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ABSTRACT will provide a heuristic for the dynamic problem and make per-
formance comparisons of the static and dynamic strategies.

We present a progress report on our recent results on the dynamic The resource allocation problem will typically be solved at a
version of the Weapon to Target Assignment (WTA) problem. In C3 node and the results transmitted to the relevant resources.
our previous paper (Hosein et. al') we presented results for the Each of these C3 nodes will therefore be of vital importance to
Target-Based problem. In this paper we will present results for the defense since its destruction will in effect paralyze the re-
the Asset-Based problem. sources over which it has control. These nodes must therefore be

In the static Asset-Based WTA problem, the offense launches defended or replicated to increase the reliability of the system. A
missiles at valuable assets of the defense. The defense must assign progress report on research on the problem of reliability can be
its weapons to these missiles so as to minimize the damage they found in the paper by Walton and Athans3 in these proceedings.
incur. In the dynamic version, this allocation is done in time This paper is in effect a progress report on our research on
stages such that the outcomes of the preious engagemerts can the resource commitment problem. The model we use is rich
be used in making future assignments. enough to capture the nature of the mission (defense of the as-

We will provide a suboptimal algorithm for the Static Asset- sets), enemy strength (number and effectiveness of the enemy's
Based WTA problem for the case of a single class of defense missiles), defense strength (number and effectiveness of the de-
weapons. We will also propose a heuristic for the dynamic ver- fense's weapons) and strategy and tactics (preferential defense,
sion of the problem. Numerical results will be provided to show shoot-look- shoot etc.). It should be noted that basic research
that a dynamic strategy offers a significant cost improvement studies on these topics are virtually non-existent.
over a static one. Our work is motivated by military defense problems, two ex-

amples of which are as follows. The first example involves the

Anti-Aircraft Weapon (AAW) defense of Naval battle group or

1. INTRODUCTION battle force platforms. The assets being defended are aircraft

carrier(s), escort warships and support ships each of which is of

The long range objective of our research is the quantitative study some intrinsic value to the defense. The threat to these assets
of the theory of distributed C3 organizations. Our present work are enemy missiles launched from submarines, surface ships and
has been concentrated on certain aspects of situation assessment aircraft. These missiles may have different damage probabili-

and resource commitment. ties which depend on the missile type, asset type, etc. The de-

Situation assessment entails the use of sensors to detect and fense's weapons are different types of AAW interceptors launched
track the enemy and its weapons (i.e missiles, tanks etc.). These from Aegis and other AAW ships. The kill probability of these

sensors are geographically distributed so that distributed algo- weapons may also depend on the specific missile-interceptor pair.

rithms are desirable. This problem can be formulated as a dis- The objective of the defense is to maximize the expected surviv-
tributed hypothesis testing problem. Recent results of this re- iag value of the assets.. The problem is to find which AAW inter-

search may be found in the paper by Pothiawala et. a 2 in these ceptors should be assigned to each of the enemy missiles, when

proceedings. should they be launched and why. This formulation allows for

The resource commitment problem deals with the optimal as- a preferential defense where, in a heavy attack, it may be opti-

signment of the defense's resources against the offense's forces so mal for the defense to leave "low" valued assets undefended and
as to minimize the damage done to the defense's assets. If the concentrate its resources on saving the "high" valued assets.
battle is such that the defense has a single opportunity to engage The second motivating example for our research is the mid-
the enemy then the problem can be formulated as a static re- course phase of the Strategic Defense System. In this case the as-
source allocation problem. If multiple engagements are possible sets are our (the defense's) population centers, Inter-Continental
(as for example in the Strategic Defense System (SDS) scenario) Ballistic Missile (ICBM) silos, military installations, C' nodes,
then better use can be made of the defense's resources by as- etc. The threat to these assets are enemy re-entry vehicles (RV's),
signing them dynamically (i.e observe the outcomes of previous surrounded by decoys. The defense's weapons are Space-based
engagements before making further assignments). This is called kinetic-kill vehicles (SBKKV's) and ERIS interceptors. The ob-
a shoot-look-shoot strategy in the literature. In this paper we jective of the defense is the maximization of the expected total

To appear in Proc. 1989 Symposium on C
2

Research, Washington, D.C.



surviving value of the assets. The problem is the determination expected surviving value of asset k if Xk weapons are used to
of the optimal weapon-target assignments and the timing of the defend it. We have:
interceptor launches.

Jk(Xk) = max WV, flI(1 - r,(1 -p,)9,, (2)
4X.EZ ) . G,

2. TIlE STATIC WTA PROBLEM subject to F Xi = Xk.
i4EGk,

In this section we will present the Static Asset-Based Weapon- The objective function is the expected surviving value of the
Target Assignment problem and a sub-optimal algorithm for solv- asset. The original problem can be restated as:
ing it. We will also show how an upper bound on the optimal K
cost can be obtained. In this problem, missiles (the targets), are max J(X) = Jk(Xk) (3)
launched by the offense and are aimed at valuable assets of the {VEZ,') k=J
defense. A value is assigned to each of these assets by the de-
fense. The defense has a limited number of weapons with which K
to destroy these targets. Associated with each weapon-target t =
pair is a kill probability which is the probability that a weapon
destroys the target if it is fired at it. We assume that the action n a t problem has N variablesa
of a weapon on a target is independent of all other weapons and
targets. Each of the attacking missiles are aimed at exactly one
of the defended assets and, if not intercepted, destroys the asset
with some probability, which will be called the damage proba- We will first provide an optimal algorithm for the subproblem
bility of the target. We will assume that the action of a target 2. This will provide us with the functions Jk(Xk). We will then
on an asset is independent of all other targets and assets. The provide a sub-optimal algorithm for the problem as stated in the
objective of the defense is to assign weapons to targets so as to form 3. We will also provide an upper bound on the optimal
maximize thp expected tot&! value of the surviving assets, cost. This upper bound can be used to check the quality of the

2.1 Problem Statement solution provided by the suboptimal algorithm.

2.2.1 Solution of the SubproblemThe following notation will be used: Since the logarithm function is monotonic then if we replace the

objective function of problem 2 by its logarithm then the opti-dC the number of assets being defended, mal assignment of the resulting problem will also be optimal for
Wk = the value of asset k to the defense, the original problem. If we take the logarithm then the following
Gk d= the set of targets aimed for asset k, equivalent problem must be solved:
n d the size of set Gi, OW), max F(9) = E In(' - v(l - p,),), (4)

=ri the damage probability of target i, {zia+}
de

pi = the kill probability of a weapon on target i,
N the number of targets, subject to Mi = Xk.
M = the number of weapons, .eGi

Zi --- the number of weapons assigned to target i Note that the function F(X) is a separable concave function.
F %= the N-dimensional vector [XI ... , ZN]p

,  Problem 4 can be solved by using a greedy algorithm. Such an
the no. of weapons assigned to defend asset k, algorithm works by sequentially assigning weapons to the target

IeT, for which the increase in the objective cost is maximum (see the' - the K-dimensional vector IX 1 .... , XKIT, thesis by Hosein 4 for details). The assignment produced by such
ZN d the set of vectors with non-negative, integer elements, an algorithm will be optimal for the subproblem 2

The Asset-Based WTA problem can be stated as follows: 2.2.2 Solution of the Main Problem

K A typical example of the function Jk(Xk) is given in figure 1.
max J()f= ' W,. J'J (l- g-p,,),) (1) Note that the function is convex for small values of X and con-{IEz}) = cave for large values. Let us define Jk to be the hull of thef ) knil SeGA, function J (i.e Ji is the minimum concave function which is

N greater than or equal to the function J). A good approximation
subject to E = M. to this hull is the function which is the same as 4k for large values

iffi1 of Xk and which is the tangent of J4 which passes through the
The objective function is the total expected surviving asset value origin for small values of X. Let us now define the approximate
and the constraint is due to the fact that the number of weapons problem to 3 as
assigned must equal the number of weapons available. KBecause problem I is separable with respect to the assets, it max J(g9) = J .4(X) (5)
can be re-formulated as follows. Let J4(Xk) denote the maximum {Iezf)

2
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Figure 1: Typical example of the function Jk(Xk) Figure 2: Plot of the cost and upper bound versus the kill prob-
ability p,

KW
subject to FXk = M. 10(

k=1

Since this is a separable concave optimization problem one can 9

again show that a greedy algorithm is optimal (see Hosein 4 ). Let

X denote the optimal solution of problem 5. By the nature of
the greedy algorithm, we can show that for all but one of the 7

assets

Jk(X;) = ik(k;).6
0 0.5 1Let the asset for which this equality does not hold be asset v.

Also let g* denote the optimal solution to the original problem pi
3. One can show that Figure 3: Plot of the cost and upper bound versus the damage

F probability ri
J(X ) + J(X ) - J(.k) 2_ J(.-) > J(X°). (6)

Therefore the optimal solution to the approximate problem 5 can pi = .8, W, 1, l ...... , N.
be used to obtain upper and lower bounds on the optimal cost of In figure 2 we have plotted the cost of the solution produced by
problem 3. the algorithm for various values of the kill probability p. The

Notice that the solution to the approximate problem 5 is a near dotted curve is the upper bound. Note that for kill probabilities
optimal solution to problem 3. The difference in cost between greater than 0.5 the optimal cost is very sensitive to the value
these two solutions iE bounded by: of the kill probability. In figure 3 we have plotted the cost for

various values of the damage probability ir. Note that the cost
J(9') - J(X) S j(a) - J(f' ). (7) decrease almost linearly with the damage probability. In fig-

ure 4 we have plotted the cost for various numbers of weapons.Note that if i(k) J(.") then X is optimal for 3. It can Note that the cost increases almost linearly with the number of
also be shown that if ,.I.) $ J(.' ) then by slightly increasing weapons. In figure 5 we have plotted the cost for various values
or slightly decreasing the number of resources one can obtain a of nk. For this case we used M = 2N = 20nk weapons.
problem for which the solution to the approximate problem 5 is
also optimal for 3.

2.3 Numerical Results

Example 1
Consider the following problem:
M = 200,N = 100, K = 10.
Vk=I,n,=1O, k=1,...,K.
pi = .7,xi =.8, i ~ l . N 6 -

Solution obtained by algorithm:
) = 10,0,0,20,30,30,30,30,30,30].
J(9) = 5.30 21
Upper bound 5.36 100 150 200 250 300
NOTE: If M = 180 or M = 210 then the algorithm produces the M
optimal solution.

Optimal cost Sensitivity Analysis
Consider the following problem:
M = 200,N = 100,K = 10. Figure 4: Plot of the cost and upper bound versus the number
Va=1,nk= 10, k= ,...,K. of weaponsM

3



d the individual target assignments can be obtained by spreading
8 the weapons assigned to the defense of an asset as evenly as

possible among the targets aimed for the asset. In the second
stage one has to solve a static problem with M - m] weapons
and with n&(2) targets aimed at asset k.

We will refer to the vector ii(2) as the state of the system at6 1the beginning of stage 2. The state of each asset evolves stochas-
___tically as follows. To simplify the expression we have left out the

10 15 subscript k.

nk
Figure 5: Plot of the cost and upper bound versus the number Pr[n(2) = jIX = X] =
of targets per asset

( - pOl))'+'1LiJ[f - (I - ()r l-'L j-

3. THE DYNAMIC WTA PROBLEM
×x1l (1 - 1)tz J n l t l  n l e -  -

In this section we will consider the dynamic version of the WTA

problem. We will see that a dynamic strategy increases the cost for
performance of the system at the expense of increased compu- 1..., n(1)
tational complexity. The complexity can be reduced by making where
approximations. I = max{j + X - n(I)(L-- J + 1),0)

In this section we will consider the dynamic version of the
Asset-Based Resource Allocation Problem. Because of the enor- and
mous complexity of this problem we will make the assumption t = min{X - n(l1) i}
that the kill probability of a weapon- target pair depends solely Tin sa s t t h nu e o tr t

on the asset to which the target is aimed. We will also assume The state evolution simply states that the number of targets
that the damage probability of a target depends solely on the which survive stage I is a random variable. The distribution of
asset to which the target is aimed. Under these assumptions one this random variable is obtained by convolving two binomial dis-
can show that for each stage and asset it is optimal to spread the tributions. The success probability of one of these distributions
weapons assigned to defend an asset evenly among the targets is given by (I - p(l))1 i J. The success probability of the other
aimed for the asset. Therefore with these assumptions we can binomial distribution is given by (1 - P(I))r 1. Let us denote
use the number of weapons assigned to the defense of an asset as the optimal cost for the static problem with state fi(2) and M2
the decision variable. This greatly reduces the dimensionality of weapons by J.(5(2),m2). The optimization problem may now
the problem. We will only consider the case of two stages, how- be stated as
ever the results can easily be extended to more than two stages.

In this problem the results of the engagements of the first stage max J E [J.(n(2), M2 )] (8)
are observed before the assignments of the second stage are made. { (2))
The problem is to choose the number of weapons to use in stage subject to the state evolution 8 and
I as well as the assignment of these weapons to the targets. The
objective is to maximize the expected total value of the assets IXkI + M2 = M.
which survive at the end of stage 2. Note that by the principal
of optimality, the optimal static assignment will be used in stage The objectiv ste st expetation over all possible states of the op-
2. timal second stage cost given that state. The constraint says that

the number of weapons used in stage 1 (1A'1) plus those used in
3.1 Problem Statement stage 2 (m2 ) must be equal to the total number of weapons. One

can see that even the statement of the problem is a formidable
The following notation will be used. task even under the assumption that the kill probabilities are

solely asset dependent.
* the number of assets, The only decision variables over which the objective function is

* -- the number of targets at the start of stage 1, to be optimized are m, and X, which is the number of weapons
G d(tf-- the set of targets aimed for asset k in stage t, to be used in the first stage m, and the assignment of thesen&(t-f = the number of targets aimed for asset k in stage t, weapons to assets 9. We will therefore denote the optimal coststage for the case in which m, weapons are used in the first stage with
M r-- the number of weapons, assignment 9 by Jd(ml, ). The problem can therefore also be
m t the number of weapons to be used in stage t. stated as:
Wk - the value of asset , )max max z( ,g 9
pk(t) =4 ( the kill probability on a target aimed for asset k, { {nEN}IE29') I
X II the number of weapons assigned to defend asset k. x

Note that for stage 1 the decision variables are m, and X. Given jec to . = in,,
k.i

4
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Figure 6: Plot of the expected two-stage cost versus the number - \ ...
of weapons used in stage 1. '\ \N
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This will be called the assignment subproblem. If we can solve

the assignment subproblem then the original problem can be ,
solved as follows. Let 9' denote the optimal assignment of the .' .

subproblem 10. Note that this optimal assignment depends on
the value of Ml. However this is implicit in the solution since
If w Xk = mi. The solution to the originab problem may now

be obtained by solving the following:

max Jd(mI,X) (10)

subject to 0 < MI < M.

Each of the problems 10 and 11 will be considered separately. Figure 8: J (XI, X2)VS[XI, X21

3.2 Solution of the Dynamic WTA Problem section we will provide a suboptimal algorithm for the dynamic

problem.
Our efforts will be concentrated on the solution of problem 10 The algorithm will be presented by applying it to a simple ex-

since we will show that problem 11 has many local maxima and amnple. Consider the case in which K = 2, 6(1) = [10, 10),W17 =

hence, in general, a global search will have to be done to obtain [1,1],p,(t) = 0.6. In figure 7 we have plotted the function
the optima solution. We can also obemin an upper bound on Jd(XI,X2)VS[XIX2]. Note that this function is non-concave.
the optimal cost. Details of this upper bound can be found in Furthermore it is non-separable with respect to the assets. We

Hosein 4 .  approximate Jdr by a concave separable function id as follows.

3.2.1 Optimization over mi Le (, ) be the hull of the function Jd(,0). iarly let
Let us assume that we can solve the subproblem 10. In figure
6 we ainplotted the cost Jd(ml,') versus MI for the case of lo(Xn,X2) = jg(X:,0) + id(0,X2).

= 2, nm(2) = n2(2) = 2, p,(2) = p(2) = (() = 2() = 0.8,

Wi' = W2 = 1, and M = 8. For this case the optimal decision The approximation Jd is plotted in figure 8. Note that the func-

variables are mI* = 4, X, = X2 = 2. Because the objective tion id is concave and separable with respect to the assets. One

function has many local maxima, the global maximum can only can now use a greedy algorithm to obtain the optimal assign-be found by doing a global search ment of the problem with objective function be. This is the

3.2.2 Opti on over the Decision Variable secti el ovidona

In this section we will consider the assignment subproblem 10. In 3 a3 Numerical Results
this problem the number of weapons to be used in the first stage
is fixed and the objective is wl ave t hese weapons optimally. Example 0
Recall that for the static version of this problem we were able to M = 200, N = 00, K = 10, n 10,p(t) re .6, Vsc 1, k W

obtain a suboptimal algorithm but not sn optimal one. In this STATIC STRATEGY:

Le5 ~ X,)b h ulo h fnto dX,) iial e



8 rX = [20.20,10,10,10,10,10,I0,10,10].

Lower bound on solution X = 7.7
G .Upper bound on optimal solution = 8.5

I > Note that in case 1 less weapons are used in stage 1 because
static 1 the kill probability in this stage is smaller tha, that in the sec-

ond stage. Similarly, in case 2 more weapons are used in stage
/ 71. Finally note that the performance obtained by using the more

0 . , effective weapons in stage I is considerably better than that ob-
0 t0 tained by using the more effective weapons in stage 2.

Figure 9: Expected cost vs. Number of defended Assets

4. CONCLUSIONS
Optima] static solution: g* = [0,0,0.0,0,40,40,40,40,40]. We have seen that the Dynamic Weapon Allocation problem is
Optimal static cost = 3.9. considerably more difficult than the static one. However, theDYNAMIC STRATEGY: introduction of feedback can significantly improve effectiveness
Solution obtained by algorithm: (by roughly a factor of two). By using simple approximations
im = 100. for the dynamic problem we can significantly reduce the com-

1 [0,l0,10,I0,I0,10.10,I0,10,10]. putational complexity of the problem while maintaining the cost
Lower bound on solution X = 7.1 performance advantage over the static strategy. The algorithms
Upper bound on optimal solution = 7.9 we have proposed for b6th the static and oynamic problems are

Note that if a static strategy is used then 5 of the 10 assets efficient and produce near optimal solutions.
are defended while if a dynamic strategy is used all 10 assets are This paper has been a progress report of our ongoing research.
defended. Also note that the performance of the dynamic strat- We plan to continue working on both analytical and numerical
egy is almost twice as good as that of the static strategy. Finally studies with the intent of providing an intuitive understanding
note that the solution produced by our sub-optimal algorithm is of the problems.
close to optimal.

In figure 9 we have plotted the expected cost versus the number
of assets defended for both the static and the dynamic strategies.
Note that the dynamic strategy is less sensitive to the number of ACKNOWLEDGMENT
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