
U Jr Nu

Unclassified OFTIPAED E tL
ECU,'TY CL ASt FIC ATION OFTI AE(hnData Enrr,ed,'

READ INSTRUCTIONS(' RPRT REPORT DOCUMENTATION PAGE BFR OPEIGFR
I EOTNUMBER 12. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

0 none _ _ _ _ _

4 TITLE (end S;.btlei 5. TYPE 00 REPORT & PERIOD COVERED

isVoyeur: Graphical Views of Parallel Programs Technical Report
0')6. PERFORMING ORG. REPORT NUMUER

88-04-03
S 7. AUTHOR(.) 6. CONTRACT OR GRANT NUMBER(e)

David Socha, Mary Bailey, David Notkin N00014-86-K-0264

9PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Univrsit of ashigtonAREA II WORK UNIT NUMBERS

Unertyn of CashintorSnc
Deatent ofsinCopte Scienc
Sea tle WashingtonG 98195AEA D D R S1.R PO TD T
Ofic of OTOLN va OFI esac AME AN1DDES988RPRTDT

Officeato NavaltesearrAp 1 988j~f F AE

Ainmton Sysem Prgam2217~jOPA
14 MONITORING AGENCY NAME & ADDRESS(11 different fromi Caritro~ttng Office) IS. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSI FI CATION, DOWN GRADIN G
SON EDULE

16. DISTRIBUTION STATEMENT (of tisl Report)

Distribution of this 4report is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Blo'k 20. if different from Report)

OTIC
IS. SUPPLEMENTARY NOTES JL2 I8

19 KEY WORDS (Continue on reverse eide If necessary antd identty by block number)

debugging, parallel programming prooram visualization, parallel debugging,
moni torino

20. ABSTRACT (Continue ci reveree, eide if necessary and Identify by block number)

~9 Voyeur is a prototype system that facilitates the construction of application-
specific, visual views of parallel programs. These views range from textual
views showing the contents of variables to graphical maps of the state of
the computational domain of the program. These views have been instrumental
in quickly detecting bugs that would have been difficult to detect otherwise.

-J"l

DD JAN MI, 1473 EDI ION OF I NO0V 65 IS OBSOLETE

SCCU~t'Y CLASSIFICATION OlF TNI PAGE Dh- eaa,:~

Voyeur: Graphical Views of
Parallel Programs

David Socha, Mary Bailey and David Notkin
Department of Computer Science, FR-35

University of Washington
Seattle, Washington 98195

TR 88-04-03
April 1988

Voyeur is a prototype system that facilitates the construction of application-specific,
visual views of parallel programs. These views range from textual views showing the contents
of variables to graphical maps of the state of the computational domain of the program.
These views have been instrumental in quickly detecting bugs that would have been difficult
to detect otherwise.

This research funded in part by the Office of Naval Research contract N00014-86-K-0264,
National Science Foundation Grant CCR-8416878 and the Air Force Office of Scientific Re-
search Contract 88-0023.

This paper will appear in the Proceedings of the A CM SIGPLAN and SIGOPS Workshop
on Parallel and Distributed Dcbugging held in Madison, WI, May 198t.

p ab

Voyeur: Graphical Views of
Parallel Programs*

David Socha
Mary L. Bailey
David Notkin

Department of Computer Science, FR-35
University of Washington,

Seattle, WA 98195

Abstract tions. All debuggers permit program data to be
displayed in some form; Voyeur concentrates on

Voyeur is a prototype system that facilitates the con- views that are close to the programmer's mental
struction of application-specific, visual views of par- model of a problem.
allel programs. These views range from textual views
showing the contents of variables to graphical nps * The Voyeur prototype simplifies the task of
of the state of the computational domain of the pro- building views. If these costs are too great, pro-

gram. These views have been instrumental in quickly grammers will be discouraged from constructing

detecting bugs that would have been difficult to de- views appropriate for a given program.

tect otherwise. e The Voyeur prototype simplifies the task of
learning how to build views. Since each paral-

1 Introduction lel program might require its own view or views,
it must be feasible for all parallel programmers,

Debugging parallel programs is generally more chal- not just specially trained experts, to construct

lenging than debugging sequential programs. The views effectively.

added challenge comes in two ways. First, manage- Voyeur provides a language-independent and
ment of data and control may be hard, since parallel system-independent mechanism for constructing
architectures are more complicated. Second, there is views of parallel programs. In particular, Voyeur is
often an increased gap between a programmer's men- separated from the data gathering process; views can
tal conception of a problem and the realization of a be driven by a parallel architecture, by a simulator
parallel program that solves that problem. Voyeur of a parallel architecture, or by a file containing trace
addresses this second point by allowing the parallel information. To date, we have constructed Voyeur
programmer to easily construct application-specific, views for (1) MIMD, nonshared memory programs
visual views of parallel programs. written in Poker and executed on a simulator, (2)

The original motivation for Voyeur was to improve a shared memory, multi-threaded program written r
the trace facility of Poker [16]. Three objectives char- in PRESTO1 [1] and executed on a Sequent multi- -
acterize our initial prototype effort. processor, and (3) a sequential Fortran program ex-

ecuted on a MicroVAX-2. This last example shows
e The Voyeur prototype supports graphical visu- that Voyeur, while motivated by the complexity of 0

alizations (or views) of parallel program execu- debugging parallel Poker programs, is attractive for

'This research funded in part by Office of Naval Re- debugging complex sequential programs as well.
search Contract N00014-6-K-0264, National Science Founda- This paper describes Voyeur's structure and its
tion Grant CCR-8416 7 , and Air Force Office of Scientific use in monitoring and debugging parallel programs. ...
Research Contract 8&-0023. 1 Eentially C++ extended with a thread clam. Codes

_.nd/or
_ Speoial

OTIC

INSPECT D 6 ,;k

.-. _,_.- "-".

Voyeur supports a hierarchy of views ranging from same on replay, even in the presense of debugging
fairly abstract views showing images of a computa- code added for the replay. This minimizes the data
tional domain to language- and architecture-specific gathered, and time spent collecting the data. Since
views showing just the state of program variables. Voyeur focuses on the processing phase, not the gath-
Each of these views is useful for specific applications ering phase, these approaches are orthogonal.
or for specific steps in monitoring and debugging. PECAN [13] displays multiple visualizations of se-
The hierarchy of views is used to reduce the cost and quential programs. PECAN views-such as flowcharts
complexity of building views, and symbol tables-are defined as an inherent part of

the system. Hence, every program must be debugged
A Debugging Model. Parallel debugging includes using the same views. This contrasts with Voyeur,
five types of activity: executing the program (on a which encourages the construction of views specific
parallel architecture or on a simulator); gathering to each program.
data from the program; processing the data; control- Several parallel programming tools use the struc-
ling the program's execution; and modifying the pro- ture of the process interconnection to display the run-
gram's state. Each of these activities is complex, and time behavior of parallel programs. Poker's [16] trace
there are significant interactions among them. For a view displays processor variables in boxes connected
debugging system to be effective each of these activ- by communication links. SDEF (8] provides a similar
ities must be designed in the context of the others. view for systolic algorithms, and includes some infor-

Much of the current work on parallel debugging mation about messages and whether a process is wait-
falls into the activities of gathering the data and vi- ing for a message to arrive. Belvedere [11] displays
sualizing the data (the form of processing the data in interprocess message activity on the interconnection
which we are most interested). graph. Belvedere also analyses the message traffic in

There are several major problems associated with an attempt to compensate for the asynchronous be-
gathering data from parallel programs. One, non- havior of the parallel program: events of the same
shared memory architectures may make it difficult to logical system-wide event, such as when all processes
access the desired data. Two, there is often a huge send a value in a common direction, are shown to-
volume of data. Three, the non-determinism inherent gether even if they did not occur at exactly the same
in parallelism adversely affects the reproducibility of time.
many parallel programs and their errors.

Once the data is gathered, it can be processed
in one of several ways. Program analysis attempts 2 Using Voyeur
to detect patterns in the program. Static (compile-
time) program analysis can detect patterns in the We have built four Voyeur views that we have used to
program's description. Dynamic (run-time) program debug Poker [16] programs. The variety and complex-
analysis detects patterns in the program's behavior ity of some of the bugs we have found is interesting in
over time. Regression analysis detects variations in itself. This section illustrates the use of Voyeur views
successive executions. If one of the executions is a by showing how they helped detect and locate bugs
stable, correct execution, variance from that execu- found in example parallel programs.
tion indicates possible bugs. Monitoring and visual- The main example parallel program was designed
ization display information about the executing pro- as part of an investigation into ways to dynamically
gram. The programmer uses this information to de- balance the work load for nonshared memory algo-
tect errors, understand the program or its problem rithms. In this case, the algorithm is a simulation of
area, or document a program or problem area. The sharks and fishos moving in a world composed of a
distinction between program visualization and pro- two-dimensional grid of points [6]. Sharks and fishes
gram monitoring is vague, but monitoring is usually inhabit points, one animal per point. Fish may move
restricted to read-only views of the program or sys- only into vacant points that are vertically or horizon-
tem while visualization extenas to interactive images. tally adjacen. If possible, sharks move to an adjacent

point containing (and thus eating) a fish; otherwise,
Related Work. Instant Replay (12] gathers just sharks move to an adjacent, vacant point. If there is a
enough information to guarantee that the order in selection of available points, one is chosen randomly.
which the parallel components interact wild be the Both species occasionally give birth, with the baby

L M60.XAAAA M ---------

Computational World r.r I, Q ul t

enerati on

dt dt€: dK

d , d dK

K (dtk ek
dK kdK d Kd tdc Sik

Alt -. d d 1K k -. d t

-K -d1K dK -K

Figure 1: The World of Sharks and Fishes. Figure 2: An icon view of a Poker program of the

staying in the place the parent vacates. Fish never sak n ihsagrtm

starve (there is an infinite supply of plankton), but ran the program using the Voyeur icon view, which
sharks do if left unfed long enough. To simplify the graphically represents the two-dimensional world of
algorithm, the sharks and fish move in an alternating sharks and fishes (see Figure 2), we saw every fish in
pattern: first all of the fish, then all of the sharks. very PE "randomly" move west. Fixing the bug in
The algorithm must keep sharks and fishes balanced the use of the random number generator was simple,
among the processors. and global information made finding the bug easier.

We wrote a Poker program to implement the sharks The view focuses on the essence of the problem-where
and fishes algorithm. Poker is a programmuing lan- the fish were and where they moved to-without wad-
guage for nonshared memory, MIMD algorithms, so ing through the actual instructions used to move the
we allocated the world's points to 16 processors (PEs) fish.
connected in a grid; each processor controls a 4x4 Later in the debugging process we discovered an-%
square of the grid (see Figure 1). other bug. While watching the icon view, we noticed

The debugging facilities available in the Poker pro- that some of the fish on the east side of a PE jumped,
gramming environment were insufficient to easily de- in one move, all of the way across to the west side,
tect several bugs in this program, especially bugs re- and vice versa. It turned out that one place in the
lated to randomness, to inter-PE communication, and program had the constants east: and west reversed..,
to globally complex situations. Poker's trace view Again, local knowledge might not have shown the er-
displayed only a small amount of textual information ror since only some of the fish on the either the east
for each processor. This was insufficient to trace the or west boundaries jumped. Yet the global picto-
16 points in each processor. rial view made it easy to identify that something was "'

Before Voyeur was built, we had to depend on a se- wrong and gave us information about the nature of "

quential debugger (dbz) to trace the execution of indi- the bug: that it had something to do with the east
vidual PEs executing under the Poker simulator. Un- and west edges, but not north and South.
fortunately, the light-weight processes used our simu- In another case, we discovered a bug in the code
tator confuse dbx, so we could set breakpoints for only that exchanged data between PEa sharing an edge.
one PE. Hence, we followed one PE to see if the fish The first clue was that some sharks were not eat-
moved correctly. During the simulation, the first fish ing fish that were adjacent but not in the same PE.
and then the second fish moved into the vacant posi- When we defined more events to show what each PE
tion to its west. Since there were only two fish in this thought was next to it (see Figure 3; a line next to a
PE, everything seemed plausible. However, when we fish or shark indicates that the adjacent PE knows the

---- .

FilC dui 9k*

|enerati.).on

ridt

- gk-dc -. . . .

4 i. I .

Figure 5: A vector view of a Fortran program calcu-

Figure 3: Using an icon view to show knowledge of lating air flow through a nozzle.
adjacent PEs in a Poker program of the sharks and
fishes algorithm.

A view can display erroneous and unexpected situa-
tions in a robust way.

fish or shark is there), we discovered that the PEa in The vector view was developed for a colleague in
the lower right section were not correctly transmit- Applied Math who was translating the SIMPLE code
ting their edge information. We had inadvertently (51 into Poker [9). His simulation was failing, but he
replaced a manifest constant describing the width of didn't know whether it was an algorithmic problem
a PE's area with a variable, and changed the local x or a numerical problem resulting from the sparseness
and y values from having values relative to the up- of the points in his 3-dimensional space. A quick
per left corner of each PE to having values relative modification of the icon view produced the vector
to the upper left corner of the entire grid. However, view. Plotting the vectors at each of his 16 points,
a few constants had remained, so the coordinates of he quickly saw vectors crossing just before his simula-
the points other than those along the top or along tion blew up, indicating numerical instability instead
the left were incorrect. of algorithmic errors. Figure 4 shows the corrected

The user interface of the icon view has a structure program which still displays a numerical instability: a
shared by all Voyeur views. It has a title bar, a set point in generation 5 starts moving non-radially and
of menus, a status area, a set of buttons on the left, the simulation goes wild in generation 7. We also
and a scrollable drawing area. In general, menus are used this view to look at the results of a Fortran pro-
used to change parameters of the view, such as ap- gram simulating the flow of air through a nozzle (see
pearance and connections to an executing program Figure 5).
or its trace file. The status area displays interesting, Two other views provide a closer look at actual pro-
fairly static information about what is displayed in gram state. One is a more flexible version of Poker's
the view's drawing region. The buttons give corn- trace view (see Figure 6). The image is structured
mands to the view or commands to control the exe- around the communication structure of a nonshared
cution of the program. memory parallel program. Boxes represent proces-

The icon view's drawing field displays 16x16 pixel sors connected by communication links to other pro-
icons corresponding to the occupants of each point. cessors. Each box contains the name of the process,
Actually, each type of icon (shark, fish, etc.) occupies its position (ij) on a grid of processors, and current
its own plane; the view can combine these planes in a values of variables within the processor. This view is

fashion analogous to overlaying overhead transparen- generally useful for examining the values of variables

cies. Thus, if a fish and a shark happen to occupy during execution.
the same point, the view would display both icons. A similar view is the linked-list view. This view

Quit
Generation aI Qi
generation, Generation 2 _____________________

rid eneratie Generation x 3
generation Generation 4

Qui ___________________________Quit__

Generation Quit

enenationoI
trid

Figure 4: Using a vector view to detect numerical instabilities in a Poker program of the SIMPLE algorithm.

Set vr o File*Alt in the linked list portion of sharks and fishes. When
Mupb, of oPt,: 16 we deleted a slice from a PE's linked list we had
cu, tOt Sta u: Reading ft. rc.. forgotten to update the pointers to that no-longer-Cur ran, Phoa:69:1
Tt IrT* .: 2c 0 existing slice. This bug was immediately visible in

TI~c s Ihise 2: 11694 ,rg.ts Ithe linked-list view, yet had gone undetected during
run, phase C". 3s debugging with the Voyeur trace view. The linked-

conrtinu.e . ..38.ooooo list view also allowed us to easily verify that the slices
interrup r were moving correctly from one PE to the another

A. Iduring the rebalance phase of the program.
This view illustrates one of the philosophies under-

S3lying Voyeur: where appropriate, present the state
eigh -7 ht. 10 I of the information within the program, as well as

p 1synthesized information. The connecting edges do
not necessarily contain the same information as the
pointer values, since an incorrectly written Poker pro-
gram could enter a state that was unexpected by the
Voyeur view. The linked-list view shows the actual

Figure 6: A enhanced version of Poker's trace view. value of the left, right, and self pointers as well as the
synthesized links connecting slices in order to aid the

Linked List Rebalaced Linked programmer in detecting expected and unexpected
Computational World Storage List Storage types of errors.

PE I PE I

PE 2 PE : 3 Voyeur System Structure
PEJ 3 . * E

PE 3 Figure 9 shows the structure of the prototype." - ,- " 4 - P Boxes with square corners are heavy-weight pro-
Re ceses. Boxes with rounded corners are modules.

Figure 7: Rebalancing the sharks and fishes algo- Messages from the user filter down to change the form
rithm by moving rows of information between pro- of the view or to request more simulation data. Mes-
cessors. sages from the simulator filter up to change the state

shown by the view. The Voyeur prototype is written
in C and uses X windows [14].

was motivated by a different allocation strategy for Voyeur uses an adapter-modeler-renderer structure
the sharks and fishes simulation. Instead of dividing similar to BALSA [4]. BALSA is a recent and im-
the world grid into a coarser grid of processors, we pressively complete animation system used to build a
divided it by rows. The PEs are connected in a line, large repertoire of algorithm views for the electronic
instead of a grid, with each processor controlling zero classroom at Brown University. The animator man-
or more adjacent rows (see Figure 7). As the pop- ually instruments the program to generate and con-
ulation of sharks and fishes migrate, the simulation sume "interesting" events. The output events drive
can automatically rebalance the load by sliding rows one or more modelers, which in turn drive one or more .
along the line of processors. The only constraint is renderers (or other modelers). Each modeler keeps a
that the rows maintain their order within the line of model of a view independently of the display engine,
processors. window package, and so on. The renderers are re-

The linked-list view (see Figure 8) has two types sponsible for translating the internal model into a vi-
of boxes. On top is a row of boxes corresponding sual image, displaying it, and correlating input events
to the line of PEa. Below each PE box is a list of with the displayed objects. The input events allow
the rows (slices) in that PE. During rebalancing the the program to react, in a pre-determined fashion, to
programmer can watch the slices being passed along user input.
the line of PEs. BALSA allows a large degree of reusability. An

The first use of the linked-list view detected a bug algorithm's interface is define I h.y the events it gen-

-1. .

"'a"1

View File Quit

Number of PEs: 16
Execution Status: Reading File trace.
Current Phase: I
Total Ticks: 14992
Ticks in phase 1: 14992

reload
run phase

evn lLc uffSlices0n

int numPoints:nSlices 3 nurmPointslnSlices 0In er u t- left 35 M64 left 0 le

.ight 351%92 "raht 0 r

I nt . o - I |numeol.nto - I I~.oint, x I n~i (ront=
Flet =3507,72 left 0 o Vleft =35o4 Vlzftt. * 3568

Ig=ht x 0 rigxht =350"S [right r C512 ht 0

Figure 8: A view of the linked-list storage for the Poker program for the sharks and fishes algorithm.

erates and consumes. Any algorithm with the same
interface may use the same set of views and input gen-
erators. Similarly, views and input generators may be
attached to any program with the correct interface.
Unfortunately, (1) BALSA is language specific and
executes the programs within BALSA itself, and (2)

User -BALSA does not simplify the construction of views.
| Still, the internal structure is a useful base from which

to build.
X-window q rication pMrM Voyeur uses an interface to separate the program

and the view. Messages from the back-end enter
Mod. Aplcadspecifidaa through the interface. The interface encapsulates
Sw mn routinesknowledge of how to interact with the back-end.

.Thus, the view is isolated from the source of the infor-

. a mation, whether it be from an executing program or
from a trace file. The adapter, created from a simple

.. i user-supplied specification, converts the ASCII mes-
asw szmulM sages into calls to modeler routines. These routines

4 modify the state of the modeler; an object maintain-
ing a model of the information it deems interesting.

simuwor Actually, the adapter filters the information and only
passes on information of interest to the modeler. The
renderer creates both the user interface features, such

Figure 9: Voyeur's system structure. as buttons and menus, and an image of the state of
the modeler. The renderer also correlates user input
on the screen with screen objects to allow for visual
user input. For instance, the user may select a box
of the trace view by clicking in the box.

The user starts the viewer by opening a connec-
tion either to file containing traces from a previous
execution or to a simulator or parallel processor, via

ST7 RV

a pipe, for interactive viewing. The view first con- base
sumes initialization information from the simulator,
such as the number of PEs. Once initialized, the user
may single-step, run, or interrupt the program's ex- (x,y) text boxes
ecution as needed. The user may also make changes
to the presentation of the view. / \ \

The back-end typically requires only minor modifi- vector icon trace linked-list
cations to work with read-only Voyeur views. For in-
stance, changing the Poker simulator to allow a new Figure 10: A class hierarchy of Voyeur views.
type of message tagged for Voyeur took only a few
minutes.mintes. pa button or menu to the appropriate routine in the

The programmer generates messages for the view modeler. This user interface is built on Sx, an X
by inserting instrumentation code into the parallel window toolkit, written by John Ouster~out.
program. This code sends ASCII encoded messages
to the view. Each message contains a prefix followed The vector and icon views are re rs of a class
by a list of parameters. The prefix determines the of x,y views. These views represent state by placing
type of message. The parameters are the arguments graphical elements on an x,y coordinate space filling

of the appropriate modeler routine called for this type the drawing area. The icon view uses a grid whoses
of message. points are the same size as an icon. Coordinates are

For instance, to instrument the sharks and fishes given as integers. The vector view uses real-valued co- *

program for the icon view, the programmer uses two ordinates and can rescale its image. The similarity of
tpeofmess , ich look, le: r amrthese views allowed the vector view to be constructedtypes of messages, which look like:2

easily from the icon view.2 This shows how Voyeur
z p 1 12 3 4 s supports easy creation of new views.
z g 1 12 These x,y views also demonstrate the incremental Ro-

flexibility of Voyeur views. Each type of information
The "z" indicates to Poker that this is a Voyeur (shark, fish, edge, hydrodynamics vectors, heat vec-

message. The first message is of type "z p" and con- tors, etc.) is stored in a separate layer. The view
tains information about the location of a object of can show all layers or a selected subset. This enables WI
type "s" (a shark) at world coordinate 3,4 in PE 1 a user to easily add or remove information that al-
at time 12. The second message of type "z g" indi- ready fits in the view's model. For instance we added
cates that PE 1 has sent all messages for generation the edge information in Figure 3 by simply adding a
12. The programmer uses these two messages to take new type (.i message from the program, which also
snapshots of the world. The icon view consumes these added a new conversion routine to the adapter. Ida
snapshots one at a time with the end of each snapshot [17] uses a similar, more developed idea analogous to
located by the generation messages. a number of overhead transparencies which may be

The exact prefixes and the number, order, and type manipulated independently of each other and com-
of parameters are determined by the programmer in a bined using a variety of graphical functions, such as
simple specification that is compiled to automatically or and inverl. This flexibility is similar to that pro-
create the adapter routines that decode the Voyeur vided in BALSA.
messages and call the appropriate modeler routine. Voyeur's trace view and linked-list view are exam-

pies of views derived from the text class of views.
Views in this class use lines to link boxes containing

4 Discussion textual fields. Each box may have one field per line.
Text boxes are typed according the the fields they

Voyeur simplifies view construction and modification contain. For instance, the PE and slice boxes of the
by using a class hierarchy of views (see Figure 10).
The base class contains the basic structure of the ti- 2 In reality, this took about a day since (1) we had to first
tie bar, menus, status area, buttons, and scrollable abstract from the x,y view from the icon view and then build
drawing area. The base class also has simple mecha- the vector view, and (2) the prototype was written in C anddwdid not directly support object oriented programmning. The
nisms for specifying the contents of each area, except next version of Voyeur is being written in C+4- and will fully

for the drawing area, and for connecting activity on support the view hierarchy.

%'p'

linked-list view are of different types. The user can system structures that might provide the basis for
change the order of fields within a box and the size of better solutions.
boxes. For instance, the slice boxes could be shrunk
to display only the first line. Similarly, a trace view e Ease of construction. Efforts such as Ida [17],
showing an algorithm that computes the maximum ARK [15], ThinkerToy [101, ThingLab [2, 3], and
function (Figure 6) has three types: root, internal, Duisberg's gestural interface for animating algo-
and leaf, each of which contains a different set of rithms [7] are reducing the cost of building inter-
traced variables (fields). Allowing the user to rear- faces and the cost of learning how to build user
range the order and sizes of the boxes is important interfaces.
when there are a large number of fields per box: the
values of interest at the moment may be brought to e Modifying program state. Visualization work to
the top so that they are still visible when using small date has not dealt with changing the state of the
boxes. information (data or program state) in response

The text box class also allows the user to creat to user interactions with the visualization. This
copies of any windows and move or resize them Jude- form of experimental "What if?" questioning is
pendently from the rest of the display. This is partic- a feature of traditional debuggers that is quite
ularly useful in two situations. First, duplicate boxes useful in hunting down the cause of many a bug.
allows the user to view boxes that are too far apart in Visual debugging systems must support read and
the drawing region to fit together on the screen. Sec- write access to the program's state.
ond, using small boxes for the drawing region allows
us to view global patterns while a few particularly in- * Multiple views. Visual debugging systems need
teresting boxes may be copied and expanded to show to include mechanisms for coordinating multiple
a large amount of local information, views of one or more programs. Different views

In summary, Voyeur has met its three initial objec- are useful for different purposes and often corn-
tives. plement each other.

" A view programmer has full access to the graph-
ical capabilities of X windows (141. This meets e Interface with back-ends The interface to the
our objective of supporting graphical, visual back-ends is crucial to allow the viewing mech-
views. anism and program system enough flexibility to

support the range of desired visualizations. We
* By using a clean and general interface to sepa- are investigating better ways to encapsulate the

rate the viewing mechanism (front-end) from the knowledge of how to interact with back-ends.
parallel program (back-end) we have increased
the reusability of views among parallel programs e Synthesis. The efforts of visual programming,
and among parallel systems. This meets our ob- user interface design, data and program visual-
jective of simplifying the task of building views. ization, and debugging need to be combined to

" By separating the view from the parallel program meet the needs of an easy to use visual debugging
and by organizing views in an object hierarchy, system.
we have simplified the task of learning how to
build views. This meets out objective of allow- As we continue to incrementally develop Voyeur,
ing virtually all parallel programmers to develop the experience from constructing and using the views
problem- and program-specific views, gives valuable feedback and motivation for the design

of a more complete system. Voyeur also provides a
valuable tool for other projects needing visual front-

5 Future Work ends to debugging, monitoring, and data analysis sys-
tems. The reusability of the Voyeur system and its

There is still a large amount of work and thought views saves time for everyone.
needed to create a system that fulfills the goal
of allowing parallel programmers to easily build
application-specific, visual views of parallel pro-
grams. We are investigating several metaphors and

Acknowledgments Voyeur would be a useless ef- [101 Steven H. Gutfreund. Manipllcons in Thinker-
fort without the parallel (and sequential) programs Toy. In Proceedings of 1987 Object-Ortented
that have driven its creation and evolution. We Programming Systems, Languages, and Applica-
thank Kevin Gates for the Poker SIMPLE program; tions, pages 307-317, October 1987.
Yeng Bun for the Fortran pr-gram simulating air
flowing through a nozzle; and David Wagner for the [I11 Alfred A. Hough and Janice E. Cuny. Belvedere:
PRESTO simulation of a message-passing torus. Prototype of a pattern-oriented debugger for

highly parallel computation. In Proceedings of
the International Conference on Parallel Pro-

References cessing, pages 735-738, St. Charles, IL, August
1987.

[1] Brian Bershad, Ed D. Lazowska, and H. M.
Levy. Presto: A system for object-oriented par- [12] Thomas J. LeBlanc and John M. Mellor-
allel programming. Technical Report 87-09-01, Crummey. Debugging parallel programs with In- •
Department of Computer Science, University of stant Replay. IEEE Transactions on Computers,
Washington, September 1987. C-36(4):471-482, April 1987.

[2] Alan Borning. The programming language as- [13] Steven P. Reiss. PECAN: Program devel-
pects of ThingLab, a constraint-oriented simula- opment systems that support multiple views.
tion laboratory. A CM Transactions on Program- IEEE Transactions on Software Engineering,
ming Language Systems, 3(4):353-387, October SE-11(3):276-285, March 1985.
1981. [14] R. W. Scheifier and J. Gettys. The X win-

[3] Alan Borning and Robert Duisberg. Constraint- dow system. ACM Transactions on Graphics,
based tools for building user interfaces. ACM 5(2):79-109, April 1986.
Transactions on Graphics, 5(4):345-374, Octo-
ber 1986. (151 Randal B. Smith. The alternate reality kit:

An animated environment for creating interac-
[4] M. H. Brown. Algorithm Animation. PhD thesis, tive simulation. In 1986 IEEE Computer Society

Department of Computer Science, Brown Uni- Workshop on Visual Languages, pages 99-106,
versity, April 1987. June 1986. %

[5] W. P. Crowley, C. P. Hendrickson, and T. L. [16] Lawrence Snyder. Parallel programming and the
Day. The simple code. Technical Report UCID- Poker programming environment. IEEE Coin-
17715, Lawrence Livermore Laboratory, Febru- puter, 17(7):27-36, July 1984.
ary 1987.

[17] Robert L. Young. An object-oriented frame-
[6] A. K. Dewdney. Computer recreations. Scientific work for interactive data graphics. Proceedings

American, pages 18-24, July 1984. of 1987 Object-Oriented Programming Systems, '

Languages, and Applications, pages 78-90, Oc- 0[7] Robert Duisberg. Visual programming of pro- tober 1987. /-,,
gram visualizations. Technical Report 87-20,
Computer Research Laboratory, Tektronix, Inc.,
February 1987.

[8] B. R. Engstrom and P. R. Capello. The SDEF
systolic programming system. In Proceedings of
the International Conference on Parallel Pro-
cessing, pages 645-652, St. Charles, IL, August
1987. .-

[9] Kevin Gates. SIMPLE, an exercise in program-
ing in Poker. Technical Report 88-2, Depart- 0

ment of Applied Math, University of Wasi'ing-
ton, March 1988.

• , ~',. ..

