition of
knowledge from them. A properly developed intarface will

greatly enhance DECA’s utility.

74
References

[Ander84] Anderson, Bruce M., et al., "Intelligent
Automation of Emergency Procedures in advanced Fighter
Aircraft”, The First Conference on Artificial
Intelligence Applications, IEEE Computer Society,
December 1984, pp 496-501.

[Bray85] Bray, M. A., Sebo, D. E., and Dixon, B. W.,
"Reactor Safety Assessment System - A Situation
Assessment Aid for USNRC", Expert Systems in Government
Symposium, IEEE Computer Society Press, 1985, pp
246-251.

[Bucha84] Buchanan, Bruce, Shortliffe, Edward, Rule-Based
Expert Systems The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley, Reading,
MA, 1984,

[Charn86] Charniak, E., McDermott, D., Irtroduction to
Artificial Intelligence, Addison-Wesiey, Reading, MA,
1986.

{DeK1e83] De Kleer, J., Brown, J. S., "The Origin, Form and
Logic of Qualitative Physical Laws", International
Joint Conferences on Artificial Intelligence, Vol. 2,
August 1983, pp 1158-1169.

[Dicke84] Dickey, F. J., Toussaint, A. L., "ECESIS: An
Application of Expert Systems to Manned Space
Stations”, The Eirst Conference on Artificial
Intelligence Applications, IEEE Computer Society,
December 1984, pp 483-489.

[Firsc86] Firschein, 0., et al., Artificijal Intelligence for
Space Station Automation, Noyes Publications, Park
Ridge, NJ, 1986.

[Frosc85] Froscher, Judith N., Jacob, Robert J. K.,
"Designing Expert Systems for Ease of Change”, Expert

Systems in Government Symposijum, IEEE Computer Society
Press, 1985, pp 246-251.

[Jow84] Jow, Hong-Nian J., Prioritization of Nuclear Power
Plant variables For Operator Assistance During

Iransients, Doctor of Philosophy Thesis - MIT,
Cambridge, MA, May 1984,

[Kroen83] Kroenke, D., Database Processing, 2nd Ed., Science
Research Associates Inc., Chicago, IL, 1983, pp
265-282.

75

(Kumar86é] Kumara, S. R. T., Joshi, S., Kashyap, R. L.,
Moodie, C. L., and Chang, T. C., "Expert Systems in

Industrial Engineering”, International Journal of
Production Research, Sep./Oct. 1986.

[Laffe87] Laffey, T. J., Schmidt, J. L., Read, J. Y., Kao,
S. M., "A Multiprocessing Architecture for Real-Time
Monitoring”, Third Conference on Artificial

Intelligence for Space Applications, NASA Conference
Publication 2492, November 1987, pp 155-160.

[Leinw86] Leinweber, D., Gidwani, K., "Real-Time Expert
System Development Techniques and Applications”,
Proceedings IEEE WESTEX-86, IEEE Computer Society, June
1986, pp 69-77.

[Leinw87] Leinweber, D., "Expert Systems in Space”, 1EEE
Expert, Spring 1987, pp 26-36.

[McDersg2] McDermott, J., "R1: A Rule-Based Configurer of
Computer Systems”, Artificial Intelligence, Vol. 19,
1882, pp 39-88

[Mille56] Miller, G. A., "The Magic Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing
Information”, Psychology Review, Vol. 63, No. 2,
1956, pp 81-97.

[Miine87)] Milne, Robert, "Strategies for Diagnosis”, IEEE

Transactions on Systems, Man, and Cybernetics, Vol.
smc-17, No. 3, May/June 1387, pp 333-339.

[Naray87)] Narayanan, N. H., Viswanadham, N., "A Methodology
for Knowledge Acquisition and Reasoning in Failure
Analysis of Systems”, IEEE Jransactions on Systems,
Man, and Cybernetics, Vol. smc-17, No. 2, March/April
1987, pp 274-288.

[Ni1ss80]} Nilsson, N. J., Principles of Artificial
Intelligence, Tioga Publishing Co., Palo Alto, CA,
1980.

[NSAC-1] Nuclear Safety Analysis Center (NSAC-1), Analysis
of Three Mile Island Unit-2 Accident, Electric Power
Research Institute, Palo Alto, CA, July 1979.

[NSAC~1S] NSAC-1 Supplement, Supplement to Analysis of Three

Mile Island Unit-2 Accident, Electric Power Research
Institute, Palo Alto, CA, Oct. 1979.

[Pisan84] Pisano, A. D., Jones, H. L., "An Expert Systems
Approach to Adaptive Tactical Navigation”, The First
Conference on Artificial Intelligence Applications,
IEEE Computer Society, December 1984, pp 460-464.

76

[Ray87] Ray, A., Joshi, S. M., Whitney, C. K., Jow, H. N.,
"Information Prioritization for Control and Automation

of Space Operations”, Proceedings of the 1887 American
Control Conference, June 1987, pp 958-960.

[shir187] Shirley, R. S., "Some Lessons Using Expert Systems

for Process Control”, Proceedings of the 1987 American
Control Conference, June 1987, pp 1342-1346.

[Steel84] Steele, Guy L. Jr., Common Lisp:; The Language,
Digital Press, Bedford, MA, 1984,

[Symbo86] Symbolics Computer Documentation Genera 7.1, Vols.
0-10, Symbolics Corporation, Cambridge, MA, June 1986.

[Tatar87] Tatar, Deborah G., A Programmer’'s Guide to Common
Lisp, Digital Press, Bedford , MA, c 1987.

[Thomp88] Thompson, D. R., Ray, A., Kumara, S., "A
Hierarchically Structured Knowledge-Based System for
Welding Automation and Control”, Journal of Engineering
for Industry, Vol. 110, Feb. 1988, pp 71-76.

[Weinr80] Weinreb, D., Moon, D., "“Flavors: Message Passing
in the Lisp Machine"”, AI Memo No. 602, MIT Artificial
Intelligence Laboratory, Cambridge, MA, 1980.

[Whitn81] Whitney, C. K., "On the Philosophical Problem of

Making a List", Physics as Natural Philosophy, MIT
Press, Cambridge, MA, 1981%1.

[Zadeh65] Zadeh, L. A., "Fuzzy Sets"”, Information and
Control, Vol. 8, 1965, pp 338-353.

[Zedeh86] Zadeh, L. A., "Outliine of a Theory of Usuality
Based on Fuzzy Logic”, Fuzzy Sets Theory and
Applications, A. Jones et al., D. Reidel Publishing,
1986, pp 79-97.

77

Appendix A
The System Query Language (SQL)

Database Manipulation Language

In recent years the emergence of powerful database
management systems (DMS). enabling efficient manipulation of
large databases with relative ease, has lent 1;se]f to
widespread use as a primary method of information storage.
One such database design is the relational database. The
basic structure of the relational model consists of data
tables. These data tables are called relations, and they
represent the data itself and the output of processing of
data too. In a loose analogy, it could be thought of being
similar to Frames and Slots, a common knowledge
representation in the Artificial Intelligence field. The
only difference, and a rather large one at that, is the
relational databases do not support message passing or
property inheritance between relations, thus limiting its
domain of application.

The relations are flat files; a two dimensional table
containing several properties of the data. The basic
structure which makes up the tables of a relational data
base is the tuple. Each row of a relation is called a
tuple. Each element of the tuple falls in to a different
column. Each column of the table is an attribute of the
system. This is somewhat similar to the top level structure

of frames. In a relational model the term key refers to an

78

attribute which can be used to uniquely identify a
particular tuple. The use of keys to extract information
out of the database makes it somewhat recursive in nature,
which is generally an ideal way to approach knowledge
retrieval in Expert Systems.

The retrieval of data is done through the use of a Data
Manipulation Language (DML). There are four categories of
these languages for relational data bases. They are
relational algebra, relational calculus, transform-oriented
languages, and graphic systems. System Query Language (SQL)
is a common DML, uses a transform-oriented language. It
provides a nonprocedural capability and uses relations to
manipulate given the data into wanted results. The language
has an English like syntax making it easy to use. SQL 1is
also available on most large computers, thus making it a
good candidate for having DECA interface to outside
databases with it and tap the large amounts of data which
are on these mainframes.

Some of the basic keywords of SQL are: SELECT, FROM,
WHERE, IN, COUNT, SUM, AVG, MAX, MIN, GROUP BY, NOT, <, >,
HAVING, EXISTS. SQL’s syntax is straight forward lending to
a powerful interface to retrieve data.

As an example, consider the setpoint database (SDB) in

table A.1, along with some typical queries:

79

Table A.1 Setpoint Data Relation Table

Setpoint[VAR, LLL, LL, L, N, H, HH, HHH]

VARIABLE LLL LL L N al HH HHH UNITS

PZR-P 1200 1900 20585 2150 2250 2355 2400 psig
PZR-L 45 150 200 222 240 260 280 inches
HL1-T 300 400 500 606 610 619 630 deg F
SG1-P 800 850 900 940 1050 1070 1105 psig

SG1-L 10 30 45 160 170 180 190 inches
QNT-P 1 2 2.5 3 35 80 122 psig
SG2-P 800 850 300 940 1050 1070 1105 psig
SG2-L i0 30 45 160 170 180 190 inches

cL1-T 300 400 500 558 610 619 630 deg F

Query 1: Get the high (H) values desired for all relations
from the database. The retrieval schema is as follows:

SELECT H
FROM SETPOINT

the results returned would be the data in column H.

2250
240
610

1050
170

35

1050
170
610

Query 2: Get the name of the parameter which has a high
setpoint value that is greater than 2000 psig. The

retrieval schema is as follows:

SELECT VARIABLE
FROM SETPOINT

WHERE UNITS='PSIG’
AND H > 2000

This would return the variable PZR-P.

80

One can see SQL has a very powerful interface, and is
fairly straight forward to interface with any other program.
Only the code would have to be written to enable DECA to
send its own SQL commands to the database computer. This
would help reduce the development time of DECA since the
data management facility for various databases would not

have to be written from scratch.

81

Appendix B

MYCIN’s Control Mechanisms

MYCIN was one of the first successful Expert System
impliementations. Its purpose is to diagnose infectious
bacterial diseases and to decide a treatment for the
patient. It is an interactive consultant used by the
physician as a diagnostic assistant. MYCIN relies on
information from test results, patient consultation, and
internal system inferences to arrive at its diagnosis. This
appendix describes some of MYCIN’s internals as presented in
[Buchas4].

MYCIN's task involves a four-step decision problem:

1- Decide which organisms, if any, are causing

significant disease.

2- Determine the likely identity of the significant

organisms.

3- Decide which drugs are potentially useful.

4- Select the best drug or drugs.

MYCIN is a rule based Expert system. Typically the
rules are of the form:
IF <antecedent is true>

THEN <(take the designated action>

82

An example rule is as follows [Bucha84]:

RULEO40

IF: 1) The site of the culture is blood, and
2) The identity of the organism may be

pseudomonas, and

3) The patient has ecthyma gangrenosum skin

THEN':'here is a strong suggestive evidence (.8)
that the identity of the organism is
pseudomonas.

RULEO40 contains the Lookahead property in its
structure. That is, before RULEO40 can be executed as true,
the system will haée to verify whether or not premise 1, 2,
and 3 are true by executing other rules in the system. This
forward looking before making a decision is the Lookahead
mechanism.

In MYCIN, there are some ruiles which have some of the
same parameters in both the premise and consequent (action)
statements. Such rules are known as self-referencing. When
an Expert System contains rules which are self-referencing,
there must also be a control structure to prevent the sys.oem
from entering an infinite loop.

MYCIN uses a goal-~oriented approach for executing
rules. Two procedures, FINDOUT and MONITOR, are used to
control the rule execution as well as prevent the system
from entering an infinite l1oop. MONITOR analyzes the premise
of a rule, one condition at a time, to see if it should
execute the consequent. A block diagram of MONITOR is shown
in figure B.2. In FINDOUT (fig B.1), its purpose 1is to

obtain the missing information for MONITOR via other rules

or asking the user for data input.

CONSIDER THE
FIRST CONDITION
IN THE PREMISE

OF THE RULE

“ALL NECESSARY
iNFORMATION BEEN
GATHERED TO DECIDE

GATHER THE

NECESSARY
INFORMATION

USING THE FINDOUT

MECHANISM

IF THE CONDITION
IS TRUE?

IS
THE CONDITION
TRUE?

REJECT
THE
RULE

CONSIDER THE
NEXT CONDITION
IN THE PREMISE

no (or unknown)

[

ARE THERE
MORE CONDITIONS
TO CHECK?

ADD THE
CONCLUSION OF
THE RULE TO THE
ONGOING RECORD
OF THE CURRENT
CONSULTATION

Figure B.1 MONITOR Mecrhanism [Bucha84, p. 106]

83

IS THE
PARAMETER
A PIECE OF

DATA?

LABORATORY

RETRIEVE Y = LIST OF RULES
WHICH MAY AID IN DEDUCING

ASK USER FOR THE VALUE
OF THE PARAMETER

THE VALUE OF THE PARAMETER

¥

| appLY MONITOR TO EACH RULE

L

IN THE LIST Y

1S
VALUE OF

is
VALUE OF
THE PARAMETER

KNOWN?

yes

RETURN

THE PARAMETER
KNOWN?

RETRIEVE Y = LIST OF RULES
WHICH MAY AID IN DEDUCING
THE VALUE OF THE PARAMETER

¥

ASK USER FOR THE VALUE

OF THE PARAMETER

APPLY MONITOR TO EACH RULE
IN THE LIST Y

Figure B.2 FINDOUT Mechanism [Bucha84, p. 107])

84

85

Note that FINDOUT is accessed from MONITOR, and MONITOR
may be accessed from FINDOUT. This recursive feature enables
the generation of a reasoning network which is best suited
for each patient, and it also will cause MYCIN to select the
necessary questions and rules to use.

Another important control structure is that FINDOUT
doesn’t check whether the premise of the rule is true. It
only exhaustively traces a parameter and returns its value
to MONITOR. Then in MONITOR, the condition may, with its new
information, be evaluated. With this control structure
FINDOUT is called only once for each parameter while MONITOR
may be called multiple times. Also, when MONITOR reaches the
gquestion [Bucha84, p. 106]; "HAS ALL THE NECESSARY
INFORMATION BEEN GATHERED TO DECIDE IF THE CONDITION IS
TRUE?" (see figure B.2), the parameter is then passed to
FINDOUT unless it is marked as already being traced. These
two features are what prevents MYCIN from going into an
infinite loop.

This concludes the explanation of MYCIN control
structure. One can see that the architecture enables MYCIN
to be flexible with the generation of its inquiry, as well
as adaptive, in that it asks only pertinent questions.

DECA also has a Lookahead Mechanism. In it, DECA tries
to determine whether other parameters for a given scenario
are out of bounds before determining if some of conditions
for the scenario are present. Basically it looks ahead to

see that all preconditions are satisfied. As the rules in

86

DECA are nonself-referencing, its control cycle architecture
is not as complex as that of MYCIN.

In summary, the setup of the Lookahead mechanism adds
the capability for both DECA and MYCIN to customize their
"thought process” for more efficient operation. This is

important for DECA since it is operating in a real time

environment.

87

Appendix C

The CKW Local Optimization Algorithm

This appendix deals with Jow’'s work in the development
of the CKW algorithm. Most parts of this appendix are
extracted from Jow’s thesis [Jow84].

The motivating factor behind the CKwW algorithm comes
from the ability to operate in real-time on a typical
minicomputer found in a nuclear power plant (e.g. VAX
11/780) and advise any maladies in the system.

In order to enable the system to operate in real time,
the CKW algorithm could not yield a globally optimal
solution (i.e., an optimal solution over the entire problem
space), due to computational limitations. Thus the
developers pursued a sub-optimal solution employing Local
Optimization techniques.

Jow has pointed out a few characteristics of Local

Optimization [Jow84, p. 3-2].

1- It is not necessarily the globally optimal solution,
though it can be.

2- It provides for an algorithm which has a polynomial
rate of increase of computational complexity with rate

of growth in the number of parameters.

The CKW algorithm was first proposed by DOr. Cynthia K.

whitney for a scheduling problem with the High Energy Laser

Weapon [Whitn81]. The purpose is to schedule the weapon to
irradiate N number of different threats in a limited time
period. The globally optimal solution has an exponential
increase in computational complexity with a linear increase
in the number of threats. Thus with a potentially vast
number of threats, a methodology to make the increase of
computational complexity of a polynomial order to a linear
increase in the number of threats was needed. This lead to
the development of a local optimization.

The basic features of the CKW algorithm are

[Whitng1, Jow84]:

1- It decides what member (parameter) should be chosen
at each stage of the decision immediately after l1ooking
at one member beyond the stage under consideration.

2- At any stage of the decision (search), it looks at
the performance measure of each competing member using
the satisfactory outcome of the remaining or pending
members which have not been chosen so far.

3- At any stage of the decision (search), it uses a
"lumped urgency"” (a combinatorial argument based on the
number of members that remain pending and available
opportunities for them) to assist in the selection of a

member.

The system will try to find the best solution at each

stage via feature one, with feature two and three acting as

88

89

moderators to the decision process of the CKW algorithm.
This moderating effect prevents the CKW algorithm from
making a too premature decision.

The CKW algorithm sets up an algorithmic procedure to
select the order of importance of the parameters of a system
in a time constrained environment. The concepts presented
in Jow’s work to develop the CKW algorithm into a decision
support system is the basic motivation factor for the
development of the DECA system. The author sees a great
potential in harnessing Artificial Intelligence and Expert
System techniques as a second method of problem solving for
decision support systems. Eventually both methods could be
used in one system which could then take advantage of both
the analytical strengths of the CKW and the qualitative
reasoning ideas of DECA. The general architecture of the
DECA system is designed to readily facilitate the

integration of analytical submodules into the system.

90

Appendix D

Runtime Output Data

This appendix contains the output for DECA’s test run

and for the TMI-2 accident run.

D.1 Test Run

The DECA system was verified to be working after
successfully completing the test run. It consisted of the
following three sets of sensor data which DECA evaluated.

The sensor data is shown below:

((05 (2150 222 606 940 160 3 940 160 558))
(10 (2260 270 606 870 42 1.9 910 42 635))
(15 (2380 282 610 870 29 0.9 860 42 635)))

The output from DECA’s run showing the values of the
intermediate variables and DECA’s conclusions is shown

below:

91

uoy3djI083g OJIey O}jIeudVS

:9J0 paloalas
20U Inq saofoyo I[qIss0od Se PAaIIPIEUCD IIIM Jey] SOfIRUIDS

:SMOTTO) S® @Je §2137107ad pue J9jawered ayi
‘ybnoua qUIPTJUCO JOU ‘pPIIDITIS OTJIRUIIE ON

¢ :ouj) walsks 10j SUOTSNIOUCO §,VDAd

1IN UOJIEeN]|6-J0J-50TIRUBDE-ITY} 6504
1IN ISs]I-Yuel-J9jamexed
('1IN) ISTI-Yuea-Ia39Wered
TIN ISTI-YuURI-J32Weaed
((TIN 1-110) (1IN 1-29S)
(TIN d-2z9S) (TIN d-dNO) (TIN 71-19S) (TIN d-19s) (1IN I-TIH) (1IN T-¥2d) (TIN d-4zd)) yojew-oyjjei-lajouweled
(o) (0 2) (o € (o#) (0og) (09) (o) (o8) (06) (oo01) (0 TD (0 ZT)) 1qeqoIdu}-OjIBUIDS
TIN IOUIW-OFIRUIDS
JIN JOfem-Oo]Ieuads

_ ((I7GVEONdRI 0 Z1) ('1GVEONAWI 0 T1)
(FTEVEOUdHI 0 01) (ITEVAOUdWI 0 6) (ITAVEQUIWI 0 8) (IT4VEOUdWI 0 L) (FTEVEOHdWI 0 9)
(97GVIOUdHI 0 €) (ATAVEOUJWI 0) (ATEVAOHUdWI 0 €) (ATEVEONdHI 0 Z) (219¥a0udiI 0 T)) ISTT-Yolem-o13el-O1IRUSDIS

((¢ 21) (¢ TD (s o) (s 6) (9 8) (¥ £) (s 9) (56) (c #) (g €) (L T) (9 1)) I0adxe-orIeUa08-13d-5I939WRIRd

(C1IN TT)
N ID) (1IN o1) (1IN 6) (1IN 8) (TIN L) (TIN 9) (1IN) (1IN ») (TIN €) CTIN T) (TIN 1)) 3IsT{-Yojew-eep-o1aeudds

1IN SOTIRUIDS-Ppeayeyor]

1IN £31139A98-Q00

1IN sanfeA-siajduered-qoo

qIN sJa32werxed-qoo

{855 09T O¥6 € 091 O¥6 909 TTT 0STIZ) PIOOII-I06US

¢ :ouyy weisks Joj sI9duweled IVTPIWIIIUI

92

01 d-ILNO
0ot 1-¥724d

:SMOTTOJ se aIe saj3jIojad pue Jajomwexed Iyl
*ybnoua JUIPTJUOCO JOU ‘/pPIJOI[IS OJILUIDS ON

01 :owy) weisks JOJ SUOTSNTOUCD §,VOAd

€) (/1 ¥) (s/z 9) (s/t 21) (/e v) (z/1) (s/¢ ¢) (s/¢ ot) (s/€ t1) (€/T 8)) uUOTIELNI|E-I0J-SO]IRUSIE-ITqFSE0d
({68 d-195) (9°'8 I-T11D) (€6 1-29S) (£°6 T-195) (01 d-uzd) (0T 4-IND) (0T 1-¥Zd)) ISTI-YueI-I932mWeIRd
((c'8 d-195) (9°8 L-TTD) (£°6 T-29S 1-19S) (0T d-INO ‘1-¥Zd d-¥2d)) 3IST-Yuei-1933meaed

({s 8 d-19S) (9°8 I-T10) (€°6 T1-19S) (€6 T1-29S) (01 d-¥Zd) (0T T-¥Zd) (0T d-IND)) ASTT-YueI-I332WeIed
(C(1IN .m 8 O1 Tt 2T) 1IN (L)) I-11D)
(CTIN (T 2 698 0T 11 w~. TIN .wv, 1-z9s) (1IN d-z9S) ((T1IN (Z € ¥) TIN (€)) 4-IND)
({7IN .M 25980t ﬁM z1) 1IN (6)) 1-198) ((1IN (T T S 9 8 OT TIT ZT) 'TIN (01)) d-19S)

(TIN &-TTH) (CTIN (T ¢ € &) TIN (#)) T-83d) ({7IN (T T € ¥) 1TIN (#)) d-¥Zd)) Yoew-OfjeI-IajomWesed

((s/1t 6) (¥/1 L)) a1qeqoadut-ofIeUads

((e/1 €)- (e/1 %) s/t 9) (s/z z) (/g T) (2/1 1) (s/¢ <) (s/¢ o1) (S/¢ 1) (€/T 8)) Ioujm-ojieusos
© IN Jofew-ojIRUddS

((HONIMW S/Z Z1)
(YONIH G/¢ TT) (HONIK S/¢ 01) (#1aVAOUdWI S/T 6) (HONIW €/7 8) (FITAVHOMIHI ¥/T ()
(YONIH 6/2 9) (HONIW S/€) (HONIN €/1 ¥) (MONIW €/1 €) (MONIW ¢£/€ 2) (HONIW T/1 1)) 3IST[-YoreW-0]31eI-OJIRUIDS

({s 20) (s t1) (s 01) (5 6) (98) (¥ L) (c9) (c6) (ep) (e €) (£ 2) (9 1)) oadxe-ojTeusos-zod-s1oj2uered
(({a-195 L-110) Z1) ((1-19S 3-29S I-170) 1) ((I-19S 1-295 I-T1T10) 01) ((I-11D) 6)
((d-195 1-195 1-295 1-110) 8) ((I-171D0) ¢) ((1-195 1-79%) wv ((d-19s T1-195 1-29S) S)

((1-uz2d) ¥) ((d-1ND) €) ((d-19S 1-19S 1-29s)) ((d-19S 1-195 1-29S) 1)) ISTI-Yojew-LILP-OTIRUIDS

(ZLIT 0T 6 8L 9S ¥ €T 1) sojIeuads-peayeyoor]

(HHH ‘T 'TT ‘T 1 HH H) £3139A98-QO0

(S€9 Z¥ 6°T T¥ 0OL8 OLZ 09Z7) sanieA-siajswered-qoQ

(L-T10 T-795 d-IND 1-19S d-19S "1-¥Zd d-42d) sIoIswexed-qoo

(S€9 z¥ 016 6°1 ZT¥ OL8 909 OLT 09TT) PIOOII-IOSUIS

01 :awjy waisds JOJ sidjawered ajeypomrajul

¢ :owjy wa3sks 10J uojjenfeaa ejep jo pud

93

({(s/¥% s) (9/5 8)) zofew-orieUaDS

((HONINW S/€ TT1)
(YONIW S/€ TT) (HONIW S/¢ 01) (@1dvAOMdWI S/T 6) (HOLVW 9/S 8) (ITAVHONdWI ¥/T L)
{MONIW S/T 9) (dorvH </¥ <) (HONIN €/1 %) (MONIW €/1 €) (MONIW L/¥ T) (MONIK €/Z 1)) 3ISTT1-Yo3ew-of3jeI-ojIeuads

((s T (s 1) (g o1) (s 6) (9 8) (¥ £) (5 9) (5 6) (€ %) (€ €) (£) (9 1)) 3I0adxa-0yIeUl0s-19d-519 0we TRy
(((d-19S d-79S I-T110) z1) ((1-19S8 1-29s I-T1D) 11)
((7-195 1-79S I-110) o1) ((I-TT10) 6) ((d-19S 1-19S d-295 1-29S I-VU1D0) 8)
((L-170) L) ((I-195 1-295) 9) ({d-19S '1-19S d-Z9S ‘1-Z9S) G)
((1-82d) ¥} ((d-IND) €) ((d-195 11-195 d-29S 1-tas) 2) ((d-195 1-198 d-Z9S 1-T9S) 1)) ISTI-YOIPR-BILP-OFIRUIDS
(ZLT1 0T 68 L 9GS ¥ €2 1) SOTIRUIDS-pRaye o]
(HHH T 11 'T1T T1_ ‘1 HHH HH) £371I8A38-qOQ
(S€9 Z¥ 098 6°0 6 OLB TOZ 08€Z) san[ea-sidzawered-qoQ
(1-1T10 1-295 d-I9S d-IND '1-19S d-19S '1-¥Zd d-4Zd) saajswered-qoo
(GE9 Z¥ 098 6°0 6Z 0.8 019 Z8Z 08ET) PIOIII-JOBUIS
GI :awi} waisds 103 si9jawered Ijefpawradjuy

0T :awj) wWa3sLs 10} uofiIeniea3a ejep jo pugy

(xuey ujeap) - aanadny adid €/1 €

uey, ujeag €/t ¥

wa3sks Juetooy Arewyad ‘697 prod - 91n3dny adid S/t 9
wa3yshs jueyoo) Aiepuodas - dyal sufqang S/t Tt

yea] aAfep yoold L/€ z

yed] IIZ]INSEId 2/1 1

woysis jueroop Arewjad ‘697 JoH - aamydny adid S/€ S
wa3sds Jueroop Arepucoss - aanidny odid s/¢ 01

w93sAs Jue(o0) Arvpuoodas - dund Jajempasd S/¢€ 11

wo3s4As jueioo) LAiewild - IOIRIIUIH wWeals €/t 8

uotdiaosaqg OJ3ey OJJRUIDS

1930 pPIIoIIs
20U 3nq §20T0YD ATqISs0od 5S¢ PAIIPISUOD II9M IRy} SOJIRUIDS

S°'8 d-19§
98 I-17D
€6 1-TOS
€°6 1-198

1 d-¥2d

94

yeda] aaTeA Y2014 L/y (4

waishs jueroo) Arepucoss - @amadny adid c/¢ 01

wa364s jueroo) Axepuocoas - dung Ia3empaad /¢ 11

wayshs juefoop Atepuooss - drag auiqing &/¢ zl

yed] 12Z[INSS3aIId €/2 1

wo3sks jueroop Axewjag ‘691 J0H - aanjdny adid s/ S
wo3ishs jueroo) LAiewiad - JOjeIUIH WRIIS 9/¢ 8

uojadyaosag oj3ey OJJIeuUads

:3I0 pIOITIS
q0u 3Inq sa0joyo 3Tqissod se pIIIPISUCO 3IIM ey} SOTIRUIDS

8 d-29s
9 d-19s
8 L-T70
'6 1-29S
6 1-19S
¢ d-¥24d
o1 d-IND
o1 1-¥824d

:sMOT10] S¢ aie £3731I07ad pue Idjowexed ayl

9/G 90uUaPIJUO)

{ wayshs Juetoo) Alewiad - JOIRIBUID wWeadIS) UOTIdIIOSIQ OJIRUIOS
g Jaquny OjIeuads

{8} pO31OI[I8 OJIRUIDS

G1 :omy3 We3siAs JOJ SUOTSENTDUOD §,VOAd

€) (/1 ¥) (s/z 9) (/v 2) (s/¢ oU) (s/¢ TU) (s/¢ zv) (€/T 1) (S/% §) (9/S 8)) uOTILNI|6-JOJ-FOTIRUIDE-ITQYEE0d
68 d-z95) (5'8 d-19s) (9°8 I-11D) (€°6 T1-295) (g6 T-19S) (01 d-¥2d) (0T d-INO) (0Y 71-8Zd)) 3ISTT-yuRi-I933wWeled
({s'8 d-295 d-195) (9°8 I-T170) (€6 1-Z9S T-19S8) (01 A-INO T-¥3d d-43d)) ISTT-Juel-aajawered

68 d-195) (5°8 d-z9s) (9°8 I-TT1D) (€°6 1-195) (€°6 MT-29S) (01 d-uzZd) (0] T-¥zd) (01 J-IND)) 3ISTT-yURI-IIYdweTed
{{{1IN (01 MA zD) (g 8) (£)) 3-170) ((7IN (T T 9 o1 - 1) (s 8) (6)) 1-295)
(¢1IN (1 z 9 ot TU £T) (S 8) (07)) d-2z9s) ((7IN (Z € ¥) ‘1IN (€)) 4-IND)
(¢7IN (T 2 9 o1 ﬁM z21) (¢ 98) (6)) 1-19s) ((1IN (T T 9 Ot 1T WAV (g 8) (01)) d-19%)

(TIN Z-TTH) (CTIN (T 2 € ¥) 7TIN (¥)) 1-uzd) ({TIN (T Z € %) TIN (#)) d-y2d)) Yolrew-ojjei-Iajdmeied

((s/7 6) (%/1 L)) @1qeqoadwi-ofIeusds
((e/T €) (e/T %) (s/t 9) (u/v T) (s/¢ o1) (s/g 1) (S/€ T1) (€/T 1)) aouUjm-OfIRUdDS

95

G1 :owj3 waisks J0J uojIenTRA? vIep JO pul

(yuey ugeap) - aan3dny adyd €/1 €
yuej, ujeaq £/1 14
wa3shs Juejoop Axewyad ‘ba proo - aanadny adid </t 9

D.2 TMI-2 Run

The concepts of the DECA system were verified using
actual data from the TMI-2 accident. It consisted of sensor
data from nine different times during the accident. The
sensor data shown below was extracted from [Jow84, pp. 56-7

to 5-11]).

((o (2145 218 607 944 123 3 930 116 559))
(15 (2260 253 611 1022 79 6.3 1012 80 571))
(30 (1905 182 587 998 26 7.8 987 30 577))
(45 (1855 160 579 1000 17 9.3 993 20 576))
(60 (1790 158 578 990 14 12 969 18 576))
(75 (1760 162 577 1011 10 14.3 997 16 576))
(90 (1725 175 578 1023 11 17.5 1005 16 577))
(105 (1685 187 579 1021 11 19.6 1005 16 577))
(120 (1650 200 579 1011 11 22.2 1000 16 579)))

97

uojidiaosaqg ojiey OFIRUIDS

:9Je paIDITas
j0U Inq §30JoYo aTqissod 6o PIIIPTSUOD YIIM JeY] EOJJIRUIDS

:8MOT[OJ SR aie Sa3]3fI0Tad pue Jojowered 9y
*ybnoua FJUIPTFUCO J0U ‘PIDI[SS O]JRUIOS ON

0 :9uwj3l w93IsLs JOJ SUOTSNTOUOD §,VDA(D

1IN UOTIEN}ITE-30J-60]IRUSDS-I[q]660d
TIN IST[-Yuea-Jajaweled
{7IN) 3ISTT-Juea-Jajawmered
TIN ASJ[-JueI-aajawered
(CTIN 3-170) (TIN T1-298)
(TIN d-29S) (1IN d-INO) (TIN T1-19S) (TIN d-19S) (1IN I-TIH) (1IN T-4Zd) (1IN d-¥Zd)) yojew-oyjei-Isjameded
(o 1) (o 2) (0c) Covw) (og) (09) (0¢) (o8) (06) (o or) (0 TT) (0 2T)) @1qeqordui-ofIRU3DS
1IN JIOUJW-O]JIRUIDS
1IN Jofew-ojaeuasds
((I79vE0UdHI 0 2T) (FTGVHONdWI 0 11)
(I19VE0UdNI 0 0T) (IFTAVEOUIWI 0 6) (TTAVAOUIWI 0 8) (IFTAVEOBdWI 0 L) (FTGVHONdHWI 0 9)
(FTAVHOUARI 0 §) (ATAVAONdWI 0 ¥) (FTGVAONAWI 0 €) (T1GVEOUdWI 0 Z) (ATaVEONdHWI 0 1)) 3ISTI-Yo3rw-Of3el-ojIeuads
((s z1) (s 11) (g o1) (s 6) (9.8) (¥) (5 9) (s g) (g ¥} (€ €) (£) (9 1)) 309dx3-OfaRUldDE-2ad-s1939wR IRy

((TIN TV)
N TU) (TIN oT) (1IN 6) (1IN 8) (TIN £) (1IN 9) (1IN §) (1IN ¥) (TIN €) (TIR 2) (1IN T)) un¢~|zouu--numv-odummwom

TIN SOJIeUSDS-pRaYRYOO]

TIN £3739A985-qO0

TIN sanfeA-siajaweged-qoo

TIN siajawered-qoo

(6SS 9TT 0€6 € €ZT ¥¥6 L09 BIT SHPIZ) pPIOOII-JOSUBS

0 :awj3 walsis J0) siajsweaed Ije]pawiajul

98

I L-TTH

LA A T-47%d

[A4 d-¥eid
:6MOT{O} £t aJe saj3jlojad pue Jajawe.cd oy,
*ybnoua USPTJUCO J0U ‘pPIJOITIS OJIRUIOS ON

61 :swmy) walysds I0] SUOTSNIOUOD §,VDdAd

({e/1 ¥)) uvor3ENI[6-20]-501IRUIDS-BTQ]E50d
((T &-TTH) (Z°T 1-¥2d) (Z°t d-uzd)) ISTI-AueI-Iajawered
((T I-TIH) (T°T T-¥Zd d-uZd)) ISTT-Yuel-Iaj2weled
((T L-TTH) (Z°Z d-¥2d) (Z°'Z 1-MZd)) IsTT-yuel-I338WeTRd
((1IN I-110) (7IN T1-29S) (1IN d-Z9S) (TIN d-LND) (TIN T-19S)
(TIN 4-198) ((TIN TIN TIN (€)) I-TTH) ({TIN (¢) TIN (¥)) 1-42d) ((TIN (¥) TIN (¥)) d-¥2d4)) Yolew-OfIRI-Ia2weTed
(o 1) (o0 2) (o) tos) (o6) Lo or) (o 1T) €0 Z21) (9/1 8) (s/t1 9) (¥/1 ¢)) @rqeqoadui-o}IeU3DS
({(e/1 #)) Ioujw-ojaeUads
1IN do{ew-ojaeuaos
((F1EVE0IdHI 0 21) (FTAVEOUIWI 0 TT)
(FTAVEOUdHI 0 01) (F1AVAOUdWI 0 6) (ITIVEOUINI w\a 8) (319VHONdH] ¥/T L) (IF19¥vEOUdHI S/T 9)
(3T9VEOUdHI 0 S) (HONIW €/1 ¥) (F18VEOUdWI 0 €) (I19VAOMdWI 0) (F18VEOMdWI 0 1)) 3ISTI-YOo31eM-O]3RI-O]IRUIDS
((s z1) (s T1) (5 01) (5 6) (9 8) (v £) (5 9) (5 g) (g€ ¥) (€ €£) (£ T) (9 1)) F03dxa-ojIvuUaDs-1ad-5I1973wRIRY

(C7IN ZT) (1IN TI) (TIN OT)
TIN 6) ((L-TTH) 8) ((I-TTH) £) ((L-TTH.) (1IN ¢) ({(1-42d) ¥) (1IN €) (IN T) (TIN 1)) 3Is¥T-Yojew-elep-OjIRUIDS

(L9 % €2 1) sojIeuads-peayeyoo]

(H H H) £3139A385-QOO

A-o €ST 092g) sanjea-siojsueaed-qoo

1-TTH 11-¥Zd d-¥Zd) sIejswered-qoo

(146 08 ZTOT €°9 6L TZOT IT9 ESZ 09ZZ) PI0O3I-IOSUIS
ST :ouwj3l walshs I0) sI9jawesed IjejpswIajul

0 :au(3 wa3sds J0] uorIeni{eAd vep JO pud

99

0€ 3wl waIshs I0OJ SUOTSNIOUCD §,VIId

(le/T v) (e/1 8) (/2 S) (s/t 9) (s/z o1) (s/z 1) (/v 2) (g/z 1) (€/z €)) uoj3IeN}|6-IOJ-SO]IRUBDS-B[G]650d
({58 71-z95) (g'8 1-19S) (01 1-uZd) (01 d-uZd)) ISI[-yueI-Iajsweaed
((s°8 T-z9S 11-195) (0T T-¥3d d-uZd)) ISTI-Yuex-Iajaweted
({(¢°8 T-198) Am.o 1-29S) (01 d-¥Z4) (01 1T-yzZd)) ISI[-YueI-Iojomeded

(1IN 3-T12) ((TIN {1 2 < 9 8 0T TT) 1IN (6)) 1-295)

(1IN d-29s) (1IN 4-aNO) ((TIN (T 2 ¢ 9 8 0T TU) 1IN (6)) 1-195)
(1IN d-198) (1IN I-TTH) (CTIN (T 2 € #) TIN (%)) T-¥2d) (CIIN (T T € %) TIN (¥)) d-¥Zd)) yoIvw-OjIeI-Iajoweled
((o £) (0 6) (0 z21)) @rqeqoadut-ojreusds

((e/T ¥) (e/1 8) (s/T S) (s/t 9) (s/z o) (s/t 1) (L/v T) (€/z 1) (€/z €)) Iouyw-ojreusos
TIN Jofeuw-oyIeuads

{{379vB0OUdWI 0 Z1)

(YONIW S/ TT1) (MONIW w\m 07) (ITHVEOUAWI 0 6) (HONIW €/T 8) (3TaVdOUdWI 0 L)
(YONIW S/Z 9) (HONIW S/T S) (HONIH €/T ¥) (HONIW €/2 €) (HONIW L/v T) (HONIW €/Z 1)) I5FI-YdIem-Of3RI-OfIRus3os
(g z1) (g 11) (s 01) (5 6) (98) (¥ L) (s 9) (5 ¢) (%) (g €) (L g) (9 1)) 30adxXa_ojIeUsDS-T9d-S1939uRIR]

. ({(1IN wﬂv ({1-195 T1-29S) 1)

. a.q-Mum 1-29S) 0T) (TIN 6) ((T-19S T-795) 8) (TIN £) ((1-195 T1-Z9s) 9) ((1-195 1-29S) §)
-42d) ¥) ((d-¥2d 1-¥2d) €) ({(d-¥2zd T-¥Zd T-19S 1-29S) r) ((d-¥Zd T-¥Zd T-19S T-z9S) 1)) ASTI-YOIeW-vIep-OfTRUIDS
(ZITT 0TI 689 G ¥ €T [) SOTIRUIDS-peayeyOO]
(7T 11 11 1) £3139A98-900
(o€ 92 ZB1 S061) s9nTeA-sIoyamesed-GOO
(1-29S 1-19S T-¥3d d-¥Zd) sId32weaed-qoo
(LL5 0€ L86 B8°L 9T 866 LBS ZBT SO61) PIOOII-JOSUIS
0¢ :owy3 waysds 30] siajaweged ajeypawraju]

Gl :3uy3l wa3sAs JOJ uojIEN[eAd vIRpP JO pum

yuel, uyeaq €/1 ¥
uofadraosag ol3iey OyFIeuads

taxe pojoaTas
J0U INg §3DToYD ATqyssod se PIIIPTSUCD IIIM JRY]F SOTIRUIDS

100

((I718vE0UdWI 0 Z1)
(HONIW S/Z TT) (HONIW S/T 01) (3TEVEONJWI 0 6) (WONIW £/1 8) (ANGvacudWI 0 L)
(HONIW S/Z 9) (HONIW G/T S) (HONIN €/1 ¥) (HONIN £/T £) (YONIW L/¥ T) (YUONIW €/2 1)) 3511-Yojew-oj3el-ojJeuads

({s zv) (s 1) (s 0o1) (s 6) (9 8) (¥ L) (5 9) (5 8) (€ %) (€ €) (£) (9 1)) I0adxa-_ojIvuads-sad-s1a39uelRy
(1IN ZTUV) ((1-19S T-Z9S) T1)

1-195 1-29s) 0o1) (1IN 6) ((7-19S T1-29S) 8) (TIN ¢) ((1-195 T-798) 9) ((1-195 1-29s))
) ((d-¥zd 1-¥2Zd 1-195 1-29S) T) ((d-¥Zd T-¥Zd 7T-19S T-29S) 1)) ISTI-YoIrw-vIep-OTIRLILS

((
-znav.VA.m-zNaguzaavn

(ZLIT 0T 6 89S ¥ €2 1) SOTIRUIDS-peayeyoo]

(11 11 1 711) £3139496-qO0

(0z LT 091 SSB1) San[eA-siajaweaed-qoo

("1-295 T-19S '1-¥2d d-¥2d) sieyduwesed-qoo

(9LS 0Z €66 €°6 LT 0001 6LS 09T SS8I) PIoddI-IOEUIS
Gy :owy) walsAs 10J sIajouwered IjeypawIajiul

0f :2WJ) wWa3sAs I0j UOTIENTRAd ejep JO puz

yuey, uyeaq £/1 ¥

wa3sds jueroo) Asewjid - 103LIBUIDH WEIIS €/1 8

wo3sks juefoop Axemyad ‘bo] o4 - @anydny adyd S/ S
wo3sis juetoon Axewiaqd ‘bay proo - 2amdny adid S/Z 9
wa3sks jueyoo) Axepuodas - aanidny adid s/ (1)

wa3sAs jueyoo) Kaepuodss - dung Iejempodd s/ 1t

yeo] IATeA XOOId /v 4

Y] IIZJINSSIAJ €/t 1

(yuey ujeap) - aamidny adyd £/2 €

uopadyrosaq ofiey oOfIvUIOS

:9Je pojoIas
J0U ING SIOTOYD ITJS50d §° POISPISUCD DIBA IPY] SOJJIRUIDS

) 1-208
$'8 1-198
01 T-42d
(118 d-¥2d

:SMOTTO] se ale s313jI07ad pue zarawexed ayg

‘ybnoua 3JuapTJUOD Jou ‘pIIOITIS OJILUIOS ON

101

09 :ouy) waishs 10) saajauweded aje|pawIajul

Gb :9u[) wa3sAs JOJ uofIENTRAd RIEP JO pul

yuel, uyeaq €/1 4

waysks jueroo) Liewjad - JOj3RI2UDH WeIIS €/1 8

m91564Ss juetoop ALiewyad ‘697 04 - aanydny adid S/ S
wa3sAs jueroo) Aiewjad ‘61 proo - sanydny adyd S/t 9
wa31sLs jueyoo) Kiepuodss - aanidny adid s/t 01

wa3sds juetoo) Liepuooss - dung Iajempoasd (V44 1t

e dATEA YoOTd L/ z

yed] IIZ[INSEIIG €/2 1

(xuey ugeap) - san3dny adyd €/ €

uoyid1I083q oj3ey oO1Ieuads

t9Je PIYOITIE
J0U INq £30TOYD aTqIs50d ST POIIPTEUCO 9I3m ey SOTJIRUIDS

S'8 1-29S
$°8 T-19S
01 T1-4Zd
0t d-¥2d

:SMOTTOJ se aIe §913ITI0oTad pue zajoweaed ayj
‘ybnous Juapijzuoco JOU ‘pPaJOI[IS OfIRUIOF ON

G :auyy walsks I0J SUOTENTOUOD §,VI3Ed

((e/T ¥) (/1 8) (s/z S) (s/z 9) (S/z oU) (s/z T1) (u/v T) (€/T) (€/2 €)) UoTIeN3 16-310] 60T IRUIIE -] [6604
((g°8 1-295) (58 T1-19S) (01 1-¥Zd) (0T 4d-¥Zd)) ISTT-Yuel-Iajswered
({5°8 T-295 T-195) (01 7T-¥2d d-¥Zd)) IST[-YueI-Taj9meIRd

{(s°8 1-195) .m.c 1-29S) .cM d-¥3d) (0T T1-¥3d)) ISTI-Juea-Io3jawesed
(1IN I-170) {((1IN (Tt 2 S 9 8 OT T1) 'TIN (6)) 71-29S)
(TIN d-z9s) (1IN d-IND) ((TIN (T w S 980T tU) TIN {(6)) 1-195)
(1IN d-195) (TIN &-TIH) ((TIN (T T € %) TIN (3)) T-82d) ((TIN (T Z € #) TIN (¥)) d-¥Zd)) yovwm-Oj3ei-I932wWeled

A.QNVAomv.o NMVV oanmnouaaaaoquncoow
((e/T %) (e/1 8) (5/T 6) (s/2 9) (s/z o) (s/z t1) (/v T) (e/t 1) (€/t €)) Ioutw-ojaeusos
7TIN 3Jofew-OJIPU3DS

102

. :ale pajoa19s
30U INQ SIOTOYD IqIE50d S PIIIPJEUCD IIIM Y} SOTILUIIS

S'8 1-TOS
S°8 1-198
01 T-¥%4d
01 d-did

:SMOTTO] Sv 23 §3737I03ad pue zajawered ayg
‘ybnoua JUIPTIUCD JOU ‘pIJOITIS OFIPUIDS ON

09 :auy) wa3sd8 10} SUOTSNTOUOD §,VIAd

((e/T ¥) (/1 8) (s/2 s) (s/z 9) (g/z o1) (s/t 11) (L/v T) (€/T 1) (€/T €)) uolIeN][6-J0J-5O7IRUBDE-I|q}650d
((s 8 T1-2z9s) (s 9 T-195) (0T T1-¥Zd) (0T d-¥2d)) 3ISTI-yuea-Iojawered
({c"8 1-295 1-195) (01 "T-¥Zd d-Y¥3d)) ISTI-YURI-IIDmWeled

({(s*8 T-195) Am.o 1-295) .om d-u2d) (01 11-¥2d)) IsyT-Juea-aajauered
(1IN I-110) ((1IN (T T € 9 8 OL TT) TIN (6)) 11-T9S)
(TIN d-29s) (1IN a-INO) ((TIN (T £ S 9 8 0T TU) 1IN (6)) TI-198)
(TIN d-19S) (TIN L-UIH) ((TIN (T T € #) TIN (%)) T-42d) ((TIN (T T € ¥) TIN (¥)) d-yzd)) yojew-ojjeI-IaoWeled

((o L) (0 6) (0 Z1)) °@1qeqoaduy-ojIeuaos
(/T ¥) (/1 8) (s/T <) (s/z 9) (s/T o) (c/T 1) (/v T) (/T 1) (€/t €)) aourm-orIeuads
TIN Jofew-ofIeuaos

((ITIVEOUdHI © ZT)
(YONIW S/Z T1) (HONIW m\« 01) (F1AVEOUIHI 0 6) (UONIW €/1 8) (ITEAVHOUdWI 0 L)
(YONIW S/Z 9) (HONIW S/ S) (MONIW €/1 ») (HONIW €/ €) (HONIKW L/¥ T) (¥ONIR €/2 1)) 3ISTI-yo3PW-OF3LI-OJIRUIIS

((g 21) (s 1) (5 01) (5 6) (9 8) (¥ L) (5 9) (6 G) (e ¥) (€ €) (£ 2) (9 1)) I0adxa-o7avusd0s-I3d-s1939WeIRed

(1IN wﬁv ((1-195 1-29S) 11)
aadlwam 1-z9s) 01) (1IN 6) ((1-195 1-295) @) (TIN L) (({T1-19% 1T1-795) 9) ({7I-195 1-Z95) ©)
-¥2d) ¥) ((3-y2d 1-¥2d) €) ((d-¥zd T-42d T1-19S 1-298) T) ((d-¥Zd T-¥Zd ‘1-19S 1-T9S) 1)) ISTT-Yolew-eep-o1IeUdds

(ZT IT 0T 689 S ¥ €T 1) SOTIRUIDIS-pRayeyoo]

(771 11 1 T1) K3139A95-Q00

(8T %1 8ST 06L1) sanTeA-sIajswered-qoo

(7-79S 1-19S T-4Zd d-4Zd) sIdswered-qoo

(946 81 696 TT ¥1 066 BLS 8ST 06L1) PIOO3I-IOEUIS

103

((g'8 1-29s) (58 T1-195) (0T T-uzd) (01 d-uZd)) IST[-Yuel-Ialamerey
((g-8 1-z95 1-195) (01 1-Y42d 4-¥2d)) ISTT-YURI-J2Ywraed

((c'8 1-195) Am.u 1-29S) .oM d-u3d) (01 7T-¥Zd)) ISTI-YURI-IDjoweavy
(TIN I-110) ((7IN (T 2 S 9 9 0ot TU) TIN (6)) 1-295)
(TIN 4-29S) (1IN d-INO) ((TIN (x 2 G 9 8 0T 1) TIN (6)) 1-198)
(TIN 3-198) (TIN I-TTH) ((TIN (T Z € ¥) TIN (%)) T1-¥82d) (1IN (T T € %) TIN (%)) d-¥Zd)) yojem-ojiei-iajaweleq

{(o 2) (o 6) (0 z1)) @1qeqOadwy-OfIRURDS
(te/T ¥) (e/1 8) (s/z ¢) (s/z 9) (s/T o1) (s/z 1) (L/v 2) (€/Z 1) (€/T €)) Ioujm_ojaeusds
TIN Io{ew-ojIeuaos

((279VdOUdNI 0 ZT)
(YONIW S/T TT) (YONIW m\« 01) (A18VHQUJHI 0 6) (NONIW €/1 8) (ITAVEOUINI 0 L)
(HONIW S/Z 9) (HONIW S/Z S) (HONIW €/1 ¥) (HONIW €/ €) (MONIW (/¥ T) (HONINW €/Z 1)) 3IS]T-YOjeE-Ojjel-OjIeuads
(g z1) (¢ 1) (5 01) (S 6) (9 8) (¥ L) (s 9) (5 &) (€ %) (€ ¢€) (L T) {9 1)) F309dx3-OJIeUaDE-Tad-BIa30meTRy
((1IN wﬁ. ({1-195 1-298) 11)
..J-Mwm 1-z9s) 0t) (1IN 6) ((1-19S ‘1-z9S) 8) (TIN L) ((1-195 1-2958) 9) ({1-195 1-z9S) <)
~-¥Zd) ¥) ((d-¥Zd 1-uz2d) €} ((d-¥Zd T-42d T1-19S 1-29S) T) ({d-82d T1-4Zd T-195 1T-Z9S) 1)) 3ISTI-YoIew-e3ep-ofIRU3IS
(ZU IT 0T 6 8 9 S ¥ € Z 1) SOJIVUIDE-pEIYRYOOT]
(T1 TT1 1 T1) A3I139A98-qO0
(91 o1 291 09L1) San{eA-sIvvweed-qoo
(1-295 1-19S ‘1-43d d-¥%d) sIajawesed-qoo
(945 9T L66 E'¥1 OT TIOT LIS 291 09L1) PIOODI-IOBUDS
SL :owr) woisis I0) siojouwered ajejpswIajul

09 :3wWyy Wa3IsLs I0] uOJIENTRAd BIEp jJO pul

yue], uyeag /1 Z

wa3sks ueroo) Arewjig - I0jRI3UIY WeIIS €/1 8

woysks juejoo) Aremjiq ‘6o 04 - @anydny adid S/t S
woisds juetoo) Krewjad ‘697 prod - aanydny odid S/ 9
wa3sAS juetooy Arxepuodss - aanjdny adid S/T 0t

wa3sks queroo) Liepucoas - dung Jojeapedd (V4 A 11

e IATRA YOOIg L/v T

o] JIZ|INSSI1J €/ 1

(yue3 uyeap) - aan3dny adid €/2 €

uoyidiIosaq ofIvy oOfjIRUIDS

104

(1IN 2U) ({7-195 1-295) 11)
9s 1-295) 0o1) (TIN 6) ((T-195 1-z9s5) 8) (1IN) ((1-195 T1-29S) 9) ((1-195 1-T98) ¢)

({1-1
) ((d-¥2d 1-4Zd 1-195 ‘1-295) T) ((d-¥Zd 7-4Zd 1-19S 1-T9S) 1)) 3ISI[-YoIem-eiIep-OJIeuadds

(

-y¥3d) ») ({d-uzd 1-¥2d) €
(ZT 1T 0T 6 89 C ¥ €2 1) sojieuaos-peayeyoo]

(17T 11 1 711) A3139A95-qO0O

(9T TT SLT SZLT) son[eA-sIajauwesed-qoo

(1-295 11-19S 1-¥Zd d-¥2d) sI9vweIed-qoo

(LLS 9T S00Y S°LT TU €2OU 8LS SLU SZLT) PIOO3X-I0SUaS

06 :9mjy welsAs J0] siajauweed Ije|poNIaIU|

GL :oW}) waysds I03J uojjenIeAd eIEp JO pul

yue}l, uyeaq €/1 ¥

wa3s4s JuRTO0D ATPwiad - I0jRIBUDD Weals e/1 8

wasAs uefoo) Aremyad ‘697 J0H - @amydny adid S/T S
wa3sds juetoo) Arewiid ‘6o prod - aanydny adyd /T 9
wa3s4s juetoo) Axepuocoes - aamdny adid S/t (1} ¢

®93154s jueT00) AIepucods - dend Jajempodd S/ 11t

yed] SATPA ¥OOIH L/y z

Aed] I9Z[INSEIAJ €/T T

(yuey ujeap) - aanjydny adid £/T €

uoyidjaosaq ojjey ojIeuldds
:3Je PIjoaTIs
JOU Inq §IOTOYO ITqIssod S PIIIPTEUOD IIIM JBY] SOTIRUIDS

8 1-TOS

‘8 1-19S

| ‘1-¥zd
or d-¥2d

:EMOT[0] Se aie sajjijaojad pue Jajawered Iyl

*ybnoud UIPTJUCO JOU ‘PIJOITIS OJILUIDS ON

Gl :9m}) wask$ JOJ SUOISNTOUOD §,VI3d

(te/T #) (/1 8) (s/z s) (s/z 9) (s/z o1) (s/z 11) (L/% T) (/T V) (€/¢ €)) uoTIeN}|6-30]-SO]ITRUIDE-3[]E60d

105

juey, ujeaqg €/1 ’

wIIsLg Juetoo) Liewjld - J030I9UI) mWea}S €/1 8

wo3Ishg ueyoop Aiemyad ‘Ho 0H - 21mdny adid s/t S
wd3s4s jueioo) Laewyad ‘61 pro) - aanidny adid s/t 9
w33ss juerooy Lrepuooas - aanidny adid s/T 0l

wa31sks juetoo) Aaepuooas - dung J93empaad S/t 11

yea] aAfes yooid L/ 4

yed] I3Z{anssald €/ L

(yuey ujeap) - axnydny adyd €/t €

uotidjIosag ojIey oOfaeuadds
:aJ0 pajoI[9s
JOU ING SIDTOYD ITqI560d SP PAIIPISUCD IIIA IBYJ SO]JIRUIDS

8 1-T9S

‘8 1-19S

1 T-¥2d
ot d-¥2d

:SMOTT0jJ Se a1e ga]3]1J0jad pue Jajawesed ayl

‘ybnoua Juapyjuco 30U ‘pajdITIS OFILUIDS ON

06 :om1) waIshs Joj suolsnyouod §,¥odAd

(/T #) (/1 8) (/T <) (s/T 9) (s/2 o1) (s/t TU) (L/v T) (/T 1) (€/T €)) uolIeNI|S-10)-6O] IPULDE-ITqTSE0d
((s 8 1-z93) (S'8 T-195) (0T T-uzZd) (01 d-¥Zd)) ISTI-YueI_Jojamered
((s°8 1-795 T1-19S) (0T T-¥3d d-¥Zd)) ISTI-Nuei-Jojomered

((c°8 1-195) .M.o 1-295) ﬁom d-32d) (01 1T-¥2d)) 3ISTI-Yuei-Iajamered
(TIN 3-110) ((TIN (v 2 € 9 8 OT TT) TIN (6)) 1-295)
{TIN d-29S) (1IN 4-IND) ((TIN (1 2 ¢ 9 8 0T IT) 1IN (6)) T-1DS)
(1IN d-19s) (1IN &-TIH) (CTIN (T ¢ € ¥) TIN (¥)) T-82d) ((TIN (U 2 € #) 1IN (y)) d-¥2d)) yoIew-ofjea-zo3owered

:ot.eav.o«:ouadnoumlTouuuccom
((e/1 #) (e/1 8) (s/2 ¢) (s/z 9) (s/T o1) (s/z 1) (/v t) (¢/t 1) Mn\« £)) Joujw-ojavuads
1IN Iofew-O]Ieuads

((a1avacudwl 0 Z1)
(HONIW S/z T1) (MONIW m\m 01) (ATAVEOUIHI 0 6) (MONIW €/1 8) (FTAVBONdHI 0 L)
(MONIR /2 9) (HONIW S/Z S) (HONIW €/T ¥) (HONIN €/Z €) (HONIW L/v T) (MONIW €/2 1)) AT [-YOIPN-01I10I-O]IRUIDS

((s z1) (5 T1) (s o1) (S 6) (98) (¥ L) (S 9) (S g) (£¥) (€ €) (L Z) (9 1)) F03dxa-0]TRU05-I0d -§1939MRIRY

106

o1 T-47d
ot d-¥2d

:EMOTTO} se aae s3]3ja0fad pue Jajawexed ayl
‘ybnous JUIPTJUCO JOU ‘pIOI[IS OJIRUBDS ON

GOT :ow]3 wa3sks JOJ SUOTSNIOUCD §,VDAd

(e/T v) (e/1 8) (/T S) s/t 9) (s/t o1) (S/z 1) (/v T) (e/t 1) (€/T €)) UOFIPMITS-IO}J-SOFIRUBOE DT« ~tif
((g°8 1-293) (5°8 1-195) (01 1-u2d) (01 d-¥Zd)) 3ISTT-YUEI-I3F. wedt §
((s°8 1-295 T1-195) (01 71-¥Zd d-¥3d)) ISTT-AURI-I9aweed

((¢'g 1-195) .M.o 1-29S) .eM d-42d) (01 1-¥zZd)) 3IsTr-yuUeI-Iojowered
(TIN I-1710) ((7IN (T 2 S 9 8 OT 1) TIN (6)) 1-79S)
{(7IN d-29S) (TIN 3-aN0) ((TIN (1 Z S 9 8 w~ T1) 1IN (6)) 1-195)
(TIN d-19S) (1IN &-TTH) ((CTIN (T T € ¥) TIN (#)) T-¥2Zd) ((TIN (T Z € ¥) TIN (¥)) d-¥Zd)) yoew-ojjei-Iejoweled

((o L) (0 6) (0 t1)) 9rqeqoidwy-ofreuads
((e/T #) (e/1 8) (s/T s) (s/z 9) (s/z o) (s/t 1) (/¥ t) (e/z 1) (€/T €)) Ioum-ojxeusos
1IN Xo(PH-OjIRUaDS

((a19vE0UdHI 0 ZT)
(YONIH S/T 1Y) (WONIW m\« 01) (FTAVBOUdWI 0 6) (UONIW €/1 8) (ATAVEOMJWI 0 (L)
(HONIW S/Z 9) (MONIW S/Z S) (MONIW €/1 ¥) (HONIW €/Z €) (MONIW L/¥) (MONIW £/2 1)) 3IST1-YO1PE-O]3IRI-OFIRUIDS

((s z1) (s 1) (5 01) (S 6) (9 8) (¥) (5 9) (5 6) (€ %) (g €) (L 2) (9 1)) 109dxa-OF JeUaDE-Iad-SIYPwe TR
((1IN 20) ((7-19S 1-29S) 11)
..auMom 1-295) 01) (1IN 6) ((7-19S 1-79S) 8) (TIN) ((1-198 1-295) 9) ((1-19s 7-T9s) ¢)

-42d) ¥) ((d-¥zd T-u2d) €) ((d-uzd 1-¥2Zd T-19S T-29S) T) ({d-u2d 1-uzZd 1-19S 1-79S) 1)) IAST[-YOIPW-VILP-OJILUIDS

(ZTLITOT 6896 % €T 1) SOIIRUIDS-pRIYERYOOT]

(T1 T1 T T1) A313I8A95-Q00

(9T TT LBI $891) sanyea-siojowered-qoo

(1-29S 1-19S ‘1-¥32d d-¥Zd) sI9ameed-qoo

(LLS 9T S00T 9761 TT TZOU 645 LB SB89() PIOOII-JOSUIS

GOT :auy3 wa3sds Joj sJojowered Ije|powIaju]

06 :awy)l wa3sks I10J uojIeN[eAd vIep JO pud

107

Aauza-«wwv.aHza-azovﬂaq~z.~ m moaoﬁagvaazgmvva-ﬁomv
(TIN d-19S) (1IN L-TTH) (1IN 1-¥2d) ((1IN (T Z € #) 1TIN (#)) d-¥2d)) yojew-oj3eI-1933weIRd

(o &) (0 6) (o NMVV arqeqoaduy-of Ieuaos

(te/T €) (e/T v) (e/1 8) (/2) (s/z 9) (s/z oU) (s/z 1) (L/€ 2) (z/1 1)) Iouym-ojaeusds
TIN Jofew-ojIeuads

((3T19VIOUdHI 0 2T) .
(HONIN S/Z T1) (YONIW m\« 0T) (IFTGVAOUdWI 0 6) (HONIW €/1 8) (d79VaOMdWI 0 L)
(YONIW S/T 9) (MONIW S/ S) (MONIW €/T ¥) (MONIW €/1 €) (HONIW L/€ Z) (MONIW Z/T 1)) 3I§1I-YoIew-oj3eI-0]IRu3ds

((s 1) (s 1) (s o1) (s 6) (9 8) (v £) (S 9) (S6) (%) (c€) (L 2) (9 7)) 103dxa-OyTeudIs-19d-51970WRIRg

((7IN 21)
({(1-195 1-295) 11) ((1-195 1T-295) 01) (TIN 6¢) ((1-19S 1-z9S) 8) (1IN L) ((1-19S 1T1-Z9S) 9)
-19s 1-z9s) §) ((d-¥zd) ¥) ((d-u2Zd) €) ((d-¥2d T-195 7T-z9S)) ((d-uzd 1-19S 1-29S) 1)) ISTI-YOIeW-PILP-_O]ILUIDS

(ZT IT 0T 6 89S ¥ €7 1) sOJIRUIDS-pRayeyOO]

(11 71 11) K3339A38-QO0

(9T Tt 0S9T) sonTeA-saajawered-qoo

(1-295 1-195 d-4Zd) saaaueaed-qoo

(6LS 9T 000T Z°ZZ TT TTIOT 6LS 00Z 0S91) PIOODI-JOSUIS
0Z1 :auy) waysds J0J siajawered ajejpawmiajul

GOT :auj) wo3sks I0] uojjentea? ejep jJo pud

yuel uyeaq €/1 14

wd3s4s Jueyoo) Alemiad - JojRIBUIn WedIS €/1 8

wa3sAS juetoop Arewjid ‘697 JoH - aanydny adid S/2 S
wa3s4S jueroo) Axewjag ‘697 pro) - sanydny adid S/2 9
w3355 JueTo0) Aaepuodas - aanydny adid S/t (1} 4

wa1sds JueTo0) AIwpuocoas - dund I93empadd s/t 1t

] SATRA YOO[d L/ |4

Ao} I9T|INEEIIJ €/2 1

{yuey uyeap) - @anydny adyd €/ €

uotadyaosaq o1IeY OjIRUIDS

taJe pa3oaas
J0u Inq §3DToYD A[qyssod E€ PIIIPISUOCD IIIM IBYI SOTIRUIDS

108

0Z1 :owy} wo3sis JIOJ uOTIENTRAD® e3ep JO pul

(yuey ujeap) - aanydny adyd €/1 €

yue] uyjeaq €/1

wa3s4s jueyoo) ATewjigd - J031RIIUIH WeIIS €/1 8

wa3sis jueyoo) Kremjig ‘6371 J0H - a2anjdny adyd s/t S
woisks juetoo) Aremyad ‘691 prog - 9an3dny adid S/t 9
wa3sds jueroo) Axepuoods - aanxdny adid s/2 o1

wa3s4s jueToo) Aaepuooas - dund Iajempa’dy s/ 1t

Yeo] IATRA X0OTd L/€ z

yed] IIZTINTSIAd T/t 1

uotaydjI083Qq oyiey OJIvUIDS
:aJe pajodaIs
q0u Ing £30T0YD ATqIssod E° PIXIPTESUOCD DIIM ey} SOJIRUIDS

$°8 1-298
S'8 T1-198
0t d-382d
:EMOTTO3 St 9Iv saf3fIrojad pue Iojawexed ayy
*ybnoua JUIPTIUCD JOU ‘PIYDI[IS OFIRVUIOS ON

0ZT :ow) waisks I0J SUOTENTOUCD 8 ,VDAd

((e/1 €) (/T ¥) (/1 8) (s/T S) (s/z 9) (s/z or) (s/t T1) (L/€) (T/T 1)) UOTIPNITS-10}-SOTIRVUIDE—-IT]660d
((6'8 1-295) (5°8 T-19s) (01 d-¥Zd)) ISTI-yueI-IajomeTed
({c'8 T-295 T1-19S) (01 d-¥Zd)) ISTI-YueI-Jajaweled

((g:g 1-195) .m.w 1-295) (01 d-¥Zd)) ISTI-Yuer-sajoweaed
((7IN 3-110) ((TIN (T T S 9 8 O TT) 1IN (6)) 1-298)

109

APPENDIX E

DECA Knowledge Base for TMI-2 Accident

This appendix contains both explanations and a listing
of the various data files which were empioyed by DECA to
give it the knowledge about the nuclear reactor for the
Three Mile Island Unit 2 nuclear accident.

DECA is designed to be a generic system, thus its
inference engine and knowledge base must be separate. In
order to use DECA on a different process, one will just have
to load up the new data and not have to make any changes to
the computer code. Appendix E contains the knowledge base
files listings and Appendix F contains the inference engine
Tisting.

A schematic diagram showing the components of the TMI-2

reactor is shown in figure E.1.

110

[(Ma4/0 Xitpuedde ‘|-DYSN] OtIvweyss Z-IWL }°3 eunbid

onEA
®dn exeny

@
Joysiod
8jesuspuo)

{g) sdwnd
8jesuapuo)

enea 1eloy (¥
15-A-0D (W X ejesuapuor)

() sdwnd
19)500q

@ wewno amniacue)
W Pajeiado olon
® pajesedo ny

yuej afiriols
2)esuspuo,)

N

weels weyy Ajejeg

saydsowly

ll_ ZV-AQD ho ..5@_!6. .o..eou@ 1849}
(Q) »oje13Lv80 {v) 101210008
e S IR | I | weois " weers J|
“l (v) r01810180 1“ ;
eneA dump weolg 1 ‘]
€} srhuind
Jeydsowy “ - 1 (0) srhund .L
.w(@ 1 “l - ..“ “ Auebsew3
oo ! oo | ﬁ
(@) Saner gamen \ 019¢. 4
oliousD § - owant voneIs) Ajojeg ! | |
weas
[} [C
wew “ L m_ AN |

oAIPA oara

H J | woorg o107 [
(2) v senBp { (@) roicioust H

ssed/g | weag — lc— 1 q-r Fre

‘ : I w

aneA eajeA

w. © —..llll.llllll.llﬂ.l:oﬂ llllll |_ ¥oog 1onuo)
{v) oarea vONBIOS| seAjeA onen d Ouppng |uswu

11

E.1 Scenario-descriptior..d .:a File

Listed below is the data file which gives the scenario
numbers and a description of the scenario for the TMI-2
runs. For example, scenario 3 is the scenario where there is
a pine rupture in the drain tank in the TMI reactor. These
descriptions are assigned since DECA 1is meant to work with a
variety of processes, and thus there must be some specific
tags assigned to the scenario numbers to enable DECA to

interface with the system operators.

((1 "Pressurizer Leak ")

(2 "Block valve Leak ")

(3 "Pipe Rupture - (drain tank) ")

(4 "Drain Tank ")

(5 "Pipe Rupture - Hot Leg, Primary Coolant System ")
(6 "Pipe Rupture - Cold Leg, Primary Coolant System ")
(7 "Reactor Pump ")

(8 "Steam Generator - Primary Coolant System ")

(9 "Steam Generator - Secondary Coolant System ")

(10 “Pipe Rupture - Secondary Coolant System ")

(11 "Feedwater Pump - Secondary Coolant System ")

(12 "Turbine Trip - Secondary Coolant System ")

112

E.2 Parameter-expect.data File

This data file is used by DECA to determine the rank of
the parameters. DECA checks to see what scenarios match up,
and gives a rank according to the template given below. The
list contains several sublists patterned in the following
manner:

((parameter (rank (corresponding match list for the rank))
(rank (number of scenarios needed for rank)))
)
For example, for the following parameter QNT-P:
(QNT-P ((10 (2 3 4))
(9.5 (2 4))
(8.5 (2 3))

(8 (3 4)))
((4.3 1)))

one can see that to have a rank of 10, the scenarios 2, 3,
and 4 must be considered as possibilities by DECA. Also, if
only scenarios 3 and 4 are a possibility, then DECA will
give QNT-P a rank of 8. The second sublist is the hybrid
part. In it one can see that if any one scenario (not
scenario 1) from the list of scenarios for rank 10 is a
possibility, then give QNT-P a rank of 4.3.

The second sublist of ranks is to prevent the need to
list every possible combination of scenarios for each
parameter (combinatorially explosive and computationally
impossible if there are many scenarios in a large system).
For example, if there were 100 parameters for the system

under evaluation and on average there were 50 scenarios

113

associated with each parameter, then there would be in the

neighborhood of 50!%x100 or 3.0414*1066 combinations. This is
clearly unacceptable from a computational standpoint.
Employing the hybrid system of reference, the system looses
some subtle interrelationships between scenarios and
parameters, but for the 100 parameter case there will
probably be only 80 matches to make per parameter or 8000
total. See the function MAKE-PARAMETER-RANKING in the source
code (Appendix F) for further explanation of the hybrid
system.

Below is the data file contents of the expectancies for

all parameters used in the TMI-2 test run.

((PZR-P ((10 (1 2 3 4))
(8.5 (2 3 4))
(8.5 (1 3 4))
(6 (12 3))
56 (1 2 4)))
(4 2)
(2.2 1)))
(PZR-L ((10 (1 2 3 4))
(8.5 (2 3 4))
(8.5 (1 3 4))
(6 (1.2 3))
56 (1 2 4)))
(4 2)
(2.2 1)))
(HL1-T ((10 (6 7 8))
(8.5 (6 7))
(8.5 (6 8))
(7 (7 8)))

(
(3 1)))
(SG1-P ((10 (1 2 56 7 8 9 10 11 12))
(9.8 (1 256 7 8))
(8.5 (1 256 7))
(8.5 (1 2 56 8))
(
(9 9)
(8.5 8)
(8.2 7)

)
)

114

(8 6)

(6 5)

(56 4)

(3 3)

(2 2)

(1 1)))

(SG1-L ((10 (1 2 56 8 9 10 11 12))

(9.8 (1 256 8))

(9 (125 86)))
(

(9.3 8)

(8.5 7)

(7.5 6)

(6 5)

(4 4)

(3 3)

(1.5 2)

(1 1)))

(QNT-P ((10 (2 3 4))

(9.5 (2 4))

(8.5 (2 3))

((8 (3 4)))

(4.3 1)))

(SG2-P ((10 (1 2 56 7 8 9 10 11 12))

(9.8 (1 2567 8))

(8.5 (1 256 7))

(8.5 (1 256 8)))
(

(9 9)

(8.5 8)

(8.2 7)

(8 6)

(6 5)

(5 4)

(3 3)

(2 2)

(1 1)))

(SG2-L ((10 (1 2 56 8 9 10 11 12))
(9.8 (1 2 5 6 8))
(9 (1 256))

(

(9.3 8)

(8.5 7)

(7.5 6)

(6 5)

(4 4)

(3 3)

(1.5 2)

(v 1)))

1156

(CL1-T ((10 (5 7 8 9 10 11 12))
(9.6 (5 7 8 9))
(9 (5 7 8))
(6 (5 7)))
(
(9.2 6)
(8.6 5)
(8 4)
(4 3)
(2.5 2)
(1 1)))

116

E.3 Scenario-tendency.data File

The file scenario-tendency.data contains the system
knowledge of the expected parameter tendency for a given
scenario to be true. The better the expected tendencies
match the sensor data, the more likely that the scenario is
actually occurring.

For example, suppose that from the Lookahead Mechanism,
DECA suspects that scenario number 4 is possibly occurring.
To verify this DECA looks at the required tendencies of the
parameters associated with scenario 4.

(4 ((PZR-P LOWER)
(PZR-L HIGHER)
(QNT-P HIGHER)
))

For TMI-2 that would be PZR~P would be lower than the
setpoint value, and PZR-L and QNT-P would both be running
higher than their setpoint values. If everything matches up
then scenario 4 would be considered one of the more likely
explanations.

Below is the listing of the scenario-tendency.data file
used for the TMI-2 runs on the DECA system.

((v (PZR-P LOWER)
(PZR-L LOWER)
(SG1-P LOWER)
(SG1-L LOWER)
(SG2-P LOWER)
(SG2-L LOWER)))
(2 ((PZR-P LOWER)
(PZR-L LOWER)
(SG1-P LOWER)
(SG1-L LOWER)
(QNT-P HIGHER)

(SG2-P LOWER)
(SG2-L LOWER)))

(3

(4

(5

(6

(7

(8

(9

(10

(11

(12

(PZR-P
(PZR-L
(QNT-P
(PZR-P
(PZR-L
(QNT-P
(SG1-P
(SG1-L
(SG2-P
(sG2-L
(CL1-T
(HL1-T
(SG1-P
(SGt1-L
(SG2-P
(sG2-L
(HL1-T
(SG1-P
(sG2-P
(cLt-71
(HL1-T
(SGt1-P
(SG1-L
(SG2-P
(SG2-L
(CL1-T
(SG1-P
(SG1-L
(SG2-P
(SG2-L
(CcLi1-T
(SGt1-P
(SG1-L
(SG2-P
(SsG2-L
(cui1-T
(SG1-P
(SG1-L
(sG2-P
(sG2-L
(cL1-7
(SG1-P
(SG1-L
(8G2-P
(sG2-L
(CL1-T

LOWER)
LOWER)
LOWER)))
LOWER)
HIGHER)
HIGHER)))
LOWER)
LOWER)
LOWER)
LOWER)
LOWER)))
HIGHER)
HIGHER)
LOWER)
HIGHER)
LOWER)))
HIGHER)
HIGHER)
HIGHER)
HIGHER)))
HIGHER)
LOWER)
LOWER)
LOWER)
LOWER)
HIGHER)))
HIGHER)
HIGHER)
HIGHER)
HIGHER)
HIGHER)))
HIGHER)
LOWER)
HIGHER)
LOWER)
HIGHER)))
HIGHER)
LOWER)
HIGHER)
LOWER)
HIGHER)))
LOWER)
HIGHER)
LOWER)
HIGHER)
HIGHER)))

117

E.4 Scenario.data File

This data file contains all the parameters of the
process which DECA is monitoring. For each parameter, there
follows a 1ist of scenarios which must be evaluated if that
parameter is marked as being out of bounds. This list of
scenarios 1s accessed by DECA’'s lookahead mechanism.

For example, if the evaluation of the sensor data for
parameter PZR-P has determined that it is beyond its
setpoint values (and marked as out of bounds), then DECA
will access this data and determine that it must check
scenarios 1, 2, 3, and 4 as being possible events occurring

in the process.

PZR-P

(1 2 3 4)

PZR-L

(1 2 3 4)

HL1-T

(6 7 8)

SG1-P

(1256789 10 11 12)
SG1-L

(1256 89 10 11 12)
QNT-P

(3 4)

SG2-P

(1256789 10 11 12)
SG2-L

(125689 10 11 12)
CL1-T

(57 89 10 11 12)

119

E.5 Setpoint.data File

This file contains the values for each of the process
parameters setpoints. DECA uses these setpoints to determine
if the system parameter is in a normal operating state or if
it is abnormal. 1If abnormal, DECA also uses the data to
determine what is the severity of the parameter.

The first element of the file indicates the number of
parameters in the system. Next listed is the parameter, then
its setpoint mode (e.g. normal here). There can be more
than one setpoint database on-line. The one used would
correspond to systems operating condition (e.g. normal,
reactor shutdown, refueling). Next listed is the units of
measure of the data, and finally a list of the seven
different setpoint values.

The data for the TMI-2 shown below was obtained from

[Jow84].

9

PZR-P

NORMAL

PSIG

(1200 1900 2055 2150 2250 2355 2400)
PZR-L

NORMAL

INCHES

(45 150 200 222 240 260 280)
HL1-T

NORMAL

F

(300 400 500 606 610 619 630)
SG1-P

NORMAL

PSIG

(800 850 900 940 1050 1070 1105)
SG1-L

120

NORMAL

INCHES

(10 30 45 160 170 180 190)
QNT-P

NORMAL

PSIG

(122,53 35 80 122)

SG2-P

NORMAL

PSIG

(800 850 900 940 1050 1070 1105)
SG2-L

NORMAL

INCHES

(10 30 45 160 170 180 190)
CL1-T

NORMAL

F

(300 400 500 558 610 619 630)

121

E.6 Sensor.data File

The sensor.data file contains the actual measurements
from the TMI-2 accident [Jow84]. The format is as follows;
each line represents one time step. the first element in
the list is the time, and the sublist is the readings for
each of the nine parameters being monitored. The time is the
seconds after turbine trip during the accident. The sensor
data is a]w;ys read in in the same order: PZR-P, PZR-L,

HL1-T, SG1-P, SG1-L, QNT-P, SG2-P, SG2-L, CL1-T.

930 116 559)
1012 80 571)

((0 (2145 218 607 944 123)
(15 (2260 253 611 1022 79)

(30 (1905 182 587 998 26 987 30 577))

(45 (1855 160 579 1000 17 993 20 576))

(60 (1790 158 578 930 14 12 969 18 576);

)

)

)

W~ W
w o W

(75 (1760 162 577 1011 10 14.3 997 16 576)
(90 (1725 175 578 1023 11 17.5 1005 16 577)
(105 (1685 187 579 1021 11 19.6 1005 16 577)
(120 (1650 200 579 1011 11 22.2 1000 16 579)

Appendix F

DECA Program Listing

This appendix contains the source code for the DECA

system.

122

11
1it
iil
i1
i
i
Qi
iii
it
iii
il
iii
il
rii
iii
iii
il
iii
iii
i
i1
iri
il
iii
ili
i
it
iil
IEx
ili
i
il
iri
1id
iii
iz
iii
iii
113
iii
il
i1
i
iii
$éi
iii
iii
iis
i1
$iid
il
iii
iil
iid
iii
iii
‘i
113
i
il
il
il
il
IR
ti

IR
1ii
i

123

-e~ Mode: LISP; Syntax: Common-liap; Package: USER; Base: 10 -e+-

PROGRAMMER : Steven R. Nann

PILE: h:>srn>thesis>deca.lisp

DATE: Jan - Mar 1988

LANGUAGE : Symbolics-Common-Lisp with Flavors
MACHINE: Symbolics 3670

OPERATING SYSTEM: Genera 7.1

COMMENTS : This is the kernel of the DECA system
software.
COPYRIGHT 1988 - ALL RIGHTS RESERVED

The DECA system is an Expert System for real time process control
during routine, energency and time constrained situations.

This Inference Engibne is built as a generic one for any dynamic
domain. The refernces of the parameters and scenarios just
HAPPEN to be from the domian which DECA was tested. One will
find no refernce within the program to apy TMI-2 parameter or
scenario except maybe in the comments where an example of a
Lisp structure is given and the three generate lisp forms.

Input parameters for the TMI-2 accident test scenario

_SYS-TIME System time

PZR-P Pressurizer Pressure

PZR-L Pressurizer Level

HL1-T Hot Leg 1 Temperature
SGl-pP Steam Generator 1 Pressure
SG1-L Steam Generator 1 Level
ONT-P Drain Tank Pressure

$G2-P Steam Generator 2 Pressure

S$G2-L Steam Generator 2 Level
CL1-T Cold Leg 1 Temperature

Scenario numbers and descriptions.

1 Pressurizer Leak

2 Block valve Leak

3 Pipe Rupture - (drain tank)

4 Drain Tank

S Pipe Rupture - Hot Leg, Primary Coolant System
6 Pipe Rupture - Cold Leg, Primary Coolant System
7 Reactor Pump

8 Steam Generator - Primary Coolant System

9 Steam Generator - Secondary Coolant System

10 Pipe Rupture - Secondary Coolant System

11 Peedwater Pump - Secondary Coolant System

12 Turbine Trip - Secondary Coolant System

Define the system (global) variables:

(DEFVAR TEMP-IO-DATA NIL) ;total ipputs of all data

{DEFVAR SENSOR-DATA NIL) ;edr's inputs

(DEFVAR SYS-TIME NIL) ;time of sensor data

{(DEFVAR SENSOR-RECORD NIL) ;data for one time step

(DEFPVAR OPERATION-FLAG 'NORMAL) ;flag for operating cond

{DEFVAR PARAM-NUM NIL) ;number of system parameters

{DEFVAR SETPOINT-DATA NIL) ;var of all setpoint data

(DEFVAR SDB-LIST NIL) ;1iat of all setpoint data by
/parameter.

124

(DEFVAR OOB-PARAMETERS NIL) rout of bounds parameters

(DEPVAR OOB-SEVERITY NIL) iseverity list of oob's

(DEFVAR OOB-PARAMETEBRS-VALUES NIL) ;sensor value for oob params.

{DEFVAR SCENARIO-LIST NIL) ,param/scenario lookahead list

(DEFVAR LOOKAHEAD—-SCENARIOS NIL) ;scenarios to be checked out

(DEFVAR SCENARIO-EXPECTANCY NIL) ;jparam tendencies for each scenario

(DEFVAR PARAMETERS-PER-SCENARIO-EXPECT NIL) ;# of expected params, all scen.

{DEFVAR SCENARIO-DATA-}.ATCH-LIST NIL) ;scenario # & params which match
;iwith the expected tendency in scenario-expectancy

(DEFVAR SCENARIO-RATIO-MATCH-LIST NIL) ijcontains scen #, ratio, qual value

ieg ((1 0.6 minor))

(DEFVAR PARAMETER-EXPECTANCY NIL) ,;param, rank 1-10, and scenario combinations
; which will give the param that rank.
(DEFVAR PARAMETER-RATIO-MATCH NIL) ;list of lists of (parameter ratio)
iwhere ratio is the gscenario match/#scenario expected.
(DEFVAR SCENARIO-MAJOR NIL)
(DEPVAR SCENARIO-MINOR NIL)
(DEFVAR SCENARIO-IMPROBABLE NIL)

(DEFVAR PARAMETER-RANK-LIST NIL)
(DEFVAR POSSIBLE-SCENARIO-FOR-SITUATION NIL)
(DEFVAR SCENARIO-DESCRIPTION NIL)

(DEFVAR PILE~SPEC NIL)
(DEFVAR OUTPUT-FILE-NAME NIL)

iii
1:; first read in the sensor data:
Iy

/; Bring-ip-system-data will read in the data for DECA's run.

(DEFUN BRING-IN-SYSTEM-DATA (INPUT-FILE) ;i BRING-IN-SYSTEM~DATA
(LET ((TEMP-IO-DATA-LIST)

(SETQ INPUT-FILE (PS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (SENSOR~INPUT INPUT-FILE
:DIRECTION :INPUT
:CHARACTERS T)
(SETQ TEMP-IO-DATA-LIST (READ SENSOR-INPUT))
)

;7(PORMAT T "% DATA INPUT SUCESSPULLY “%“)

{SETQ SENSOR-DATA TEMP-IO~DATA-LIST)) .
; (FORMAT T “SENSOR DATA IMPORTED SUCCESSFULLY. ~%")
)

;;; Set up the setpoint database - instances

il

;; Read in the Setpoint Database which are stored in the files
i: h:>srnd>thesisd>setpoint.data
ii

(DEFFLAVOR SDB (PARAMETER

MODE

UNITS

LLL

LL

L

N

H

HH

HHM)

()
:READABLE-~INSTANCE-VARIABLES
:WRITABLE-INSTANCE-VARIABLES
: INITABLE-INSTANCE-VARIABLES)

(DEPPLAVOR SDB-ALL (OPERATING-MODE
DATA-LIST)

:READABLE-INSTANCE-VARIABLES
:WRITABLE-INSTANCE-VARIABLES
: INITABLE-INSTANCE-VARIABLES)

(DEFUN MAKE-SETPOINT-DATABASE (INPUT-FILE)
(LET ((TMP-DATA-LIST)
{TMP-PARAM)
{TMP-MODE)
(TMP-UNIT)
(SDB~PARAM)

(SETQ INPUT-PILE (FS:PARSE-PATHNAME INPUT-PILE))
(WITH-OPEN-FILE (SDB-DATA INPUT-FILE
:DIRECTION :INPUT
:CHARACTERS T)
(SETQ PARAM-NUM (READ SDB-DATA))
(DOTIMES (I PARAM-NUM)
{SETQ TMP-PARAM (READ SDB-DATA)
TMP-MODE (READ SDB-DATA)
TMP-UNIT (READ SDB-DATA)
TMP-DATA-LIST (READ SDB-DATA))
(SETQ SDB-PARAM
(MAKE-INSTANCE 'SDB
:PARAMETER TMP-PARAM

:MODE TMP-MODE

:UNITS TMP-UNIT

:LLL (NTH 0 TMP-DATA-LIST)
:LL (NTH 1 TMP-DATA-LIST)
:L (NTH 2 TMP-DATA-LIST)
:N (NTH 3 TMP-DATA-L1ST)
:H (NTH 4 TMP-DATA-LIST)
:HH (NTH S TMP-DATA-LIST)
HHH (NTH 6 TMP-DATA~LIST)))

{SETQ SDB-LIST (CONS éDB-PARAH SDB-LIST))
+ {DESCRIBE SDB-LIST)

)
(SETQ SDB-LIST (REVERSE SDB-LIST))
(SETQ SETPOINT-DATA (MAKE-~INSTANCE 'SDB-ALL
:OPERATING-MODE TMP-MODE
:DATA-LIST SDB-LIST))
; (DESCRIBE SETPOINT-DATA)
)

1
1:; Setup the Parameter/Scenario Database for the Lookahead Mech.
151

(DEFFLAVOR SCENARIO (PARAMETER
SCENARIOS)
()

+READABLE-INSTANCE-VARIABLES
:WRITABLE-INSTANCE-VARIABLES
: INITABLE-INSTANCE-VARIABLES)

(DEFUN MAKE-PARAMETER-SCENARIO-DATABASE (INPUT-FILE)
(LET ((TEMP-PARAM)
(TEMP-SCENARIO)
({ TEMP-SCENARIO-LIST)
)

(SETQ INPUT-PILE (PS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (SCENARIO~INPUT INPUT-FILE
:DIRECTION :INPUT
:CHARACTERS T)
(DOTIMES (I PARAM~-NUM)
(SETQ TEMP-PARAM (READ SCENARIO-INPUT)
TEMP~SCENARIO (READ SCENARIO-INPUT))

(SETQ TEMP-SCENARIO-LIST (MAKE-INSTANCE ‘'SCENARIO
:PARAMETER TEMP-PARAM
:SCENARIOS TEMP-SCENARIO))
(SETQ SCENARIO-LIST (CONS TEMP~SCENARIO-LIST
SCENARIO-LIST))

)

)
(SETQ SCENARIO-~LIST (REVERSE SCENARIO-LIST))
)

125

i
1::; Compare the sensor data with the setpoint database

1;1 and determine oob parameters & associated severity.
151 Code correlates to moat of DECA - diagnostic level l's purpose.
1i

;; Used when multiple setpoint databases. Will retrieve the
;7 appropriate database depending on the operation-flag.

(DEFMETHOD (GET-SDB SDB-ALL) (OPERATION-PLAG) ;GET-SDB
(COND ((EQUAL (SDB~ALL-OPERATING-MODE SELF) OPERATION-FLAG)
(SDB-ALL-DATA-LIST SELF))

)
)

;; Used to check whether the parameter is out of bounds

(DEPMETHOD (CHECK-OOB SDB) (PARAM-TMP-VALUE) ; CHECK—-OOB
(FLAG-RULE LLL LL L H HH HHH PARAMETER PARAM~TMP-VALUE))

;; This checks and records oob parameters, their values, and
;s calls the function to determine the severity.

il
(DEFUN FLAG-RULE
(LLL LL L H HH HHH PARAM PARAM-TMP-VALUEB)
(COND ((OR (< PARAM-TMP-VALUE L)
(> PARAM-TMP-VALUE H))
(SETQ OOB-PARAMETERS
(CONS PARAM OOB-PARAMETERS)
OOB-PARAMETERS-VALUES
(CONS PARAM-TMP-VALUE OOB-PARAMETERS-VALUES))
(SEVERITY-RULE PARAM-TMP-VALUE LLL LL L H HH HHH)

))
)

;7 This will update the list of the severities which correlate to
;: the parameters in oob-parameters list.

17
{DEPUN SEVERITY-SET-TO (Q-VALUE) ; SEVERITY-SET-TO
(SETQ OOB-SEVERITY (CONS Q~VALUE OOB-SEVERITY)))

7; This fuction determines the level of severity (eg LL)
;; and calls severity-set-to function to update the list.

$i
(DEFUN SEVERITY-RULE (DATA LLL LL L H HH HHH) JSEVERITY-RULE
(COND ((<= DATA L)
(COND ((> DATA LL) (SEVERITY-SET-TO 'L))
((> DATA LLL) (SEVERITY-SET-TO ‘'LL))
((<= DATA LLL) (SEVERITY-SET-TO 'LLL))))
((>= DATA H)
(COND ((< DATA HH) (SEVERITY-SET-TO ‘H))
{(< DATA HHH) (SEVRRITY-SET-TO 'HH))
((>= DATA HHH) (SEVERITY~SET-TO 'HHH))))))

;; This function is the top level controller for the comparison of sensor
;1 data and the values in the setpoint database. Its purpose is to determine

;1 the oob parameters and their level of severity for the given instant in time.

7
(DEPUN COMPARE-SENSOR-DATA (S-DATA SETPOINT-DATA)
(LET ((TEMP-DATA-LIST)
(PARAM-TMP-VALUE)
(PARAM-SETPOINT-LIST)
)
(SETQ TEMP-DATA-LIST SDB-LIST)
(DOTIMES (I PARAM-NUM)
(SETQ PARAM-TMP-VALUE (NTH I S-DATA)
PARAM-SETPOINT-LIST (NTH I TEMP-DATA-LIST))
(CHECK-OOB PARAM-SETPOINT~LIST PARAM—-TMP-VALUE)

)

)
({SETQ OOB-PARAMETERS (REVERSE OOB-PARAMETERS)
OOB-PARAMETERS-VALUES (REVERSE OOB~PARAMETERS-VALUES)
OOB—-SEVERITY (REVERSE OOB-SEVERITY))

)

126

131
;1; Gathering lLookahead scenario data
111

17 This function will take the scenarios given and run thru the list
1+ and add any scenario not in lookahead-scenarios list. It will then
;i sort the scenaios from smallest to largest.

17
(DEFUN CHECK-SCENARIO-HERE (SCENARIOS-PICKED)
(DOLIST (I SCENARIOS-PICKED)
(COND ((NOT (MEMBER 1 LOOKAHEAD—-SCENARIOS))
(SETQ LOOKAHEAD—SCENARIOS
(CONS I LOOKAHEAD-SCENARIOS))

)))
(SETQ LOOKAHZAD-SCENARIOS (SORT LOOEAHBAD—SCBNARIOS #'<))
;i (FORMAT T "“Slookahead-scenarios “a “ LOOKAHEAD-SCENARIOS)
)

;i The function get-scenarios retrieves scenarios for lookahead

i+ mechanism. Input -> oob-parameters list (locally its oob-key)
;i checks with the instances of scenarios in the scenario-list

+; and pulls all scenarios for each oob parameter. These will then
;i; be combined in one list (ie no repeats) with check-scenario-here
;+ function.

; ;New version

(DEFUN GET-SCENARIOS (OOB-KEY)
(DOLIST (I OOB-KEY)
(DOLIST (J SCENARIO-LIST)
(GET—-SCENARIOS-1 J I)
)

)
)

(DEFPMETHOD (GET-SCENARIOS-1 SCENARIO) (TEMP-OOB-PARAM)
(LET ((TEMP-PARAMETER PARAMETER)
(TEMP—-SCENARIOS SCENARIOS)

(COND ((EBQUAL TEMP-PARAMETER TEMP-OOB-PARAM)
7;(format t "°% temp-scenarios "a" temp-scenarios)
(CHECK-SCENARIO-HERE TEMP-SCENARIOS)
))
)

)

;; After the above method is run all the scenarios that are needed for
;7 the lookahead mechanism are contained in the global parameter
;; lookahead-sacenarios.

233
;+: Punctions for Lookahead to see if the sensor data matches

is+ up with any of the scenario‘'s expectatioas. It is done for

;:+ each scenario contained in the global list lookahead-scenarios.
il

;¢ Bring in the scenario expectancy (tendeancy) data. It will come
1+ in in the foix of lists. One list/acenario. They will be put

;7 into one global list scenario-expectancy. This list will be used
;+ for all the checking of metch-up through the prioritizer portion
+i; of DECA.

ii
(DEFUN MAKE-SCENARIO-EXPECTANCY (INPUT-PILE)
(SETQ INPUT-FILE (PS:PARSE-PATHNAME INPUT-PILE))
(WITH-OPEN-FILE (TENDENCY-INPUT INPUT-PILE
:DIRECTION :INPUT
:CHARACTERS T)
(SETQ SCENARIO-EXPECTANCY
(READ TENDENCY-INPUT))
)
)

127

128

;5 The pext part will be to check the sensor-data with against the
i1 expectancy of DECA. It will use the lists scenario—-expectancy
;+ and lookahead-acenarios as well as oob-parameters and

;; oob-severity. If the sensor data for the parameter matches

;; up with the expectancy, then the parameter is added to

;1 the list of matches for that scenario.

(DEPUN MATCH-SCENARIO-TENDENCY ()

(DOLIST (I LOOKAHEAD-SCENARIOS)
(DOLIST (J SCENARIO-EXPECTANCY)
(LET ((TEMP-NUM (CAR J))
(TEMP-EXPECT (CADR J))

)
(IP (EQUAL I TEMP-NUM)
(DOLIST (K TEMP-EXPECT)
(LET* ((TEMP1-PARAMETER (CAR X))
(SCENARIO-EXPECTANCY-DATABASE-DATA (CADR K))
(TEMP2 (MEMBER TEMPl-PARAMETER OOB~PARAMETERS))
{ TEMP-COUNT)

)
;i1 Now set the index so know where to look in the ocob-severity list.
11 Note the oob-severity list cata directly corresponds to the
/7 parameter at the same location in the oob-parameter list.

i
(COND (TEMP2

(SETQ TEMP-COUNT (- (LENGTH OOB-PARAMETERS)

(LENGTH TEMP2)))
i INov go retrieve the tendency from the oob—severity list.
;1 ;There are only 2 tendencies, higher or lower.
(LET ((TEMP-SEV-EXPECT (NTH TEMP-COUNT OOB-~SEVERITY)) ;ie LL
{TEMP-EXPECTANCY-SENSOR-DATA)

)
(COND ((MEMBER TEMP-SEV-EXPECT °'(LLL LL L))
(SETQ TEMP~EXPECTANCY-SENSOR-DATA ‘'LOWER))
((MEMBER 7T 2MP-SEV-EXPECT '(H HH HHH))
(SETQ TEMP-EXPECTANCY-SENSOR~DATA 'HIGHER))
T

(
(SETQ TEMP-EXPECTANCY-SENSOR-DATA NIL))

)
11
;iNow see if TEMP-ECPECTANCY-SENSOR-DATA matches with
; ithe scenario-expectancy-database-data. If yes then mark as
;;one parameter that matches the expected tendency
;;for scenario i.
;1f data matches predicted
(IP (EQUAL TEMP-EXPECTANCY-SENSOR-DATA
SCENARIO-EXPECTANCY-DATABASE-DATA)

;7 Run function to put “he scenarioc and parameter
;7 which matches expectancy in its database.

(MARK-SCENARIO-PARAMETER-DATA 1 TEMP1-~PARAMETER)

1))
IR D)

)
)
) ;end match-scenario-tendency

;s This function will generate the default list for
;1 scenario-data-match-list there are 12 scenarios at the moment

(DEPUN GENERATE-LIST ()

(SETQ SCENARIO-DATA-MATCH-LIST

(LIST (LIST 1 NIL) (LIST 2 NIL)
(LIST 3 NIL) (LIST 4 NIL)
(LIST 5 NIL) (LIST 6 NIL)
(LIST 7 NIL) (LIST 8 NIL)
(LIST 9 NIL) (LIST 10 NIL)
(LIST 11 NIL) (LIST 12 NIL)))

129

+; This function will add the scenario and its parameter
;17 which agrees with its expectancy to the global list
;7 scenario-data-match-list.

i i
2DB!UN MARK-SCENARIO-PARAMETER-DATA (SCENARIO-NUMBER ASSOCIATED-PARAMETER)

(COND ((NULL SCENARIO-DATA-MATCH-LIST)
(GENERATE-LIST)

))

(DOLIST (DATA-RECORD SCENARIO-DATA-MATCH-LIST)
(COND ((EQUAL SCENARIO-NUMBER (CAR DATA-RECORD))
(LET ((TEMP1l-LIST (CADR DATA-RECORD))

)
(SETQ TEMP1-LIST
(CONS ASSOCIATED-PARAMETER TEMP1l-LIST))

{SETPF (CADR DATA-RECORD) ichange old param list to
TEMP1-LIST) ithe new consed list
))

)

;1:This ends the checking of parameter/scenario expectancies and updating
;7:the appropriate data-lists.

(DEPPLAVOR SCENARIO-PARAMETER-MATCH (SCENARIO-NUM
MATCH-PARAMETER)

()
:READABLE-INSTANCE-VARIABLES
:WRITABLE-INSTANCE-VARIABLES
: INITABLE-INSTANCE-VARIABLES)

it
;+; Determine the qualitative match for the lookahead scenarios
15 eg Major, Minor, ete.

iii

;s This function will take the scenario-expectancy list and

;7 determine the number of parameters that are expected to

;7 match under ideal conditions for each scenario. It then inserts
;1; the results in the global list parameters-per—scenario-expect.

(DEPUN MAKE-LIST-OP-NUM-PARAMS-EXPECTED ()
(DOLIST (J SCENARIO-EXPECTANCY)
(LET* {({TEMP1l (CAR J))
(TEMP2 (CADR J))
(TEMP3 (LENGTH TEMP3))

(SETQ PARAMETERS-PER-SCENARIO-EXPECT
(CONS (LIST TEMP1 TEMP3)
PARAMETERS~PER-SCENARIO-EXPECT))

))
(SETQ PARAMETERS-PER-SCENARIO-EXPECT
(SORT PARAMETERS-PER~SCENARIO-EXPECT #'< :KEY #'CAR))

)

;; Punction to generate the raw list scenario-match-ratio
;; set up for 12 scenarios at the moment.
(DEFUN GENERATE-RATIO-LIST ()
(SETQ SCENARIO~RATIO-MATCH-LIST
(LIST (LIST 1) (LIST 2)
(LIST 3) (LIST 4)
(LIST S) (LIST 6)
(LIST 7) (LIST 8)
(LIST 9) (LIST 10)
(LIST 1l) (LIST 12))

130

;7 Now make the qualitative match for the scenario.
;i At the moment there are 3 levels of match.

I scenario-match ratio qualitative-match
i 0.0 ¢= x < 0.3 improbable

11 0.3 ¢=x € 0.75 minor

i 0.75 €= x (=) major

;; the results will then be put into another list
;; scepnario-ratio-match-list

i
(DEFUN SCENARIO-QUAL-MATCH ()
{SETQ SCENARIO-DATA-MATCH-LIST
(SORT SCENARIO-DATA-MATCH-LIST #'< :KEY #'CAR))
(IF (NULL SCENARIO-RATIO-MATCH-LIST)
(GENERATE~-RATIO-LIST))
(DOLIST (I SCENARIO-DATA-MATCH-LIST)
(LET* ((TEMP-DATA-LENGTH (LENGTH (CADR I)))
({ TEMP-EXPECT-LENGTH ;assume it is sorted
(CADR (NTH (l1- (CAR I)) PARAMETERS-PER~-SCENARIO-EXPECT)))
ifigure percentage match with expected
(TEMP-RATIO (/ TEMP-DATA-LENGTH TEMP-EXPECT-LENGTH))
(TEMP—QUAL~VALUE)
)
;set qualitative match value for the acenarioc under evaluation
(COND ((< TEMP~RATIO 0.3)
(SETQ TEMP—QUAL-VALUE ‘'IMPROBABLE))
((< TEMP-RATIO 0.75)
(SETQ TEMP-~QUAL-VALUE 'MINOR))
{ (<= TEMP-RATIO 1.0)
(SETQ TEMP—-QUAL-VALUE ‘'MAJOR)))
smodify the list to ipclude the new data of the ratio and the
iqualitative value of the match.
(SETP (NTH (1- (CAR I)) SCENARIO-RATIO~MATCH-LIST)
(APPEND (NTH (1= (CAR I)) SCENARIO-RATIO-MATCH-LIST)
(,TEMP-RATIO ,TEMP-QUAL-VALUE)))
) send letr
)
)

Iy
1;; Sort the scenarios into their appropriate list depending on
1:: what their qualitative values are for the scenario/parameter
+:; matching.

iii

;i This function will create three new global lists:

i scenario-major

i scenario-minor

i scenario-improbable

;; which will contain all the scenario #'s and are sorted with
/1 the largest ratio'd scenarios first. It will be used later
;7 to determine parameter priorities.

il
(DEFUN SPLIT-INTO-MAJ-MINOR ()

(DOLIST (1 SCENARIO-RATIO~MATCH-LIST)
(LET ((TEMP-SCEN (CAR I))
(TEMP-RATIO (NTH 1 I))

(TEMP—QUAL (NTH 2 I))

(COND (({EQUAL TEMP-QUAL 'IMPROBABLE)
(SETQ SCENARIO-IMPROBABLE (CONS (LIST TEMP-SCEN TEMP-RATIO)
SCENARIO-IMPROBABLE)))

((EQUAL TEMP-QUAL 'MINOR)

(SETQ SCENARIO-MINOR (CONS (LIST TEMP-SCEN TEMP-RATIO)
SCENARIO-MINOR)))

((EQUAL TEMP-QUAL °'MAJOR)

(SETQ SCENARIO-MAJOR (CONS (LIST TEMP-SCEN TEMP-RATIO)
SCENARIO-MAJOR)))

) send cond

))
(SETQ SCENARIO-IMPROBABLE (SORT SCENARIO-IMPROBABLE #'> :KEY #'CADR)

SCENARIO-MINOR { SORT SCENARIO-MINOR #'> :KEY #'CADR)
SCENARIO~MAJOR (SORT SCENARIO-MAJOR #'> :KEY #'CADR))
) send function

131

IXx]

111 Punctions to determine the system's Parameters Priority
177: 1t will dump the results into the parameter's database.
111

;+ This function is for importing the parameter’s ranking data file.
i What it is is a file with each of the system parameters, and

+: the ranking of importance [1..10] 10 being most important, for

i1 all the given combinations of scenarios. Por example, if for

ii PZR-P all the for it (1, 2, 3, 4) all had a major qual. match

11 value (ie all the parameters matched well with the scenarios),

;; then the prioity given to PZR-P would be 10, since all data

i; correlates "perfectly" with the expected on both the scenario

i; side, and the parameter side.

ii

(DEFUN MAKE-PARAMETER-EXPECTANCY (INPUT-FILE)
; input file h:)srndthesis)parameter-expect.data
(SETQ INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (PARAM-INPUT INPUT-PILE
:DIRECTION :INPUT
:CHARACTERS T)
+; Note in the data file the whole thing is one big
i; Lisp form... this case a list.
ii
+; The set up of parameter-expectancy is as follows:
is C (pzr-p ((10 (1 2 3 4))

i (8 (2 3 4))

;)

; ((6 3) ;for the hybrid version
’ (3 2)

: (1 1))

17 etc))

) {(pzr—1 ((10 (3 4 6 8)

J; (6 (3 8)

; el))

;ete ,...)

ii
(SETQ PARAMETER-EXPECTANCY
(READ PARAM-INPUT))
)
) ;End fun

;i This function initializes the list parameter-ratio-match

i
(DEFUN GENERATE-PARAM~RATIO-MATCH-LIST ()
(SETQ PARAMETER-RATIO-MATCH
(LIST (LIST 'PZR-P NIL) (LIST 'PZR-L NIL)
(LIST 'HL1-T NIL) (LIST 'SGl-P NIL)
(LIST 'SGl-L NIL) (LIST 'ONT-P NIL)
(LIST 'SG2-P NIL) (LIST °'SG2-L NIL)
(LIST ‘CL1-T NIL))

;7 This function updates the list parameter-ratio-data and inputs
;; the liasts of rank-10 scenarios, major scen., etc.

;; while looping through, it updates upon match of parameter key
;i using the setf function.

(DEFUN MARK-PARAMETER-RATIO-DATA (PARAMETER RATIO-LIST)
{(COND ((NULL PARAMETER-RATIO-MATCH)
(GENERATE-PARAM-RATIO~MATCH-LIST)

)) rend cond

{DOLIST (DATA-RECORD PARAMETER-RATIO-MATCH)
{COND ((EQUAL PARAMETER (CAR DATA-RECORD))
(LET ((TEMP1-LIST)

)
(SETQ TEMPl-LIST
(APPEND TEMPl-LIST RATIO-LIST))
(SETPF (CADR DATA-RECORD) ;jchange old param list to
TEMP1-LIST) ;the new appended list
))

132

ii Now take each parameter {eg pzr-p] and compare its expected

;i scenarios with the scenarios of valid matching from

;1 scenario~ratio-match data.

;; Put the results in parameter—ratio-match database. (Similar

;: to scenario-ratio-match). Ratio is & scenarios that are good /
;7 # scenarios expected by parameter-expectancy.

14 This is much like the Scenario—Qual-Match function.

(DEFUN MAKE~PARAMETER-COMPARISON ()
(GENERATE~PARAM-RATIO-MATCH-LIST)
(DOLIST (I OOB-PARAMETERS)
(DOLIST (K PARAMETER-EXPECTANCY)
(COND ((EQUAL (CAR K) I)
(LET ((TEMP-10-SCAN (CADR (CAADR K)))
(TEMP-SC-MAJ)
(TEMP-SC-MIN)
(TEMP-SC-IMP)
{TEMP-LIST)

)
i; loop thru the rank 10 scenarios and compare what qual.
;i match they have. Add the scenario to the approp. list.

4
(DOLIST (J TEMP-10-SCAN)
(DOLIST (M SCENARIO-MAJOR)
(IF (EQUAL J (CAR M)) (SETQ TEMP-SC-MAJ (CONS J TEMP-SC-MAJ))

))
(DOLIST (M SCENARIO-MINOR)
(IF (BQUAL J (CAR M)) (SETQ TEMP-SC-MIN (CONS J TEMP-SC-MIN))

»
) send dolist 4§
(SETO TEMP-LIST
(LIST (LIST (LENGTH TEMP-10-SCAN))

TEMP-SC-MAJ

TEMP-SC-MIN

TEMP-SC~IMP))
;; Update the list parameter-ratio-match using setf by adding
;: in the values in temp-list to the data field of the parameter
;; —ratio-match list. The mark-parameter-ratio-data function
i+ performs this update.

i
{MARK-PARAMETER-RATIO-DATA I TEMP-LIST)
) ;jend let
)) +1end cond
) ;end dolist K

) ;end dolist I
;7 Sorts out the parameters by rank

7
({MAKE-PARAMETER~RANKING)
) ;end

;7 Now, that the lists are sorted, DECA will put the parameters
;+ into priority according to the conclusions derived from the
;; data thus far.

i
(DEFUN MAKE-PARAMETER-RANKING ()
;; Sort thru the parameter-ratio-match list
{DOLIST (I PARAMETER-RATIO-MATCH)
(LET ((TEMP-PLAG~POR~-MATCH)
(TEMP-PARAM (CAR I))
(TEMP-SCENARIOS (RETRIEVE-SCENARIOS I)) ;30 not want 10-rank ipn it

)
;1 note that temp-scenarios contents are already sorted.
;; So they are ready for the match with the parameter-expectancy
(DOLIST (PARAM-BXPT PARAMETER-EXPECTANCY)
(COND ((EQUAL (CAR PARAM-EXPT) TEMP-PARAM)
(LET ((PARAMETER-TEMPLATE (CADR PARAM-EXPT)))
(DOLIST (J PARAMETER-TEMPLATE)
(LET ((TEMP-RANK (CAR J))
(TEMP-RECORD (CADR J))

)
(IP (BEQUAL TEMP-SCENARIOS TEMP-RECORD)
{SETQ TEMP-PLAG-POR~MATCH T
PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM TEMP-RANK)
PARAMETER-RANK-LIST))
Y)Y)

133

;Code for the hybrid system.

JNow Lif DECA hasn't received a rank yvet, (ie fail at the most
isignificant matches), then the function switches to a mode
jwhich isn't combinatorially explosive. [not n factorial
icombinations to search thru & impossible for real time.]
:1The hybrid looses some of the subtle knowledge of parameter
;scenario interrelationships, but not all. It only covers the
/most significant ones as dictated by the knowledge base.

F; To do the next part use a third sublist in
;parameter-expectancy which contains, a rank x and the number
;jof scenarios needed to fit (ie 3 of the 7 in 10-rank). This
/eliminates the need to search all the combinations.

(COND ((NULL TEMP-PLAG-FOR-MATCH)
(LET ((SCEN-NUM-TEMPLATE (CADDR PARAM-EXPT)))
(DOLIST (K SCEN-NUM-TEMPLATE)
(LET ((TEMP-~RANK (CAR K))
(TEMP-SC-NUM (CADR K)))
(IF (EQUAL TEMP-SC-NUM (LENGTH TEMP-SCENARIOS))
(SETQ PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM TEMP-RANK)
PARAMETER-RANK-LIST)))
)
i/ Just in case there was not any match via hybrid
(IF (AND (MEMBER TEMP-PARAM OOB-PARAMETERS)
(NOT (EQUAL (CAAR PARAMETER-RANK-LIST)
TEMP-PARAM)))
(SETQ PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM 1) PARAMETER-RANK-LIST)))
)
))
))

)
1 At this point the oob-parameters have all been assigned a
;: rank. Now DECA can asusgn the priority according to the rank.
;+ In the list parameter-rank-list it contains a bunch of conses of
/i (parameter . rank). Now sort thru these sublists and put in
;i descending order according to rank.
(SETQ PARAMETER-RANK-LIST (SORT PARAMETER-RANK-LIST #'> :KEY #'CADR))

) ;end make-parameter-ranking

;; Used to get all the scenarios of the parameter under consideration.

(DEFUN RETRIEVE-SCENARIOS (I)
(LET* ((TEMP-DATA (CDADR I))
(TEMP-MAJ (PIRST TEMP-DATA))
(TEMP-MIN (SECOND TEMP-DATA))
(TEMP-IMP (THIRD TEMP-DATA))
{ TEMP-ALL)

)

(SETQ TEMP-ALL
(SORT (APPEND TEMP-MAJ TEMP-MIN TEMP-IMP) #'())
)

)

;;; Qualitatively refine parameter sort
it

;¢ Using the list parameter-rank-list DECA will see if the rank is
i; 1s appropriate given the levels of confidence in the likelyhood
;: of the scenario occurring.

i
(DEPUN REFINE-PARAMETER-RANK-TOP ()
(SETQ PARAMETER-RANK-LIST
(REPINE-PARAMETER-RANK PARAMETER-RANK-LIST))
(SETQ PARAMETER-RANK-LIST
(SORT PARAMETER-RANK-LIST #')> :KEY #'‘'GET-RANK-INDEX))
)

i

(DEFUN GET-RANK~INDEX (X)
(CAR (LAST X))
)

134

i+ Refine-parameter-rank function will evaluate the list of

/1 parameters and their associated ranks and refines the ranking
11 of parameters which have the same rank by checking their

;; severity. The worse the severity the more priority given to
i the parameter for a given rank.

(DEPUN REPINE-PARAMETER-RANK (RANK &OPTIONAL (NEW-LIST NIL))
(LET ((TEMPl (CAR RANK))
(TEMP2 (CADR RANK))
(TEMP3 (CDDR RANK))
)

(COND ({NULL TEMP2)
(SETQ NEW-LIST (CONS TEMPl NEW-LIST))
(SETQ NEW-LIST {REVERSE NEW-LIST))
NEW-LIST)
(T (COND ((EQUAL (LAST TEMPl) (LAST TEMP2))
(SETQ TEMPL
(CONS (CAR TEMP2) TEMP1))
(SETQ RANK
(CONS TEMP1 TEMP3))
;7(PORMAT T "“%“a “RANK)
(REFINE-PARAMETER-RANK RANK NEW-LIST))

; Now if 2 rapks not the same.

(T
(SETQ NEW-LIST (CONS TEMPl NEW-LIST)
RANK (CONS TEMP2 TEMP3))
;;(PORMAT T “7% pew-list “a")
J;(PORMAT T “7% “a"RANK)
(REFINE-PARAMETER-RANK RANK NEW-LIST))
) ;end cond
)) ;end cond

i; Now have the new list of parameters which are grouped by common
;; rank. In order-multiple it will loop through the list to see if
ii length is > 2 (ie more than 1 param with a given rank). It then
;i calls change-order which will compare these rank's severity and
i; order them accordingly. Then the function loose-parentheses is
i+ called to clean up the list and return back to the original list
;; except that the parameters have been refined for each rank.

ii
(DEFUN ORDER-MULTIPLES ()
(DOLIST (I PARAMETER~RANK-LIST)
(COND ((> (LENGTH I) 2)
(LET ((TEMP~-1 (CHANGE-ORDER I))

)
(SETQ PARAMETER-RANK-LIST ;don't use setf here
(SUBST TEMP-1 I PARAMETER-RANK-LIST))
;;(SETP I TEMP-l)
,)
; remove redundant ()'s
(SETQ PARAMETER-RANK~-LIST
(LOOSE-PARENTHESES PARAMETER-RANK-LIST))
)

(DEFUN CHANGE-ORDER (I)
(LET ((TEMP-LIST (ZL:PIRSTN (1l- (LENGTH I)) I))
(TEMP-RANK (CAR (LAST I)))
)

(DOLIST (J TEMP-LIST)
(LET* (({TEMP-PLACE (— (LENGTH OOB-PARAMETERS)
(LENGTH (MEMBER J OOB-PARAMETERS))))
(TEMP-SEVERITY (NTH TEMP-PLACE OOB-SEVERITY))

)
(COND ((OR (EQUAL TEMP-SEVERITY 'LLL)
(EQUAL TEMP-SEVERITY ‘'HHH))
(SETQ TEMP-LIST (SUBST (LIST J 3) J TEMP-LIST)))
;; old (SETP J (LIST J 3)))
((OR (EQUAL TEMP-SEVERITY 'LL)
(EQUAL TEMP-SEVERITY ‘'HH))
({SETQ TEMP-LIST (SUBST (LIST J 2) J TEMP-LIST)))
((OR (EQUAL TEMP-SEVERITY 'L)
(EQUAL TEMP-SEVERITY 'H))
(SETQ TEMP-LIST (SUBST (LIST J 1) J TEMP-LIST)))

)) ;end dolist

135

(SETQ TEMP-LIST (SORT TEMP-LIST #'> :KEY #'CADR))

(DOLIST (K TEMP-LIST)
(SETP (CADR K) TEMP-RANK)

)
;xeturn the pev and improved sublist to fuanction order-multiple.
TEMP-~LIST
)
)

i+ Now the variable would have the following format:
i ((a 10) ((d 9)(b 9)(c 9)) (e 3)...)
;4 Need to remove the redundant () on params w/same ranks

ii
(DEFUN LOOSE-PARENTHESES (RANK)
(LET ((TEMP-LIST))
(DOLIST (I RANK)
(COND ((LISTP (CAR I))
(DOLIST (J I)
(SETQ TEMP-LIST (CONS J TEMP-LIST))
))
(T
(SETQ TEMP-LIST (CONS I TEMP-LIST))
))

)
(SETQ RANK (REVERSE TEMP-LIST))
)
RANK
b

1i3
;;; Qualitatively sort scenarios

il

;: Set up the liat possible-scenario-for—-situation, which will
;s contain the scenarios which have a reasonable possibility to
;7 be the actual ascenario. (ie maj or min scenarios). More

;; refinment may be necessary if there is less than great match
;; (agreement) with params and scenarios.

(DEPUN PUT-SCENARIOS-TOGETHER ()
(SETQ POSSIBLE-SCENARIO-FOR-SITUATION
(APPEND SCENARIO-MAJOR SCENARIO-MINOR))
(SETQ POSSIBLE-SCENARIO-FOR-SITUATION
(SORT POSSIBLE-SCENARIO-FOR-SITUATION #')> :KEY #'CADR))
)

i1ii
;1; Run context solution searches and output results,
iii l - Scenario

iii 2 - Parameters and their priority

iii 3 - Suggested action to alleviate the situation

iii

;; Read in the data from disk for the scenario number and its
;; associated description.
;; file - h:>srn)>thesis)scenario-descriptions.data

i
(DEPUN MAKE-SCENARIO-DBSCRIPTION (INPUT-PILE)
(SETQ INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (DESCRIPTION-INPUT INPUT-FILE
:DIRECTION :INPUT
:CHARACTERS T)
;: Note in the data file the whole thing is one big
;7 Lisp form... this case a list.

11
(SETQ SCENARIO-DESCRIPTION
(READ DESCRIPTION-INPUT))

)
) ;End fun

136

;; This function will control all the output to the user

il
(DEFUN OUTPUT-CONTROL ()
(COND (({NULL SCENARIO-MAJOR)
(FORMAT T "“ADECA's conclusions for syatem time: ~“a “\" SYS-TIME)
(OUTPUT-RESULTS~WITHOUT-SCENARIO)
(PORMAT T ""“AEnd of data evaluation for system time: “a “%" SYS-TIME)
)
(T ’
(PORMAT T "“ADECA's conclusjions for system time: “a ~%" SYS-TIME)
(OUTPUT-RESULTS~WITH-SCENARIO)
(FORMAT T "“SEnd of data evaluation for system time: “a “%" SYS-TIME)
3]
)

(DEPUN OUTPUT-RESULTS-WITHOUT-SCENARIO ()
;first the scenario
;joutput
(FORMAT T "% No scenario selected, not confident enough. ~%")
(FORMAT T “~% The parameter and priorities are as follows: ~2%")
(DOLIST (I PARAMETER-RANK-LIST)
(LET ((PARAM (CAR I))
(RANK (CADR 1))

)
(PORMAT T ““3T"a 16T a ~%“ PARAM RANK)
»
;1 (WRITE PARAMETER-RANK-LIST :PRETTY :ALIST)
(PORMAT T "~2% Scenarios that were considered as possible choices “\")
(PORMAT T “ but not selected are: ~2%%)
(FORMAT T “ Scenario Ratio Description ~2%%)
(DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO-FOR-SITUATION)
{LET ((TEMP-SCEN-NUM (CAR SCENARIO-NUM))
(TEMP-RATIO (CADR SCENARIO-NUM))
{TEMP-DESCRIPTION)

)
(DOLIST (J SCENARIO~DESCRIPTION)
(IP (EQUAL (CAR J) TEMP-SCEN-NUM)
(SETQ TEMP-DESCRIPTION (CADR J)))

)
(PORMAT T ""3T “a “137°A “20T “a"\"
TEMP-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

))
(PORMAT T "“72%%)
1} (WRITE POSSIBLE-SCENARIO-FOR-SITUATION :PRETTY :ALIST)

(DEPUN OUTPUT-RESULTS-WITH-SCENARIO ()
;jf{irat the scenario
(LET ((TEMP-SCENARIO-SPECIFICS)
)

;output
(FORMAT T "~\ Scenario selected is; ~\%)
(SETQ TEMP-SCENARIO-SPECIFICS (GET-GUESS))
(PFORMAT T “ Scenario Number “a “* (!IRST TEMP-SCENARIO-SPECIFICS))
(PORMAT T “ Scenario Description “d "S" (LAST TEMP-SCENARIO-SPECIFICS))
(FORMAT T " Confidence “a 28" (SECOND TEMP-SCENARIO-SPECIFICS))
(FORMAT T "~% The parameter and priorities are as follows: ~2%")
{DOLIST (I PARAMETER-RANK-LIST)

(LET ((PARAM (CAR I))

(RANK (CADR 1))

)
(FORMAT T "“3IT"a “16T"a “%" PARAM RANK)
)
) 33 (WRITE PARAMETBER-RANK-LIST :PRETTY :ALIST)
(PORMAT T "~2% Scenarios that were considered as possible choices “t*)
(PORMAT T “ but not selected are: ~2%") -
{PORMAT T * Scenario Ratio Description a%")
(DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO-FOR-SITUATION)
(LET ((TEMP-SCEN-NUM (CAR SCENARIO-NUM))
(TEMP-RATIO (CADR SCENARIO-NUM))
(TEMP-DESCRIPTION)

)
(DOLIST (J SCENARIO-DESCRIPTION)
(IP (BQUAL (CAR J) TEMP-SCEN-NUM)
(SETQ TEMP-DESCRIPTION (CADR J)))
)

137

(PORMAT T *“37 “a "13T"A 20T "a"u»
TEMP-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

))
(PORMAT T “~2%"
;(WRITE (CDR POSSIBLE-SCENARIO-FOR-SITUATION) :PRETTY :ALIST)
)
)

(DEFUN GET-GUESS ()

(LET ((TEMP~SCENARIO-INFO)

(TEMP-NUMBER)

({ TEMP-DESCRIPTION))
{SETQ TEMP-SCENARIO-INFO (CAR POSSIBLE-SCENARIO-POR-SITUATION) ;eqg (1 0.75)
TEMP—-NUMBER (CAR TEMP~SCENARIO-INFO))
{DOLIST (I SCENARIO-DESCRIPTION)

(IP (EQUAL (CAR I) TEMP-NUMBER)

(SETQ TEMP-DESCRIPTION (CADR I)))

)
;return the results
(APPEND TEMP-SCENARIO-INFO (LIST TEMP-DESCRIPTION))
) "
)

i1
;171 Punction for resetting variables for each loop

i

(DEFUN RESET-AND—REGENERATE-GLOBALS ()

i
(SETQ OOB-PARAMETERS NIL
OOB-SEVERITY NIL
OOB-PARAMETERS-VALUES NIL
LOOKAHEAD~SCENARIOS NIL
PARAMETERS-PER-SCENARIO-EXPECT NIL
SCENARIO-MAJOR NIL
SCENARIO-MINOR NIL
SCENARIO-IMPROBABLE NIL
PARAMETER~RANK-LIST NIL
POSSIBLE-SCENARIO-FOR-SITUATION NIL)
(GENERATE-LIST) ;3 SCENARIO-DATA-MATCH-LIST
{GENERATE-RATIO-LIST) ; SCENARIO-RATIO-MATCH-LIST
{GENERATE-PARAM-RATIO-MATCH-LIST) ; PARAMETER-RATIO-MATCH
) send reset...
(DEFUN RESET-AT-END—OP-LOOP ()
(SETQ SDB-LIST NIL
SETPOINT-DATA NIL
SCENARIO-LIST NIL

SCENARIO-DESCRIPTION NIL
PARAMETER-EXPECTANCY NIL
SCENARIO-EXPECTANCY NIL)
)

i
51 iMAIN-LOOP FOR THE DECA SYSTEM
il

(DEFUN DECA ()
(RESET-AT-END-OP-LOOP)
;; setup sensor—data from file
(BRING-IN-SYSTEM~DATA "h:)srn)thesis)sensor.data")
11 setup setpoint database
(MAKE-SETPOINT-DATABASE “h:)srn>thesis>setpoint.data")
;; setup parameter/scenario database
(MAKE-PARAMETER-SCENARIO-DATABASE *h:>srnd>thesis>scenario.data")

1
(MAKE-SCENARIO-EXPECTANCY “h:>srondthesis)>scenario-tendency.data”)
1
(MAKE-PARAMETER-EXPECTANCY “h:>srn)thesis)parameter-expect. data")

i
(MAKE-SCENARIO-DESCRIPTION “h:>srn)thesis>scenario-descriptions.data")
;; now begin to loop for each time step that deca is evaluating

77
(1P (NOT (EQUAL SENSOR-DATA NIL)) icheck if out of data
1

138

;; now make a run through DECA for the time record sensor-record
(DOLIST (I SENSOR-DATA)
(SBTQ SYS-TIME (CAR I))
(SETQ SENSOR-RECORD (CADR 1))
(PORMAT T ““\Intermediate parameters for system time: “a “A" SYS-TIME)
(FORMAT T "“\Sensor—-record a“t4" SENSOR-RECORD)
(RESET-AND-REGENERATE-GLOBALS)
(COMPARE-SENSOR~DATA S!NSOR-RBCORD SDB-LIST) isets oob
{FORMAT T "Oob-parameters ~a SOob-parameters-values ~“a \Oob-severity “AT2%"
OOB-PARAMETERS OOB-PARAMETERS-VALUES OOB-SEVERITY)

(GET~SCENARIOS OOB~PARAMETERS)
(PORMAT T “Lookahead-scenarios ~a”2%" LOOKAHEAD-SCENARIOS)
;; match tendencies with expected

(MATCH-SCENARIO-TENDENCY)

(PORMAT T “Scenario-data-match-list “a™2%“ SCENARIO-DATA-MATCH-LIST)

(MAKE-LIST-OF~-NUM~PARAMS-EXPECTED)

(FORMAT T "Parameters-per-scenario-expect ~a”2%"
PARAMETERS-PER—-SCENARIO-EXPECT)

(SCENARIO-QUAL~-MATCH)

(PORMAT T "Scerario-ratio-match-list “a“24“ SCENARIO-RATIO-MATCH-LIST)

({SPLIT-INTO~-MAC -MINOR)

(PORMAT T “Scenario-major “a“\Scenario-minor “a \Scenario-improbable ~a~2%"

SCENARIO~MAJOR SCENARIO-MINOR SCENARIO-IMPROBABLE)

(MAKE-PARAMETER-COMPARISON)

(PORMAT T “Parameter-ratio-match ~a”\Parameter-rank-list ~“a”2%*"
PARAMETER-RATIO-MATCH PARAMETER-RANK-LIST)

(REFPINE-PARAMETER~-RANK-TOP)

(FORMAT T “"Parameter-rank-list “A“2%* PARAMETER~RANK-LIST)

{ORDER-MULTIPLES)

(PORMAT T “Parameter-rank-list “AT2%* PARAMETER-RANK-LIST)

{PUT~SCENARIOS-TOGETHER)

(PORMAT T "Possible-scenarios-for-situation “a~2%"
POSSIBLE-~SCENARIO-FOR-SITUATION)

(OUTPUT-CONTROL)

) ;end of DO

)
) send DECA

1ii
a;; Function for manual run

iil

{DEPUN MANUAL ()
{RESET-AT-END—OP-LOOP)
(BRING-IN-SYSTEM~DATA "h:>srnd>thesis)>sensor.data”)
(MAKE-SETPOINT-DATABASE "h:)>srn>thesis)setpoint.data”)
(MAKE-PARAMETER~-SCENARIO-DATABASE “h:)>srn)>thesis>acenario.data")
(MAKE-SCENARIO~EXPECTANCY "h:>srn>thesis)scenario-tendency.data")
(MAKE-PARAMETER-EXPECTANCY “h:)>srn)thesis)parameter—expect.data")
(MAKE-SCENARIO-DESCRIPTION “h:>sarn)thesis)scenario-descriptions.data")
;: initialize some global parameters before the loops
{SETQ SYS-TIME (CAAR SENSOR-DATA)
SENSOR-RECORD (CADAR SENSOR~DATA)
SENSOR-DATA (CDR SENSOR-DATA))
(RESET-AND-REGENERATE-GLOBALS)
{TIME (LET ()
(COMPARE-SENSOR-DATA SENSOR-RECORD SDB-LIST) ;8ets oob
(GET-SCENARIOS OOB-PARAMETERS)
(MATCH-SCENARIO-TENDENCY)
(MAKE-LIST-OF-NUM-PARAMS-EXPECTED)
(SCENARIO—QUAL-MATCH)
(SPLIT-INTO-MAJ-MINOR)
(MAKE-PARAMETER-COMPARISON)
(REPINE-PARAMETER-RANK-TOP)
(ORDER-MULTIPLES)
{PUT-SCENARIOS-TOGETHER)
)) send time
(OUTPUT-CONTROL)

;/: Reset the parameters for pext time step.

(RESET-AT-END—OF-LOOP) ;8ince manual loop
) send manual

ii
i
!

(D

(

)

139

);
; Punctions for ouputting the runs to disk files
:

EFUN DECA-PILE—-OUTPUT ()

(SETQ OUTPUT-PILE-NAME "h:)srn)>thesisdruatime.output”)
(RESET-AT-END—OF-LOOP)

;; setup data from file

(BRING-IN-SYSTEM-DATA “h:>arn)thesis>sensor.data")
(MAKE-SETPOINT-DATABASE "h:)>srn)>thesis’>setpoint.data")
(MAKE-PARAMETER-SCENARIO-DATABASE "“h:>srm)thesis’scenario.data")
(MAKE-SCENARIO-EXPECTANCY "h:)srn>thesis)scenario-tendency.data")
({MAKE~PARAMETER-EXPECTANCY *"h:)sran)thesis)parameter-expect.data")
(MAKE-SCENARIO-DESCRIPTION *“h:>srn>thesis)scenarjio-descriptions.data")

(SETQ OUTPUT-PILE~NAME (PS:PARSE-PATHNAME OUTPUT-PILE-NAME))
;; now begin to loop for rach time step that deca is evaluating

1
(IF (NOT (EQUAL SENSOR-DATA NIL)) ;jcheck 1if out of data
;take return out?
(WITH-OPEN-FILE (PILE-SPEC OUTPUT-FILE-NAME
:DIRECTION :0UTPUT
:CHARACTERS T)
;; now make a run through DECA for the time record sensor-record
DOLIST (I SENSOR-DATA)
(SETQ SYS-TIME (CAR I))
(SETQ SENSOR-RECORD (CADR 1))
(PORMAT file-spec
““SIntermediate parameters for_system time: "a “\" SYS-TIME)
(FORMAT file-spec "“VSensor-record ~a V" SENSOR-RECORD)

(RESET-AND-REGENERATE-GLOBALS)

(COMPARE~SENSOR-DATA SENSOR~RECORD S$SDB-LIST) ;8ets oob

(FORMAT file-spec . -

“Oob-parameters “a“V\Oob-parameters-values ~“a"\Oob-severity “AT2%"
OOB-PARAMETERS OOB-PARAMETERS-VALUES OOB-SEVERITY)

(GET-SCENARIOS OOB-PARAMETERS) - -

(FORMAT file-spec "Lookahead-scenarios a~ 28" LOOKAHEAD~SCENARIOS)

(MATCH-SCENARIO-TENDENCY)

(FORMAT file-spec
"Scenario-data-match-iist “a“2%" SCENARIO-DATA-MATCH-LIST)

(MAKE~LIST-OP~-NUM-PARAMS~EXPECTED) -

(PORMAT file-spec "Parameters-per—scenaric-expect ~a 2%"
PARAMETERS-PER-SCENARIO-EXPECT)

{ SCENARIO-QUAL-MATCH)

(PFORMAT file-spec N
“Scenario-ratio-match-list “a” 48" SCENARIO-RATIO-MATCH-LIST)

(SPLIT-INTO-MAJ-MINOR)

(FORMAT file-spec - - i

"Scenario-major “a"“VScenario-minor “? AScenario-improbable "a"2%"
SCENARIO-MAJOR SCENARIO-MINOR SCENARIO-IMPROBABLE)

(MAKE~-PARAMETER-COMPARISON)

(FORMAT fiie-spec - -
“Parameter—-ratio-match “a“\pParameter—rank-list “a"32%"
PARAMETER-RATIO-MATCH PARAMETER-RANK-LIST)

(REFINE-PARAMETER-RANK-TOP) -

(FORMAT file-spec “Parameter-rank-list “AT2%" PARAMETER-RANK-LIST)

(ORDER-MULTIPLES) .

{PORMAT file-spec “Parameter-rank-list “A 32%" PARAMETER-RANK-LIST)

(PUT-SCENARIOS-TOGETHER) . - .

(FORMAT file-spec “Possible-scenarios-for-situation “a™2w*
POSSIBLE-SCENARIO-FPOR-SITUATION)

{OUTPUT-CONTROL~TO-FILE)

) ;end of DOLIST
;end of with-open-file
) ;end if
) iend DECA

‘——---_—‘__-—‘~‘__““‘~n\\

;7 This function will control all the output to the disk file

i
{DEPUN OUTPUT-CONTROL-TO-F1LE {()
(COND ((NULL SCENARIO-MAJOR)
{ PORMAT tile-spcc
"“ADBCA's copclusions for system time: “a "§" SYS-TIME)
{OUTPUT~RESULTS~WITHOUT~SCENARIO~-TO~PILE)
(FORMAT file-spec
"“48nd of data evaluation for system time: “a "¢ SYS-TIMB)
)

{T

{FORMAT file~sapec

"“$DECA's conclusions for system time: “a “t" SYS-TIME)

{QUTPUT-RESULTS~WITH~SCENARIO-TO~-FILE)

(FORMAT file-spec

) “"“SEnd of data evaluation for system time: “a A" SYS~TIME)
)
)

{DEPUN OUTPUT-~RESULTS~WITHOUT~SCENARIO-TO~PILE ()
itirst the scenario
joutput
{PORMAT file-spec "~\ No scenario selected, not confident enough. ~&%)
{PORMAT file~sapec "~V The parameter and priorities are as follows: ~2%")
{DOLIST (1 PARAMETER-RANK~LIST)
(LEBT ({(PARAM (CAR I))
{RANK (CADR I})

)
{PORMAT file~spec “"3T a2 "16T"a “%* PARAM RANK)
b}
1 1 {WRITE PARAMETER-RANK-~LIST :PRETTY :ALIST)
(FORMAT file-spec
“~2% Scenarios that were considered as possible choices but not "y
(FORMAT file-spec " selected are: ~2%")
{PORMAT file-spec " Scenario Ratio Description 72%%)
(DOLIST (SCENARIO~-NUM POSSIBLE-SCENARIO-FOR-SITUATION)
{LET ((TEMP-SCEN~NUM (CAR SCENARIO-NUM))
(TEMP~RATIO {CADR SCENARIO~NUM))
(TEMP~DESCRIPTION)

)
{DOLIST (J SCENARIO-DESCRIPTION}
(IF (EQUAL (CAR J) TEMP-SCEN~NUM)
(SETQ TEMP-DESCRIPTION (CADR J))})

)
(PORMAT file-spec “73T "a “13T"A "20T “a™w*
TEMP~-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

})
{PORMAT file-spec “"IV\")
i 1{WRITE POSSIBLE-SCENARIO-POR~SITUATION :PRETTY :ALIST)

{DEPUN OUTPUT~RESULTS~WITH-SCENARIO-TO~PILE {)
;first the scenarioc
{LET ((TEMP~SCENARIO-SPECIPICS)
)

;output
(PORMAT file-spec "“\ Scenario selected ia; “\")
{SETQ TEMP-SCENARIO-SPECIPICS (GET-GUEST))
(FORMAT file-spec " Sceparioc Number ~a “\" (FIRST TEMP-SCENARIO-SPECIFICS))
(PORMAT file-spec " Scenario D‘scriptlon “d T4 (LAST TEMP~SCENARIO-SPECIFICS))
{PFORMAT file-spec " Contidonce a "32V" (SECOND TEMP- SCENARIO-SPECIFICS))
{FORMAT file-spec "~\ The parameter and priorities are as follows: ~2%")
(DOLIST (I PARAMETER-RANK-LIST)
{LBT ({PARAM (CAR 1))
{RANK (CADR I))

)
{PORMAT file-apec "“3T a "16T a 4" PARAM RANK)
3
;i (WRITE PARAMETER-RANK-LIST :PPETTY :ALIST)
(FORMAT file-spec
“~3% Scenarios that were considered as possible choices but not”V")
{PORMAT file~spec " selacted are: ~2\")
{FORMAT file-apec " Scenario Ratio Description ~3%")
{DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO~POR-SITUATION)
(LET {(({TEMP-SCEN-NUM (CAR SCENARIO~NUM))
{TEMP~RATIO {CADR SCENARIO-NUM))
{TEMP-DESCRIPTION)
b

140

—_—

141

(DOLIST (J SCENARIO-DESCRIPTION)
(IP (EQUAL (CAR J) TEMP-SCEN-NUM)
(SETQ TEMP-DESCRIPTION (CADR J)))

) -
(FORMAT file-spec "7“3T “a “13T"A “20T “a“s*
TEMP-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

))
(PORMAT file-spec "~2%")
;(WRITE (CDR POSSIBLE-SCENARIO-FOR-SITUATION) :PRETTY :ALIST)
)
)

;;; End of DECA Kernel

iz

