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Glucan:
Mechanisms Involved in Its "Radioprotective" Effect

M.L. Patchen, M.M. D'Alesandro, I. Brook, W.F. Blakely, and T.J. MacVlttle
Departments of Experimental Hematology (M.L.P, M.M.D., I.B., T.JM.), and
Radiation Sciences (W.F.B.), Armed Forces Radiobiology Research Institute,

Bethesda, Maryland

It has generally been accepted that most biologically derived agents that are radlopro-
tective in the hemopoietic-syndrome dose range (eg, endotoxin, Bacillus Calmette
Guerin, Corynebacterium parvum, etc) exert their beneficial properties by enhancing
hemopoletic recovery and hence, by regenerating the host's ability to resist life-threat-
P.ng opportunistic infections. However, using glutan as a hemopoietic stimulantradi-
oprotectant, we have demonstrated that host resistance to opportunistic infection is
enhanced in these mice even prior to the detection of significant hemopoletic regenera-
tion. This early enhanced resistance to microbial invasion in glucan-treated irradiated
mice could be correlated with enhanced and/or prolonged macrophage but not granu-
locyte) function. These results suggest that early after irradiation glucan may mediate
Its radioprotection by enhancing resistance to microbial invasion via mechanisms not
necessarily predicated on hemopoletic recovery. In additian, preliminary evidence sug-
gests that glucan can also function as an effective free-radical scavenger. Because
macrophages have been shown to selectively phagocytize and sequester glucan, the
possibility that these specific cells may be protected by virtue of glucan's scavenging
ability Is also suggested.

Kay words: radionrotection, macrophages, hemopolesis, free-radical t cavengers

INTRODUCTION hemopoietic stimulants [20,31,32,501. Thus, it has gen-

The exposure of mammals to a single whole-body dose erally been assumed that the "radioprotection" afforded
of ionizing radiation results in a complex set of symptoms by these agents results from enhanced hemopoietic recov-
whose onset, nature, and severity are a functior, of both ery and, subsequently, from enhanced resistance to mi-
total radiation dose and radiation quality [3,10,171. In crobial invasion. During the past several years we have

general, radiation injury can be classified into three syn- evaluated the radioprotective properties of glucan, a Sac-

dromes which become evident at progressively higher charomyces-derived immunosimulant 114,231, and haveshown that it also enhances survival in mice exposed to
radiation doses: the hemopoietic syndrome, the gastroin- radiation in the hemopoietic-syndrome dose range
testinai syndrome, and the cer:tral nervous system syn- [37,39,401. As with other agents that are radioprotective
drome [3, 10, 171. in this dose range, glucan was shown to significantly

The hemopoietic syndrome occurs at the lowest radia- accelerate hemopoietic recovery in sublethally irradiated
tion doses (< 10 Gy) and is manifest by hemopoietic
stem cell depletion [8,10,581 and ultimately by depletion (6.5 Gy) mice [38,39,411. Specifically, pluripotent he-

of mature hemopoietic and immune cells [2,7,26,29, mopoietic stem cells (CFU-s), granulocyte-macrophage kprogenitor cells (GM-CFC), pure macrophage progenitor i~
42,521, which (whether destroyed directly by the radia- penio cells (MFtueao g progenitor
tion insult or lost naturally through attrition) cannot be ell (M-Cperiperhoid cells alshw tr U-
regenerated without hemopoietic stem cells. In turn, the erl ee
loss of mature hemopoietic and immune cells severely more rapidly in glucan-treated mice than in radiation

impairs antimicrobial immunity, and ultimately death controls. Hemopoietic regeneration also ultimately oc-
ensues owing to invasive opportunistic infections
[5,22,33,531.

Most biological agents previously shown to be specifi- Received June 16. 1986: accepted February 4, 1987.

cally radioprotective in the hemopoietic-syndrome dose Reprint requests: M.L. P-tchen. Depar~ment of Experimental Hems-
range (eg, endotoxin, Bacillus Calmette Guerin, Coryne- tology, Armed Forces Radiobiology Research Institute. Bethesda,
bacterium parvum, etc), have also been shown to be MD 20814-5145.
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curred in lethally irradiated (9 Gy) glucan-treated mice Peritoneal Exudate Cell Collection and
(this report). However, since at day 15 postirradiation Macrophage Isolation
(when inot radiation control mice had already died) Mice were anesthetized with halothane (Halocarbon
hemopoietic elements in glucan-treated mice had re- Laboratories, Inc., Hackensack, NJ) and injected i.p.
covered to less than 5% of normal levels, it appeared with 5 ml of calcium- and magnesium-free Hanks' bal-
that hemopoietic recovery alone was unlikely to account anced salt solution (HBSS) cortaining 2 units/ml of pre-
for glucan's ability to radioprotect animals in the firstweksaferraiaio epour. hu, heposiiltythtservative-free heparin (Abbott Laboratories, Northweeks after radiation exposure. Thus, the possibility that Chicago, IL). Following gentle massage, the peritoneal

early postirradiation glucan may enhance surwival by Caiag flui waslwin gtlroughsag 2ge nel
enhncng ndorproonin th fncionan/o suviallavage fluid was withdrawn through a 20-gauge needle

enhancing and/or prolonging the function and/or survival inserted into the cavity, and the cell content of the lavage
of already existing cell populations important in host fluid was determined by counting the cells on a hemocy-
defense against microbial invasion (ie. granulocytes and tometer. For macrophage cell isolation, the peritoneal
macro'hages) was also evaluated, cells were cultured in 35-mm petri dishes (Coming,

Coming, NY) in Dulbecco's modified essential medium
(DMEM) (GIBCO, Grand Island, NY) supplemented

MATERIALS AND METHODS with 10% heat-inactivated fetal bovine serum (Hyclone,
Mice Logan, UT) at a concentration of 2.5 X 106 cells/ml per

dish. Macrophages were allowed to attach for 2 h atIn all experiments, 20- to 25-g C3H/HeN female mice
37°C in 5% CO. The plates were then washed threewere used. Approximately 3% of all mice entering the times with DMEM to remove the nonadherent cells, and

AFRRI animal facility were sacrificed fcr representative the adherent macrophages used as described for the
quality-control hisopathology, bacteriology, and serolog- 5'nucleotidase assay.
ical viral pathogen screens. While waiting for these re-
sults. the remaining mice were quarantined and Survival Assays
acclimated to the 6:00 A.M. to 6:00 P.M. light cycle,
Wayne Lab Blox rodent chow, and acidified (pH 2.5) Mice used in survival studies were exposed to 9 Gy of
water used in the animal facility. Only shipments of total-body irradiation, and their survival was checked
healthy mice were released for experimentation, daily for 30 days. Statistical differences between control

and glucan-treated mice were determined by the Kruskal
Glucan Wallis test.

Particulate endotoxin-free glucan. prepared as de-
scribed by DiLuzio et al[ 141, was obtained from Accu- Hemopoletic Cell Assays
rate Chemical and Scientific Corporation (V -stbury, The hemopoietic assays used have been described in
NY). Based on nuclear magnetic resonance, thi: glucan detail elsewhere [391. Pluripotent hemopoietic stem cells
preparation was reported to be 99.9% chemically pure were evaluated by the spleen colony (CFU-s) assay using
(N.R. DiLuzio, personal communication), and consisted 9-Gy irradiated mice as transplant recipients [54]. Twelve
of l- 3-Am glucan particles suspended in sterile saline. days after transplantation, the recipients were sacrificed
As indicated in the specific experiments, 1.5 mg of glu- and their spleens removed. The spleens were fixed in
can (in a 0.5-ml volume) was administered either intra- Bouin's solution, and the number of grossly visible col-
venously (i.v.) via the lateral tail veins, or intraperi- onies were counted. Committed granulocyte-macrophage
toneally (i.p.). Control mice were injected with an equiv- hemopoietic progenitor cells (GM-CFC) were assayed by
alent volume of sterile saline or, where specified, a 1.5- a modification [311 of the semisolid agar technique orig-
mg dose of D-glucose (Sigma Chemical Co., St. Louis, inally described by Bradley and Metcalf [91 and Pluznik
MO) dissolved in sterile saline, and Sachs [431. Colonies (> 50 cells) were counted after
Irradiation 10 days of incubation in a 37"C humidified environment

containing 7.5% CO2 . The cell suspensions used for
All mice were bilaterally exposed to total-body irradia- these assays represented the pool of tissues from 3-12

tion administered from the AFRRI cobalt-60 gamma-ray normal, irradiated, or glucan-treated irradiated mice at
source at a dose rate of 0.4 Gy (I Gy = 100 rads) per each time point. Cells were flushed from femurs with 3
minute. Samples for in vitro free-radical scavenging ex- ml of McCoy's 5A Medium (MC5A) containing 5%
periments were exposed to irradiation administered from heat-inactivated fetal bovine serum (HIFBS). Spleens
the same source at a dose rate of -40 Gy/min. Dosim- were pressed through a stainless steel mesh screen, and
etry was determined by ionization chambers [491, and all the cells were washed from the screen with 6 ml of
irradiations were performed at room temperature. MC5A plus 5% HIFBS. The total number of nucleated
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cells in each suspension was determined by counting the carbonate blank at 650 nm. Time (in minutes) was semi-
cells on a hemocytometer. logarithmically plotted against absorbance. A regression

line was calculated, and the time required for the absor-
Bacteriological Assays bance to be halved (TI/2) was determined.

To evaiuate the occurrence of opportunistic infections
in irradiated mice, the liver, spleen, and peripheral blood Macrophage 5'Nucleotidase (5'N) Assay

of animals were monitored for bacterial translucation. Macrophage 5'nucleotidase activity, which has been

Individual mice were halothane-anesthetized, and -0.5 shown to decrease as macrophage activation increases

ml of blood was removed by cardiac puncture. A 0. 1-ml 1341. was used to assess peritoneal macrophage activation

sample of blood was then streaked onto two enriched in irradiated mice. In this assay, washed dishes of adher-

BHI agar plates (DIFCO, Detroit. MI). The liver and ent macrophages were lysed with 200 1 of 0.05% Triton

spleen of these mice were also aseptically removed, ho- X-100 (Sigma Chemical Company. St. Louis, MO) in

mogenated, and streaked onto two BHI plates. One plate distilled water, and the cell lysate was used to measure

of each tissue was incubated for 48 hours at 37°C and 5'N activity. Specifically, 5'N was assayed with 0. 15

5% CO, to isolate aerobic bacteria. The other plate was mM 3H-adenosine monophosphate (AMP) as substrate in

incubated for 96 h in an anaerobic j?- to isolate anaerobic 50 mM Tris buffer (pH 9.0) containing 12 mM magne-

bacteria. Microorganisms were identified by means of sium chloride 1151. The specific activity is expressed as
standard criteria [30,51). nmol AMP hydrolyzed per minute per mg cell protein at

37°C. The protein content of macrophage cell lysates

Granulocyte Chemiluminescence Assay was determined by the Bio-Rad procedure (Bio-Rad Labs,
Rockville Center, NY) with bovine gamma globulin as a

Oxidati ie burst activity was used as an indicator of standard. Triplicate determinations were routinely per-
peripheral blood granulocyte function [27,47,481 and was formed for each assay.
measured by chemiluminescence 1,281. To perform -
these studies, mice were halothane-anesthetized and -0.5 Free-Radical Scavenger Assay
ml of blood was removed by cardiac puncture and im- The ability of glucan to act as a free-radical scavenger
mediately mixed with I drop (I unit) of preservative-free was assayed by evaluating its reactivity with water radi-

S, heparin. Twenty microliters of each blood sample was olysis products in competition with methional as an alter-
mixed with 200 Al of opsonized zymosan particles sus- nate free-radical trap. In this system, the interaction of
pended in luminol (ZAP. Packard Instruments, Chicago, methional with free radicals results in the production of
IL) and light emissions were counted immediately and at ethylene gas. A decrease in ethylene gas production can
5-min intervals over a 45-min period with the aid of a be interpreted as an agent's ability to compete with me-
PICOLITE 6112 Luminometer (Packard Instruments, thional in the scavenging of free radicals. Ethylene mea-
Chicago. IL). Total white cell counts (Unopettes, Becton surements were performed according to the method ini-
Dickinson, Rutherford, NJ) and differential white cell tially described by Beauchamp and Fridovich [4] and
counts were also performed on each blood sample. later modified by Pryor and Tang [441. The radical-assay

solution contained 0.1 mM methional (Sigma Chemical U
Co. St. Louis, MO) in 50 mM phosphate buffer (pH
7.8), and 0.45% sodium chloride. Three milliliters of

The rate of removal of colloidal carbon from the cir- this solution were pipetted into 10-ml glass reaction ves-
culation was used to measure the phagocytic activity of sels, and specified amounts of either D-glucose (Sigma
various macrophage populations comprising the reticu- Chemical Co., St. Louis, MO) or glucan were added to
loendothelial system (RES) [24]. To perform this assay, each vessel. The vessels were then sealed with Teflon-
individual mice were injected i.v. with 0.25 ml of diluted lined caps and irradiated. After irradiation, 50 r1 of gas
colloidal carbon (- 160 mg/kg) (Ci/143a, Gunther above each reaction solution was removed with a gas
Wagner, Hanover. West Germany), and its removal from syringe, and the content of ethylene gas was measured
the circulation was measured. At 1, 2, 4, 6, 8, and 10 by gas chromatography using a Porapac-Q 6-ft column
min after carbon injection, -0.2 ml of blood was re- with a Sigma 3B gas chromatograph coupled to a flame
moved from halothane-anesthetized mice by cardiac ionization detector (Perkin-Elmer, Norwalk, CN). The
puncture, and 50 ul was immediately dispersed into 4 ml flow rate was typically 20 ml/min, with the injection
of 0. 1% sodium carbonate solution. At the end of the chamber maintained at 140°C. Ethylene gas standards
blood collections, the absorbance of each sample was were obtained from Scott Speciality Gases (Plumstead-
spectrophotometrically measured against a 0. 1 % sodium ville, PA).

IA
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RESULTS 100
Effect of Glucan on Survival in Lethally Irradiated G/ucan

Mice *~80 'lca

Figure I illustrates that 1.5 mg of glucan administered 1.5 mg/V
i.v. 1 day before a 9-Gy irradiation enhanced survival by 60
63% (p < .05, with respect to i.v. saline or D-glucose |
controls). This glucan dose and injection route were used 40
to evaluate the effect of glucan on he!mopoietic cells, "'DgluoeI/P

bacterial translocation. granulocyte function, and RES 20 - .5Mg Saline IV/IP 1.5mgP

clearance capacity in irradiated mice. However, to per-
form the 5'N assay in irradiated mice, i.p. injections 01 5 0 15 20 25 30
were used to obtain the number of macrophages needed Day Post Irradiation
for this assay more easily. Thus, evaluation of the sur-
vival-enhancing effect of i.p. glucan administration was Fig. 1. Effect of route of glucan Injection on survival in 9-Gy
also necessary. In the same figure it can be seen that 1.5 Irradiated C3H/HeN mice. Saline, D-glucose, or glucan was
mg of glucan administered i.p. also enhanced survival in administered 1 day before Irradiation, and survival was moni-

tord for 30 days. Data represent cumulative survival data ob-
otherwise lethally irradiated mice (p < .05, with respect tained from three separate experiments and a total of 28-33
to i.p. saline or D-g!ucose controls). However, i.p. glu- mice in each treatment group. No difference was observed
can administration was less effective than i.v. administra- between Lv. and i.p. saline and D-glucose treatments; thus
tion and enhanced survival by only 26%. As expected, data from both injection routes were pooled. These groups had
no survival enhancement was observed with either i.v. a total of 56 and 61 mice, respectively.

or i.p. administration of either saline or 1.5 mg of D-
glucose.

irradiation. Both CFU-s and GM-CFC recovery com-
Effect of Glucan on Hemopoletic Recovery in menced earlier in glucan-treated mice than in controls.
Lethally Irradiated Mice However, hemopoietic activity was not detected in glu-

Table I describes the bone marrow and splenic CFU-s can-treated mice until day 13 postirradiation, and even
and GM-CFC recovery observed in mice administered by day 15 postirradiation (when - 65% of control mice
either saline or 1.5 mg of glucan I day before a 9-Gy were already dead) CFL-s and GM-CFC bone marrow

TABLE 1. Effect of Glucan on Hemopoletic Recovery In Lethally Irradiated Mice
(Percent of Normal Control Values)*

Day postirradiation

II 13 15 18 21

Bone marrow
CFU-s/femur'

Radiation 0 0 0 __

Glucan + radiation 0 0 0.15 + 0.09 0.96 ± 0.16 2.56 ± 0.31
GM-CFC/femur'

Radiation 0 0 0 _, _
Glucan + radiation 0 0.14 ± 0.11 0.49 + 0.14 0.92 ± 0.26 1.22 ± 0.29

Spleen
CFU-s/spleend

Radiation 0 0 0.02 0.02 h h

Glucan + radiation 0 0.51 ± 0.08 0.68 ± 0.12 12.94 ± 0.96 20.58 2.06
GM-CFU/spleen'

Radiation 0 0 0 _b _b
Glucan + radiation 0 1.34 ± 0.22 4.22 ± 0.39 48.49 ± 3.67 262.25 ± 11.33

*Value, represent means ± standard errors obtained by averaging data from 3-4 individual experiments.
TCFU-s per femur for normal control mice = 1,655.4 ± 55. 1.
bNo( enough animals surviving to test at these time points.
GM-CFU per femur for normal control mice = 6,526.1 ± 118.3.

dCFU-s per spleen for normal control mice = 3.314.6 ± 96.5.
'GM-CFU per spleen for normal control mice = 1,592.4 + 77.3.
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values were only 0.15 % and 0.49 % of normal and splenic 35
values we~e only 0.68% and 4.22% of normal. 3Q aie -90G

Effect of Glucan on Bacterial Translocatlon In *Glucan +- 9. 0 Gy
Lethally Wradiated Mice 2

Figure 2 illustrates the effect of glucan on bacterial
translocation in lethally irradiated mice. Bacterial organ- 20
isms could be detected in the spleens and liver of 10%-
13% of both control and glucan-treated mice at 7 days 15i
postirradiation. The percent of mice with bacterial flora .

4, 0_ _ _ _ _ __ _ _ _ _in these organs increased for both tretment grours C 10 a'
through day 11 postirradiatior However, by day 11, IU
significantly fewer glucan-treated mice exhibited splenic 5 *

and hepatic bacterial flora than did control mice (25%-0
28% versus 42%-43%). In addition, by day 15 postirra-0
tliation, the percent of glucan-treated ice exhibiting 7 9 11 13 1 5
bacterial organisms i the liver and spleen had decreased Day Pc at Irradiation
to - 10 %, while it had risen to - 70 % -40% in control Fig. 3. Effect of glucan on multiple bacterial transiocations in
mice. In both glucan-treated and control mice, the Per- 9-oG. lnadlat~d C3HII4*N mice. Saline (control) or glucan (1.5
cent of animals exhibiting bacterial flora in the peripheral mg) was administered l.w. I day before Irradiation. Data from
blood was less than that exhibited in the spleen and liver, three ""prate experiments were pooled, and represent a total
In the peripheral blood, a bacterial translocation pattern of 31-35 mice In each treatment group at each time point. Data
similar to that observed in the spleen and liver was represent the percent of bacterially Infected mice that pro-

obsevedon ays 1-1 potirrdiaion(icles ~ - sented with more than one bacerial species. Statistical differ-obsevedon ays11-1 potiraditio (ie les tanso-ences were assayed by Students t-iest. 'p < 0.05, with respect
cation in glucan-treated than in control mice). However, to control mice.
at earlier time points (days 7 and 9), a greater percent of
glucan-treated nice exhibited peripheral blood bacterial
flora than did control mice (9%-13% versuts 0%-7%). Effect of Glucan on Granulocyte i
The most commonly observed organisms were Proteus Chemlluminescence In Lethally Irradiated Mice
mirabilis, Staphylococcus aureus, and Escherich'a coli, T vlaeteefc fgua ngauoyefic
and no species difference was observed in the organisms tion, peripheral-blood granulocyte oxidative burst activ-
detected in the spleen, liver, or peripheral blood. In some twamesrdbch ilincnc.Acnbeen
instances, multiple types of bacterial organisms were
observed in a single mouse. However, as illustrated in inFgr4,osgifctdfeecswrebevd
Figure 3, this consistently occurred more frequently in
control mice than in glucan-treated mice. ~.8

o ja-.Saline +-9.0 Gy

E- 6- ~-Glucan + 9.0OGy

4 0

0 ~~~ ~0 70111 9111 3 9111 7 9 11 13 15tio

0Dy Poat Post ),adiatio

DaysPos IrrdiaionFig. 4. Effect of glucan on opsonized zymosan-Induced pe-
Fig. 2. Effect of glucan on bacterial transiocatlon In 0-Gy Irra- riphersi-blood granulocyte chemilumlnescence in 9-Gy irradi-
diated C3H/HeN mice. Saline (control) or glucan (1.5 mg) was ated C3H/H&N mice. Mice were Injected l.v. with saline (control)
administered l.v. 1 day before Irradiation. Data frn three sep. or glucan (1.5 mg) 1 day befor Irradiation. Each data point

arate experiments were pooled and represent a total of 31-35 represents the moan t standardl error of dat obtainmd from
mice In each treotment group at each time point. Statistical 8-0 Individual mause blood samnpiles. Stattca differences
differences were assayed by Student's t-test. *p < 0.05, with were assayed by Studentls t-tst. *p < 0. , with respect to
respect to control mice. control mice.
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0I , , Effect of Glucan on Carbon Clearance in Lethally
Z" Irradiated Mice

, 8. To evaluate the effect of glucan on RES clearance

E capacity, mice were assayed for their ability to clear
6 intravenously injected colloidal carbon (Fig. 7). At day

{/ -\ . G/... ane 4-9.0 Gy thSalne 9.0Gy postirradiation, glucan-treated mice cleared one-half of
4--" Glucan 4- 9.0 Gy the injected carbon in just 6.8 min, compared to 8.2 min

o. in control mice. However, at days 3 and 5 postirradia-
cc .tion, carbon clearance in glucan-treated mice was dra-

2 matically slower than in control mice (9.5-9.6 min versus
6.1-6.7 min). This was followed on days 7-11 postirra-

0-. diation by a period when the T1/2 values of glucan-C 1 3 5 7 9 1 1 13 15treated and control ir:ce were approximately equal.

Day Post Irradiation However, by days 13 and 15 postirradiation, the carbon
clearance TI/2 in control mice had increased dramati-

Fig. 5. Effect of glucan on white blood cellularity in 9-Gy cally, whereas that in glucan-treated mice had decreased.
irradiated C3H/HeN mice. Mice were injected i.v. with saline
(control) or glucan (1.5 mq) 1 day before irradiation. Each data On day 15 postirvadiation, control mice cleared half of
point represents the mean ± standard error of cell counts ol,- the injected carbon in 9.3 min, while glucan-treated mice
tained from 8-9 individual mouse blood samples. Statistical cleared the same amount in only 5.5 min.
differences were evaluated by Student's t-test. "p < 0.05, with
respect to control mice. Effect of Glucan on Macrophage 5'Nucleotidase

Activity in Lethally Irradiated Mice

To evaluate the effect of glucan on macrophage acti-
100 vation, peritoneal macrophage 5'N activity was assayed.

Figure 8 illustrates that macrophages from both control
'8 -s- Saline + 9.0 Gy and glucan-treated mice exhibited a rapid and dramatic80 Glucan + 9.0 Gy decrease in 5'N activity (indicative of macrophage acti-

"5 60

40 .

CL204 o ft
0 1 3 5 7 9 11 13 15 78

Day Post irradiation

FgG.Effect of tjlucan on periphoral N.od granulocytes in 9- E 7 .. ,/
Gy Irradiated C3H/HeN mice. Mice were injected I.v. with saline
(control) or glucan (1.5 mg) I day before Irradiation. each data I-
point represents the meat ± standard error of values obtained 6

from 8-9 Individual mouse blood samples. Statistical differ.
ences were assayed by Student's t-test. 'p < 0.05, with re- 5 -. Saline + 9.0 Gy
spet to control mice. Glucan + 9.0 Gy

0 1 3 5 7 9 11 13 15
between the oxidative burst activity of granulocytes ob- D P irradi1tio1

tamined from glucan-treated and control mice until day 15

postirradiation, when the granulocyte response from glu- Fig. 7. Effect of glucan on retlculoendothellal-system carbon
can-treated mice was 140% of that from control mice. clearance in 9-Gy irradiated C3NHeN mice. Mice were Injected
Likewise, peripheral-blood white cell numbers and the i.v. with "line (control) or glucan (1.5 mg) 1 day before irradla-tion. Each data point represents the mean ± standard error ofpercent of peripheral-blood granulocytes were signifi- T1/2 vlue obtained from 7-9 Individual mice. Statistical dli-
cantly elevated in glucan-treated mice 15 days postirra- ferences were assayed by Student's -teat. "p < 0.05, with
diation (Figs. 5 and 6). respect to control mice.
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C
100 2.8

S ... Saline - 9.0 Gy

880 *Glucan +9.O0Gy a) 2.0

1.6
,n60 0 I 3 1.2

> 40 D 0.8
2

-3 0.4

• 20

0 40 80 120 160

01 2 7 10 15 Dose (Gy)

hr
Day Post Irradiation Fig. 9. Effect of cobalt-60 gamma rays on ethylene yields In a

0.1 mM mothional/50 mM phosphate buffer solution. The eth-
Fig. 8. Effect of glucan on peritoneal macrophee 5'N activity. ylene in a 50-Al aliquot of gas above the reaction solution was
Mice were injected I.p. with saline (control) or glucan (1.5 mg) analyzed by gas chromatography - 24 hours after Irradiation.
1 day before Irradiation. Each data point represents the Each symbol represents an individual sample. Fased on least-
mean ± standard error of the specific activities from 3-4 sop- squares line of fit, p < 0.0001.
arate experiments. in each experiment, peritoneal exudate cells
were pooled from 8-10 mice. Statistical differences were deter-
mined by Student's t-test. p < 0.05, with respect to control
mice. -C

>0
C I

S0D-Glcose, 100Gy

vation) which persisted through day 2 postirradiation. At o .8 1 Gluce, O

these~~~~~~~ ti e, 5ND_ t ~ 08' Glucan O~these times, 5N activity was barely detectable in either o D-Guco3e, OGy
treatment group. Macrophage 5'N activity in control VGlucan, 0 Gy

11 0.6mice returned to preirradiation levels at days 7, 10, and
15 ostirradiation (-60 nmol AMP/min/mg). However,
macrophage 5'N activity in glucan-treated mice remained . . 0.4
significantly reduced (2-10 nmol AMP/men/mg), indicat- 1
ing macrophage activation through day 15 postirradiation. Z 2 0.2

0

Ability of Glucan to Scavenge Radiation-Produced o _I,_
Free Radicals ' ,

0 0.5 1.0 1.5 2.0 2.5 3.0
To address the possibility that once inside macrophages

glucan may protect these cells through chemical means Scavenger Concentration (mg/ml)
(and hence enhance host resistance by enhancing the Fig. 10. Effect of glucan or O-glucolio (control) on oitnyon
survival of macrophages), glucan's ability to scavenge yields In nonlrredited and 100-Gy Irradiated methlonal solu-
free radicals was assayed. A standard curve for the test tions. Ethylene In a 50-i allquot of gas above each methlonal-
system used in these experiments, ie, the production of based reaction solution was determIned as described In the
ethylene gas following the irradiation of a methional legend of Figure 9. Data wen normalized to the area under the
solution, is shown in Figure 9. In repeated experiments, ethylene peak for the 0 Gy or 100 Gy Irradiated samples with

the dose response for ethylene production from methional no tes. agent present.

was linear over the broad radiation dose range of 0 to
150 Gy. Figure 10 illustrates the effect of glucan or D-
glucose (control) on ethylene gas yields in this system.
Experiments were performed with a 100-Gy radiation thional for radiolysis products. Scavenger activity with
exposure, and data were normalized to the ethylene gas D-glucose was observed only at D-glucose concentra-
produced by methional after exposure to 100 Gy with no tions greater than 0.083 mg/ml, whereas scavenger activ-
test agent present. These results indicate that glucan is ity with glucan was observed at glucan concentrations as
more effective than D-glucose in competing with me- low as 0.0075 mg/ml.
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DISCUSSION ulocyte numbers and granulocyte oxidative burst activity
It has been postulated that most biologically derived were critically reduced by I week postirradiation. In

agents that are radioprotective in the hemopoietic-svn- control mice, these parameters showed no signs of recov-
drome dose range function by enhancing hemopoietic cry prior to death while in gluzan-treated mice, both
recovery and, hence, by regenerating mature cells nec- granulocyte numbers and granulocyte oxidative burst ac-
essarv for the irradiated host to resist otherwise life- tivity commenced recovery at day 15 postirradiation.
threatening opportunistic infections 15,.20.22.31-33. These recoveries. however, occurred too late to explain
50.531. Recently, we demonstrated radioprotection by yet the enhanced resistance to microbial invasion observed
another biologicall derived agent. glucan. and reported in glucan-treated mice prior to day 15 postirradiation.
glucan's ability to not only enhance survival specifically While the studies presented in this paper did not sug-
in the hemopoietic-syndrome dose range 137,401. but also gest that granulocytic mechanisms were involved in glu-
to enhance hemopoictic stem cell regeneration in suble- can's immediate ability to ennance resistance to microbial
thallv irradiated mice 138.39.411. Although there is no invasion in irradiated mice, they did strongly implicate
doubt that hemopoictic recovery is absolutely necessary the involvement of macrophage mechanisms in this phe-
for long-term survival following otherwise lethal irradia- nomenon. This is perhaps not surprising since, in normal
tion 13.10.171. significant hemopoietic regeneration in animals, glucan has been shown to enhance macrophage
lethally irradiated glucan-treated mice did not appear to function dramatically 112,13,571 and to increase nonspe-
occur early enough to account for the increased survival cific host resistance to a variety of bacterial, viral, fun-
observed in these animals in the first few weeks postir- gal. and parasitic infections [for review see reference
radiation (Fig. I: Table I). Thus, further studies were 121. Although it appeared that in irradiated mice glucan
initiated to evaluate additional mechanisms through which may also enhance host resistance to infections via mac-
glucan may mediate its radioprotective effects prior to rophage activation, the interpretation of these studies is
detectable hemopoietic recovery, complicated by the fact that radiation alone can activate

The bacteriological studies presented here clearly dem- macrophages 12,6,7,11,361.
onstrated enhanced host resistance to microbial invasion The carbon clearance studies presented in this paper
in glucan-treated mice as early as 9-11 days postirradia- confirmed this phenomenon in that an increased clear-
tion (Fig. 2). Not only were glucan-treated mice more ance capacity was observed in control mice on days 3-11
resistant to microbial invasion, but in addition they were postirradiation (Fig. 7). While it was suspected that glu-
actually able to arrest the progressive increase in oppor- can-treated mice would exhibit an even faster carbon
turistic infections seen in control mice. This ability to clearance capacity than control mice, on days 3, 5, and 7
arrest opportunistic infections successfully became clearly postirradiation, they actually cleared carbon less effi-
apparent after day I I postirradiation, when glucan-treated ciently than controls (Fig. 7). This phenomenon seemed
mice not only exhibited a progressive decrease in bacte- paradoxical; however, it could be explained if following
rial infections, but also generally presented with single. irradiation a RES blockade was established in glucan-
as opposed to multiple. bacterial species (Fig. 3). Corre- tieated mice. The gucan used in these experiments was
lated with this increased ability to resist opportunistic particulate in nature [14] and has been shown to be
infections was the fact that 63% of glucan-treated mice selectively taken up by macrophages [19]. In addition,
(compared to 0% of control mice) survived the radiation even under normal circumstances, macrophages have
insult (Fig. I). been shown to phagocytize necretic lymphocytes and

The fact that glucan-treated irradiated mice exhibited nuclear debris within hours after irradiation [2,25]. Thus,
enhanced host resistance to microbial invasion prior to a RES blockade could have resulted in glucan-treated
the detection of significant numbers of new hemopoietic mice owing to the phagocytosis of not only a large num-
elements prompted investigation into glucan's ability to ber of glucan particles, but also large quantities of radia-
enhance and/or to prolong the function of mature cell tion-induced detris. Such a RES blockade may also have
populations present at the time of irradiation. Because contributed to the enhanced hemopoietic regeneration --
both granulocytes and macrophages have been shown to ultimately observed in glucan-treated irradiated mice (Ta-
play critical roles in nonspecific host resistance against ble 1) since RES blockade has previously been reported
microbial invasion 121,271, and because these cells have to aid in hemopoietic repopulation in irradiated mice by
been shown to be relatively radioresistant in comparison preventing the phagocytosis of slightly injured, yet still
to lymphocytes and hemopoietic stem cells 12.7,26. functional, hemopoietic stem cells [35]. Similarly, a RES
29.42,521. glucan's effect on these specific cells was blockade may have prevented the phagocytic loss of
evaluated. mature functional hemopoietic cells capable of effective

Experiments with granulocytes (Figs. 4-6) demon- defense against microbial invasion in the first few weeks
strated that in both control and glucan-treated mice, gran- postirradiatior. The glucan-indu,'ed RES blockade, how-
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ever, only persisted through the first week postirradia- glucan's ability to trap free radicals chemically was
tion. After this time. macrophages in glucan-treated mice clearly demonstrated. Since glucan has been shown to be
appeared to regain their phagocytic capacity. 1. is known selectively taken up by and sequestered in macrophages
that within a week a large portion of intravenously ad- 1191, once inside these cells glucan may maintain its
ministered glucan is broken down and metabolized [191. ability to scavenge free radicals and. thus, selectively
Thus. the ability of macrophages in glucan-treated irra- protect these cells. If this occurs, it may explain why
diated mice to regain their phagocytic activity in the macrophages in glucan-treated mice function longer and
second week postirradiation coincided with a time frame better than macrophages in control mice after irradiation.
in which most intracellular glucan should have been bro- Studies to determine realistic macrophage intracellular
ken down and metabolized and suggested that once glucan concentrations at the time of irradiation and to
"emptied," glucan-activated macrophages could again elucidate the exact radioprotective potential of glucan
commence phagocytosis. By day 9 postirradiation, the once inside purified macrophage cell populations are
clearance capacities of control and glucan-treated mice currently in progress in our laboratories.
were identical and at days 11, 13. and 15 postirradiation. In conclusion, the results of these studies ,iuggest the
the clearance capacity of glucan-treated mice continued critical role of macrophages (but not granulocytes) in
to increase while that of control mice progressively de- mediating glucan's antimicrobial and hence early sur-
creased. Interestingly, the day II time point at which vival-enhancing effects in irradiated mice. Because mac-
glucan-treated mice began to surpass control mice in their rophage activation and enhanced macrophage function
clearance capac;ty coincided with the time point at which could be detected as early as 1-24 h after irradiation, it
glucan-trea:ed mice also began to arrest microbial inva- appeared that the macronhages responsible for these re-
sion by opportunistic pathogens. In addition, at day 15 sponses were "radiation survivors" and did not arise
postirradiation. when opportunistic pathogens were de- from Ilucan-induced hemopoietic repopulation which did
tected in - 80% of the control mice and only - 10% of not become evident until days 13-15 postirradiation.
the glucan-treated mice, glucan-treated mice were capa- However, from these studies it was impossible to discern
ble of clearing carbon twice as rapidly as controls. In if at such laier times (eg, day 15 postirradiation). "old
support of these RES studies, the 5'N studies presented surviving." "newly produced." or both types of macro-
in this paper also demonstrated that macrophage activa- phages were responsible for ihe responses measured. In
tion differed in control and glucan-treated mice in the spite of this, these studies shed new light on additional
first few weeks postirradiation. In these studies, perito- mechanisms by which "hemopoietic stimulants" may en-
neal macrophage activation was observed in both control hance survival in irradiated mice. Whether additional
and glucan-treated mice immediately after irradiation cellular and/or chemical mechanisms are also involved
(Fig. 8). However, in control mice this activation disap- in glucan's radioprotective effect remains to be de-
peared by day 2 postirradiation and in glucan-treated termined.
mice it persisted throughout the 15-day postirradiation
observation period. Thus, both the RES and the 5'N data ACKNOWLEDGMENTS
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