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ALGORITHM DEVELOPMENT FOR SDI WEAPONS SYSTEM ALLOCATION

Abstract:

While several SDI weapons systems can provide adequate defense in a one-
on-one basis, a coordinated attack by several enemy missiles launched over a
substantial volume will be difficult to resist without an efficient command and
control system for warfare coordination. Our study of weapons allocation -
coordination algorithms, is based on dynamical models for the missile/decoy
systems including noise effects and uncertainties in the model parameters.
Performance of the weapons targeting system may be measured in terms
of the expected number of targets eliminated in a given interval (phase of
operation3) or the expected time to eliminate all the targets in a given re-
gion. Sche-duling weapons deployment is a problem of constrained optimal
stochastic scheduling and resource allocation for a system with many controls
(weapons) and state variables. The selection of weapons deployment tactics
is based on solution of a complex optimization problem. We have conducted
an investigation of advanced modeling, stochastic control, and scheduling
methodologies for aspects of the SDI weapons allocation problem - several
platforms with assets of different character defending againest a diverse col-
lection of targets. The models for such scenarios lead to stochastic scheduling
problems which can not be handled by conventional analytical methods. We
describe several different analytical approaches which have the potential for
synthesis of effective engagement algorithms.
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Executive Summary:

We have conducted an investigation of advanced modeling, stochastic con-

trol, and scheduling methodologies for aspects of the SDI weapons alloca-

tion problem - several platforms with assets of different character defending

againest a diverse collection of targets. The models for such scenarios Je'd

to stochastic scheduling problems which can not be handled by conventional

analytical methods. We discuss several different analytical approaches which

have the potential for synthesis of effective engagement algorithms.

Key Words: Weapons allocation, stochastic sequencing and scheduling,

index rules.

0



1 Identification and Significance of the Prob-

lem

While several SDI weapons systems can provide adequate defense in a one-

on-one basis, a coordinated attack by several enemy missiles launched over

a substantial volume 2 will be difficult to resist without an efficient command

and control system for warfare coordination. Battle Management systems

for a region or the weapons allocation systems for individual stations in the

region, require automated decision-making systems to rapidly evaluate the

alternative actions and select deployment schemes compatible with tacti-

cal and strategic doctrines. A starting point for the development of such

a system is the analysis of the coordination of various spatially-separated

platforms/stations, each with multiple capabilities, to defend against several

threats attacking simultaneously.

Coordination and contextual information is essential in tactical weapons

deployment. The use of certain systems increases the visibility of the platform

to a degree determined in part by its current position and attitude. Expend-

able weapons and countermeasures must be "rationed" over the course of an

engagement. The interaction of weapons and countermeasures can be con-

structive or it can hinder performance, depending on use and the operational

context. Both asynchronous and synchronous operating policies for resources

can be useful in a given situation.

2In space and time.



The weapons platforms and the targets will undergo significant move-

ments in their orbital paths during the (20 minute) duration of the mid-

course phase.3 Therefore, it is necessary to use dynamical models to describe

engagements during this phase. Since there may be significant uncertainty

in the measurements of target (and decoy) trajectories and profiles, it is

necessary to use models which account for this uncertainty.

Accordingly, our study of weapons allocation algorithms, is based on dy-

namical models for the missile/decoy systems including noise effects and

uncertainties in the model parameters. Performance of tfte weapons target-

ing system may be measured in terms of the expected number of targets

eliminated in a given interval (phase of operations) or the expected time to

eliminate all the targets in a given region. Other performance measures are

possible-.

In this framework scheduling weapons deployment becomes a problem

of constrained optimal stochastic scheduling and resource allocation for a

system with many controls (weapons) and state variables. The selection of

weapons deployment tactics is based on solution of a complex optimization

problem. The computational complexity of this problem (number of variables

which must be computed) grows (at least) exponentially with the number of

state variables in the system. Since this is a function of the number of targets,

the computational problem is intractable in target rich environments.

Thus, the complexity of the SDI weapons allocation problem requires

3 In this project we shall focus attention on this phase.
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the use of algorithms incorporating not only advanced numerical techniques

but also heuristic procedures and efficient knowledge representation methods

to achieve performance levels approaching the announced SDI operational

requirements. Within the limited setting of this Phase I project we have

evaluated such techniques in the context of a systematic class of analytical

models for management of engagements under uncertainty.

2 Problem Description

We consider stochastic control and scheduling formulations for certain as-

pects of the SDI weapons allocation problem - several platforms with assets

of different character defending against a diverse collection of targets. The

models for such scenarios lead to stochastic scheduling problems which can

-not be handled by conventional analytical methods. We discuss several differ-

ent analytical approaches which have the potential for synthesis of effective

engagement algorithms.

Since the weapons platfornms are spatially di,'ribufed and mbib,. dis-

tributed processing, communications, and decision-making capabilities en-

hance the reliability and survivability of the BM weapons C2 system. While

our primary effort has focused on the management of a single platform with

multiple resources, we have also examined models for a multiple platform sys-

tem with mobile command and operational units. We use stochastic schedul-

ing methodologies to optimize the performance of each platform.
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2.1 Distributed Layered Structure for Weapons Sys-

tem Management

In an engagement scenario, when several platforms deploy a variety of weapons

against several threats, conflicts and constraints arise. Timing or precedence

cont raints are especially important. Erroneous threat type identification may

substantially reduce reaction time and choice of weapons system response.

These observations suggest a layered control structure for weapons system

coordination. At the lower level, each individual station requires a resource

allocation algorithm capable of operating in a random environment in the

presence of time-precedence constraints [20, 21, 30, 53]. There are several

methodologies for such problems, including some promising recent develop-

ments [3, 2, 35, 36, 37, 41, 49, 50]. At the higher level, when several stations

are involved, inaccuracies in threat identification may be anticipated and

significant communication requirements arise. For example, careful timing is

necesoary to successfully "hand" a target from one station to another. Dif-

ficult questions regarding synchronous or asynchronous operation also arise

when deployment occurs under -hanging network topology and variable local

data bases.

In this report we focus on the activities of the lowest operational level

in the hierarchy; however, the analytical tools used and developed are suffi-

ciently general that they can be brought to bear on many aspects of other

operational problems hierarchy. The abstract scheduling methodology is es-
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peciaiiy germaine.

2.2 Algorithm Development for Weapons System Al-

location

The multiple station area weapons allocation coordination problem 16 a ver-

sion of the multi-server scheduling problem. Since few optimal algorithms

are known for this class of problems, we have examined a class of suboptimal

strategies based on the distributed, hierarchical structure of the system. In

this setup, each station is controlled by an "agent" which may be a computer.

The agent executes a "local" control strategy to deploy weapons assets to

engage threats in his area. Constraints on the deployment of weapons by

neighboring agents assure that interference does not arise. Since a system

with a single "command center" is not survivable, we assume that there are

several BM systems as described above; and that they share a common data

base. Since the areas of influence of different platforms may overlap, and

since threats may pass through the areas controlled by several platforms,

coordination of the weapons allocation is essential.

The agent's decision problem is to effectively engage threats in his area,

his performance measure is a "reward" for successful engagement of a threat

and a "penalty" for threats not engaged. The BM systems decision problem

is to see that threats are (continuously) successfully engaged as they pass

through the total area of influence of the agents under its command. Its
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performance measure also includes a penalty for threats not engaged, and

possibly penalties for revealing the position cf friendly units. The information

transmitted from agents to the BM system and vice versa will be summary

status information.

Tih? stochastic scheduling model we use to represent the decision problem

modeled in this way may be solved by invoking strategies based on a prZority

ilndzr rule. The indeX is a scalar quantity associated with each weapons sys-

tem. ',Tndicies may also be associated with the targets.) Its numerical values

depend on the state of the weapon system, the threat data, and operational

constraints imposed on the systems actions. To solve his "local scheduling

problem," the agent computes the vector of indices for his resources (and in

some cases indicies for the targets) and implements the resource with the

largest index (or attacks the target with the largest index).

Thus, the state of the sta'ion's weapon system is described by a vector

of priority indices. This is the (summary) information the platform com-

municates to superiors and other agents. In the hierarchical structure BM

commanders can effectivc:ly direct the actions of station/platform agents by

imposing constraints and performance bounds. The latter are essentially

Lagrange multipliers, sometimes called "coordination variables," in system

theory. These variables may be updated less frequently than the natural

frequency of agent actions.
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2.3 Data Requirements and Implementation Issues

The data base requirements for this system include:

" weapons platform states;

" data on threats: operational data on other components; and

" communication network status.

The data base is distributed throughout the BM system. An agent's access

to the data is limited primarily by its communications and processing abil-

ities. Distributed communications and processing facilities will be required

in the weapons allocations subsystem to achieve the operational flexibility,

effectiveness, and survivability mandated by the SDI program.

The complexity of the area weapons system C2 problem and the large

number of state variables involved prohibit the computation of exact "op-

timal" command and control strategies for each operational state, network

configuration, and threat scenario. Effective (suboptimal) coordination of the

weapons allocation system requires more than efficient computational algo-

rithms; it requires a logical support structure, to delineate command options,

likely interference effects, etc. to the BM station. Its primary function would

be to k, . -ack oi precedence constraints effecting the deployment tactics of

neigh; .-. platforms, to guide the procedure of "handing a threat" from one

platform . neighbor to assure continuous engagement of the threat's sys-

tem, and to manage interplatform and intersystem communications. During

7



this phase, we have not undertaken the development of a logic programmirg

capability for this purpose as part of the allocation algorithm.

We shall use the framework of cooperative team theoretic solutions to

"large scale" scheduling (allocation) problems as the analytical basis for the

development of efficient algorithms. As we shall argue below, this framework

provides a systematic basis for the construction of "suboptimal" but satisfac-

tory tactics for weapon allocation. It also provides analytical procedures for

the evaluation of performance, degrees of "optimality," and the evaluation of

satisfactory solutions.

2.4 Summary

We use stochastic dynamical models to represent the interaction of the weapons

platforms and the target systems during the post-boost and mid-course

phases of operations included in this project. Our computational algorithms

treat these models by various discretization procedures that ultimately re-

ducing them to discrete time Markov chain systems [33].4

Based on the engagement models, we use a two step approach to the

development of weapons allocation algorithms. First, we have developed

a prototype set of algorithms using the stochastic gradient method. This

method has proven effective in the treatment of large scale network planning
4Further work is recommended to enhancc the models to include more realistic trajec-

tory and orbital dynamics and better noise representation.
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problems involving a number of state variables comparable to the dimensions

one might expect for subsystems of the weapons - target engagement system.

These algorithms are described below.

The algorithms computed by this method may be used as a baseline for

the development of more representative strategies which reflect the opera-

tional structure of the SDI BM weapons allocation system. We have used

stochastic scheduling models and index rules to derive dynamic engagement

tactics for a BM system involving several weapoL1s platforms responding to

a large number of targets over an extended region of space. This class of

analytical procedures and the format of the resulting algorithms is described

below.

As we show, the technical problem of "coordinating" the actions of several

complex weapons platforms is highly nontrivial. Conventional optimization

procedures will not be effective - there is, in fact, no theory to support

such a development. For "practical purposes," it is therefore appropriate to

supplement the algorithms with a a "logical support system" s using certain

Al techniques for "constraint directed scheduling."

'E.g., a "real time expert system."
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3 Analytical Models

3.1 An Abstract Model for Engagement Dynamics

We will discuss an abstract mathematical version of this model to illustrate

how the modeling problems and the design of "practical" algorithms based

on such models may be developed. There are three important points which

we wish to stress before describing the analysis:

First, it is not possible to compute "optimal" control laws for the weapons

platforms in a realistic model of the weapons - target interaction. The com-

putational burden grows unavoidably, exponentially with the number of state

variables. Since each target (and decoy) will have a minimum of six state

variables, and there may be thousands of targets and decoys, this is an insur-

mountable problem which cannot be solved using any conceivable computer

technology.

Second, contrary to what one might expect, the computational problems

associated with "local control" strategies are worse than those for the evalua-

tion of global optimal strategies. That is, the problem of computing feedback

controls (engagement tactics) which have been partitioned to respond to a

subset of the states of the target population is more demanding than the

optimal control/allocation problem for the system taken as a whole.

Third, if, however, the system dynamics have some special structural

properties, or more precisely if one can approximate the target system model

10



by one with special properties, then it is possible to derive computationally

feasible procedures for the evaluation of control/allocation strategies. Two

such properties are uncoupled dynamics (target to target) and the case when

the "equilibrium" probability distribution of the target states has a product

form. The first case applies to targets which are individual missiles released

from distinct launching sites. The second case may be suitable as a descrip-

tion of the distribution of a family of decoys released by a single missile (i.e.,

the initial dependency would diminish as the decoy constellation assumes its

ultimate distribution).

To appreciate these points, consider the abstract stochastic control prob-

lem

1(s, x) = min{E[ e-Atc(x(t),u(t))dtlx(O) = x]}

i = b(x(t), u(t)) + wz(t) (1)

x(t)E X c RN, u(t) E U c R M

As a model for a specific SDI operational phase, the composite state vec-

tor x(t) contains the state vectors of the various targets, the weapons plat-

forms (position, velocity, attitude, etc.), and states for any auxillary processes

(noise) which may be needed to complete specification of the dynamics of all

the interacting systems. The control vector u(t) represents the parameters of

the weapons systems involved in the interaction which may be manipulated

to direct the weapons to attack selected targets, e.g., platform alignment.

The vector tb(t) is a noise process, nominally a "white noise." The function b

describes the dynamics of the various systems, including the orbital motions

11



of the weapons platforms and the trajectories of the targets and decoys in

the gravitational field. The parameter A is a "discount factor." The con-

straint sets X and U reflect physical or operational constraints. (There may

be many other types of constraints. Our main concern at this point is an

assessment of the computational problem, not the precise model structure.)

3.1.1 Computational Complexity

The optimal cost V(s, x) for the abstract problem (1) is found by solving the

Hamilton Jacobi equation of dynamic programming:

a v
uin{b(xu) VV + c(x,u) + AV - AV} = 19V (2)

UE U 9

which also gives the optimal strategy for problem (1) in feedback form.

The numerical solution of system (1) is virtually impossible when the

number N of state variables is large. The problem is not simply one of nu-

merical analysis, but an irreducible difficulty. No matter what (numerical)

approximation method is used, achieving a given level of precision as the

dimension of the state space increases will require an exponentially increas-

ing computational cost. This is not even a consequence of the optimization

formulation - the associated linear eigenvalue problem has the same compu-

tational complexity. In effect, the computational problem is "NP-complete."

It is natural to attempt to avoid this problem by assigning individual

12



controllers (weapons platforms) to a portion of the state space, and to select

control laws in an optimal fashion to deal with just that subset of the state

space. This is optimization in the "class of local feedbacks." Unfortunately,

in the absence of certain structural conditions on the system dynamics, this

problem is more demanding computationally than the previous one.

To see that this is case, let I be an index set for the subsystems, I

{1, 2.. .,k} and let ni and mi denote the number of states and controls

respectively in subsystem i E I. A local feedback is a mapping Si from

[s, T] x R"' into Ui C R',, the set of admissible values of the control for

subsystem i. Let SL = {S = (S,,. . . , Sk)} be the class of local feedbacks.

If us is a local feedback control and xs is the corresponding solution, then

optimization in the class SL of local feedbacks is the problem

T
V(s, x) = _mn {Es[ eAtc(xs(t),us(t))dtlxs(O) = x]J

SESL ZS

is = b(xs(t), us(t)) + Yb(t) (3)

xi(t) E X, c R"', ui(t) c Ui c R',

If we let pS(t, x) be the probability density of xs(t) corresponding to local

feedback S E SL, then a given strategy R E SL may be improved by the

algorithm

Step 1: Compute pR

Step 2: Solve

£ 5 V s + cs = O, VS(T,.)= 0 (4)

S e Arg {minz {H(t, Z,pR, V s )}, S E , }

13



Here cs = c(X, S(X)), S E SL, H(t, R, p, V) is the Hamiltonian of prob-

lem (3), and pR is the solution of

£RP = 0, p( 0 .) = (5)

1 S= +abs + 5(6)at i.' xj j OxiaTj

where y is the initial density of the state x(0), {aij} is the covariance

matrix of the noise, and bS(t, x) = b(t, x, S(t, x)).

A fixed point of this algorithm satisfies the conditions of optimality for the

problem (3). However, it is clear that the algorithm (4) requires more com-

putations than simple dynamic programming in equation (2).

3.1.2 Systems with Decoupled Dynamics

If the underlying dynamics of the target system are decoupled, and if the con-

trols (weapons) respond only to certain subsets of the state space, then team

theoretic (local control) strategies can be computed. The SDI engagement

scenario has this structure.

In this case we must have b(t,x,u) = [bl,.. .,bkJ with

b,(t, x,u) : [0, o) x R x" Ui --+ (7)

and we assume that the noises are not coupled between subsystems. Then,

for each local control strategy R = [Rj E SL, the probability density of the

14



state x satisfies pR = Ii , and it may be computed from equation (5)

with the expression (7) substituted into the operator (6). Let 4Ci,R, be the

operator with the substitutions. The controls are still chosen through the

combined performance index in problem (1). The functionals

c!' = fJc(t, x, R(x))Hh<'(t~xji)dxj, I EI1 (8)
j~i

are the conditional expectations of the instantaneous cost based only on

knowledge at the th subsystem. Using these functions, a sufficient condition

for : strategy S to be optimal agent by agent is

RI 0, iI (9)
min [L:i,R, Vi + ci]=0 (9)
R,

The corresponding optimal cost is uI1(V) .... =ILk(V) with

= RS 14(dxj)Vi(s, xi) (10)

where yjt is the initial probability distribution of the subsystem state xi.

This result provides an algorithm for the computation of a strategy opti-

mal agent by agent.

Given E, v E [0, oo):

Step 1: Choose i E I, solve equation (9). If i(V) < v - E, then set v:

/i(Vi) and
Ri :=Argrnmin[,.i,R, Vi + ci] 11

If not, then choose another i E I until At(V) > v - EVi e I.

15



Step 2: When /i(Vi) v - e,Vz E I, then set e := 6/2, and go to Step 1.

This algorithm produces a decreasing sequence v('-) which converges to

a cost which is optimal agent by agent. A proof of convergence for the

discrete version of this algorithm is given in [44]. (Even at this level of

model simplification, it may be difficult to solve the problem in Step 1. We

shall discuss two procedures for reducing this problem further in subsequent

sections.)

The analysis in [44] establishes the same sequence of arguments - that is, a

procedure for reducing the computational requirements of optimal stochastic

control problems - for Markov chain - queuing system models of controlled

discrete time systems. Such models may be useful in developing high level

strategies for SDI interception operations. For example, simple birth and

death type processes may be useful in describing the transition of targets

through a region, particularly in cases where bursts cl decoys are generated

by a hard target during the transition.

These models, which do not account for the trajectories of the targets and

decoys, may be useful in deciding the commitment levels of weapons within

the region and in neighboring regions. Since they may be resolved by effi-

cient "index rules" and "stochastic gradient" methods, they support "rapid

prototyping development" of computational algorithms. In the next three

sections we describe the development of efficient computational algorithms

for models with special structures compatible with the mid-course phase of

SDI operations framework.
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3.1.3 Systems with Product Form Performance Measures

The assumption that the dynamics of the system be completely decoupled

is unrealistic in most SDI operations scenarios. In the first instance enemy

missiles will likely be launched in volleys, and groups launched from the same

geographical site may travel together on route to a designated target. Alter-

nately, targets may release a family of associated decoys during the course of

a flight. The distributions (of the state vectors) of the decoys and the parent

target will be dependent, at least for the initial portions of their flights. If,

however, the distributions can be well approximated by independent distri-

butions in the limit of large times, that is, as the distribution of decoys about

the main target(s) stabilizes, then it is possible to compute agent by agent

optimal engagement strategies using the second algorithm discussed above.

We shall omit most of the technical details, noting only the main points.

First, it is necessary to have the probability distributions of the states of the

target systems converge in the limit of "long times" to ergodic distributions

with the product form
k

p(X)= c l P(x),i I (12)
i=1

with c a normalization constant. By "long time" we mean times long relative

to the time constants of the release process for decoys, for instance. If the

release and "blooming" of the decoy configuration take place over a matter of

a few minutes, then the total time of the mid-course phase may be considered

long relative to the initial period of development. Second, the control problem

corresponding to this situation is either the system (1) with T = o: or the

17



"ergodic control problem" with the average cost

mi jim f c(X(t), S(x(t)) dt. (13)15L T-o T

This class of diffusion process models may be regarded as the natural limits

of Jackson networks of queues [29] under the scaling

X t
t as N - (

As a description of an engagement between weapons and a target system,

the queues correspond to the targets exposed to a given weapon system (the

"server"). The output rate corresponds to the rate at which targets are

passed on to neighboring weapons systems. The transition probabilities mij

describe the likelihood of a target passing through weapons region i and

entering weapons region j.

Efficient algorithms for the solution of control problems for networks of

Jackson type were given in [44]. They have been applied to large scale sys-

tems including numbers of state variables (several hundred) that might be

reasonably associated with subsystems of an SDI post-boost or mid-course

engagement system. We shall describe algorithms for optimization of models

of this type based on index rules in a subsequent section.

There are two ways in which the queuing network model may be asso-

ciated with a differential equation model like the abstract system in prob-

lem (1). First, the queuing model can serve to provide a difference equation

numerical approximation of the solution of the continuous time control prob-

lem. This is the approach developed in [33J which has become a standard

18



technique in the solution of control and scheduling problems. This method

preserves the information on the trajectory and orbital dynamics contained in

the differential equations. As we have argued, this information is important

during the long period of the mid-course phase, when significant motions of

the weapons platforms will take place.

Second, the diffusion process model in the model (1) may itself be an

approximation to a queuing model in which there are a large number of

elements, i.e.. in the scaling in equation (14) with N the total number of

targets 'decoys in the model [31]. The use of diffusion approimations to

represent large populations is a common technique; however, we are not

aware of any studies which have determined that this would be an effective

class of models for any phase of SDI operations. We have not pursued this

point in this project; rather, we use queuing models as a component of the

numerical analysis of the system model, including the required descriptions

of the orbital mechanics and target features such as aspect angle.

3.2 Monte Carlo and Stochastic Gradient Methods

From the previous sections we have seen that it will be possible to compute

the opt':nal local feedback controls which are the engagement strategies only

under certain limited conditions. There may be circumstances when the

information available for the design and execution of local strategies is poor.

In this case we may have an a priori de-ig,, fCr Pn engagement strategy,

and it would be useful to have a method for evaluating and implementing
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this strategy. One technique for accomplishing this is to parameterize the

strategy, and optimize the parameter in an "open loop" mode using a Monte

Carlo technique.

This is the underlying idea of the stochastic gradient method used in the

theory of stochastic approximations [34, 42]. This method has been applied

to advantage in large scale planning systems. It is easy to implement; it is

efficient: and it can be readily adapted to treat optimization problems with

integer valued variables. For example, it has been shown to be far more ef-

fective in producing network designs in specific instances than a very efficient

simplex algorithm [13]. The primary use for this class of algorithms is in set-

ting up a prototype weapons allocation system which can be systematically

enhanced and upgraded in subsequent phases of the project.

Once again, we shall explain the method and the algorithms it implies in

terms of an abstract dynamical optimization problem. (We discuss "static"

problems a little later.) The method is general and can be applied to almost

any class of optimization problems. See [34] for examples.

Consider the system

min E[ c(t, x(t), u(t)) dt] (15)

x(t) = b(t, x(t), u(t)) + ?,(t)

X E RN,u E R M

We make the feedback transformation
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u(t) = S(t, x(t), v(t)), v E RP (16)

with the function S : [0, ) x RN x RP - R M given. This is the a priori

strategy. Since we wish to compute the best such strategy (parameterized

by time functions v(.)) in "open loop" form, we approximate the probability

law P of the noise in terms of the empirical distribution
JL = 7.=Z5 ,(w) (17)

r

where wj are trajectories of the noise obtained by a random generator and 6 is

the Dirac delta function. Now we must solve the deterministic optimization

problem
,i (t) = (t, x-'(t), S(t, x(t), v(t))) + bj (t) (18)

rin- fT c(t, x'(t), S(t, x'(t), v(t))) dt
V rjl

where wJ(t) is a particular trajectory of the noise. This is a deterministic

optimization problem, which we can solve by a gradient technique or the

Pontryagin minimum principle.

The idea of the stochastic gradient method is similar to this, but it uses

a recursive procedure to optimize the parameter v(.) of the strategy. Let

J(v) be the integral in expression (15). Suppose we are able to compute the

gradient 9J/Ov by an adjoint method (numerically, after a discretization in

which v(.) is finite dimensional). Then the stochastic gradient algorithm is

the recursive procedure

Vr+i=Pv[v,-P r (v,,w,)], p, G [0, oo), Vr = 1,2,... (19)
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for any sequence of positive numbers {pl with E, p, = oo, and _T p < 00.

Here w, is a (numerically) generated realization of the process noise, and PV

is projection on the (finite dimensional) set V where v(.) takes its values.

Under convexity conditions it is possible to show that the algorithm con-

verges globally [13]. Local convergence results are given in [34]. Under

favorable, but not unrealistic smoothness and convexity conditions, it can be

shown that the convergence rate of the algorithm is optimal.

There is an additional technical point which must be addressed. The

SDI interception problem requires the treatment of integer valued (random)

variables. It is clear that conventional algorithms for integer programming

will not be effective for this problem. It is possible to design some heuristic

algorithms based on the stochastic gradient method which show promise for

the treatment of optimization on integer valued variables.

Here is a simple modification of the basic stochastic gradient algorithm

which has been shown by [22] to work well for problems with integer valued

variables. Suppose we have to solve the problem on N', the set of M-tuples

of natural numbers:

rin [Ef(x)] (20)

Consider the following algorithm

Xn+1 = x, - a -([Xn], W), a C (0,00) fixed (21)

where [x,] is the integer nearest to x,. Evidently, the sequence [x,,] cannot
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converge. Rather, it moves on some recurrent set of points. Suppose for

simplicity these points belong to the hypercube [0, 1]M . Let p! denote the

(relative) visit frequency of [x,]i (the ith component) to the point 1. Let

p0 be the visit frequency to 0. Then the solution [x,]- at a given step is

determined by the maximum frequencies

1 if p > p[xI"{ 0 (22)0 i < p0

This procedure may be improved slightly by ordering the elements of [,]

according to a scheme depending on the visit frequencies. Effective results for

the network planning problem were obtained [22] for this algorithm in 3 steps

(ordering the elements) and 3000 iterations, requiring 2 minutes of computer

time. This compares favorably with the stochastic gradient algorithm for a

continuous variable.

Other, more complex algorithms for treating integer valied, stochastic

approximation problems using penalization and a modification of the prob-

ability law are given in [22]. However, the more complex algorithms do not

improve the simple one (21) (22) in any significant way.

3.3 Index Rules and Efficient Implementations

To achieve the objective of designing weapons allocation algorithms which

reflect the overall structure of the SDI BM operations system, it will be neces-

sary to provide even more efficient allocation and coordination strategies. In
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this subsection we shall discuss an analytical framework for this. It involves

formulation of the weapons allocation problem as a scheduling problem, us-

ing a particularly compact set of feedback strategies called "index rules" to

implement effective allocation schedules.

3.3.1 Stochastic Scheduling and Single Station Weapons Alloca-

tion

To see how the weapons system allocation and co6rdination problem may be

formulated as a scheduling problem, consider a simplified version: one station

with several weapons assets indexed by J = 1, 2,. .. , N, with no precedence

relations among these assets. Suppose that each threat's dynamics are de-

scribed by a stationary Markov chain (32]. When a threat is engaged by

resource j, the BM system (on a superior level) receives an immediate re-

ward R(t) = Rj(x,(t)) and its state changes to x,(t + 1) according to its

transition rule. The states of the threats not engaged remain unchanged. In

this simplified problem we can think of the "state" of the threat platform as:

Xi(t) { 0, threat is homing on target, (23)
1, threat is not homing on target,

The reward is a device used to represent the instantaneous significance

of each threat to the Battle Manager and the cost of using weapon system j

(e.g., probability of revealing position). It summarizes (in a very simplified

way) strategic doctrine and the rationale of the Battle Manager. In this
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simple version the states of all threats are observed and the problem is to

schedule the order in which the threats are engaged to maximize the expected

present value of the sequence of immediate rewards

E[I at R(t)] (24)

where 0 < a < 1 is a fixed discount factor. This is a resource allocation

problem [41] called the multi-armed bandit problem [52].

3.3.2 Index Rules

In the basic version of the multi-armed bandit problem there are N inde-

pendent resources (machines). Let xi(t) be the state of resource (machine)

i = 1, 2,... , N at time t = 1, 2,... In thesimplest version of this problem at

each t one must operate exactly one machine. If machine i is selected, one

gets an immediate reward R(t) = R(x1(t)) and its state changes to Xi(t + 1)

according to a stationary Markov transition rule; the states of the idle ma-

chines remain frozen, x1(t + 1) = xj(t),j $ i. The states of all machines are

observed and the problem is to schedule the order in which the resources are

operated to maximize the expected present value of the sequence of immedi-

ate rewards (24).

This problem was first formulated in the 1940's. The essential break-

through came when Gittins and Jones [17] showed that to each resource

(machine) i is attached an index which is a function only of its state, and
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that the optimal policy operates the resource with the largest current index.

This "index rule" is important because it converts the original N dimensional

problem into N one dimensional ones. The index was subsequently shown to

be [16, 18]

VjX)=mxE[Zj'i? 1' at Rj(xj(t))Ixi = xi] (2-5):~x~ max=(.)
r>l E[.../= 1 tx i

where the maximization is over all stopping times 7 > 1. This is the dynamic

allocation index (DAI), interpreted as the maximum expected reward pei unit

of discounted time.

A direct, formal solution and interpretation can be given to the weapons

system allocation and coordination problem in this framework. More impor-

tant is the fact that indices can be computed efficiently and quickly given

models for the threat dynamics (e.g., Markov transition models).

In our approach to the BM weapons allocation and coordination problem

for the single platform problem each resource (machine) i = 1, 2,.. . , N is

characterized by the pair of sequences

{X'(s), F(s)}, s = 1,2,... (26)

X t (s) is the random reward obtained when i is operated for the sth time

and F(s) is the information (a ,-field) about machine i gathered after it

has been operated (s - 1) times. At each time exactly one machine must be

operated. Thus, t = t + tl + t 3 + ... + t, where t i = t(t) is the number of
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times i is operated during 1, 2,..., t. The decision at time t + 1 is based on

the available information

F(i) = v F'(t' + 1), t = 1, 2,... (27)

A policy ir is any sequence of decisions that satisfies this information

constraint. The problem is then to find the policy 7r that maximizes

V(7r) = E[Z atX'(t)(t*( )(t))IF(1)] (28)
t=i

where i(t) is the machine operated at time t.

In this general situation the index for resource (machine) i after it has

been operated (s - 1) times is

E[E-r- 1 at'i(t)jF'(s)]
Vi(s) = max aX)Fi(s)] (29)

where the maximization is over all stopping times s < -r < oo of F'(.). The

index rule is to operate the machine with the largest index.

Several extensions of the preceding framework are necessary to capture

a realistic weapons engagement scenario: More than one weapons technique

can be operated at a time, additional constraints due to precedence rules may

appear, the size of the problem may be very large if parametric dependence

is to be investigated, pre-emptive strategies must be considered.

27



3.4 Multiple Station Weapons Coordination

This is a much more difficult problem than the single platform case. It is

a version of the "multi-server" scheduling problem which encompasses all

the d;fficulties of multi-agent stochastic control. One must solve a large-

scale dynamic programming problem which is intractable in general cases.

For the purposes of this application demonstration, we shall simplify the

problem by adopting a specific, suboptimal form for the solution. The pre-

sumed structure is a two-layer one with several coordinators (BM stations)

on the top level and individual agents (computers) controlling separate sta-

tions/platforms, each equipped with one or more weapons on the lower level.

The agents respond to commands from designated BM stations. Each agent

uses a "local feedback strategy," deploying weaponss in response to his per-

ception of the threat (perhaps as defined by the BM station) while observing

operational and tactical constraints imposed by the BM station. The indi-

vidual agents optimize their performance measures using an index rule, as

discussed in the last section. The BM station commands the agents' activi-

ties under his command by imposing operational constraints to satisfy global

operational objectives, including:

(i) Concealing the positions of units;

(ii) Establishing a priority for threat engagement;

(iii) Establishing precedence constraints for weapons deployment; and
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(iv) Coordinating weapons operations with other tactical operations (EW

deployment, maneuver control, etc.)

The individual agents communicate their actions to their BM station,

providing the instantaneous state of each weapon system (a conditional prob-

ability), the index values of each weapon the agent controls, and the value

of the agent's local performance measure. They may also communicate their

perception of the threat if it differs from that provided by the BM station.

The BMI station communicates operational constraints, e.g., precedence con-

straints on weapons deployment among agents, threat information, and per-

formance constraints to the agents. The latter are the Lagrange multipliers,

sometimes called "coordination variables," in systems theory.

This formulation limits inter-agent communications by channeling them

all through the upper level BM stations, which simplifies the problem tremen-

dously. It allows different kinds of agents on the lower level, including au-

tonmated stations and subordinate systems. It allows each agent to have

different information about the threat, derived from local sensor facilities.

By permitting each agent to use a locally optimal strategy subject only to

constraints imposed by the BM station, computation of a near optimal strat-

egy is reduced to a manageable level. The simplified structure also makes the

development of simulation scenarios straightforward. Permitting agents to

exercise local control strategies as discussed in earlier sections, enhances the

survivability of the overall system. If communications to a command center

(coordinator) are lost, the agents lose constraint specification updates, sensor

29



updates, and performance multipliers supplied by the weapons commander.

However, they can continue to function, assuniing they retain some access to

the sensor data, by optimizing and executing their local control actions.

It is difficult to prescribe a precise optimal decision making structure for

reconfiguring the system under stress; however, one can provide an expert

system, e.g., a production rule system, which would both assist the local area

coordination of weapons platform operations and guide the reconfiguration

of the weapons C2 system in times when some units or command centers are

off-line. We have not addressed this problem in this project.

3.5 Sensor Scheduling

In this section we consider the problem of scheduling a suite of sensors for

the optimal detection of targets. The sensor scheduling problem6 involves the

simultaneous selection of of a signal processing scheme (according to some

performance measure) together with the subset of sensors that collect the

data. The scheduling problem and the model on which it is based serves to

illustrate the key ideas in the treatment of other scheduling problems based

on models using stochastic differential equations. As such it is a "generic"

example.

Applications of this concept include multiple sensor platforms and dis-

GThe work in this section was supported in part by the Army Research Office under

contract DAAG-39-83-C-0028. The results discussed in this section are based on [8, 7].

30



tributed sensor networks. On a platform with multiple sensors there is a

need to coordinate the data obtained from the different sensors, which may

include radar, infrared, and other sensor technologies. The data obtained

from different sensors will likely be of varying quality (as a function of range,

aspect, ambient noise, etc.), and systematic procedures are required for ap-

portioning confidence to different data sets and for basing decisions on the

composite data set. For example, radar trackers are more accurate at long

range than are infrared trackers; the reverse is true at short range.

In sensor networks one needs to coordinate data collected from a large

number of sensors distributed over a large geographical area. Conflicts must

be resolved and a preferred set of sensors selected (on a given time interval)

and utilized in detection, estimation, and/or control decisions.

Sensor scheduling should be carried out on the basis of optimizing rea-

sonably defined performance measures. These should include not only terms

allocating penalties for errors in signal processing (detection and/or estima-

tion); but also, they should include costs for managing the sensor network -

e.g., costs for (de)activating sensors, and for switching from one set of sensors

to another. For example, activating a radar sensor on a platform increases

the detectibility of the platform, and this should be accounted as a switching

cost. Using a more accurate sensor with a more complete data output may

entail higher bandwidth communications and the allocation of more compu-

tational power to that sensor. In certain networks use of a sensor may involve

physical movement of that unit, and this incurs a cost.
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3.5.1 A Model Problem

Consider the problem of estimating the signal process x(t) E R" based on a

collection of measurements {yz(t), i = 1,2,.. ., M} from sensors indexed by

I E [1, ... , M]. (Each y'(t) can be vector-valued.) Suppose x(t) is defined

by the diffusion process

dx(t) f(x(t))dt + g(x(t))dw(t), x(0) =, 0 < t < T (30)

with values x(t) E R?'. Suppose the measurements satisfy
L

dy'(t) = hi(x(t))dt + Rdv'(t), yi(O) = 0, i = 1,2,.. Al (31)

with values in R . Here w(.),v'(.) are independent, standard, Wiener pro-

cesses in R', Rdi, respectively, and Ri : RiT > 0 are positive-definite, di xdi

matrices.

If we are given the set of measurements {yi(s), s < t, i = 1, , Al}, then

the problem of (detecting) estimating x(t) is a standard problem in nonlinear

filtering theory [39]. Suppose, in contrast, that we may select among the

various signals y'(.) during certain intervals of time, and base our estimates

of x(t) on the best selection, which varies as a function of time. That is, we

wish to determine the optimal utilization schedule for the suite of sensors,

based on "running costs" for using sensors and "switching costs" for changing

the set of active sensors.

Let ci(x) be the cost of using sensor i when the state of the signal is x,

and let k,,(x) and kio(z) be the respective costs of turning off and turning
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on the i" sensor. The signal processing objective is to compute, at time T,

an estimate o(T) of a given function O(x(T)) of the state. It is natural to

use the least squares estimation error as the performance measure for this

function

Estimation Error = E{I1(x(T)) - (T))[ }  (32)

Now consider the problem of scheduling the sensors. First, it is necessary

to define a configuration of sensors. Let M be the set of all possible sensor

configurations. An element v of M is an M-tuple of l's and O's. A 1 in

position j means that the Jfh sensor is on, a 0 means that the sensor is off.

There are N = 2"f elements in A'. A sensor schedule is a piecewise constant

map u(.) : [0, T] -- ,. Let r E [0, T] be the switching times for the sensor

schedule u, that is, the time instants at which individual sensors are turned

on or off. Let v, v' be the sensor configurations before and after a switching.

Then the cost of switching is

k,=(, Z +k(x) + kj(x) (33)
{iEvLi~'}{ J" j~'{E

The total running cost associated with a configuration v E K is

C,(X) := E cj(x) (34)

In (33)(34) the symbol {i E v} denotes the indices of the entries in the vector

v occupied by a 1; i.e., the sensors which are "on." The symbol {i v}

denotes the set of indices corresponding to sensors that are "off." We shall

assume that the running and switching cost functions c, k are bounded and
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continuous as functions of x. Moreover, we shall assume that the switching

costs are bounded from below by a positive constant.

Using this notation, for each sensor schedule u(.) : [0, T] --, the mea-

surements available during [0, TI are

dy(t, u(t)) h(x(t), u(t)dt + r(u(t))dv(t) (35)

Here for x E R", v E )V

h' (x){Z,(M)

a block column vector, where

1, if the ith position in v is 1X{v,}(i) :=(37)

0, otherwise

Similarly, for v M,
L

r(v) = Block Diagonal {R 1 x{ }(i)} (38)

Also, v(t) = [v'(t), v 2(t),..., vM(t)] T is the compound observation noise pro-

cess.

In this framework a sensor scheduling strategy is defined by an increasing

sequence of swi+ching times -rj C [0, T] and the corresponding sequence vj E

.I of active sensor configurations. Let

u(t) = vj, t E [rj,rj+t); j= 1,2,...
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be the notation for a strategy.

We are interested in finding the optimal sensor scheduling strategy simul-

taneously determining the optimal estimator for each active sensor config-

uration. Given a strategy and the associated estimator , the corresponding

cost is
J(u(.), = E {1(x(T)) - (T)j (39)

+ c(x(t), u(t))dt + k(x(t), u(r7j_), u(7y))
0J

where we have introduced the notation

c(x, v) c,(x), x G R ' ,v E Al

k(x. v, v') k,,,,(x), x G R', v, v' E

The optimal scheduling/estimation problem is to find among all admissi-

ble scheduling strategies and associated estimators the pair achieving

inf J(u(.),q') (40)

3.5.2 A Stochastic Control Formulation

As shown in [7, 8], the optimization problem can be reformulated as an

optimal stochastic control problem with "impulse type" controls. To simplify

the problem, suppose O(x) = x. Then the optimal estimator (for any sensor

configuration) is the conditional mean

¢(T) = EuI(){x(T)j
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where E"( ) is conditional expectation with respect to the probability distri-

bution induced by u(.) and

FT= o{y(t,u(-)),t < T}

is the (o-algebra of) measurements available from the scheduling strategy

over the observation interval. Let kt(u, t) be the conditional probability mea-

sure of x(t) given F-' on R n . Then the conditional mean as a best estimate

can be written as

= @((u, T)) = fR, xdL(u, T) (41)

which we regard as a vector-valued functional of IL(u, T).

As a result of this simple transformation the scheduling/estimation cost

may be rewritten as a function of the scheduling strategy u(.) alone

JO(.)) = Eu() {11 x(T) - b(t(u, T) 11' + f c(x(t), u(t))dt (42)

rj <T.

Since we assumed that the switching costs are bounded from below, if the

observation interval is finite, then the optimal cost will be finite, and there

will be only a finite number of switchings among the sensor configurations

during [0, T]. Because the control for (42) is a pure switching control, we

shall follow standard terminology and call it an impulsive control [9].
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The optimization problem becomes the following impulse control problem:

Find an admissible impulsive control u*(.) such that

j(-(.)) = inf J(u(.))
u( ,)EU,,,i

where Uad is the set of all impulsive control laws adapted to the observations

)y( .- ( )

This problem falls into the class of optimal stochastic (impulse) control

problems with partially observations. It can be converted into a problem

with complete observations by introducting an evolution equation - that is,

a Zakai equation - for the conditional probability distribution of x(t) based

on the observations.

Let p(t, u(.)) be the conditional probability measure

p(u(.), t)(0) = E{ (t) (x(t))lrY', (-)j

for each control u(t). Here

~(t ex 0 h(x(s), u(s)) dz(s) - f ~(sus)1 dz(s)}

defines the change of measure in the Girsanov transformation

dP_ I, = C(t)

dP

so that under the probability measure Pu() the process

(t) =Z(t) - j h(x(s), u(s))ds
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is a standard Wiener process.7 The function h is the vector in (36) with each
1.

element multiplied by R1 .,i = 1,. . M.

For each control u(.), p(u(.), t)(0) is the unnormalized conditional prob-

ability measure of x(t) given the observations .u() This function is the

"state vector" in the sensor scheduling problem. It satisfies

dp(zu(.), t) = L*p(u(.), t)dt + (S(., u(t))Tdy(t, u(.)) (43)

p(u(.), t) = po

where y((t, u(.)) is the control (schedule) dependent observations process and

Rj 'h' ( x )x j(1)

6(x V) Ri hM(x),X{(, ~)

Thus, the infinite dimensional quantity p((u(.), .) becomes the state vector

in the fully observed version of the problem. Using p we can write the

estimation cost functional as

J(u(.))= E {I(p(u(.), T) + f <p(u(.), t), C(u(t)) > dt (44)

i=1
7The process x(.) retains its probability law under p"(.) due to the independence of

the noises and the initial conditions.
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where

C(ui) = c,,, ui E {1,2,. .. ,N}

K(ui, Uj) = k ui,,., H u, E {1, 2,.. , N}

and 41 is a functional defined on measures'

Eu{H1 x(T) - ((u,T)) Is} = E12(p(u(.),T))

To summarize, this formulation converts the optimal sensor scheduling

problem based on partial information - the noisy measurements y - which has

a finite dimensional state space, into a problem with full state observations,

but an infinite dimensional state space.

3.5.3 Solution of the Optimization Problem

A solution to the optimal sensor scheduling problem, specifically, a set of

variational inequalities defining the transitions in the sensor configuration

and the switching times, can be derived from a dynamic programming argu-

ment. Let u(t) = j be a fixed sensor schedule, and let pj be the corresponding

density p(.,j). Then

dpj = Lpjdt + p,(hj)Tdz(t) (45)

pj(0) =7r, j E {1, 2,. .. , N1

'In fact, %F(g) = I(x-) 11 u(x) 112 /A(1) where x 2 (x) =11 X 112, x E R', and pz is any

finite measure on R" such that M(X), p(X2) are defined.
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Let pj,, denote the solution to (45). Set

11 j(t)(F)(7r) = E{F(pj,,(t))} (46)

Then ]j is a semigroup (because pj(t) is a Markov process) which we shall

use to define the evolution of the cost in the scheduling process.

To simpilfy the presentation, consider the case N = 2. Let

Ci=C(i, -), i = 1,2

K, =K(1, 2)

K 2 := K(2, 1)

and let Ci(7r) =< Ci, ir > with the other quantities similarly defined.

Now consider the set of functionals U1(7r, t), U2(7r, t) such that

U(7r, t) 0, U2(7r,t) 0

Ui(ir, T) U2(7r, T) =I (7r)

U,(7r, t) 1 (9 - t)Ui(ir, j) + j -'(A - t)Cl(r)dA (47)

U2 (ir, t) [12(S - t)U2(i , S) + j 2(A - t)C2 (7r)dA (48)

Vs >t

and

U,(r, t) K, K(7r) + U2(7r,t) (49)

U2(7r,t) _ K 2 (r) + U1(,t) (50)
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These expressions have the following interpretation:

U (r,0) = inf J[tt(.)], I= 1,2 (51)
' ( 1=,p( O) 7?

is the optimal sensor scheduling and estimation performance for the system

starting at time zero with the initial configuration indicated. Suppose we

start with u(0) = 1, then so long as (49) holds with strict inequality we

should use schedule j = 1, since the optimal performance in this configu-

ration is less than the cost of switching to configuration j = 2 and then

continuing optimally thereafter - defined by the right side in (49). The opti-

mal performance during the period prior to a switch is determined by (47),

which holds with equality prior to the switch. The latter is the equation of

dynamic programming which governs the choice of the optimal esimation law

while sensor configuration j = 1 is being used.

At any time t when condition (49) holds with equality, then it is optimal to

switch from configuration j = 1 to j = 2, and continue optimally thereafter.

The sensor schedule is determined by the sequence of switching times. For

example, suppose i = 1 in (51) and let

r* = inf {Ui(p(t),t) = Kl (p1 (t)) + U2(p(t),t)} (52)t<T

Then r1 is the optimal time to switch from configuration j = 1 to j = 2. Let

p*(t) =pi(t), t E [0, rJ.

Next define

7; = inf {U 2(p2(t), t) = K 2(p2(t)) + U1(p 2(t), t)} (53)
<t<4T
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Then r is the optimal time to switch back from configuration j = 2 to

7 T
4

p (t) p= t, [r1,r-].

In this way the sequence of optimal switching times is constructed.

In the general case when there are N > 1 sensor configurations, then the

computation of the switching times is based on the inequality

Ui(rr, t) min {Kj(,r) + U(,r, t)}
ji#i

j=1,..,N

The system (47)-(50), appropriately modified constitutes a set of quasi-

variational inequalities defining the optimal sensor scheduling problem.

3.5.4 Implementation of the Algorithm

The numerical treatment of systems of Quasi-Variational Inequalities has

only just recently been attempted. The basic ideas are not substantially

different from the treatment of the nonlinear partial differential equations

- the Hamilton-Jacobi equation - of dynamic programming. There is one

substantial difficulity, however. That is that the boundary of the domain

on which the solution is defined - the optimal continuation policy between

switchings depends on the solution. Specifically, the switching set is defined

by the solution to the continuation condition.

The numerical treatment of optimal scheduling conditions was beyond

the scope of this effort.
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4 Preliminary Considerations: Decision Sup-

port Systems for Weapons Management

The framework we have defined for the problem of managing weapons re-

sources deployed from different platforms, including a coordinator and the

exchange of summary information by the local agents through the coordina-

tor. effectively supports "heuristic optimization" stategies. This is important,

since there is no hope of solving the multi-station coordination problem using

conventional analytical methods.

4.1 Constraint Directed Reasoning

Consider, for example, the method of constraint directed search developed by

M. Fox (14, 15] (see also [40]). The case study treated by Fox is job shop

scheduling which involves the selection of a set of operations whose execution

leads to the completion of an order; and the assignment of start and finish

times and resources to each operation. The number of possible schedules

grows exponentially with the number of orders, alternative production plans,

the number of substitutable resources, and other parameters of the system.

By fully integrating the constraints into the search/scheduling process it

is possible to bound the generation and focus the selection of aternative

solutions. In effect, this treats the job shop scheduling task by "constraint-

directed reasoning" [14].
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Fox defines a four "level" procedure for constraint-directed scheduling of

orders:

Level 1 Selects an order to be completed based on prioritization rules, its

category, and due date.

Level 2 Does a capacity analysis of the plant to determine the earliest start

time and the latest finish time for each operation associated with the

order. This determines time binding costraints which are effective at

the next level.

Level 3 Does a detailed scheduling of all resources necessary to produce the

order. A "beam search" method is used to select the schedule, based on

a pre-search analysis examining the constraints associated with the or-

der (determining the direction of the search), including a determination

of whether any new constraints should be generated. Level .3 outputs

reservation time bounds for each resource required for the operations

in the chosen schedule.

Level 4 Selects the actual reservations for the resources which minimize the

"work-in-process" time.

It is easy to draw certain parallels between this approach to selection

of resource allocation schedules, and aspects of the BM weapons system C'

problem. For example, the interaction of weapons deployed by the same plat-

form and by neighboring platforms must be coordinated to avoid counter

productive interference effects, as we have noted. This requires observing
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causality and precedence relationships (among other variables). Constraint

directed search procedures may be useful at some level in the C2 system for

the delineation of options (which satisfy all the constraints). The hierarchi-

cal structure of the algorithm is suggestive designing a "semi-automated"

weapons management decision support system. For example, the kinds of

tasks done on Levels 1 - 3 in Fox's system could be automated. The deploy-

ment decisions made on Level 4 would be the responsibility of the BM system

based on the constraint information output by the algorithms at Level 3.

The system developed by Fox for job shop scheduling was not intended

for applications like management and scheduling of weapons/EW resources

ano e ngagements. For example, it has no facilities to describe the adversary

nature -f SDI encounters and the attendant need to secure operations; it does

not provide for continued service under stressed conditions (loss of units); it

has no provision for evaluation and fusion of sensor data; etc. In additior it

treats orders as isolated events. In SDI operations it is necessary to "track"

the evolution of threats using a dynamic model of threats based on sensor

information. Based this, SDI engagements involve dynamic allocation prob-

lems, as we have argued. The methodology of Fox has no (apparent) means

for accomodating dynamical relationships among arriving orders. We have

discussed Fox's work here here as an example of some of the good work now

under way in Al applied to resource allocation problems and to illustrate

the way heuristic methods develop 2d in one AI application can be used to

suggest treatments in other contexts.
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4.2 Other Related Work

Other interesting work includes the BATTLE fire control system developed

at NRL by Slagle and Hamburger [46], and the work on applications of Al

to C.3 I reported in [4, 6, 11]. The work in [12] is especially relevant to this

project. Our treatment of the scheduling algorithm is more sophisticated

than the branch and bound technique used in [12] (and the beam search

method used in [14] for that matter). However, the modeling methodologies

based on "flavors" used in [12] are very interesting.

From a more general point of view, the problem of coordinating BM

operations over an extended theater should be addressed using "Distributed

Artificial Intelligence" (DAI) methods. Some preliminary work on this, and

additional references may be found in the report [1]. It is our judgment

that the theory and methodology of DAI techniques is not well developed,

and that an application of these techniques to tactical battle management

including weapons operations is premature at this time. However, in the long

run this may be an important area to pursue.
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