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The purpose of this study was to develop a computer algorithm capable of

generating correlated random processes for simulating time-varying samples of chaff cloud

radar cross sections. T'he need for this model arises in realistic, dynamic, electronic

warfare training scenarios. The model may also be used to evaluate radar systems and their

effectiveness against chaff.

The algorithm was developed on a VAX 11/785 computer using a 4.2 BSD version

of the UNIX operating system, the FORTRAN 77 programming language and The

International Mathematical and Statistical Library (IMSL) of subroutines.

I developed an interest in electronic warfare and chaff modeling through some of

my classes at AFIT and was fortunate to find a topic that matches my interests and an

advisor who was enthusiastic about supportir., it.

Richard P. Fray
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In this thesis, time-varying radar cross sections of chaff clouds are generated for

use in radar/ECM computer sirmulations, under the assumption that scattering from chaff

clouds is a wide sense stationary i,-ndom process. For a jointly gaussian random process,

second order statistics are developed from conrelated samples of radar cross sections.

Applicable statistical tests are performed to validate. a set of generated samples. The

goodness of fit of the samples compared to the prespecified density function is determined

along with a comparison of the correlation coefficients from the generated set to the desired

correlation coefficients. Rayleigh and Weibull statistics are also derived from gaussiant

variables to present an alternative way of describing the probability distributions of chaff

cloud cross sections. Topics for further study are suggested. r
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SLMULATION OF CHAFF

CLOUD SIGNATURE

I. Introduction

Simulations of radar, electronic countermeasure (ECM), or electronic

countercountermeasure (ECCM) systems involving chaff have been of interest to tie

nmiinry communit, fy,-, in the evaluation f-1 suc syste.. and in, electronic,,arfar

scenarios used in training pilots, radar operators and electronic warfare officers.

The term chaff denotes a confusion type of radar ECM which employs a large

number (hundreds of thousands) of resonant dipoles packaged into small cartridges (16:1).

The individual chaff dipoles are manufactured in a variety of ways and from different

materials including glass fibers dipped in molten silver or aluminum, but the standard

material used in the production of chaff is aluminum foil cut into thin strips (5:18-14).

Individual chaff dipoles have bandwidths corresponding to about 10% of their

resonant frequency, so a single cartridge of chaff usually contains several different lengths

that will resonate over a wide band of frequencies. When the tubes are dispensed into the

air from an aircraft, helicopter, or as a mortar round, the cartridges burst and create a "radar

smoke screen" that confuses the enemy radar (5:18-16).

The radar echo produced is the result of the return from a large number of

individual dipoles (5:18-10). The echo can be used to saturate a radar coverage area, break



lock on a tracking radar, or crcate false targets (5:18-17). Corridors of chaff can also be

formed to provide friendly aircraft with areas to fly through without being detected or

tracked by enemy radar.

Various attempts have been made to simulate chaff clouds realistically using the

various parameters associated with die clouds and their probability distributions. Studies

have been made to analyze the distributions of dipole angle o'ientation (21), radar cross

section (1, 2), and drift velocity (3). The existing methods of synthetically generating radar

reflections from chaff clouds are either deterministic or at best restricted to the first order

* statistics which merely indicate the magnitudes of the fluctuations of the cross sections

about some mean value. The deterministic methods predict the exact outcome in any given

situation and often require some very involved calculations. Due to limited computer
Imemory atnd ,l e, only a few hundred dipollbes can usu-ailly be- - ,-aly-zed in rp.eseMting "-

chaff cloud (14:1).

The restriction to first order statistics is not very satisfactory since in a dynamic

situation one has to know not only the magnitudes but also the rates of the fluctuations. On

y the other hand, statistical methods are .t concerned with any particular situation. They

predict by a probabilistic method what might happen under a given set of conditions. There

is no restriction on the number of dipoles a cloud can consist of. In fact, the larger the

number, the more accurate the representation will be (14:1).

. To determine the rates of the fluctuations, second order statistics of the chaff cloud

radar cross sections are needed. These statistics give the probability ofjointuy finding two

values of a random variable at different times.

2



The radar return of a chaff cloud at one instant of tirme will be correlated to some

extent with '.he return at a previous time. For small time differences, the correlation will be

high, and for large ones, the correlation will be low (5:18-8). To model this, the

correlation function will be specified as an exponential function of the time difference. The

purpose of this thesis is to develop an algorithm to generate pseudorandom samples of

radar cross sections, with these correlation coefficients, for a representative chaff cloud.

For a given autocorrelation function, second order stadstics will be generated.

This model will remain a fairly simp!ified one in the respect that it will deal only

with the radar cross sections of a chaff cloud. The aerodynamic and electromagnetic

quali ties, drift velocities, and birdnesting effects (clumping together of several chaff

elements) of individual dipoles, and the transient effects of cloud blooming immediately

following dispensation of a chaff cartivdge will not be addressed.

Assumptions

The primary assumption made is that rad3r backscattering from chaff clouds is a

wide sense stationary random process. This implies that the statistics of one dipole or

cloud will not change from one time instznt to another, and tIat the autecorrelation is

dependent only on the time difference at which the dipole or cloud is evaluated. it also

implies that the average or mean value of the statistics is independent of time. This is

justified due to the fact that chaff has a very high aerodynamic drag and therefore will not

alter its position ,ery much between radar returns.

Each elemental dipole will be assumed to have random phase and amplitude for two

"reasons. The orientation of the dipole may change due to rotation of the dipole, and the

distance between the radar and the dipole center may change. This implies the cloud will

3



also have random phase and amplitude. Finally, it is assumed the separation between

dipoles is great enough to prevent any mutual coupling or interaction between adjacent

dipoles. The effect of the random phases and amplitudes merely suggests that the model

will generate a radar cross section that is uniform throughout a chaff cloud.

General Apoc

The model entails generating a set of correlated psendorandom samples from a

gaussian probability density function. Two exponential correlation functions, as shown in

equations 1 and 2, will be specified for each set of samples.

p(T) = exp [ -ITI] (1)

P((T) = exp (- r2) (2)

Where T corresponds to the pulse repetition interval of a radar system and

represents the time between consecutive samples of the radar cross section. Several sets of

data will be generated with different quantities of cloud samples, for both correlation

functions, to form a basis of comparison and validation for the model. The number of

samples will be limited to at most 100 because in using pulse integration to obtain

additional data, rarely are more than 100 pulses integrated.

For each set of samples, a chi-squated goodness of fit test will be performed to see

if the generated samples do indeed fit the theoretical distribution they were originally

generated from. Then a comparison will be made between the autocorrelation coefficients

of the generated sampies and the originally specified exponential correlation functions.

Finally, Rayleigh and Weibull samples will be derived from the gaussian samples.

S~~Sequence ýL Preselntio w

First the existing theories of representing chaff cloud returns, methods developed

for generating correlated random variables, and the derivations of Rayleigh and Weibull

statistics from gaussian variables are discussed in chapter 2.

4
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Then the algorithms for generating the correlated random samples is flowcharted,

developed, and discussed in chapter 3.

Chapter 4 presents validation of the model through applicable statistical testing of

the generated sets of data.

Finally, conclusions are made and recommendations for further study suggested in

chapter 5.

A review of the applicable probability theory and a computer listing of the algorithm

are presented as appendices.

I
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II. Existing Theory

In this chapter, existing theories developed for generating correlated random

variables and some meuiods used to represent chaff clouds are reviewed. Also the

derivations of Rayleigh and Weibull statistics from gaussian variables are shown.

Chaf[ M~dIs

One model reported in the literature was developed at the Georgia Institute of

Technology in 1977 (4). A preliminary chaff radar cross section (RCS) model, developed

to estimate the RCS of deployed chaff, was improved and extended to compute the mean

RCS of deployed chaff bundles and their variations about the mean value known au-

scintillations (4:1). The Georgia Tech study proposed two methods to simulate the

PrJL 'I& iiL%,k I Ia po.lF iai budarwi- sui/UIUv, t .lraywi Rdyir Ig-1 U' buedW wML-1 _U-,

and the dynamic time series model (4:3). Each model's major features will be discussed

briefly.

Backscatter power from a chaff cloud is not deterministic. Rather, it varies around

some mean value. It can be thought of as an analog process being digitally sampled by a

pulsed radar system (4:10). The Rayleigh draw model entailed inputting parameters such

as the RCS mean, the period of the highest scintillation rate, and the observation time

desired. A draw was then made from a Rayleigh distributed random number generator and

processed through an interpolation formula. The interpolation formula allowed the user to

determine the RCS at any instant of time between samples or at any rate slower than the

sampling rate. The resulting output was an RCS chaff pattern generated as a function of

time.

Amplitude fluctuations have been shown to fit a power Rayleigh distribution (15),

so this method is realistic for most chaff simulations. Other distributions may be used in

6



different applications with satisfactory results. To ensure accurate sampling, draws from

5 the Rayleigh generator muist be made at the Nyquist rate or higher, corresponding to the

highest scintillation rate. But care must be taken because inputting a rate higher than the

maximum scintillation rate would introduce errors due to the inconsistency of specifying a

maximum and then exceeding it.

A problem may also arise with the validity of the generator draws if the statistics of

the RCS change with time. During the bloom period this may present a serious problem,

but for first order models, if the mean RCS was assumed to vary slowly with respect to the

rate at which a new RCS value is generated, then the results would be considered valid

(4:14-18). No testing was done to compute the correlation of the RCS from pulse to pulse,

so no comparison could be made between the correlation of the generated variables and the

desired correlation.

A more mathematically based method developed in this Georgia Tech report was the

dynamic time series model. A time series is a sequence of successive observations or

simulations of a stochastic or random process. The observations are usually equally spaced

and could represent the RCS return of a chaff cloud from consecutive radar pulse returns

(4:19). The time series models basically use previous samples to determine future samples.

I This model is more rigorously developed but could require longer computer processing

time than the Rayleigh draw method (4:34).

Another chaff model, also developed at Georgia Tech, was the Chaff Theoretical/

Analytical Characterization and Validation Program (7). This model incorporated the

aerodynamic and electromagnetic behavior of chaff dipoles and modeled the propagation of

received signals through a radar system (7: 1).

This model was a very detailed one, taking into consideration dipoles of different

lengths, and weighting chaff returns according to a dipole's angular location within the

antenna radiation pattern (7:1-2). The approach was to develop a quasi-deteiministic

7
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description of the cloud. Further assumptions made concerning the dipole density function

resulted in integrals that could not be evaluated, not even numerically. These integrations

were too time consairring on a computer and that made the model unworkable.

They suggested future efforts be devoted to making approximations of the volume

integral and empirical descriptions of the dipole density variations (7:4). Also better

experimental data was needed to help predict and validate the model.

Other studies exist taking different approaches including Wickliff s and Garbacz'

(20), which included mutual coupling among dipoles, and Schiff's (18), which modeled

chaff decoy placement in relation to antiship missile defense problems of the Navy.

Methods for Generating Qxie Random Numbers

Several methods were reported in the literature for generating correlated random

number sequences. Some of the algorithms were strictly designed to generate gaussian

variables while others could be used to generate any probability distribution. One method,

developed by Nawathe and Rao, used the theory of optimal linear prediction to generate

cross correlated random aumber sequences (11).

The technique first required generation of two random number sequences, for

example X and Z, each having the desired probability distribution. The vector Z was used

as a parent population for generating a correlated vector Y. Then for each element of the

a- V calcu %lation of4L UsUa. rA .I, +. Ct.: to- wamade. For every x(i), a search was made through Z to find a sainple which was close to

x(i), closeness defined as a specified mean square error interval. If no match was found, a

sample was picked from Z which had the lowest mean square error, away from x(i), and

the algorithm assigned this sample to the corresponding y(i) (11:98).

This method is simple and straight forward and requires only knowledge of the

marginal densities of X and Z. Using this method, several sets of data were tested with

8
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different desired correlation coefficients and probability densities. The estimate of the

coefficient of correlation between X and X was defined (11:97) as

nr

j=i

A table of the calculated correlation coefficients showed the difference from the desired

coefficients increased as p approached zero, and was on the order of only 1 to 2 percent

for a correlation of p--.8 (11:99). This confirmed the statement in the paper that results

p tended to improve with increasing magnitude of the correlation coefficient and sample size.

The model was further validated through derivations of the expressions for the expectation

and variance of the correlation coefficients (i 1:96).

This technique proved satisfactory for three typical distributions, normal,

3 exponential, and uniform, and thus appears applicable to any continuous distribution.

Although it is only an approximation for nonnormal distributions, the results of the Monte

* Carlo simulation here are valid (11:101).

Another method, developed by Li and Hammond, involved transforming a vector

of independent gaussian random variables into a vector of gaussian variables with a

specified predistorted correlation coefficient matrix (8). First, a vector of independent

gaussian random variables was generated. Then this vector was multiplied by a linear

transformation matrix which resulted in correlated gaussian variables possessing the

predistorted correlation coefficients. Finally, a nonlinear transformation was performed to

create a vector of correlated random variables with the desired univariate probability density

and correlation coefficients.

The difficulty in this technique lies in finding the nonlinear transformadion. For the

desired. robability density function, a set of transformations involving inverse cumulative

density functions and the error function are required (8:558). The calculation of the

predistorted correlation coefficients also requires complicated integral evaluations.

9
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However, data produced by the algorithm passed all statistical tests and generated

3 correlation coefficients with less than .1% error as compared to the desired coefficients

(8:559). Therefore, this method proved itself mathematically sound though it may be too

complex for the task at hand.

The technique chosen for the chaff cloud signature model was developed by

Scheuer and Stoller (17) and a similar study done by Moonan (10). This method proved

the most straight forward one -found in the literature and was well suited for machine

computation.

The technique first required the generation of a vector of independent normal

random variables with zero mean and variance of one. The resulting vector will also have a

zero mean and variance-covariance matrix specified by the user (17:278). To obtain the

correlated vector, the independent vector is multiplied by a linear transformation matrix,

created from the covariance matrix. The formulas used to generate the transformation

mnatrix and the correlated variables, will be presenied in chapter 3 along with a detailed

explanation of the entire algorithm (17:279).

Rayleigh and W, ibull Drivations

The purpose of this section is merely to present a method of obtaining Rayleigh and

Weibull distributed random variables from independent gaussian variables. 'I hese densities
are often used to define the distnihutionn of rhaffc oud radar returns, andi re. therefore

pertinent to this study.

First, two independent identically distributed gaussian random variables, X and _Y,

each with zero mean, and identical variances s, are generated. Then, X and _Y are each

squared and added together to form the variable Z.

Z = X•2 + y2 (4)

Finally, the variable ; is raised to the power k.

10



w=mZ (5)

Now, by specifying k, the variable W can be transformed into one of several different

distributions. For example, if k= 1, W3 becomes exponential, if k=1/2, W becomes

Rayleigh, and if k= 1/3, W becomes Weibull although the exponential and Rayleigh

distributions are both just special cases of the Weibull distribution. The derivation of these

results follows.

The moment generating function was used to transform the gaussian variables and

is shown in equation 6 for Z=X.2 (13:115).

Mz(t) = E[exp(tz)]

= E[exp(tx 2 )I

I, = f(x) exp(tx 2 ) dx (6)

After making some substitutions and evaluating the expected value integral, the

result is simplified to equation 7.

3 Mz(t) = [11/( - 2st ) ]1/2 (7)

This moment generating function represents a gamma function with narameters

a=l/2s and r=1/2 (9:195). If the substitution of s=1 is made, then Z has a chi-squared

distribution with one degree of freedom. This simplification can be justified by assuming

Sthe generated gaussian variables have a variance of one, which was intended when
generating the gaussian variables. Since X and Y are identically distributed, - can

also be represented by a moment generating function of a chi-squared distribution with one

degree of freedom. Meyer proved that a sum of n chi-squared distributed random variables

each with one degree of freedom will result in another chi-squred variable with n degrees



of freedom (9:201). It can further be shown that this distribution is cxponential with

parameter a= 1/2.

fz (z) = (1/2) exp(-z/2) (8)

Finally, by transforming Z-X 2+-Y2 into W=Zk using the Jacobian (13:95), equation 9
S~ results.

fw(w) = f7(z) Idz/dwl

= fz(wt/k ) Idz/dwl

= (1/2) exp[-(wI/k )/2] I (1/k) w[(l-k)/kl I

. (1/2k) w[(1-k) 1k] exp[_(wl/k )/2], w, k > 0 (9)

The Weibull density has the general expression

fw(w) = abwb-1 exp(-awb ) (10)

If the parameters are set to b-= 1/k and a=1/2, equation 9 results. Then by substituting

different values in for k, the densities mentioned previously will result.

12



II

III. New Model Development

In this chapter, the algorithm will be discussed in detail to help the reader adapt it to

his own application. The algorithm was written in the Fortran 77 programming language

on a VAX 11/785 computer. A flowchart of the algorithm is shown in figure 1.

First, several parameters have to be specified according to the user's desires. This

model assumed a generic pulsed radar system for receiving the cross section returns, so a

pulse repetition frequency (PRF) was specified. T was used in the program to designate

the time interval between radar pulses and is equal to the reciprocal of the PRF (19:2-3). In

this model, the value for T was chosen as .001 corresponding to a PRF of 1000 Hz. This

is a reasonable value for a low to medium PRF radar and corresponds to an unambiguous

range of 100 nautical miles (19:2). Also, the number of consecutive pulse returns desired,

inr, was specified. Three trials of nr equal to 20, 50, and 100 were used to form a basis of

comparison.

The first step in the algorithm required generation of a vector of independent

gaussian random numbers, called Y, with zero mean and variance one (17:278).

Throughout this algorithm, several subroutines from the International Mathematical and

Statistical Library (IMSL) of subroutines were utilized (6). These subroutines are also

written in the Fortran programming language. The subroutine GGNML was called twice to

generate two vectors of length nr random numbers. One was used to generate the

correlated sequence and the second was used in conjunction with the first to create the

Rayleigh and Weibull variables discussed in chapter two.

The next step involved selecting the desired variance-covariance matrix. Two

expressions given by equations l and 2 were used to represent the correlation bctween time

samples. These exponential functions slowly decrease with small time difference and

13
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Figure 1. Flowchart of Algorithm
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therefore model a high correlation very well.

The section of the program that computes tie correlated vector X is repeated twice

with a different variance-covariance matrix each time. The two matrices are generated by

using the two exponential correlation functions described in chapter one. This will further

provide a comparison of different correlations often used and hopefully help the user in

selecting the appropriate form.

A transformation matrix was needed to change the independent vector into a

correlated sequence. The method developed by Scheuer and Stoller (17), as presented

briefly in chapter two, was used. A lower diagonal transformation matrix C is calculated

from the variance - covariance matrix MC using the following formulas.

C(i,!) =CC(i,1)/[CC(1,1)]L,'2 l< i:5 nr (11)

i-i
COi~i) =[CC~i~i) - • .(i~k) 11/2 l< i:5 nr (12)

k= 1

C(i,j) = {CC(i,j) - [C(i,k) * C(j,k) ] }/Coj) 1< j < i • nr (13)
k=1

C(ij) =0 i <j <nr (14)

Fiaally, to generate the correlated vector "j the transformation matrix £ is multiplied by the

independent vector Y as shown in equation 15 (17:279).

Xdi) = Cij) * YOj) i = 1,2...,nr (15)
j=1

The next section of the program calculated the autocorrelation of the vector 2. This was

done to determine the degree of correlation betweei the samples. The autocorrelation was

computed for nr time lags (the entire sequence) througn use of equation 16 (22:69).

15



nr-i

Rx(i) = (1/nr) X(j) X(j+i) i = 1,2,...,nr (16)
j=1

The power spectral density (PSD), one of the second order statistics, was also calculated

from the correlated sequence. The purpose of this computation was to obtain an

approximate bandwidth of the fluctuations of the radar cross sections. The cosine

transform technique was used because it was simple to adapt to machine computation and it

gives the closest result to the fast fourier transform (FFT) without the complexity (12:137-

139). Subroutine COTRAN performed the computations to produce a normalized

magnitude of the power spectrum. The equations used in the cosine transform are

presented below.

nr-i

spectr(k Z/) = T Z.. x(i) cos(27t ikinr) K = Ui ...,nr/2 (L7)

Af = l/(nr * T) (18)

Next, the Rayleigh and Weibull variables were generated. The derivations of these

variables were discussed in chapter two.

At this point, the model has generated a set of data and pe-formed its

transformations and calculations. The last major section of the program dealt with testing

the variables for validation purposes. The IMSL subroutine GFIT was called three times to

test the goodness of fit of the three generated vectors y, ray, and weib to their theoretical

gaussian, Rayleigh, and Wcibull distributions. A graph of each sample vector is also

plotted vs. the theoretical cumulative distribution function with 95 percent confidence bands

using IMSL subroutine USPC. The 1IMSL subroutine VSRTA merely sorts the vector into

ascending order for graphing purposes.

16



The program also converts the uncorrelated vector Y and the correlated vector 2,

into vectors with means of 40. This was done to demonstrate a chaff cloud simulating a

decoy target with an average RCS of 40 square meters.

i
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IV. MQdel Validation

The purpose of this chapter is to generate several sets of data and validate the model

through statistical testing and by making observations on the data.

First, the program generated independent gaussian vectors with means of zero and

variances of one. Three tests were performed for each value of nr equal to 20, 50, and

100. Each test used a different seeding number to drive the IMSL random number

generators. Table I shows the results of these tests.

TABLE I

Comparison of Means and Variances

Sir intt•I 'ipv ds I nean ,-a1ia1ce I

20 1 999348 .0000K)0 .96M84
2 60259 .0000000 .860671
3 565553 .0000000 1.034006

50 1 39814055 .0000000 .967838
2 24681055 .0000000 .887949
3 872257 .0000000 1.206430

100 1 7866543 .0000000 1.242569
2 629895 .000000 1.055229
3 2833745 .0000001 1.073428

As expected, the means are all virtually zero due to the fact that the program

subtracts out the mean of the initially generated random numbers. However, the variances

fluctuate around one but tend to approach one as nr increases. This follows from basic

probability theory that as the number of samples increases, the mean tends to approach a

constant number. The variance also tends to fluctuate less dramatically as the number of

samples increases. So the model behaves well in producing vectors of gaussian random

numbers with zero mean and variances of one.

18
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Next, the model created the correlated variables. To show the effect of the

correlation, two graphs were generated to compare the independent variables with the

---- Uncorrelated _ _ _-

SI IIIl

.- • Correlated -- w--•

41.0 . . .... ..

•.(i I V

40.0 t _'-

I V

0o 10 15 20

Time (nsec)

Figuie 2. Correlated vs. Uiicorrelated Vectors For nr-20
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correlated variables for ur equal to 20 and 50. Figures 2 and 3 show these relationships. A

similar effect can be shown for nr equal to 100.

The effect of the correlation is very evident and thus corifirms that the model is

indeed snmoothing out the fluctuations in a dramatic way.

I

-- -- ---- Uncorrelated
Correlated

42.0 ---

,I, I it A I It" I' 1. _ " I-

-• 40,0 ,--
U l ii * I.'..i

'I -o oo

U01,0 20 %3'0 40

Time (msec)

Figure 3. Correlated vs. Uncorrelated Vectors For nr=50
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The next section of the program computed the autocorrelation of the correlated

5 samples to provide a numerical validation of the data graphically represented in figures 2

and 3. Two graphs were produced for nr equal to 20 and 100 in figures 4 and 5.

I

SI~

0.4

0.

U

Q2 - - -------

0 10 20

Time Lag (mnsec)

Figure 4. Autocorrelation vs. Time zLag for nr-=20
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Figure 5. Autocorrelation vs. Time Lag for nr=100

A few quick calculations can show that using equation 1 to compute the variance-

covaiiance matrix will generate numbers in the range of I to .90574 for time lags of 0 to

.099 seconds. This corresponds to 99 time intervals -sing a 1000 Ilz PRF radar as

22



specified in this model. Also, the numbers generated by equation 2 will decrease from I to
.999901. Both sets of numbers decrease in a nearly linear fashion. This may seem wrong

at first since both functions are exponential. But it is easy to show that using only .099

time units is a very small portion of the exponential curve and this portion near zero closely

approximates a linear function. Thus, the autocorrelation curves in figures 4 and 5

accurately portray the true correlation that was specified in the beginning.

The graphs also show that the vectors exhibit a correlation time, the time required

for the autocorrelation to decrease to zero, that is rclated to the number of samples used.

For example, 19 msec for 20 samples, 49 msec for 50 samples, etc. This is due to the fact

that a limited number of samples was "windowed" out of an infinitely long random

process. A larger number of samples would result in a correlation time that was

independent of the sample length as expected. These values are still reasonable though

taking into consideration the dynamics of a chaff cloud and the random nature of the dipole

orientation, drift velocity, and phase variations. Although these parameters were not

directly modeled into the simulation, the results show a realistic behavior in the relation of

one cross section to another.

Furthermore, a comparison was made between the autocorrelation functions

generated by equations 1 and 2. The function generated with equation 2 was slightly

3] greater than the first, but the difference was at most 3-4% and represented no significant

advantages over the equation 1 function.

The power spectral density (PSD) was computed by the program next. Figures 6,

7, and 8 show the PSD for nr equal to 20, 50. and 100 respect!vely.
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SFigure 6. Power Spectral Density For nr=20
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H
Again it can be seen that as nr increases, the graphs tend to display a better

representation. In this model, the power should be concentrated around zero because the

PSD represented the degree of fluctuations that the mean value undergoes. After

correlation of the random variables, the fluctuations should be very small, and the graphs

* ~1.00 -

0.20 i.> I _ _ _ _ _ _a t . . . . . . . ...

4.. .. .7

0.04

~0.04 1 __/ _

- " I I _ A111111 __ . _ '- -'- ..

.007. 1 h-* _ ... _

..... ... .. ý 4 . . .

1 i - " - - ' 1: "- . . . . .

.004. ~ -~*7

.002 I.OO 0_- --

0 t00 200 300

Frequency (Hz)

Figure 7. Power Spectral Density For nr=50
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I
show that they are. A comparison was also made concerning the power spectral densities

generatcd by equations 1 and 2. A quick computation can show that the values generated

by equation 2 were 3 decibels lower than the equation 1 values. This is not surprising

1.00 i - _

S• ,,.030-

t .oo
__ .0 5 1 . ..|! i

.. . . . i ..: .i _ .- I

"I I

.0003-.030 /00 200 300 400

Frequency (Hz)0Figure 8. Power Spectral Density For nr= 100
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since equation 2 is just the square of equation 1. On a normalized magnitude plot, the

U values are less than or equal to i which would result in a 3 decibel loss when the value is

squared inste-ad of a gain, as might be expected. Again no significant advantages appear

from using equation 2.

The last section of the algorithm computed the goodness of fit of the generated

sample gaussian, Rayleigh, and Weibull random variables. Three tests were again

performed with different seeding numbers for each nr equal to 20, 50, and 100. Table [H

displays these results.I
TABLE II

k Comparison of Goodness of Fit Tests

nr I dseed I dseed 2 normal Weibu ayleigh
20 56347856 45678 .6594 .7047 .0786

49 65478 .3618 .4493 .1116
2938445 864120 .3080 .8495 .1991

50 765449 8237126 .0077 .0186 .0719
434819 23569 .1935 .0905 .0992

76239 49876123 .0591 .0160 .0008

100 99267 8839212 -286 .0970 .1847
234598723 102 .1197 .1374 .0215

8092 5454 .5724 .22!4 .4481

One problem arose when computing these values. It is easily seen that some values

are quite good (approaching 0), implying high accuracy in the generated variables. But

others were computed around 0.5 and even higher. It appeared that the chi-squared statistic

was highly dependent on the seeding value. Also, the number of equiprobable tally cells

influenced the chi-squared statistic. Care should be taken in specifying this parameter. It

was observed that using the saine number of tally cells for the Weibull and Rayleigh tests

resulted in identical chi-squared statistics. In summaxy, this did not appear to be a

dependable test because the statistic varied so much with the input parameters.
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An alternative test performed was graphing a sample vector vs. its theoretical

cumulative distribution function. This was done with the IMSL subroutine USPC. This

subroutine plotted the sample value- theoretical values, and a two-sided 95% confidence

band around the sampie values. Every data set generatd produced a graph that was well

behaved inside the confidence bands. These graphs are presented in figures 9, 10, and 11.

This test was deemed much more stable and suitable for confirming the distribution of the

generated variables.

This concludes the intended validation of the model with the applicable tests and

comparisons. The final chapter will draw some conclusions from these tables and figures

and make some suggestions for improving the model.

2
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i ~V. Conclusions and Recqmmendati0.s

3 The purpose of this study was to develop a computer algorithm capable of

generatiag correlated gaussian random sequences. These sequences could be used to

represent consecutive chaff cloud radar cross sections in electronic warfare training

scenarios. Several sets of data were generated by the model and subjected to various tests

and observations.

The model proved to be well behaved in all areas tested except the numerical

goodness of fit tests. Several inconsistencies were noted involving the relationship

between the input parameters to the IMSL subroutine GFIT and the resulting chi-squared

-#LL L:l.- L t .VV 4A A. U.I. LLU*O LTL#ý "140 U4 6t11.0 U 1l..0t ... t tO1 ttfl OQ .. &O%16",

1.varied so dramatically with the input seeding numbers and the number of tally ceils

specified. This problem 'as offset by using a graphical method of determining the

goodness of fit. The data produced by the model was declared satisfactotly by failing

within the 95% confidence bands on all data generated.

The model realistically generated the independent gaussian variables required and

the coivsponding Rayleigh and Weibull variables that were derived from the gaussian

numbers all proved to be well behaved. The large fluctuations present in the independent

variables were transformed into smoothly varying ones just as the model was designed to

do.

Furthermore, the autocorrelation and power spectral density properties followed

from the predicted theories. Tiie autocorrelation should have been linear, and the PSD

should have been concentrated around zero. It was noted as nr increased, these

computations became steadier and more well behaved.
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In summary, this model accomplished all of its initial objectives satisfactorily.

Several improvements can be made and there are areas which could be studied more

thoroughly as discussed in the next section.

H=UMMJCndadons
Further study should be done into the problems discussed concerning the goodness

of fit tests. An analysis might be performed to determine the optimum number of tally

categories that would result in the most consistent chi-squared statistic results.

A study could be done to see if an upper or lower limit exists on the PRF that may

inject some inconsistencies into the model.

Determine if there is a more efficient or more accurate algorithm available for

computing the power spectral density.

Consider what additional tests the model could be exposed to that might simulate a

training environment and determine if the model is realistic in simulating real world

dynamics.

The model could be used as suggested earlier to test other radar systems and their

effectiveness against chaff, or it could be used to evaluate a model of a radar system.

Introduce the blooming effects of a dispensed chaff cartridge into the model.
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A1pndix A - Probability

In this appendix, a brief review of probability and statistical theory will be

3 presented. This section is included to make the entire paper self contained

A random process, stochastic process, or time series is a random variable that is a

3 function of time (14:3). A random variable X and its value at time tk may be denoted as

Xk = X(tk) (A-.I)

Because of its random nature, it is meaningless to talk about the value of a random

variable obtained at a certain time or values observed during a particular time interval.

Instead, the idea of probability provides precise definitions of certain distributions and

averagee wicyth c-an k- predicrtedr andi observed with vt'~mp lo-UP] Afi -nfid .ne-.(14:3'1 T

I first and second order probability distributions can be defined as

F(x,t) = Prob [X(t) :5 x f(v) dv (A-2)

F(xi,x,:tt,t, ) = Prob IX(tl) < x1, X(t2) < x 2

xI x2

=J f f(uz.) dz du (A-3)

The probability density function (pdf) f(x) and the cumulative distribution function

(cdf) F(x) are related more clearly in equations A-4 and A-5.

a

Fx(a) = Prob (-- < x < a) f f(x) dx (A-4)
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f(x) = d/dx [F(x)] (A-5)

Oftentimes, the pdf of a random variable X is known and the pdf of a function of x,

for example y=f(x) is desired. If the inverse function x=f-I(y) is single valued, then

fy(y) - f(x)/Idy/dxl (A-6)

The formula holds for multiple valued functions (13:95) such as

X1 = f".I-(y), x = f-1(y).

fy(y) = fx(xl)/Idy/dxl[ + fx(x 2)/Idy/dx2j + (A-7)

Random variables are usually classified as stationary or nonstationary depending on

whether the statistics of the variables are independent of or dependent on the independent

variable time. Since this paper deals stricdy with wide sense stationary -WSS) variables,

only that type will be described here. A variable that is WSS possesses a first order pdf

that is independent of time (a cunstant), and its second order pdf, known as the

autocorrelation function, is dependent only on the time difference r=t2-tt (14:4).

The expected value or mean of a random variable _ is defined as follows.

11

E[XN mr= J xf(x)dx (A-8)
-00

The variance and the standard deviation of the random variable 2 are defined as

VAR(X) = s2 = E(a2) - E2(_X. (A-9)

SD(X) = [VAR(X)]"I2  (A-10)

where E[ 2 ] is commonly referred to as the DC component, E.X 2 ) is the mean square

value, and SD(]) is the AC component if X represents a voltage (14:5-6).

35



One of thz; most imp3rtant second order quantifies of interest is the autocorrelation

function R(r), which is defined as

R(r) = E(X 1  ) = E[x(t) x(t+ir)j (A-11)

It may be noted that for T=O, R(T) is equal to the mean square value, and as T

approaches infinity, R(r) approaches the DC value squared (14:6).

The power spectrum or power spectral density (PSD) is another second order pdf

that is of importance. It is the fourier transform of the autocorrelation function and

provides information about where the energy in a function is concentrated (13:265). It is

defined as follows.

X(f) = T R(Tr) exp(-j2xt fT) dT (A- 12)

00nr- 
I

X(f) = T x(i) exp(-j 21if ) -00 < f < (A-13)
i= 0 -

It can easily be shown that since R(-T)-R*(lr), the power spectrum of a real or

complex valued process is a real function of f. Other transforms are used to provide

information about the PSD, including the cosine transform. The cosine transform uses this

real value property to simplify the representation. It deals directly with the discrete sample

vaiues of the random variable and does not require transformation of the autocorrelation

function (12:139).

The moment generating function (MGF), as presented in chapter 2, is useful in

transforming a random variable from one distribution to another. For a variable Z-X 2, the

MGF is defined as
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Mz(t) = E[exp(tz)] E[exp(tx2 )]

*0

f I exp(tx2) f(x) dx (A- 14)

Mz(t) (1//-'2?I a) f exp(tx2 ) exp[-(x-1•) 2 /2a2 ] dx (A-15)
.- a0

for a gaussian random variable X with mean p and variance a2 .

After expanding the exponential, completing the square and making some

substitutions,

Mz(t) = (1 - 2o2 t)-1 /2 
- [ (1/2a2) / (1/2o2 - t) ]1/2 (A-16)

TP -42:_ i A - ._.V? Udo-.IL' e

""" - -V "1aS C4 1--LA--LLA ,%-L1LL1,%ALU, W•IU 011 UsvV U01 11rf fUO.

Meyer proved that the sum of n chi-squared variables each with t degree of freedom is a

chi-squared variable with n degrees of freedom (9:201). It can also be shown that this

variable is exponential with parameter a= 1/2. Below are moment generating functions of

some well known distributions (9).

Uniform on [a,b] Mz(t) = [exp(bt) - exp(at)] / (b-a)t (A-17)

Binomial (n,p) MVlz(t) [p cxp(t) + (I-p)]n (A-18)

Exponential (a) M7(t) = a/(a-t) t < a (A-19)

Gaussian (p, 02) M1(t) = exp[ it + GZ tz/2] (A-20)
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Progrum Listing
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*3*3* ~SIMULATION OFtet
*00*3 ~CHAFF CLOUD*0*

303*0 ~SIGNATURE *3

*30*3 Captain Richard P. Fray, USAF 03

real ac(101).c( 10Mf,155),cells(5),coinp(5),cs.freq(51) ,q

',iql ,q2,ray(115) ,rho( 151) .8(151).smean.spe(51 I spectr(5
l).sum.suml.svar.sl(151).vc(155.105).w(455).weib(Ilh),

+x(100).xmean.xvar.xl(100),y(l05Y),ymean,yvar,yl1(0),z,
*zlzZ *zmean

double precision duced

external norm.wetib.rayl
data ccl ls,freq.rho.spectr.x/357t 0.0/

I df=0

n95955
sUr-8I

tau is the time interval
NA conuucutvvvw racer retir

tau- .001

*nr Is the numr-
f-ross sectir

n r-100

*zmnc-
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SuMinsum+y( I,)

16 continue
ymooansum/nr

* vector yl now contains variables
W with a mean-amean

* generate a second vector of independent
* randomi variables for use In generating

the woibull and rayleigh variables
dseedn283153
wr ite(6, 1S)dseed

is formaW( darned 2 ,ftsf12.1)
call ggninl(dssed.nr.s)

sumI-.I

20 continue

s mean-Tum/nrdo 25 1`01.nr
SUm1-.zum1+(s(1f)-3mOAn)**2

25 continue
svar-suml /nr
sum*0.H
do Z6 1na1.nr
s( in)us( In)-smean
sl( fn)ws9 n)+zmean
i~um.uU45( In)

26 continue
vipeangsuis/'

* vector s! now con~sins variables
* with a mrean-ziean

* generate the desired variance-covariance matrix

do 32 i1l,nr
do 30 J1t.i
if (1z.eq.2) then
vc(i.j).exp(-(abs(i-j))*tau**Z)

else

emd if
30 continue

J2 continue

* gener-ate tranSformation matrix C

lo 40 fk-l~nr
c (Ik,1) *vc 11k.i)

40 continue
do 48 !m-2.nr
do 46 jm.2. imt

I ~ im.eq.jm) then
SUMU 0.0
do 42 km-I.im-l

42 3um-sum+(c( 1m,km) )**2
42 cont inue

c(fm.iml-zqrt(vc(im,1m)-sum,'
else
sumi 0.0f
do 44 kn-L.Ji-1

sum1hsuml+c( Im~kn)*c( Jm~kn)

40



IdI
46 continuan

46 continue~

* ganftrate cor. elated vector X

do 52 il1l.nr
do Si5 Jk-1.il
xil)wx(il).( cC i. Jk) )y( ik)

55 continue
52 continue

* calculate mean of correlated vector X

suw*R.5
d1o 65 iawl.nr
S uauem~lIxt i)65 contlrnue

x mean -saUm/ n r

* compute variance of correlated vector X

sum~ 1-0.0
do 78 Id-1.nr
sumlwgunt( xC id) -xmean**02

75 continue
xvarusuml.inr

* translate X into a random variable
M with a -n-------M

do 72 it-1.nr

1 xi1.()::a4::ncalculate the autocorrelation

do 80 j-i~nr

sues sum+x (J)'x (JJ)
88 continue

a c( i)-sum/nr82 continue
wrlte6b.84)xmean.xvar

84 format(' xmean-"fl5.7." xvar-"flS8.7)

do 88 kl-1.nr

rho(kl)-ac~kl)/sc(1)

print out correlated vector and
* autocorrelation values

I ¶ write(6.86i)kl~x(kl).kl,xl(kl).kl-1.rho(kl)

8 * format",f9.5)"*.f.5"rh(

88 continue

* compute the power spectral density
* of Correlated vector X

call cotran Cnr *tau freq. spectr x .spo)
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K * print out autocorrelation values

co 92 i1I.nrf2+1
wr ite(6,95) i-I .freq( 1),?-!,spe( 1)

90 format(" freqi",i3.*)w"f9.3.' Hz speU",i3,h"-

92 thennu

p * recompute parameters with different
* variance-'covariance matrix

else

* generate weibull and rayletgh variables

do 102 11l.nr

web Ib )zl
qZ0. S

zZ2-z**q2
ray~l )-ZZ

* print out Independent normal vectors y and s,
* print out their corresponding mean-zmean vectors,

* nd print out weibull and rayleigh vectors

-f9.5)

*flE.7, svarymfaD.7)rsma~s

* perform goodness of fit test on gaussian variables

k:4
call gl'it(norm.k~y.nr~cells,cornp.cs. idf.q. ter)p ~write(6. 114)

214 flormatt~goodnesw of fit test for gaussi3n variables')

116 format("cellsquirfs.atisticfo.r.,tfs.12. vriale

wr iteiG. 120) Idf
120 format('gaussian degrees of freedom -", 12)

122, frat("prbabiiity of chi-squared statistic exceyedin

graph normal vector vS%. theoretical cdf

call vsrta(y~nri
call uspcinorm.y~nr,nlZ~n95J1p,ic.w)

* perform goodness of' fit test on weibull variables
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I df -0

do 12I4 f*1.6t 124 coninsue3.
call gfit(veibl .k.weib.nr.cel ls.comp.cs. idf.q, tsr)
write(6.135)cells(1).cells(2).csllu(3).cella(4),

"cel lu(S)
130 fra~eli(.f~,,f.,, f.. "

132 + 1.". ¾ 1,5.1,")") statistic for weibull variables

1rt(~ 34) idf
14 formstt"weibull dowgrees of freedom w ".I2)

writel6, 136)q
16 format('probabtlity of chi-squared statistic exceedin

*g "teibull cs if null hypothesis Is true - ",f`10.71

graph weibull vector vs. theoretical cdf

call vsrta(weib.nr)

call uspc(weibl.weib,nr.nlZn96.ip.fc.w)

w perform goodness of fit on rayleigh variables

i~df-3
k-S
do 139 f-1,6
celisi I)'.3

136 continue
call gf't(rayl.k~ray,nr~cells~comp,ca. idf.q,ier)
writeiG. 144)cells(1),cells(Z) .cells(3),cells(4),I ~+c@1 1si5)

144 fona ce s- f5l" fS1.f 1, .

writeiS. 146ics
146 format('chi-squared statistic for rayleigh variables

"p.f'9.5)
write(G. 148) idf

148 format("rayleigh degrees of freedom - ",i2)
wrIteiG. 150)q

50 format('orobability of chi-squared statistic exceedInI +9 rayleigh ca if null hypothesis is true - ",1`10.7)

orapn rayleigh vector vs. theoretical cdf

c:all vsrtairay.nr)
call uspc(rayl .ray.nr.nlZ.nSS. Ipic~w)

end If
173 :ontinue

end

* subroutine cotranW
* computation of cosine transform (PSO) of samplesa

subroutine cotran(nr.taui.freq,spectr.x~spe)
real treq(51).pi.spe(51).spectr(51),tau.temp.thet,

*x{ 103) .yy,zz
Integer i.ka~nr
p 1-3. 141552654



kbaka-I

yymkbl Cnr*tau)
freq( ka)-yy+.Z.EM1
do 20 I-1.nr
thetu.Z*pf11 kb/nrI ~zz-cas( that)
tern temp zx*C( )

2,C- continue

Mi spectr Is thot raw computed power spectrum

spectr ka )intmp~tau

spa Is the normalized magnitude o~f the power spectirum

spe(ka)-'nbs(spectr(ks)/spectr(.I))

return

- gaussian cumulative dist~ribution function

subroutine norri(x~pl)
p.-5*erfc( -x*.707196G)
return.I and

* subroutine weibi
* weibull cumulative distribution function

subroutine weIbi (x.y:

;etujrt
end

* subroutine rayl*
* rayleigh cumulative distribution function

subro-itine rayl 'x.y2)

return

end
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