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JUNE 1989

THE DYNAMIC WEAPON-TARGET ASSIGNMENT PROBLEM _

Patrick Hosein
Michael Athans

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

We present a progress report on our recent results on the dynamic
version of the Weapon to Target Assignment {WTA) problem. In
our previous paper (Hosein et. al!) we presented results for the
Target-Based problem. In this paper we will present results for
the Asset-Based problem.

In the static Asset-Based WTA problem, the offense launches
missiles at valuable assets of the defense. The defense must assign
its weapons to these missiles so as to minimize the damage they
incur. In the dynamic version, this allocation is done in time
stages such that the outcomes of the previous engagemerts can
be used in making future assignments.

We will provide a suboptimal algorithm for the Static Asset-
Based WTA problem for the case of a single class of defense
weapons. We will also propose a heuristic for the dynamic ver-
sion of the problem. Numerical results will be provided to show
that a dynamic strategy offers a significant cost improvement
over a static one.

L _INTRODUCTION

The long range objective of our research is the quantitative study
of the theory of distributed C* organizations. Our present work
has been concentrated on certain aspects of situation assessment
and resource commitment.

Situation assessment entails the use of sensors to detect and
track the enemy and its weapons (i.e missiles, tanks etc.). These
sensors are geographically distributed so that distributed algo-
rithms are desirable. This problem can be formulated as a dis-
tributed hypothesis testing problem. Recent results of this re-
search may be found in the paper by Pothiawala et. al? in these
proceedings.

The resource commitment problem deals with the optimal as-
signment of the defense’s resources against the offense’s forces so
as to minimize the damage done to the defense’s assets. If the
battle is such that the defense has a single opportunity to engage
the enemy then the problem can be formulated as a static re-
source allocation problem. If multiple engagements are possible
(as for example in the Strategic Defense System (SDS) scenario)
then better use can be made of the defense’s resources by as-
signing them dynamically (i.e observe the outcomes of previous
engagements before making further assignments). This is called
a shoot-look-shoot strategy in the literature. In this paper we
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will provide a heuristic for the dynamic problem and make per-
formance comparisons of the static and dynamic strategies.

The resource allocation problem will typically be solved at a
C? node and the results transmitted to the relevant resources.
Each of these C? nodes will therefore be of vital importance to
the defense since its destruction will in eflect paralyze the re-
sources over which it has control. These nodes must therefore be
defended or replicated to increase the reliability of the system. A
progress report op research on the problem of reliability can be
found in the paper by Walton and Athans® in these proceedings.

This paper is in eflect a progress report on our research on
the resource commitment problem. The model we use is rich
enough to capture the nature of the mission (defense of the as-
sets), enemy strength (number and effectiveness of the enemy’s
missiles), defense strength (number and effectiveness of the de-
fense’s weapons) and strategy and tactics (preferential defense,
shoot-look- shoot etc.). It should be noted that basic research
studies on these topics are virtually non-existent.

Our work is motivated by military defense problems, two ex-
amples of which are as follows. The first example involves the
Anti-Aircraft Weapon (AAW) defense of Naval battle group or
battle force platforms. The assets being defended are aircraft
carrier(s), escort warships and support ships each of which is of
some intrinsic value to the defense. The threat to these assets
are enemy missiles launched from submarines, surface ships and
aircraft. These missiles may have diflerent damage probabili-
ties which depend on the missile type, asset type, etc. The de-
fense’s weapons are different types of AAW interceptors launched
from Aegis and other AAW ships. The kill probability of these
weapons may also depend on the specific missile-interceptor pair.
The objective of the defense is to maximize the expected surviv-
ing value of the assets.. The problem is to find which AAW inter-
ceptors should be assigned to each of the enemy missiles, when
should they be launched and why. This formulation allows for
a preferential defense where, in a heavy attack, it may be opti-
mal for the defense to leave “low™ valued assets undefended and
concentrate its resources on saving the “high” valued assets.

The second motivating example for our research is the mid-
course phase of the Strategic Defense System. In this case the as-
sets are our (the defense’s) population centers, Inter-Continental
Ballistic Missile (ICBM) silos, military installations, C* nodes,
etc. The threat to these assets are enemy re-entry vehicles (RV's),
surrounded by decoys. The defense’s weapons are Space-based
kinetic-kill vehicles (SBKKV's) and ERIS interceptors. The ob-
jective of the defense is the maximization of the expected total




sutviving value of the assets. The problem is the determination
of the optimal weapon-target assignments and the timing of the
interceptor launches.

2. THE STATIC WTA PROBLEM

In this section we will present the Static Asset-Based Weapon-
Target Assignment problem and a sub-optimal algorithm for solv-
" ing it. We will also show how an upper bound on the optimal
cost can be obtained. In this problem, missiles (the targets), are
launched by the offense and are aimed at valuable assets of the
defense. A value is assigned to each of these assets by the de-
fense. The defense has a limited number of weapons with which
to dustroy these targets. Associated with each weapon-target
pair is a kill probability which is the probability that a weapon
destroys the target if it is fired at it. We assume that the action
of a weapon on a target is independent of all other weapons and
- targets. Each of the attacking missiles are aimed at exactly one
of the defended assets and, if not intercepted, destroys the asset
with some probability, which will be cailed the damage proba-
bility of the target. We will assume that the action of a target
on an asset is independent of all other targets and assets. The
objective of the defense is to assign weapons to targets so as to
maximize the expected tota! value of the surviving assets.

2.1 Problem Statement
The following notation will be used:

K % the number of assets being defended,
def

Wi = the value of asset k to the defense,

Gk 4 the set of targets aimed for asset k,

ne X the size of set G, (IGkl),

i & the damage probability of target i,

pi 4 the kill probability of a weapon on target i,
N % the number of targets,

M % the number of weapons,

z; % the number of weapons assigned to target {

£ % the N-dimensional vector [z15.-- zn)7,

Xe % theno. of weapons assigned to defend asset k,
X %' the K-dimensional vector [Xy,..., Xk]T,

ZY) %' the set of vectors with non-negative, integer elements.

The Asset-Based WTA problem can be stated as follows:

K
JE) =Y W, JT (1 - 71 - pi)™), (1)

max
zezy) =1 i€Ga
N

subject to E:,- = M.
=1

The objective function is the total expected surviving asset value
and the constraint is due to the fact that the number of weapons
assigned must equal the number of weapons avajlable.

Because problem 1 is separable with respect to the assets, it
can be re-formulated as follows. Let Ji(X,) denote the maximum

expected surviving value of asset k if X, weapons are used to
defend it. We have:

k) = /) 1~ il"' |’l’ 2
Ji(X) {:i"‘e“i)"‘g‘ (1= p)™) (2)
s &
subject to Z zi = Xy
1€Gy

The objective function is the expected surviving value of the
asset. The original problem can be restated as:

K
max J(X)= Y J(Xp) (3)
{Xez}) ?;,

K
subject to }:Xg =M.
k=

Note that this problem has K variables as compared to the orig-
inal problem which had N variables.

2.2 Solution of the Static WTA Probl

We wil first provide an optimal algorithm for the subproblem
2. This will provide us with the functions Ji(X,). We will then
provide a sub-optimal algorithm for the problem as stated in the
form 3. We will also provide an upper bound on the optimal
cost. This upper bound can be used to check the quality of the
solution provided by the suboptimal algorithm.

2.2.1 Solution of the Subproblem

Since the logarithm function is monotonic then if we replace the
objective function of problem 2 by its logarithm then the opti-
mal assignment of the resulting problem will also be optimal for
the original problem. If we take the logarithm then the following
equivalent problem must be solved:

max F(X) = 3 In(1 - (1~ pi)*), (4)

{zi€24) $€Gx
E z; = Xi.
1€G,

subject to

Note that the function F(f ) is a separable concave function.
Problem 4 can be solved by using a greedy algorithm. Such an
algorithm works by sequentially assigning weapons to the target
for which the increase in the objective cost is maximum (see the
thesis by Hosein? for details). The assignment produced by such
an algorithm will be optimal for the subproblem 2

2.2.2 Salution of the Main Probl
A typical example of the function Ji(X,) is given in figure 1.
Note that the function is convex for small values of X; and con-
cave for large values. Let us define Ji to be the hull of the
function J; (i.e Jp is the minimum concave function which is
greater than or equal to the function J;). A good approximation
to this hull is the function which is the same as J for large values
of Xi and which is the tangent of J; which passes through the
origin for small values of X;. Let us now define the approximate
problem to 3 as

K
max j(i) = E],(Xk) (5)
k=1

{XezX)
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Figure 1: Typical example of the function Ji(X;)

K
subject to Z Xe=M.
k=1

Since this is a separable concave optimization problem one can
again show that a greedy algorithm is optimal (see Hosein*). Let
X" denote the optimal solution of problem 5. By the nature of
the greedy algorithm, we can show that for all but one of the
assets
Je(X7) = Ju(X}).

Let the asset for which this equality does not hold be asset v.
Also let X* denote the optimal solution to the original problem
3. One can show that

JXY+ J(X3) - 9K 2 IRy 2 IED). (6)

Therefore the optimal solution to the approximate problem 5 can
be used to obtain upper and lower bounds on the optimal cost of
problem 3.

Notice that the solution to the approximate problem 5 is a near
optimal solution to problem 3. The difference in cost between
these two solutions is bounded by:

XY - JX) S J(X2) - I(X2). (7)

Note that if J(X7) = J(X2) then X~ is optimal for 3. It can
also be shown that if J(X;) # J(X?) then by slightly increasing
or slightly decreasing the number of resources one can obtain a
problem for which the solution to the approximate problem 5 is
also optimal for 3.

2.3 Numerical Results

Example

Consider the following problem:

M = 200,N =100,K = 10.
Viz=lin=10, k=1,...,K.
= .7,1’.’ = .8, i= l,...,N.
Solution obtained by algorithm:

X =1[0,0,0,20,30,30,30, 30, 30, 30).
J(X) =530

Upper bound = 5.36

NOTE: If M = 180 or M = 210 then the algorithm produces the
optimal solution.

Optimal cost Sensitivity Analysis
Consider the following problem:
M =200,N =100, K = 10.
Vi=ln =10, k=1,...,K.
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Figure 2: Plot of the cost and upper bound versus the kill prob-
ability p;
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Figure 3: Plot of the cost and upper bound versus the damage
probability x;

p=8m=1 i=1,...,N

In figure 2 we have plotted the cost of the solution produced by
the algorithm for various values of the kill probability p. The
dotted curve is the upper bound. Note that for kill probabilities
greater than 0.5 the optimal cost is very sensitive to the value
of the kill probability. In figure 3 we have plotted the cost for
various values of the damage probability x. Note that the cost
decrease almost linearly with the damage probability. In fig-
ure 4 we have plotted the cost for various numbers of weapons.
Note that the cost increases almost linearly with the number of
weapons. In figure 5 we have plotted the cost for various values
of ni. For this case we used M = 2N = 20n; weapons.

(M)

Figure 4: Plot of the cost and upper bound versus the number
of weapons M
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Figure 5: Plot of the cost and upper bound versus the number
of targets per asset

3. THE DYNAMIC WTA PROBLEM

In this section we will consider the dynamic version of the WTA
problem. We will see that a dynamic strategy increases the cost
performance of the system at the expeuse of increased compu-
tational complexity. The complexity can be reduced by making
approximations.

In this section we will consider the dynamic version of the
Asset-Based Resource Allocation Problem. Because of the enor-
mous complexity of this problem we will make the assumption

- that the kill probability of a weapon- target pair depends solely

on the asset to which the target is aimed. We will also assume
that the damage probability of a target depends solely on the
asset to which the target is aimed. Under these assumptions one
can show that for each stage and asset it is optimal to spread the
weapons assigned to defend an asset evenly among the targets
aimed for the asset. Therefore with these assumptions we can
use the number of weapons assigned to the defense of an asset as
the decision variable. This greatly reduces the dimensionality of
the problem. We will only consider the case of two stages, how-
ever the results can easily be extended to more than two stages.

In this problem the results of the engagements of the first stage
are observed before the assignments of the second stage are made.
The problem is to choose the number of weapons to use in stage
1 as well as the assignment of these weapons to the targets. The
objective is to maximize the expected total value of the assets
which survive at the end of stage 2. Note that by the principal
of optimality, the optimal static assignment will be used in stage
2.

1.1 Problem Statement
The following notation will be used.

% the number of assets,

4 the number of targets at the start of stage 1,
G.(t)‘:d the set of targets aimed for asset k in stage ¢,
the number of targets aimed for asset & in stage ¢,
the number of weapons,
the number of weapons to be used in stage t.
the value of asset k,
px(t)’=  the kill probability on a target aimed for asset k,
Xk 4’ the number of weapons assigned to defend asset k.

Note that for stage 1 the decision variables are m; and X. Given

X the individual target assignments can be obtained by spreading
the weapons assigned to the defense of an asset as evenly as
possible among the targets aimed for the assel. In the second
stage one has to solve a static problem with M — m,; weapons
and with n,(2) targets aimed at asset k.

We will refer to the vector 7i(2) as the state of the system at
the beginning of stage 2. The state of each asset evolves stochas-
tically as follows. To simplify the expression we have left out the
subscript k.

Prin(2) = jIX = x] =
Zl:(l — pHRT (L = (1 = p(1)) F L=
={

x[1 = (1 - p(1)) i PO+ +t-x-5

for
i=1,...,n(1)
where X
L=max{j+x- n(l)(ln-(ﬂJ +1),0}
and

7= min{x - n(l)l_ﬁjy.f}

The state evolution simply states that the number of targets
which survive stage 1 is a random variable. The distribution of
this random variable is obtained by convolving two binomial dis-
tributions. The success probability of one of these distributions
is given by (1 ~ p(l))l;{ﬂj. The success probability of the other
binomial distribution is given by (1 - p(l))r;ﬁﬂ. Let us denote
the optimal cost for the static problem with state 7i{2) and m;
weapons by J;(7(2),m;). The optimization problem may now
be stated as

max Jg= E  [J7(f(2),m3)] 8

Rezl) — (a@)
subject to the state evolution 8 and
(Xl +ma = M.

The objective is the expectation over all possible states of the op-
timal second stage cost given that state. The copstraint says that
the number of weapons used in stage 1 (|X|) plus those used in
stage 2 (m3) must be equal to the total number of weapons. One
can see that even the statement of the problem is a formidable
task even under the assumption that the kill probabilities are
solely asset dependent.

The only decision variables over which the objective function is
to be optimized are m; and X, which is the number of weapons
to be used in the first stage m; and the assignment of these
weapons to assets X. We will therefore denote the optimal cost
for the case in which m; weapons are used in the first stage with
assignment X by J,(m;, X). The problem can therefore also be
stated as:

(meZy) { fezh J‘(m'i)} ©

{Xez¥}

K
subject to Exk =m,
=1
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Figure 6: Plot of the expected two-stage cost versus the number
of weapons used in stage 1.

and 0<m <M.

If we fix m; then the inner subproblem can be written as

max  Ja(m;, X) (10)
{Xezfy

x
subject to z X =m,.

k=1

This will be called the assignment subproblem. If we can solve
the assignment subproblem then the original problem can be
solved as follows. Let X* denote the optimal assignment of the
subproblem 10. Note that this optimal assignment depends on
the value of m;. However this is implicit in the solution since
zf:, X = my. The solution to the original problem may now
be obtained by solving the following:

J X" 11
o3 a(my, X°) (11)
subject to 0<m <M.

Each of the problems 10 and 11 will be considered separately.

3.2 Solution of the Dynamic WTA Problem

Our efforts will be concentrated on the solution of problem 10
since we will show that problem 11 has many local maxima and
hence, in general, a global search will have to be done to obtain
the optimal solution. We can also obtain an upper bound on
the optimal cost. Details of this upper bound can be found in
Hosein*.

3.2.1 Optimization over m;

Let us assume that we can solve the subproblem 10. In figure
6 we have plotted the cost Jd(m,,)f *) versus m, for the case of
K =2,m(2)=n(2)=2n(2) =p(2) = (1) = ps(1) =

W), = Wy = 1, and M = 8. For this case the optimal decision
variables are m} = 4, X; = X; = 2. Because the objective
function has many local maxima, the global maximum can only
be found by doing a global search.

3.2.2 Optimization over the Decision Variable X

In this section we will consider the assignment subproblem 10. In
this problem the number of weapons to be used in the first stage
is fixed and the objective is to assign these weapons optimally.
Recall that for the static version of this problem we were able to
obtain a suboptimal algorithm but not an optimal one. In this
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Figure 7: Jd(Xl,Xg)w.[Xl, Xz]

Figure 8: J3(X1, X2)vs.[X1, X3)

section we will provide a suboptimal algorithm for the dynamic
problem.

The algorithm will be presented by applying it to a mnp]e ex-
ample. Consider the case in which K = 2,7(1) = [10,10}, W=
[1,1],pe{t) = 0.6. In figure 7 we have plotted the function
Ja(X1, Xz)vs.[X1X;). Note that this function is non-concave.
Furthermore it is non-separable with respect to the assets. We
appraximate J¢ by a concave separable function Ja as follows.
Let Jy(X;,0) be the hull of the function Jg(X),0). Similarly let
J4(0, X3) be the hull of the function Ju(0, X2). Finally let

Ja( X1, X2) = Ja(X1,0) + Ju(0, X3).

The a.pproxxmatlon Jy is plotted in figure 8. Note that the func-
tion Jy is concave and separable with respect to the assets. One
can now use a greedy algorithm to obtain the optxmd assign-
ment of the problem with objective function Jy. This is the
sub-optimal solution.

3.3 Numerical Regults
Example 1

M =200,N = 100, K = 10,n, = 10,pi(t) = 6, Vi = L, mp = L.
STATIC STRATEGY:
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Figure 9: Expected cost vs. Number of defended Assets

Optimal static solution: X* = [0,0,0.0,0,40,40,40,40,40).
Optimal static cost = 3.9.

DYNAMIC STRATEGY:

Solution obtained by algorithm:

m, = 100.

X = [10,10,10,10,10,10.10,10,10,10}.

Lower bound on solution X = 7.1

Upper bound on optimal solution = 7.9

Note that if a static strategy is used then 5 of the 10 assets
are defended while if a dynamic strategy is used all 10 assets are
defended. Also note that the performance of the dynamic strat-
egy is almost twice as good as that of the static strategy. Finally
note that the solution produced by our sub-optimal algorithm is
close to optimal.

In figure 9 we have plotted the expected cost versus the number
of assets defended for both the static and the dynamic strategies.
Note that the dynamic strategy is less sensitive to the number of
assets defended than the static strategy.

Example 2
M = 100,N = 100,K = 10,n, = 10,pi(t) = 8, Vi = L,mp = 1.
STATIC STRATEGY:
Optima static solution: X* = [0,0,0,0,0,20,20,20,20,20].
Optimal static cost = 3.3
DYNAMIC STRATEGY:
Solution obtained by algorithm:
m; = 70.
X =0,0,0,10,10,10,10,10,10,10).
Lower bound on solution X = 6.3
Upper bound on optimal solution = 6.5

Note that although the number of weapons is small, in the
dynamic strategy 7 of the assets are defended in the first stage.
Also again note that our algorithm performs well.

Exampie 3
M =200,N =100,K = 10,n; = 10,Vi = 1,2, = 1.

Case 1:

Pe(1) = 5,p(2) = .7

Solution obtained by algorithm:

my = 90.

X = (0,10,10,10,10,10,10,10,10,10).
Lower bound on solution X = 6.9
Upper bound on optimal solution = 7.2
Case 2:

P(1)=.7,p(2)= .5
Solution obtained by algorithm:
my = 120.

X =[20,20,10,10,10,10,10,10,10,10).
Lower bound on solution X = 7.7
Upper bound on optimal solution = 8.5

Note that in case 1 less weapons are used in stage 1 because
the kill probability in this stage is smaller than that in the sec-
ond stage. Similarly, in case 2 more weapons are used in stage
1. Finally note that the performance obtained by using the more
effective weapons in stage 1 is considerably better than that ob-
tained by using the more eflective weapons in stage 2.

4. CONCLUSIONS

We have seen that the Dynamic Weapon Allocation problem is
considerably more difficult than the static one. However, the
introduction of feedback can significantly improve eflectiveness
(by roughly & factor of twa). By using simple approximations
for the dynamic problem we can significantly reduce the com-
putational complexity of the problem while maintaining the cost
performance advantage over the static strategy. The algorithms
we have propdsed for bsth the static and dynamic problems are
efficient and produce near optimal solutions.

This paper has been a progress report of our ongoing research.
We plan to continue working on both analytical and numerical
studies with the intent of providing an intuitive understanding
of the problems.
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