
Unclassified ITT FILE COP
'SECU."IV CLASSIFICATION GF THIS PAGE 'then Vat Enre,-ed)

READ INSTRUCTIONS
__ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPOR NUMBR2. GOVT ACCESSION NO. 3. RECIPWENT'S CATALOG NUMBER

lot
4 TITLE (aid Subtitle) S. TYPE OF REPCRT & PERIOD CCVEREO

Practical Algorithms for Image Component
Labeling on SIMD Mesh Connected Computers

. PEDRFORMING OR. REPORT NUMBER ;t-

__I"_TR-87-12-05
7. AUTHOR(@) 0. CONTRACT OR GRANT NUMIER(e)

R. E. Cypher and L. Snyder NOQ0l 4-86-K-0264

9. PI;FORKING ORGANIZATION NAME AND ADDRESS t0. PROGRAM ELEMENT. PROJECT. TASK
University of Washington AREA 6 WORK UNIT NUMBERS

Department of Computer Science
Seattle, Washington 98195

II. CONTROLLING OFFICE NAME AND ADDRESS 12. 6EPORT DATE

Office of Naval Research December 1987
Information Systems Program 13. NUMUEROF PAGES

Arlington, VA 22217 8
14. MONITORING AGENCY NAME & ADDRESS(If differlnt from Contro'l1ng Office) IS. SECURITY CLASS. (of thie report)

Unclassi fied
15a. OECLASSIFICATION/iOWNGRADING

SCmEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the absuract entered In B lolk 70, If dfernt from Report)

DTIC, el l dELECTE

I'. SUPPLEMENTARY NOTES J

19. KEY WORDS (Continue on reverie side If necesary and Identify by block number)

parallel algorithms, image processing, mesh, connected component labeling

20 ABSTRACT (Continue on raerse aide If necesary ard identify by block number)

... Two new parallel algorithms are presented for the problem of labeling the connefted
components of a binary image, which is also known as the "connected ones problen .
The machine model is an SIMD two-dimensional mesh connected computer consisting
of an N x N array of processing elements, each containing a single pixel of an
N x N image. Both new algorithms use a "shrinking" operation defined by
Levialdi and have time complexities of O(N log N) b't operations, which makes
them the fastest local algorithms for the problem. Compared with other--,

DD JAN7 1473 EL,' -. N O NoV 65 S OBSOLETE

C *JAN 7C tnr *. e

- =

approaches having similar or better time complexities, this local
approach dramatically simplifies the algorithms and reduces the
constants of proportionality by nearly two orders of magnitude,
thus making them the first practical algorithms for the problem.
The two algorithms differ in the amount of memory required per
processing element; the first uses O(N) bits while the second
employs a novel compression scheme to reduce the requirement to
O(log N) bits.

Acces ion For

OTIC NT:3 'RA&I
CPTIC TR Cl .

IHSPEC4LD Ui8un ounc @d

List ritut !6r !

SIrURITV C-ASSIrIC4TION oFrP"wgS PACfrpWhen Del. F nfere

Practical Algorithms for Image Component
Lab eling on SIMD Mesh Connected Computers

R.E. Cypher and L. Snyder
Department of Computer Science, FR-35

University of Washington
Seattle, Washington 98195

J. L. C. Sanz
Computer Science Department
IBM Almaden Research Center

San Jose, California 95120

TR 87-12-05
July 1987

Two new parallel algorithms are presented for the problem of labeling the connected
components of a binary image, which is also known as the 'connected ones problem . The
machine model is an SIMI) two-dimensional mesh connected computer consisting of an N
x N array of processing elements, each containing a single pixel of an N x N image. Both
new algorithms use a ^shrinkingw~ operation defined by Levialdi and have time complexities
of O(N log N) bit operations, which makes them the fastest local algorithms for the prob-
lem. Compared with other approaches having similar or better time complexities, this local
approach dramatically simplifies the algorithms and reduces the constants of proportional-
ity by nearly two orders of magnitude. thus making them the first practical algorithms for
th-' problem. The two algorithms differ in the amount of memory required per processing
element; the first uses 0(N) bits while the second employs a novel compression scheme to
reduce the requirement to 0(log N) bits.

--, ~rt ' ; . ' '. ; | . .

Practical Algorithms for Image Component Labeling

on SIMD Mesh Connected Computers
(Preliminary Version)

R.E. Cypher', J.L.C. Sanz,*' and L. Snyder*

Abstract of 1 valued pixels such that any two pixels in the region
lie on a path that is connected and only passes through

Two new parallel algorithms are presented for the prob- pixels with value 1. The two common definitions of con-
lem of labeling the connected components of a binary im- nectedness are 4-connectedness and 8-connectedness. Two
age, which is also known as the "connected ones prob- pixels are 4-connected if they are adjacent vertically or
lem." The machine model is an SIMD two-dimensional horizontally, and they are 8-connected if they are adjacent S
mesh connected computer consisting of an N x N array of vertically, horizontally or diagonally [5]. The labeling of
processing elements, each containing a single pixel of an connected components has been intensively studied [6-10]
N x N image. Both new algorithms use a 'shrinking" op- and is important in many applications. It allows regions
eration defined by Levialdi and have time complexities of (the connected components) to be identified so that the
O(N log N) bit operations, which makes them the fastest analysis of the image can be performed on a higher level
local algorithms for the problem. Compared with other ap- than the pixel level.
proaches having similar or better time complexities, this A two-dimensional mesh connected computer consists
local approach dramatically simplifies the algorithms and of a large number of processing elements (PEs) arranged
reduces the constants of proportionality by nearly two or- in a square array, as shown in Figure 1. Each PE consists
ders of magnitude, thus making them the first practical of a processor and an associated memory. For the number
algorithms for the problem. The two algorithms differ in of PEs in the array to approach the number of pixels in a
the amount of memory required per processing element; typical image (for example, 2's), the PEs must be simple
the first uses O(N) bits while the second employs a novel and inexpensive. In particular, the PEs considered here
compression scheme to reduce the requirement to O(log N) are bit serial machines that operate in a Single Instruction
bits. Stream, Multiple Data Stream (SIMD) mode, with all con-

trol signals coming from a single control unit. The control
1 IntrodUction unit reads instructions from its private memory, decodes

them, and broadcasts the control signals to the PE array.
The tasks encountered in machine vision can be roughly In addition to broadcasting the control information to the

divided into three classes based on the data structures they processors, the control unit sends addresses to the memory
use. Low level tasks operate on large 2-dimensional arrays units, so every PE accesses the same memory location at
of pixels. High level tasks operate on smaller symbolic data a given time.
structures such as graphs that are intended to describe the Each PE has a special register called a mask register.
scene under analysis in a manner closer to human under- When an instruction is sent from the controller to the array
standing. Intermediate level tasks link the low and high of PEa, only those PEa with a 1 in their mask register
levels by taking an array of pixels as input and creating a perform the instruction; all others do nothing. This allows
symbolic data structure as output. Creating parallel archi- operations to be performed on a subset of the PEs in a data
tectures for intermediate level vision tasks is particularly dependent manner. Of course, there are some instructions
difficult because both symbolic and iconic (pixel array) which operate on all PEs regardless of the setting of the
data structures must be accommodated. The design of mask registers, thus allowing the disabled PEs to be used
parallel architectures for the various image processing task again.
levels is currently a topic of great interest to the machine The two-dimonsional mesh interconnection structure is
vision comrmunity 1-4t. easy to construct because it is regular, it has short con-

This paper addresses an important intermediate level4 connctions per PE, and it is

task in machine vision: labeling the connected components possible to build in two dimensions without having any
of a binary image. New algorithms are presented which run possibetososs l bit enialonsou havin anyconnections cross. The bit serial processors have a one ,
on an SIMD mesh connected computer consisting of an N bit wide data path to their four nearest neighbors. Com-
x N array of processing elements, each of which holds a mercial versions of such machines include CLIP4 [III, the
single pixel of an N x N image. The problem of image com- MPP rsionsofsuth a hn (13
ponent labeling, also known as the "connected ones prob- ad1 .
lem", consists of associating labels with the I valued pixels *Department of Computer Science, FR-35, University of
of a binary image such that any two pixels have the same Washington, Seattle, Washington 98195
label if and only if they lie in the same connected compo- **Computer Science Department, IBM Almaden Research
nent, where a connected component is a maximal region Center, San Jose, California 95120

This paper presents two new algorithms for labeling Then a series of broadcasting operations is performed. A
the connected components of an image on mesh connected broadcasting operation consists of transferring the label
computers, together with comparisons with previously pub- of each PE with a 1-valued pixel to each of its (4- or 8-
lished algorithms. The authors believe these are the first connected) neighbor PEs having a 1-valued pixel. Then
practical algorithms for labeling connected components on every PE calculates the minimum of its current label and
large mesh connected computers, because they have very the labels which it has received, taking this minimum as
modest architectural requirements and are nearly two or- its new label. The connected components are correctly la-
ders of magnitude faster than previously published algo- beled when a broadcasting operation fails to change any
rithms. of the labels. Each broadcasting operation requires O(log

N) bit operations, and it will be shown that O(N) broad-
2 Labeling Connected casting operations may be required.

o nAnother O(N 2 log N) time local neighborhood algo-Components rithm is given by C. Dyer and A. Rosenfeld [14]. It consists
of first identifying a special pixel in eacb component and

A variety of algorithms are known for connected com- assigning a unique label to each of the special pixels. The
ponent labeling, so it is convenient to divide them into two special pixels are identified by using an algorithm devel-
classes: local algorithms and random access algorithms. oped by S. Kosaraju [15]. The next step consists of build-
Local algorithms repeatedly change the contents of each ing a minimum spanning tree for each component that is
processor based on the contents of neighboring processors. rooted at a special pixel. The labels are then broadcast
As will be explained in the next section, all previously pub- from the special pixels to the other PEs in the component
lished local algorithms require O(N2 log N) bit operations, using the spanning trees. This operation is very similar to
while the local algorithms presented here need only O(N the component broadcasting algorithm given above.
log N) bit operations. Random access algorithms achieve In order to analyze the time complexity of the above
good asymptotic performance by using complex pointer algorithms, it is useful to introduce two new terms. The
manipulation routines. For example, Nassimi and Sahni "intrinsic distance" between two pixels in the same con-
[9] give an algorithm requiring O(N log N) bit operations nected component is one less than the number of pixels in
and O(log N) bits of memory, matching the bounds of the shortest (4- or 8-connected) path between them com-
the second algorithm presented here. Interestingly, though posed only of pixels with value 1. The "intrinsic diame-
the bit operations measure of complexity seems preferable, ter" of a connected component is the largest intrinsic dis-
word operations are also used as a measure; adopting this tance between any pair of pixels in the component. The
measure, both Nassimi and Sahni's algorithm and the first number of broadcasting operations required by the above
algorithm presented here require O(N) time, though the algorithms is proportional to the largest of the intrinsic
algorithm given here also requires O(N) bits of memory diameters of the connected components in the image. In
per processor. images with small, convex connected components, the in-

The importance of the new local algorithms presented trinsic diameters are small and the algorithms provide the
here is not that they match or nearly match the best known desired labeling quickly. But some images have very long
asymptotic complexity, but that their constants of propor- and thin connected components with intrinsic diameters
tionality are very small. The complexity of random access proportional to the N2 area of the image. One such ex-
algorithms causes their constants to be large. For example, ample is shown in Figure 2. When it is safe to assume
the Nassimi and Sahni algorithm can be shown to require that no connected components will have an intrinsic di-
1276 N log N - O(N/ 2 log N) communication operations, ameter greater than N, the above algorithms may be the
while the two algorithms reported here require 12N log N best possible.
+ 4N and 14N log N communications operations, respec- The first new algorithm given here performs connected
tively, in the 4-connected case. (Similar results apply for components labeling in O(N log N) bit operations in the
the 8-connected case.) It seems likely that Nassimi and worst case using O(N) bits of memory. This algorithm, to
Sahni's algorithm can be modified, using techniques de- be called the "component shrinking algorithm", is based
veloped by Stout [17], to yield an O(N) time algorithm, on repeated application of a binary morphological opera-

However, it is likely that such an algorithm would also tion defined by S. Levialdi [16]. The value of pixel P(ij)
have a large constant of proportionality, making it inferior is determined from the previous values of pixets P(ij),
to those presented here for practical values of N. P(i+l,j), P(ij-1) and P(i+l, j-1). For 8-connectedness,
2.1 Local Neighborhood Algorithms the new value of pixel P(iJ) is defined to be

A well known local neighborhood algorithm for labeling
the connected components of an image, which will be called h(h(P(ij) + P(ij-1) + P(i+lj) - 1) + h(P(ij) +
the "component broadcasting algorithm", has a worst case P(i+1,j-I) - 1))
time complexity of O(N 2 log N) bit operations. Each PE
containing a pixel with value 1 is initially assigned a la- where h(t) is the "Heaviside" function defined as follows:
bel that is the concatenation of its x and y coordinates. h(t) = 0 for t :_ 0, h(t) = I for t > 0. The 2 x 2 neigh-

borhoods that create a 0 are shown in the upper part of After processing all values of y from 2N to 1, each con-
Figure 3. nected component will have a unique label. This can be

The effect of this operation, called the "shrinking oper- seen by noting that a new label is created for exactly those
ation", can be easily understood as follows. Assume that pixels which became isolated is during the shrinking pro-
pixel P(ij) is in row i and column j and that pixel P(0,0) cess. Because every component is shrunk t, an isolated
is in the lower lefthand corner of the image. Then if pixel 1 which exists for only one stage. there is a unique Ia-
P(ij) originally has value 1, it will have value 1 after the bel created by the second assignment, for every connected
shrinking operation if and only if at least one of its three component. The label for a component is transferred from
neighbors to the left, above, or diagonally left and above stage y to stage y-! in a way that insures that it is sent
has a 1. If pixel P(i,j) originally has value 0, it will have to all pixels at stage y-1 which correspond to the same
value 1 after the shrinking operation if and only if both component at stage y, and to no others, as will now be
its neighbor to the left and its neighbor above have Is. shown.
Levialdi proved that when this shrinking operation is ap- It should be evident by inspection of the shrinking rules
plied in parallel to all pixels in an image, only is which do that every PE with a (nonisolated) 1 at stage y-1 receives
not disconnect a component will be erased and that Os do one or more labels in the first assignment. If these are all
not become Is when this would connect previously uncon- the same then it is the label assigned to the same corn-
nected components. The shrinking operation has the ef- ponent at stage y and, by induction, the label is correct.
fect of squeezing each connected component into the lower What remains is showing that the labels received in the
righthand corner of its bounding box until only I pixel first assignment are all the same. If a PE were to get dif-
remains, which is then deleted by the next shrinking oper- ferent labels, then it would be part of a single component
ation. An example is shown in the lower part of Figure 3. in partial result y-l that shrank to different isolated is. 0
The number of shrinking operations required to shrink an Because this is impossible given Levialdi's rules, the labels
object until it contains only I pixel is at most the distance received by a processor during the first assignment must
from the lower righthand corner of the object's bounding be conaistent. ',
box to the most distant pixel in the object, where the dis- The worst case time requirement for the "component
tance between the points is measured using the Manhattan shrinking algorithm" is less than that required for the
metric: the distance from (xl,yl) tu (x2,y2) is Ixl-x21 + "component broadcasting algorithm" because the shrink- It
lyl-y2l. As a result, every connected component will have ing algorithm allows labels to pass through PEs that hold
disappeared after 2N shrinking operations. image pixels not belonging to the component. In contrast,

Levialdi uses the shrinking operation to count the num- the broadcasting algorithm sends labels only to PEa which
ber of connected components. In his algorithnm, whenever hold pixels belonging to the component, so the labels must
a connected component disappears, a special marker is cre- follow the contours of the components to which they be-
ated which then moves to the lower righthand corner of the long. As the spiral in Figure 2 demonstrates, this is very
array. Whenever two special markers arrive at the same slow in the worst case.
location, a new marker which represents the sum of the 2Son t
previous markers is created. The marker which arrives at
the lower righthand corner after 2N iterations represents beling on a Mesh
the number of connected components in the image. An important limitation of the component shrinking al-

The component shrinking algorithm is based on Levialdi's gorithm is that it requires O(N) bits of memory per PE,
shrinking operation and operates in two phases. In the first while the component broadcasting algorithm requires only 0
phase, Levialdi's shrinking operation is applied in parallel O(logN) bits of memory per PE. However, the component
to the entire image 2N times. After each shrinking opera- shrinking algorithm can be modified so that it too requires
tion, a different image is obtained. The result of applying only O(log n) bits of memory per PE. The resulting algo- ,
the shrinking operation y times to the original image will rithm, which will be called the "log component shrinking
be called "partial result y". Assume that partial result y algorithm", also requires O(N log N) time in the worst
is stored in memory location y in the PEs. case.

In the second phase, the labels are assigned by exam- The log component shrinking algorithm is the same
ining the partial results in reverse order, starting with the as the component shrinking algorithm except that only
empty image that resulted from the final shrinking oper- log(N)+2 partial results from the shrinking operations are
ation. Stage y of the second phase, y ranging from 2N to stored. The major difference between the algorithms is
1. consists of first transferring the label from each PE(ij) that in the original algorithm every partial result y was
having a 1 in memory location y to thome PEs (i,j), (i-1,j), stored, but in this algorithm many of the partial results
(ij+l) and (i-lj+l) having a 1 in memory location y-I. are not stored and so they must be calculated. Since the 0
Call this the "first assignment." Next, any PE (ij) which second phase partial results are processed in order from the
has a 1 in memory location y- I and which has not received last to the first, it would be convenient if partial result y- I
a label generates a new label which is the concatenation of could be calculated from partial result y. Unfortunately,
the numbers y, i and j. Call this the "second assignment." this is not the case. Instead. the log(N) + 2 stored partial

results must be used judiciously. The technique used is to

store a few of the partial results - those positioned at ap- The algorithm is specified using a modified C language
proximately 1/2, 3/4, 7/8, 15/16, etc. of the way through syntax. The keyword 'PE" in a variable declaration in-
the sequence - and then to recreate the missing ones. The dicates that every PE has a copy of the variable, while
exact rules specifying how the results are stored are given variables declared without the "PE" keyword are stored
below. in the controller. The where.. elsewhere" statement is a

Adopt the following notation: generalization of the "if ...else" statement that allows some
of the PEs to perform one set of operations and the re-
maining PEs to perform a different set of operations. The

* yk is the k-th bit of the binary representation of the "Shift(vaiiable direction)" statement transfers the given
number y, where the least significant bit is the 0-th variable 1 PE in the given direction. PEs on the edge of
bit. For example, yj = 0 if y = 5. the mesh that would not receive data during a Shift are

given a 0. It is assumed that N is a power of 2. There is
a The binary representation of a nonnegative integer no code for the first phase of the algorithm, because when

is written by listing the bits within parentheses sepa- y = 2N, v = 0 (because N is a power of 2), so partial re-
rated by commas. For example. v = (y,,, y,_I. . yO) suits I through 2N-1 are calculated when y = 2N. This is
is an m + 1 bit representation of v. exactly the first phase. The code for the main routine of

* Last(y) is the bit position of the rightmost I in the the log component shrinking algorithm is given in Figure
binary representation of y, with bit position 0 being 6. The code for a number of supporting routines is given
the least significant bit. Last(0) is undefined. For in Figure 7.
example, Last(12) = 2.

* Flip(y, j) is the number with the binary representa- 2.3 Algorithm Correctness
tion that is the binary representation of y with bit j In the log component shrinking algorithm, after assigning
complemented. For example, Flip(7,1) = 5. the labels for partial result y, it is necessary to calculate

* Resultln(j) = y when partial result y is stored in partial result x, where x = y-l. This is done by retriev-

memory location j. Notice that the value of Re- ing partial result v, where v = Flip(y,Last(y)). If v = 0,
emoy lldependion whNotien duri the alegofritm this result is retrieved from memory location log(N) + 1,

suitIn(j) will depend on when during the algorithm because of the initial assignment of the original image to

that location. If v 96 0, this result is retrieved from mem-

Figure 4 shows some values for the functions Last(y) and ory location Last(v). The fact that Last(v) actually does

Flip(y, Last(y)). hold partial result v, provided that v 0 0, rests on the

Using these definitions, it is possible to define how following claim.

the algorithm uses the O(log(N)) bits of memory per PE. CLAIM: When the labels for partial result s are as-
When partial result y is calculated during the first phase, it signed in the log component shrinking algorithm, for all

is stored in memory location j where j = Last(y). Then in k, 0 < k < 1, if sA = I then z = Result-In(k) = (st, ,

the second phase, after assigning the labels for partial re- Zk-... zO) where z, = 0 for 0 < i < k - 1.

sult y, partial result x is required, where x = y - 1. Partial PROOF- Omitted.

result x is calculated by retrieving partial result v from 2.4 Time Analysis
memory, where v < x, and applying x - v shrinking op-
erations to it. The results of these shrinking operations The asymptotic complexity of the algorithm is governed
are stored in the appropriate memory locations (partial by the number of times the Shrink function in the inner
result w is stored in location Last (w)). In the log compo- for-loop is executed. Let this number be T(N), let n = 2N
nent shrinking algorithm. v = Flip(y, Last(y)). It will be and let m = log(n). Then:
shown that by retrieving partial result v where v is defined
in this manner, only O(N log N) shrinking operations are
required during the second phase. As a result, the algo- T(N) = = (2L'-s* - 1)
rithm operates in O(N log N) time. Figure 5 shows the = L4#

0)

contents of the variables v, w, x and y after each call to 2 n

the Shrink function, assuming that N = 4. In addition, = (E,"i 2M-'-in) + n - n
the partial result which is located in each of the 4 image = :
memory locations is shown. Note that there are no entries 2 ,-0

for odd values of y because when y is odd, partial result = nm
y-1 is available without performing any additional shrink- N(IogN + 1) = O(NlogN)
ing operations. The fact that partial result v is present

in memory when partial result x is needed is treated be-

low. A pseudo-code representation of the algorithm and Line I follows from the fact that the variable w varies from

an analysis of its complexity follow. v+1 through y-1, and the fact that v = Flip(y, Last(y)) =

S- 2L
°
etid, so for any value of y, the inner for-loop is [81 R. Hummel. A. Rojer, "Implementing a Parallel

executed 21 ' "" - I times. Line 3 follows from line 2 by Connected Component Algorithm on MIMD Ar-
noting that there are 2-'-n numbers z where 1 < x < n chitectures", Workshop on Computer Architec-
such that Last(z) = i for each i, 0 < i < m -1 (recall that ture for Pattern Analysis and Image Data Base
n = 2"). The additional "+n" term corresponds to r = n, Management, Miami, Florida, IEEE. 1985.
so Last(z) = m. [9] D. Nassimi, S. Sahni, "Finding Connected

Components and Connected Ones on a Mesh-

3 u mayConnected Parallel Computer'. SIAM Journal
of Computing, 9(4):744-757, 1980.

Two new local algorithms have been presented for the [10] D. Hillis, G. Steele, "Data Parallel Algorithms."
component labeling problem, the first requiring O(N log Communications of the ACM, 29(12). December
N) bit operations in worst case and O(N) bits of memory 1986.

per PE and the second having the same time complex- [11] M. J. B. Duff, "Review of the CLIP Image
ity, but requiring O(log N) bits of memory per PE. These Processing System", National Computer Confer-
bounds improve on known local algorithms by a factor of ence, Anaheim, California, 1978.
N. Although it seems likely that the techniques presented [12] Kenneth E. Batcher, "Design of a Massively
in [171 can be used to obtain an O(N) time algorithm, such Parallel Processor," Transactions on Computers,
an algorithm is expected to be slower than those given here IEEE C-29(9):836-840, 1980.
for practical values of N. The two new algorithms are thus [131 J. L. Potter, "Image Processing on the Massively
the first practical algorithms for connected component la- Parallel Processor", Computer, pp. 62-67, 1983.
belling. [14] C. Dyer, A. Rosenfeld, "Parallel Image Process-

ing by Memory-Augmented Cellular Automata',
4 Acknowledgement Transactions on Pattern Analysis and Machine

Intelligence, Vol. PAMI-3(1):29-41, 1981.

The work of R. Cypher was supported by a National [15] S. R. Kosaraju, 'Fast parallel processing array
Science Foundation Fellowship and L. Snyder was sup- algorithms for some graph problems', Proceed-
ported in part by the National Science Foundation Grant ings of the 11th Annual ACM Symposium on the
DCR 8416878. Theory of Computing, pp. 231-236, 1979.

[161 S. Levialdi, "On Shrinking Binary Picture Pat-

References terns", Communications of the ACM, 15(l):7-10,
1972.

[hi A.P. Reeves, "SURVEY: Parallel Computer Ar- [17] Quentin F. Stout, "Using Clerks in Parallel Pro-
chitecturas for Image Processing', Computer Vi- cessing", Proceedings of the 23rd Annual Sympo.
sion, Graphics, and Image Processing, 25:68-88, sium on Foundations of Computer Science, 272-
1984. 279, 1983.

[21 T. J. Fountain, "Array Architectures for Iconic
and Symbolic Image Processing,' Proceedings

8th International Conference on Pattern Recog-

nition, pp. 24-33, 1986.

[3] M. J. B. Duff, ed., Intermediate-Level Image
Processing, Academic Press, London, 1986.

[4] Hussein A. H. Ibrahim, J. R. Kender, D. Shaw,
"The Analysis and Performance of Two Middle-
Level Vision Tasks on a Fine-Grained SIMD
Tree Machine', Proceedings of the Conference
on Computer Vision and Pattern Recognition,
IEEE, pp. 248-256, 1985.

[5] A. Rosenfeld, A. Kak. Digital Picture Process-
ing, Academic Press, vols. 1-2, 1982.

[61 A. Agraval, A. Kulkarni, "A Sequential Ap-
proach to the Extraction of Shape Features",

CVGIP, 6, pp. 538-557. 1977.
[7] F. Veillon, "One Pass Computation of Morpho-

logical and Geometrical Properties of Objects in
Digital Pictures", Signal Processing, 1:175-189,
1979.

S

PE PE PE..

PE PE P ..

PE PE P ..

y Lasify) FfD(y Lastlyr'H
0 0

2 10

3 0 2

Figure 1. Mesh connected computer. 4

6 14
7 0 6

8 3 0

0 00 0 000 0 0 0 0 00 0 1 Figure 4. Table for LAST and FLIP operators.

10 101 11 1 1 101 0 101

1 0 10101 11 01 t I 1 0 1 1 0

0 1 0 8 0 1 0 0Mmr oao

0 2 7 8 0 2 10
01 0 011 1 1 1 110 1 0 4 7 8 0 2 3

100 000 0 00 00 010 1 0 5 7 a 0 425
1 1 1 1 1 1 0 6 7 8 0 2 3

0 7 7 a 0 4 6 7
4 5 5 a 0 4 6 5

Figure 2. Spiral connected component. 0 2 3 4 0 4 2 1

o 3 3 4 0 4 2 3
0 1 1 2 0 4 2 1

0 0 a0 0 0 0 1 10 1 0 1 1
0 0 0 1 10 0 0 0 0 1 0 0 0

Figure S. Memory contents after each call to the shrink
function.

00 00a0 00 0 00 0 00 00 00 00 0
0 0 11a 00 0 10 0 0 000 00 0 00
0 11 00 00 1 10 0 0 010 0 00 00
00 0 00 00 0 00 0 00 00 00a0 0

(A) - 8a) 1C) (M

Figure 3. Upper Part: configurations for Levialdi's
shrinking algorithm. Lower Part: example Of Component
shrinking.

4U - %

Algorithm

#define NOLABEL 0

/* function Log.Space.Label returns the connected component labels '/
/* for the given original image: */

PE int LogSpace.Label(original.image)
PE int original-image; /* image to be labeled /

int v, w, X, y; /* controller variables holding */

/* result numbers */
PE int inage*log(N)+2J; /* O(log(N)) memory for holding */

/* partial results */
PE int old-label, nev.label /*previous and current labels */

image[log(N)+.] w original-image;
old.label - NOLABEL;
for (y - 2N; y >= 1; --y)

xz * y-1;

v * Flip(y.Last(y));

for (v a v+i; v <a x; ++v)

if (v-i -a 0)
{

image[Last(v)] a Shrink(inmagelog(N)+1));
}

else
{ S

±.ngeoLatCv)] - Shrmnk~mmage[(Last(v-i)'); :

ne.label a Label(old.label.imaget[los(N)) .y);
else"'

nev..label * Label (old..label, image [Last (x))],y); S

old.label a nev.label;

return(nevlabel);

Figure 6. Log component shrinking algorithm.

,..

Algorithm Subroutines

Odefine NOLABEL 0 /*function Label returns-the labels

for partial result y-i: *t

PE int Heaviside(i) PE int Label(oldlabol,new..image,y)
PE int x; PE int old.label; /*labels for partial

{ uresult y *
PE int answer; PE int newimage; /*partial result y-I1

PE int y;

where (z > 0) PE int answer, here, south, east, southeast;
answer a 1;

elsewhere

answer a 0; here a old.label;
retzurn(answer); Shift(old.label ,UP);

south = old.la:el;

old.label a here;
Shift old.labelLEFT);
east = old.label;

PE int Shriuk(image) Shift(old.label,UP);
PE int image; southeast a old.label;

where (new.wiage m- 1)
PE int here, north, west, northwest; {

where (here !a NOLABEL)
answer a here;

here a image; elsewhere where (south - NOLABEL)
Shift(iaage,DOWN); ansver a south;
north - image; elsewhere where (ant !- NOLABEL)
image a here: answer a east;
Shift(inag°,RIGHT); elsevhere whore (southeast la NOLABEL)
west image; answer a southeast;
Shift (image,DOWN); elsewhere

northwest a image; answer a yeN*e2+pearov*N+pe.col;

return(Heavismde(Heaviside(here+west
+north- 1) Heavsde(here+ elsewhere
northwoest-i))); {

answer - NOLABEL;

reoturn(ansver);

Ft

Figure 7. Algorithm Subroutines. '

a.

-a,

j .." .

