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Waiting Times for
M/G/1 Queues with Service-Time-

Dependent Server Vacations

i P.H. Brill and C.M. Harris

I
I

i June 22, 1989

ABSTRACT

i This paper shows how to determine the stationary distribution of the
virtual wait in M/G/1 queues with either one at-a-time or exhaustive server
vacations. Each vacation time may depend on the immediately preceding

service time or on whether the server finds the system empty after return-
ing from vacation. In this way, it is possible to model situations such as
long service times followed by short vacations, and vice versa. The method
of analysis employs level-crossing theory. Detailed examples are given for
various cases of service and vacation-time distributions.
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* 1 INTRODUCTION

Recent interest in queues with server vacations has focused on stochastic de-
composition properties for the number-in-the-system random variable. Re-
searchers who have investigated and obtained a number of important results
for this aspect of the model include Gaver (1962), Cooper (1970), Levy and
Yechiali (1975), Scholl and Kleinrock (1983), Fuhrmann (1984), Fuhrmann
and Cooper (1985 a,b), Shanthikumar (1988), and Harris and Marchal (1988).
Models have also been developed for G/G/1 server vacation queues in Doshi

S(1985), Keilson and Servi (1986), and Servi (1986). But few results are avail-
able for the stationary distribution of the waiting-time random variable in
such queues. The mean and variance of the waiting time in the specialized
case of D/G/1 queues with server vacation were given in Servi (1986) using
complex transform methods. Doshi (1986) showed an integral equation for
the probability density function (pdf) of the stationary virtual wait for an
M/G/1 server-vacation model, based on Brill and Posner (1977, 1981). But
his equation did not involve the kind of dependency considered in this paper,
and Doshi also did not provide any of the detailed complexities necessary for
carrying out such analyses.

A model with state-dependent server vacations was investigated by Har-
ris and Marchal (1988). Their paper offered a decomposition principle for
M/G/1 queues in which the server-vacation times depend on the number of
customers remaining in the system at service completion epochs.

The object of the present paper is to derive the stationary distribution of

the virtual waiting time in M/G/1 queues in which each server vacation time
may depend on the immediately preceding service time. Consideration of

I this dependency allows, for example, the possibility of rewarding short service
times with long vacations, penalizing long service times with short vacations,
or modeling situations where the server naturally requires a service-time-

dependent recovery period after each service. The modeling technique and
solution method used in this paper are based on level crossing theory for
obtaining probability distributions directly, originated by Brill (1975), and
further elucidated, for example, in Brill and Posner (1977, 1981).

The level-crossing methodology is extremely advantageous in the present
context, and yields a general integral equation for the pdf of the virtual wait
immediately (given in Section 2, Equations (1) - (4)). This paper emphasizes
how the general integral equation can be specialized in various important

12



iI
I
I

cases of service-time and server-vacation-time distributions. It will become
clear (Section 3) that this procedure may require careful analysis, accord-
ing to the type of dependency of server vacation on customer service time.
Furthermore, we obtain explicitly, or indicate how to obtain, the pdf of the
virtual wait in these cases. The examples presented point to a potentially
large class of models that can be solved in a similar manner.

I Section 2 of this paper derives a general model equation for the stationary
distribution of the virtual wait in M/G/1 queues with one-at-a-time server
vacations depending on the immediately preceding service times. Variations
of this equation are given for the exhaustive server vacation model and other
special cases. Section 3 utilizes these model equations to obtain the sf a-
tionary distribution of the virtual wait in four examples. These illustrative
examples demonstrate an approach for obtaining the distribution of the vir-
tual wait in other special cases of interest.

2 Model Equations for the Stationary Dis-
Itribution of Virtual Wait in M/G/1 Queues

with One-at-a-Time Server Vacations De-
pending on Service Times

Customers arrive in a Poisson stream at rate A and are served in order of ar-3 rival by a single server who may take intermittent vacations following service
completions. The service times are denoted by S,, n > 1, having common
probability distribution function B(.). Immediately following the nth service
completion, the server takes a vacation of duration V,(S,,) - V,, which may
depend on S,,. Denote an arbitrary steady-state service time by S S,

and a corresponding vacation time by V t=t V,, n > 1. If the server re-
turns from a vacation and finds the system empty (no waiting customers), it
immediately takes another vacation whose duration is denoted by V0 .

We define the conditional distribution function of the random variable V
given S by

H(x,y) = P(V < x IS = y),

3 and the distribution function of IV0 by

H0(x) = P(V0 < x).

I 3
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Also define B(x) = 1 - B(x),H(x) = 1 - H(x), and H0 (x) = 1 - Ho(z), for
all x.

Let W(t) denote the virtual wait at time t, defined as the delay of a
potential arrival at time t to the system until he begins service (at instant
W(t) + t). The stationary distribution function and density function of W(t)
are denoted by

I F(x) = lir P(W(t) < x')
t --- 0

* and

an ) - dF (x)
dx

I respectively, assuming they exist. In this system all customers must wait
a positive time with probability one, and thus P(W(t) = 0) = 0, t > 0,
implying that limt-, P(W(t) = 0) = 0. Although general conditions for
ergodicity are not examined in this paper, these conditions are given for the
special cases illustrated below in Section 3. We now employ system point-
level crossing theory to derive the model equations for the pdf f(w), w > 0.

Level-crossing theory uses sample-path properties, and a sample path of
the {W(t)} process is shown in Figure 1. Without loss of generality, assume

the system starts empty and the server begins a vacation at time t = 0. The
sample path's slope is -1 for all t > 0, except at arrival epochs and the starts
of empty system server vacations, which are epochs of jump discontinuity.
At each arrival epoch, a jump is generated equal to the sum of the arrival's
service time and the immediately subsequent server-vacation time.

From system point-level crossing theory, the long-run expected down-
crossing rate of level w > 0 in the state space is equal to f(w) (Brill 1975, or
Brill & Posner 1977, 1981). The long-run expected upcrossing rate of level3 w is equal to the expression (for w > 0)

A P(S + V > w- z)f(z)dz + f(O+)P(Vo > w)| Z=°

1\ f -- fW H(iv - Z - Y, Y) dB(y)] f (z)dz

+ AfloB(w - z)f(z)dz + f(0+)o(w),

I 4I
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i recalling that f(0+ ) equals the long-run expected rate of level zero hits (Brill,
1975).

Equating the long-run expected rates of sample-path down- and up-
crossings of state-space level w > 0 yields the model equation for the sta-
tionary pdf f(w), w > 0:

f(w) = A f j H(w - z - y, y)f(z)dB(y)dz

+ AJ-(w - z)f(z)dz + f (04 )Ho(w). (1)

I The normalizing condition is given by

gJ f(w) dw = 1 (2)

since the virtual wait is concentrated on (0, oo) with probability one.
If the vacation times {V,} are independent of the service times {Sj} for

all n > 1, then Equation (1) becomes (for w > 0)

f(w) = Ajw) j H(w - z - y)f(z)dB(y)dz

+ A B(w- z)f(z)dz + f(O*)Ho(w), (3)

where H(x) = P(V > x), x > 0.

In the exhaustive server-vacation problem, vacations occur only when
the server finds no customers in the system, so that V, _ 0, n > 1, and
Equation (1) simplifies for w > 0 to

f(w) = A f (w - z)f(z)dz + f(0+)HO(w). (4)

I=5
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Figure 1. A sample path of the process {W7(t),t > O}.
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g 3 Examples

This section contains four examples which illustrate how to obtain the sta-
tionary distribution of the virtual wait. In the first example, service times
have a generalized hyperexponential (GH) distribution (Botta, Harris k
Marchal, 1987), and server-vacation times are exponentially distributed with
means depending on the duration of the immediately preceding service times.
In the second example, the service times are exponentially distributed and
the vacation times are deterministic with value depending on the duration
of the immediately preceding service times. Example 3 is a special case of
Example 1 in which service times and server-vacation times are assumed
independent. Finally, Example 4 illustrates an exhaustive server-vacation

I model which is a special case of Example 2.

i Example 1

Assume that each service time is distributed as random variable S having3 the GH distribution with probability density

dP(S < x)
dx ,= c, ' ' (. > 0),

where 1 > 0 and -oo < c, < +oo for i = 1,...,n(n > 1). Next assume
that the server vacation times are exponential random variables with means
1/-(S), where -y(S) is a function of the immediately preceding service time
S, and there exists some real number A > 0 such that

I (y= ifS<A
-Y2 if S> A.

In this model, A may be considered to be a system control parameter.

Let V be an exponential r.v. with mean 1/70. Then model Equation (1)5 for the stationary pdf of the virtual wait becomes

17
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f() AE L e 1(zce-"-f(z) dy dz

+AZ 1/' e -P-( zlf (z) dz + f (0+ ), 'Ow(5

I ~~and f -

f ( W ) A . A A e ' ' " -~ e - d + j w . e Y 2 ( - -z -) c e -$ ' d y I f ( z ) d z
z=o i,=O =I

+ AZI [1' e-'('-ce'Ady f (z) dz (6)

+A 1: :~(ct/,)e-"(wz)f(z) dz + f(O+ )e-'ow)

The pdf f (w) is continuous for all w > 0 (Brill, 1987) and thus f(A)

f (A+ ).

Equations (5) and (6) can be rewritten respectively as

f (w) - Y iy 1  C, 1 W ei (w z)f (z) d

- -" wzf (z) dz + (0w<)-Y 7

and

8
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fnw AZ Ce A -Y -p,) jW-A e- 1 ( "~)(z) dz
AW ) AE f':-- 2  _ -, ,

I = S1 - A

I > z I - e-(w z) f(z) dz

- A r J - e -Y2 (W) f (z) dz

72 [ L] =0 [e -''(w -z) - e Y(w -z)] ~ ) d

E C:. I~(~fzd I f(O(z) ow

*+ (A [w) (8

I

Is~
+ . nC, 1We-',-')f (z) dz + f (0+) e- 'o"w

= 1 A si  = 0 
(A < w ). (8 )

We can solve for f (w) in (2), (7) and (8) by converting (7) to a differential
I equation, substituting its solution into (8), and applying (2). Alternatively,

we may use numerical methods or level-crossing estimation (Brill, 1987).

5 Example 2

In this next example, there is a control parameter A > 0, and the vacation
times are deterministic, depending on the preceding service times or whether

the vacation originates when the system is empty. The service times, {Sn, n >
1}, are iid exponential random variables with mean 1/1. Let S denote an

arbitrary service time. If S < A, the server takes a vacation of duration

V = D2 , and if S > A, the server gets a vacation of duration D1 < D2 . Thus

long service times (S > A) are followed by short vacations, and vice versa.

Moreover, assume that vacations when the system is empty are V = Do,
and that 0 < Do < D1 < D2 < A holds. Other cases for the value of A can

be treated similarly. The model equations for f(.), the stationary pdf of the

virtual wait, are as follows, noting that the function f(w) has a discontinuity
at w = Do (Brill, 1987):

I9
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f (W) =J_ f(z)dz + f(0') (0 < w < DO), (9)

f(w) A f(z)dz (Do < w < D 2 ), (10)

f~)=Af(z)dz + A -D e-iA(w-D,-z)f(Z)dz (1

=-D A fDw-D2 1.0) dz (11)

I (D 2 <w <A + DI),

f(w) . =w,-D2 f (z) dz + A f.=wo-A-DI e-U(-2-)fz)d

(A +-,<w<A+D)

f(w) A] f(z) dz +±A wD euA(wD2-)f (z) dz
D W 2 J~-AD

+ jw-A-Di [e-1(w-,-z) + e.(w- 0 2-Z) -e-A] f(z)dz (12)

I l (A+D 1 <w<A+D2 ),

f(w) = f(z)dz +AI =° _+(wo:_.f:z) dz

+ Aj , Ie_(,w_1z_ + e_.<,wD2_) -eAA] f(z)dz (13)

==w-A-D2I

3j e-(wD -D,-z)f(z)dz (A + D 2 < w).

IWe can solve for f(w) in (2) and (9) - (13) by converting to differential
equations, substituting the solutions for lower values of w into the equations3for higher values, and finally applying (2). Thus, from (9) and (10), we get

a ex w (O<w <Do)
f W) be " (Do :_ D2)

* 10
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where a and b are constants to be determined. Balancing down- and up-
crossing rates at state-space level Do yields f(Do) = A fD o f(z) dz, result-
ing in b = a(1 - e- Do). This procedure can be continued in Equations (10)
- (13), using the functional form of f(w) for 0 < w < D 2, etc. Alterna-
tively, we may use numerical methods or level-ciossing estimation to obtain

Example 3

3 Consider a situation where the vacation times {V,,n > 0} are iid ex-
ponential random variables with mean 1/,, and the service times are iid
exponential random variables with mean 1/ri, IL $ q/. The vacation and
service times are independent, so that Equation (3) applies; thus the model
equation for f(.) is

5 f(w) = 1=o e-n(--V)pe-"'f (z) dy dz

+I 1 +A e-(-)f (,)dz + f (0+)e- "w (wi > 0),
==0

which simplifies to

f (W) e-O,(w-z)dz - '% e-,n(w-B)f(z)dz77o) r- --0 Z/-- =0

+ f(0+) e-n (w > 0). (14)

Equation (14) is a special case of (7) and (8) in Example 1, with n = 1, ILI
P, 7, = 72 - 7, letting A = 0 in (8) or letting A - oo in (7).

Taking derivatives with respect to w in (14) and rearranging terms yields
the linear, second-order differential equation

f"(w) + (7 + It - A)f'(w) + (7 - \7 - AIL)f(w) = 0. (15)

11
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We assume that the stationary distribution of the virtual wait exists, and
hence the mean interarrival time exceeds the mean jump size for non-zero
waits, as in the classical M/G/1 queue, that is, when

I 1 + 1

I It follows that the characteristic equation of (15) has two real roots with
positive product and negative sum, and hence both roots are negative. De-
noting the roots by R 1 and R 2 yields the solution for the pdf of the virtual
delay as

3 f(w) :=a eR1w+ b eR2W (W >O),

where a and b are constants. Substituting this solution into (2) and equating
the coefficient of e - ,w on the right-hand side of identity (14) to zero yields

iia + b =0

IA+R1 + 2

I with solution

a = A(R -R2)

b (,v-A7-Ap)(p+R2)3 t _ (__ -____)

Example 4

3 This example treats a case of the exhaustive server-vacation M/G/1
model, so that V = 0, n > 1. Assume that server-vacation times when the
system is empty are deterministic, each equal to Do, i.e., Vo = Do. Moreover,
assume for the sake of exposition that service times are also deterministic,
with each service S = D1 and D1 > Do. (See Figure 2.)

1
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Figure 2. Sample path in the exhaustive server-vacation model.
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Equation (1) now becomes

f(w) = A f(z)dz (w > D1 )=w-D,

f(w) = A f(z)dz (D0 < w < D1 )

f(w) = A f(z)dz+f(O+) (0 <w < Do)..=0

IFor w > D1 , assume that f(w) = ce,6'. Then

cew = A eOW - e (w-D),

so that

s Ae - OD + 0 - Az= 0, (16)

which yields the value of fl, for 39 < 0, by the uniqueness of the solution of
the integral equation.

For w E (Do, D1 ),

f'(w) - A/(w),

3 so that

f(w) = de AW (d = constant).

By continuity at D, (Brill, 1987), f(D 1 ) = ceD1, and it follows that

3 d = e(0-A)DIc. (17)

For w < Do,

I f'(w) = A/(w),

so that f(w) = ae A ' and f(0+) = a (a = constant). Note that there is

a discontinuity at w = Do (Brill, 1987). However, f(D + ) is the expected
entrance rate to [0, Do); the expected exit rate from [0, Do) is

I 14
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A f f(z)dz

i and therefore

*f(D+) =Ajf (z) dz.

3 Thus

and 
C [e( - )D eADo = A fDoa eAzdz,

i and =

* a=c [expt(I-A)DI+ADo] CA. (18)exp(AXDo) - 1 =c.(8

I Finally, from the normalizing condition (2), we get

cl etoWdw + C [e(O3- A)DI) eAD w Do "deX wdw + cA eXwdw=1
D =Do L

or e D e( - ,X)DO 1eX kt - eXDO I eXo  -- ( )

Ic A+ A A 1.(

The solution is obtained by substituting the values of c, a, d and '8 given
in (19),(18), (17) and (16), respectively, into the formulas for the pdf f(w)
over the state space intervals (0, Do), (Do, D1 ) and (D, oo).

I!
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Figure 3. PDF of virtual wait In the exhaustive server vacation model.
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i 4 CONCLUDING REMARKS

Level-crossing theory is particularly useful for modeling and analyzing server-
vacation queues, since service times and vacations are additive in the virtual
waiting-time process. Moreover, the theory is concerned with balancing rates
of down- and up-crossings, regardless of their qualitative origins.

* Examples 1 and 2 (Section 3) indicate possible new ways to control such
queues by treating the parameter A as a controllable. Control could be ex-
tended by using a collection of (positive integer) M such parameters {A,},
where 0 < A 1 < A 2 < ... AM. Clearly, the examples of Section 3 demonstrate
solution techniques that can be applied to a large class of M/G/1 server-
vacation models, having various distributions of service and vacation times,

with disciplines possibly other than first-come, first-served.
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