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Preface

The purpose of this study was to develop a computer algorithm capable of
generating correlated random processes for simulating time-varying samples of chaff cloud
radar cross sections. The need for this model arises in realistic, dynamic, electronic
warfare training scenatios. The model may also be used to evaluate radar systems and their
effectiveness against chatf.

The algorithm was developed on a VAX 1/785 computer using a 4.2 BSD version
of the UNIX operating system, the FORTRAN 77 programming language and The
International Mathematical and Statistical Library (IMSL) of subroutines.

I developed an interest in electronic warfare and chaff modeling through some of
my classes at AFIT and was fortunate to find a topic that matches my interests and an

advisor who was enthusiastic about supportir.,, it.

Richard P. Fray
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ABSTRACT

In this thesis, time-varying radar cross sections of chaff clouds are generated for
use in radar/ECM computer sinulations, under the assumption that scattering from chaff
clouds is a wide sense stationary random process. For a jointly gaussian random process,
second order statistics are developed from correlated samples of radar cross seciions.
Applicable statistical tests are performed to validate a set of generated samples. The
goodness of fit of the samples compared to the prespecified density function is determined
along with a comparison of the correlation coefficients from the generated set to the desired
correlation coefficients. Rayleigh and Weibull statistics are also derived from gaussian
variables to present an alternative way of describing the probability distributions of chaff

cloud cross sections. Topics for further study are suggested.
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SIMULATION OF CHAFF
CLOUD SIGNATURE

1. Introduction

Simulations of radar, electronic countermeasure (ECM), or electronic
countercountermeasure (ECCM) systems involving chaff have been of interest to the
military community for years in the evaluation of such systems and in electronic warfare
scenarios used in training pilots, radar operators and electronic warfare officers.

The term chaff denotes a confusion type of radar ECM which employs a lurge
number (hundreds of thousands) of resonant dipoles packaged into small cartridges (16:1).
The individual chaff dipoles are manufactured in a vanety of ways and from different
materials including glass fibess dipped in molten silver or aluminum, but the standard
materidi used in the production of chaff is aluminum foil cut into thin strips (5:18-14).

Individual chaft dipoles have bandwidths corresponding to about 10% of their
resonant frequency, so a single cartridge of chaff usually contains scveral different lengths
that wiil resonate over a wide band of frequencies. When the tubes are dispensed into the
air from an aircraft, helicopter, or as a mortar round, the cartridges burst and creatc a "radar
smoke screen’” that confuses the enemy radar (5:18-16).

The radar echo produced is the result of the return from a large number of

individual dipoles (5:18-10). The echo cau be used to saturate a radar coverage area, break
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lock on a tracking radar, or create false targets (5:18-17). Corridors of chaff can also be
formed to provide friendly aircraft with areas to fly through without being detected or

tracked by encmy radar.

Various atlempts have been made to simulate chaff clouds realistically using the
various parameters associated with the clouds and their probability distributions. Studies
have been made to analyze the distributions of dipole angle ovientation (21), radar cross
section (1, 2), and drift velocity (3). The existing methods of synthetically generating radar
reflections from chaff clouds are either deterministic or at best restricted to the first order
statistics which merely indicate the magnitudes of the fluctuations of the cross sections
about some mean value. The deterministic methods predict the exact outcome in any given

situation and often require some very involved calculations. Due to limited computer

sually be analyzed in representing one

chaff cloud (14:1).

The restriction to first order statistics is not very satisfactory since in a dynamic
situation one has to know not only the magnitudes but also the rates of the {luctuations. On
the other hand, statistical methods are =\t concerned with any particular situation. They
predict by a probabilistic method what might happen under a given set of conditions. There
is no restriction on the number of dipoles a cloud can consist of. In fact, the larger the
number, the more accurate the representation will be (14:1).

To determine the ratcs of the fluctuations, second order statstics of the chaff cloud
radar cross sections are nceded. These staustics give the probability of joinuy finding two

values of a random variable at different times.
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The radar return of a chaff cloud at one instant of time will be correlated t¢ some
extent with the retumn at a previous time. For small time differences, the corrclation will be
high, and for large ones, the correlation will be low (5:18-8). To model this, the
correlation function will be specified as an exponential function of the time difference. The
purpose of this thesis is to deveiop an algorithm to generate pseudorandom samples of
radar cross sections, with these correiation coerticients, for a representative chaff cloud.

For a given autocorrelation function, second order stadstics will be generated.

Scope

This model will remain a fairly simplified one in the respect that it will deal only
with the radar cross sections of a chaff cloud. The aerodynamic and electromagnetic
qualities, drift velocities, and birdnesting cffects (clumping together of several chaff
elements) of individual dipeles, and the transient effects of cloud blooming immediately

Tollowing dispensation of a chaff cartridye will not be addressed.

Assumptions

The primary assumption made is that radar backscattering from chatf clouds is a
wide sense stationary random process. This implies that the statistics of one dipole or
cloud will not change from one ume instant to another, and tf,at the autccorrelation is
dependent only on the time difference at which the dipole or cloud is evaluated. It also
implies that the average or mean value of the statistics is independent of time. This is
justified due to the fact that chaff has a very high acrodynamic drag and therefore will not
alter 1ts position very much between radar returms.

Each elementi] dipole will be assumed to have random phase and amplitude for two

reasons. The orientation of the dipole may change due to rotation of the dipole, and the

distance between the radar and the dipole center may change. This implics the cloud will
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also have random phase and amplitude. Finally, it is assumed the separation between
dipoles is great enough to prevent any mutual coupling or interaction between adjacent
dipoles. The effect of the random phases and amplitudes merely suggests that the model

will generate a radar cross section that is uniform throughout a chaff cloud.

General Approach
The model entails generating a set of correlated psendorandom samples from a
gaussian probability density function. Two exponential correlation functions, as shown in

equations 1 and 2, will be specified for each set of samples.

p(t) =exp [ - |11 1)

n

p(T) exp ( - 12) )

Where T corresponds to the pulse repetition interval of a radar system and
represeits the time between consecutive samples of the radar cross section. Several sets of
data will be generated with different quantities of cloud samples, for both correlation
functions, to form a basis of comparison and validation for the model. The number of
samples will be limited to at most 100 because in using pulse integration to obtain
additional data, rarely are more than 100 pulses integrated.

For each set of samples, a chi-squated goodness of fit test will be performed to see
if the generated samples do indeed fit the theoretical distribution they were originally
generated from. Then a comparison will be x:nadc between the auiocorrelation coefficients

of the generated sampies and the originally specified exponential correlation functions.

Finally, Rayleigh and Weibull samples will be derived from the gaussian samples.

Sequence of Presentation
First the existing theories of representing chaff cloud retumns, methods developed
for generating correlated random variables, anc the derivations of Rayleigh and Weibull

statistics Ivom gaussian variables are discussed in chapter 2.
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Then the algorithms for generating the correlated random samples is flowcharted,
developed, and discussed in chapter 3. 3

Chapier 4 presents validation of the model through applicable statistical testing of |
the generated sets of data.

Finally, conclusions are made and recommendations for further study suggested in '

chapter 5.

)

A review of the applicable probability theory and a computer listing of the algorithm

are presented as appendices.
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II. Existing Theory

In this chapter, existing theories developed for generating correlated random
variables and some metnhods used to represent chaff clouds are reviewed. Also the

derivations of Rayleigh and Weibull statistics from gaussian variables are shown.

Chaff Models

One model reported in the literature was developed at the Georgia Institute of
Technology in 1977 (4). A preliminary chaff radar cross section (RCS) model, developed
to estimate the RCS of deployed chaff, was improved and extended to compute the mean
RCS of deployed chaff bundies and their variaticns about the mean value known as
scintillations (4:1). The Georgia Tech study proposed two methods to simulate the
pioblom of chaff pattemn backscaiter sciiitillation, the Rayicigh disoribuicd draw method,
and the dynamic time series model (4:3). Each model's major features will be discussed
briefly.

Backscatter power from a chaff cloud is not deterministic. Rather, it varies around
some mean value. It can be thought of as an analog process being digitally sampled by a
pulsed radar sy.stem (4:10). The Rayleigh draw model entailed inputting parameters such
as the RCS mean, the period of the highest scintillation rate, and the observation time
desired. A draw was then made from a Rayleigh distributed random number generator and
processed through an interpolation formula. The interpolation formula allowed the user to
determine the RCS at any instant of time between samples or at any rate slower than the
sampling rate. The resulting output was an RCS chaff pattern generated as a function of
time.

Amplitude fluctuations have been shown to fit a power Rayleigh distribution (15),

so this method is realistic for most chaff simulations. Other distributions may be used in
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different applications with satisfactory results. To ensure accurate sampling, draws from

the Rayleigh generator must be made at the Nyquist raie or higher, corresponding to the

LN A

highest scintillation rate. But care must be taken because inputting a rate higher than the
maximum scintillation rate would introduce errors due to the inconsistency of specifying a
maximum and then exceeding it.

A problem may also arise with the validity of the generator draws if the statistics of
the RCS change with time. During the bloom period this may present a serious problem,
but for first order models, if the mean RCS was assumed to vary slowly with respect to the
rate at which a new RCS value is generated, then the results would be considered valid

(4:14-18). No testing was done to compute the correlation of the RCS from pulse to pulse,

50 no comparison could be made between the correlation of the generated variables and the
desired correlation.

A more mathematically based method developed in this Georgia Tech report was the
dynamic time series model. A time series is a sequence of successive observations or
simulations of a stochastic or random process. The observations are usually equally spaced
and could represent the RCS return of a chaff cloud from consecutive radar pulse returns

(4:19). The time series models basically use previous samples to determine future samples.

| ERE WK e

This model is more rigorously developed but could require longer computer processing

time than the Rayleigh draw method (4:34).

R4

Another chaff modcl, also developed at Georgia Tech, was the Chaff Theoretical/

Analytical Characterization and Validation Program (7). This model incorporated the
aerodynamic and electromagnetic behavior of chaff dipoles and modeled the propagation of
received signals through a radar system (7:1).

This model was a very detailed one, taking into consideration dipoles of different

lengths, and weighting chaff retumns according to a dipole's angular location within the

-,

antcnna radiation pattern (7:1-2). The approach was to develop a quasi-deterministic

Hgly
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descripuon of the cloud. Further assumptions made concerning the dipole density function

resulted in integrals that could not be evaluated, not even numerically. These integrations

n

were too time consaming on a computer and that made the mode] unworkable.

They suggested future efforts be devoted to making approximations of the volume
integral and empirical descriptions of the dipole deasity variations (7:4). Also better
experimental data was needed to help predict and validate the model.

Other studies exist taking different approaches including Wickliff's and Garbacz'
(20), which included mutual coupling among dipoles, and Schiff's (18), which modeled

chaff decoy placement in relation to ant:ship missile defense problems of the Navy.
Methods for Generating Correlated Random Numbers
Several methods were reported in the literature for generating correlated random

number sequences. Some of the algorithms were strictly designed to generate gaussian

variables while others could be used to generate any probability distribution. One method,

e

developed by Nawathe and Rao, used the theory of optimal linear prediction to generate

cross correlated random aumber sequences (11).

e

The technique first required generation of two random number sequences, for
example X and Z, each having the desired probability distribution. The vector Z was used
as a parent population for generating a correlated vector Y. Then for each element of the

w1 — " lntsme W n e LT ot €\ yernn
vector X, X (K = {X(l) ... X{n}} ), a calculation of the best lincar pr dictor of Y was

FE S

made. For every x(1), a search was made through Z to find a sample which was close to

£

x(1), closeness defined as a specified mean square error interval. If no match was found, a

sample was picked from Z which had the lowest mean square error, away from x(i), and

=

the algorithm assigned this sample to the corresponding y(3) (11:98).
This method is simple and straight forward and requires only knowledge of the

marginal densities of X and Z. Using this method, several sets of data were tested with

38 2 W =
o0
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different desired correlation: coefficients and probability densities. The ¢stimate of the
coefficient of correlation between X and Y was defined (11:97) as

nr

p=m) 3 { [xG) -] [yG)-uylio 0.} 3
j=1

A table of the calculated correlation coefficients showed the difference from the desired
coefficients increased as p approached zero, and was on the order of only 1 to 2 percent
for a correlation of p=.8 (11:99). This confirmed the statement in the paper that results
tended to improve with increasing magnitude of the correlation coefficient and sample size.
The model was further validated through derivations of the expressions for the expectation
and variance of the correlation coefficients (i1:96).

This technique proved satisfactory for three typical distributions, normal,
exponential, and uniform, and thus appears applicable to any continuous distribution.
Although it is only an approximation for nonnormal distributions. the resuits of the Monte
Carlo simuiation here are valid (11:101).

Another method, developed by Li ana Hammond, involved transforming a vector
of independent gaussian random variables into a vector of gaussian variables with a
specified predistorted correlation coefficient matrix (8). First, a vector of independent
gaussian random variables was generated. Then this vector was multiplied by a linear
iransformation marrix which resuiied in correiated gaussian variabies possessing the
predistorted correlation coefficients. Finally, a nonlinear transformation was performed to
create a vector of correlated random variables with the desired univariate probability density
and correlation coefficients.

The difficulty in this technique lies in finding the nonlinear transtormation. For the
desired rrobability density function, a set of transformations involving inverse cumulative
density functions and the error function are required (8:558). The calcnlation of the

predistorted correlation coefficients also requires complicated integral evaluations.




However, data produced by the algorithm passed all statistical tests and generated
conrelation coefficients with less than .1% error as compared to the desired coeificients
(8:559). Therefore, this method proved itself mathematically sound though it may be too
complex for the task at hand.

The technique chosen for the chaff cloud signature model was developed by
Scheuer and Stoller (17) and a similar study done by Mobnan (10). This method proved
the most straight forward one found in the literature and was well suited for machine
computation,

The technique first required the generation of a vector of independent normal
random variables with zero mean and variance of one. The resulting vector will also have a
zero mean and variance-covariance matrix specified by the user (17:278). To obtain the
correlated vector, the independent vector is multiplied by a linear transformation matrix,
created from the covariance matrix. The formulas used to generate the transformation
marrix and the correlated variabies, wili be presenied in chapter 3 aiong with a detaiied

explanation of the entire algorithm (17:279).

Ravleigh and Wt ibull Derivations

The purpose of this section is merely to present a method of obtaining Rayleigh and
Weibull distributed random variables from independent gaussian variables, These densities
are often used to define the distributions of chaff cloud radar returns, and a
pertinent to this study.

First, two independent identically distributed gaussian random variables, X and Y,

cach with zero mean, and identical variances s, are generated. Then, X and Y are each

squared and added together to form the variable Z.

Z=X2+Y? @)

Finally, the variable £ is raised to the power k.

10
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Now, by specifying k, the variable W can be transformed into one of several different
distributions. For example, if k=1, W becomes exponential, if k=1/2, W becomes
Rayleigh, and if k=1/3, W becomes Weibull although the exponential and Rayleigh
distributions are both just special cases of the Weibull distribution. The derivation of these
results follows.

The moment generating function was used to transform the gaussian variables and

is shown in equation 6 for Z=X? (13:115).

M,(t) = E[exp(tz)]

= E[exp(tx? )]

= J f(x) exp(tx? ) dx (6)

-O0

After making some substitutions and evaluaiing the expected value integral, the

result is simplified to equation 7.

M,(t) = [i/(L - 2st ) ]172 )

a=1/2s and r=1/2 (9:195). If the substitution of s=1 is made, then Z has a chi-squared
distribution with one degree of freedom. This simplification can be justified by assuming
the generated gaussian variables have a variance of one, which was intended when
generating the gaussian variables. Since X and Y are identically distributed, Z=Y~ can
also be represented by a moment generating function of a chi-squared distribution with one
degree of freedom. Meyer proved that a sum of n chi-squared distributed random variables

each with one degree of {freedom will result in another chi-squared variable with n degrees

11




of freedom (9:201). It can further be shown that this distribution is cxponential with

parameter a=1/2. '-.'f
£, (z) = (1/2) exp(-2/2) (8)

Finally, by transforming Z=X"+Y?2 into W=ZX using the Jacobian (13:95), equation 9

results.

fw(W) = f,(z) [dz/dwl
= f,(wk ) |dz/dw| N
= (1/2) exp[-(wVk )12] | (1/k) wi(i)Kl |
= (1/2k) wl(1-K) K] exp[-(wlk }/2], w,k>0 9)
The Weibull density has the general expression

fo(w) = abwb-1 exp(-awb ) (10)

If the parameters are set to b=1/k and a=1/2, equation 9 results. Then by substituting

different values in for k, the densities mentioned previously will result,

12
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II. New Model Development

In this chapter, the algorithm wili be discussed in detail to help the reader adapt it to
his own application. The algorithm was written in the Fortran 77 programming language
ona VAX 11/7385 ccmputer. A flowchart of the algorithm is shown in figure 1.

First, several parameters have to be specified according to the user's desires. This
model assumed a generic pulsed radar system for receiving the cross section returrs, so a
pulse repetition frequency (PRF) was specified. T was used in the program to designate
the time interval between radar pulses and is equal to the reciprocal of the PRF (19:2-3). In
this model, the value for T was chosen as .001 corresponding to a PRF of 1000 Hz. This
1§ a reasonable value for a low to medium PRF radar and corresponds to an unambiguous
range of 100 nautical miles (19:2). Also, the number of consecutive pulse retumns desired,
nr, was specitied. Three trials of nr equal to 20, 50, and 100 were used to form a basis of
comparison.

The first step in the algorithm required generation of a vector of independent
gaussiun random numbers, called Y, with zero mean and variance one (17:278).
Throughout this algorithim, several subroutines trom the International Mathematical and
Statistical Library (LIMSL) of subroutines were utilized (6). These subroutines are also
written in the Fortran programming language. The subroutine GGNML was called twice to
generate two vectors of iength nr random numbers. One was used to generate the
correlated sequence and the second was used in conjuaction with the first to create the
Rayleigh and Weibull variables discussed in chapter two.

The next step involved selecting the desired variance-covariance matrix. Two
cxpressions given by equations 1 and 2 were used to represent the correlation between time

samples. These exponential functions slowly decrease with small time difference and
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Figure 1. Flowchart of Algornithm
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therefore model a high correlation very well.

The section of the program that computes the correlated vector X is repeated twice
with a different variance-covariance matrix each time. The two matrices are generated by
using the two exponential correlation functions described in chapter one. This will further
provide a comparison of different correlations often used and hopefully help the user in
selecting the appropriate form.

A transformation matrix was needed to change the independent vector into a
correlated sequence. The method developed by Scheuer and Stoller (17), as presented
briefly in chapter two, was used. A lower diagonal transformation matrix  is calculated

from the variance - covaniance matrix CC using the following formulas,

C(,1) = CCG,1/[CC(1,1))\2 l<ignr (11)
i-1

C(i.i) = [CC(,i) - Zt. (K12 jeigar (12)
k=1

-1
C(i.j) = {CC(,)) - t ([CGK) *CGX) ] MCGH)  I<j<isgur (13)
k=1

C@,j) =0 i<j<nr (14)

Finally, to generate the correlated vector X, the transformation matrix C is multiplied by the

independent vector Y as shown in equation 15 (17:279).

i ..
Xg) = 2 CaN*YQG i=1.2,..0r (15) o
j=1 -‘
The next section of the program calculated the autocorrelation of the vector X. This was
done to determine the degree of correlation between the samnples. The autocorrelation was

computed for nr time lags (the entire sequence) through use of equation 16 (22:69).

15




Il B B T3

L d

F

22BN §

> N

nr-i
R, (1) = (1/nr) z X(§) X(G+1) 1=1,2,..nr (16)

j=1
The power spectral density (PSD), one of the second order statistics, was also calculated
from the correlated sequence. The purpose of this computation was to obtain an
approximate bandwidth of the fluctuations of the radar cross sections. The cosine
transform technique was used hecause it was simple to adapt to machine computation and it
gives the closest result to the fast fourier transform (FFT) without the complexity (12:137-
139). Subroutine COTRAN performed the computations to produce a normalized
magnitude of the power spectrum. Thé equations used in the cosine transform are

presented below.

nr-i

spectr(k Af) = T £ x(i) cos{Zn ik/nr) k=0,1,..0r/2 (i7)
i=1

Af =1/(nr* 1) (18)

Next, the Rayleigh and Weibull variabies were generated. The derivations of these
variables were discussed in chapter two.

At this puint, the model has generated a set of data and performed its
transformations and calculations. The last major section of the program dealt with testing
the variables for validation purposes. The IMSL subroutine GFIT was called three times to
test the goodness of fit of the three generated vectors y, ray, and weib to their theoretical
gaussian, Rayleigh, and Weibull distributions. A graph of each sample vector is also
plotted vs. the theoretical cumulative distribution function with 95 percent confidence bands
using IMSL subrouting USPC. The IMSL subroutine VSRTA merely sorts the vector into

ascending order for graphing purposes.

16




The program also converts the uncorrelated vector Y and the correlated vector X

into vectors with means of 40. This was done to demonstrate a chaff cloud simulating a

- =X

decoy target with an average RCS of 40 square meters.
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IV. Model Validation

The purpose of this chapter is to generate several sets of data and validat= the model
through statistical testing and by making observations on thc data.

First, the program generated independent gaussian vectors with means of zero and
variances of one. Three tests were performed for each value of nr equal to 20, 50, and
100. Each test ﬁéed a different seeding number to drive the IMSL random number

generators. Table I shows the results of these tests.

TABLE1

Comparison of Means and Variances

nr test geeed mean variance
20 1 999343 0000000 961984
2 60259 0000000 860671
3 565553 0000000 1.034006
50 1 39814055 .0000000 967838
2 24681055 0000000 .887949
3 872257 .0000000 . 1.206430
100 1 7866343 .0000000 1.242569
2 629895 0000000 1.055229
3 2833745 0000001 1.073428

As expected, the means are all virtually zero due to the fact that the: program
subtracts out the mean of the initially generated random numbers. However, the variances
fluctuate around one but tend to approach one as nr increases. This foilows from basic
probability theory that as the number of samples increases, the mean tends to approach a
constant number. The variance also tends to fluctuate less dramatically as the number of
samples increases. So the model behaves well in producing vectors of gaussian random

numbers with zero mean and variances of one.
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Next, the model created the comelated variables. To show the effect of the

correlation, two graphs were generated to compare the independent variables with the

Radar Cross Section (m?2)

400 -

39,0 4

...... Uncorreizted
- Correlated

Time (msec)

Figuie 2. Correlated vs. Uncorrelated Vectors For nr=20
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correlated variables for nr equal to 20 and 50. Figures 2 and 3 show these relationships. A

similar effect can be shown for nr ¢qual to 100.

The effect of the correlation is very evident and thus confirms that the model is

indeed smioothing out the fluctuations in a dramatic way.
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Figure 3. Correlated vs. Uncorrelated Vectors For nr=50
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The next section of the program computed the autocorrelation of the correlated

samples to provide a numerical validation of the data graphically represented in figures 2

and 3. Two graphs were produced for nr equal to 20 and 100 in figures 4 and 5.

B2 &8 222 N B

ol % oo

=’

Correlation Coefficient

=t~ - o}

0.0 e ™
0 10 20

Time Lag (msec)

Figure 4. Autocorrelation vs. Time rag for nr=20
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Figure 5. Autocorrelation vs. Time Lag for nr=100

A iew quick calculations can show that using equation 1 to compute the variance- c
b
covartance matrix will generate numbers in the range of 1 to .90574 for time lags of 0 to Fo

.099 seconds. This corresponds to 99 time intervals :sing a 1000 [{z PRF radar as
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specified in this model. Also, the numbers generated by equation 2 will decrease from 1 to
.999901. Both scts of numbers decrease in a nearly linear fashion. This may seem wrong
at first since both functions are exponential. But it is easy to show that using only .099
time units is a very small portion of the exponential curve and this portion near zero closely
approximates a linear function. Thus, the autocorrelation curves in figures 4 and 5
accurately portray the true correlation that was specified in the bcginniné.

The graphs also show that the vectors exhibit a correlation time, the time required
for the autocorrelation to decrease to zero, that is rclated to the number of samples used.
For example, 19 msec for 20 samples, 49 msec for 50 samples, etc. This is due to the fact
that a limited number of samples was "windowed" out of an infinitely long random
process. A larger number of samples would result in a correlation time that was
independent of the sample length as expected. These values are still reasonable though
taking into consideration the dynamics of a chaff cloud and the random nature of the dipole
orientation, drift velocity, and phase variations. Although these parameters were not
directly modeled into the simulation, the results show a realistic behavior in the relation of
one cross section to another.

Furthermore, a comparison was made between the autocorrelation functions
generated by equations 1 and 2. The function generated with equation 2 was slightly
greater than the first, but the difference was at most 3-4% and represented no significant
advantages over the equation 1 function.

The power spectral density (PSD) was computed by the program next. Figures 6,

7, and 8 show the PSD for nr equal to 20, 50, and 100 respectively.
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E Again it can be seen that as nr increases, the granhs tend to display a better
i representation. In this model, the power should be concentrated around zero because the
PSD represented the degree of fluctuations that the mean value undergoes. After
§ correlation of the random variables, the fluctuations should be very small, and the graphs
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& show that they are. A comparison was also made conceming the power spectral densities
l generated by equations 1 and 2. A quick computation can show that the values generated
by equation 2 were 3 decibels lower than the equation 1 values. This is not surprising
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since equation 2 is just the square of equation 1. On a normalized magniwde plot, the

values are less than or equal to i which would result in a 3 decibel loss when the value is

squared inst=ad of a gain, as might be expected. Again no significant advantages appear

{from using equation 2.

The last section of the algorithm computed the goodness of fit of the generated

sample gaussian, Rayleigh, and Weibull random variables. Three tesis were again

performed with different seeding numbers for each nr equal to 20, 50, and 100. Table I

displays these results.

TABLE I

Comparison of Goodness of Fit Tests

nr dseed 1 dseed 2 | _normal | Wepbyll | Ravleigh 1
20 56347856 45678 .6594 7047 .0786
49 65478 3618 4493 1116
2938445 864120 3080 .8495 .1991
50 705449 8237126 0077 0186 0719
434819 23569 1935 -.0005 0992
76239 49876123 .0591 .0160 0008
100 99267 8839212 .3286 0970 .1847
234598723 102 1197 1374 0215
8092 5454 5724 2214 .4481

One problem arose when computing these values. It is casily seen that some values

are quite good (approaching 0), implying high accuracy in the generated variables. But

cthers were cemputed around 0.5 2nd even higher. 1t appeared that the chi-squared statistic

was highly dependent on the seeding value. Also, the number of equiprobable tally cells

influenced the chi-squared statistic. Care should be taken in specifying this parameter. It

was observed that using the same number of *ally cells for the Weibull and Rayleigh tests

resuited in identical chi-squared statistics. In summary, this did not appearto be a

dependable test because the statisuc varied so much with the input parameters.
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An alternative test pecformed was graphing a sample vector vs. its theoretical
cumulative distnbution function. This was done with the IMSL subroutine USPC. This
subroutine plotted the sample valuer theoretical values, and a two-sided 95% confidence
band around the sampie values. Every data set generatcd produced a graph that was well
behaved inside the confidence bands. These graphs are presented in figures 9, 10, and 11.
This test was deemed much more stable and suitable for confirming the distribution of the
generated variables.

This concludes the intended validation of the model with the applicable tests and
comparisons. The final chapter will draw some conclusions from these tables and figures

and make some suggestions for improving the model.
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Corclusions

The purpose of this study was to deveiop a computer algorithm capable of
gerneratiag correlated gaussian random sequences. These sequences could be used to
represent consecutive chaff cloud radar cross sections in electronic warfare training
scenarios. Several sets of data were generated by the model and subjected to various tests
and observaticns.

The model proved to be well behaved in all areas tested except the numerical
gnodness of fit tests. Several inconsistencies were noted involving the relationship
between the input parameters o the IMSL subroutine GFIT and the resulting chi-squared

ndamae 1 hannne
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varied so dramatically with the input seeding numbers and the number of tally cells
specified. This problem sas offset by using a graphical method of deterraining the
zoodness of fit. The data produced by the model was declared satistactory by failing
within the 95% confidence bands on all data generated.

The model realisticaily generated the independent guussian variables required and
ihe comresponding Rayleigh and Weibuii variabies that were denved from the gaussian
numbers all proved o be well behaved. The large fluctuations present in the independent
vanables were transformned into smoothly varying ones just as the model was designed to
do.

Furthermore, the autocorrelation and power spectral density properties followed
tfrom the predicted theories. Tie autocorrelation should have been linear, and the PSD

should have been concentrated around zero. It was noted as nr increased, these

computations became steadier and more weil behaved.
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In summary, this model accomplished all of iis initial objectives satisiactorily.
Several improvements can be made and there are areas which could be studied more

thoroughly as discussed in the next section.

Recommendations

Further study should be done into the problems discussed concerning the goodness
of fit tests. An analysis might be performed to determine the optimum number of tally
categories that would result in the most consistent chi-squared statistic results.

A study could be done to see if an upper or lower limit exists on the PRF that may
inject some inconsistencies intc the model.

Determine if there is a more efficient or more accurate algorithm available for
computing the power spectral density.

Consider what additional tests the model could be exposed to that might simulate a
raining environment and determine if the model is realistic in simulating real world
dynamics.

The model could be used as suggested earlier to test other radar systems and their
effectiveness against chaff, or it could be used to evaluate a model of a radar system.

Introduce the blooming effects of a dispensed chaff cartridge into the model.
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Appendix A - Probability Theory

In this appendix, a brief review of probability and statistical theory will be
presented. This section is included to make the entire paper sclf contained.

A random: process, stochastic process, or time series is a random variable thatis a

function of time (14:3). A random variable X and its value at time t, may be denoted as
Xy = X{t) (A-1)

Because of its random nature, it is meaningless to talk about the value of a random
variable obtained at a certain time or values observed during a pardcular time interval.

Instead, the idea of probability provides precise definitions of certain distributions and

averages which can be nredicted and obgerved with some level of confidence (14:3). The

Il Y

first and second order probability distributions can be defined as

X

F(x,t) = Prob [X(t) sx ] = f f(v)dv (A-2)

~OQ

F(x;,Xa:tpta ) = Prob [X(t) € X1, X(tp) S X, ]

x| Xa
=J J. f(u,z) dz du (A-3)

The probability density function (pdf) f(x) and the cumulative distribution function

(cdf) F(x) are related more clearly in equations A-4 and A-5.

d

F.(a)=Prob(-=<x<5a)= J- f(x) dx (A-4)

-0
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f(x) = d/dx [F(x)] (A-5)

Oftentimes, the pdf of a random variable X is known and the pdf of a function of x,

for example v=f(x) is desired. If the inverse function x=£-1(y) is single valued, then
£4(y) = f,(x)/|dy/dx| (A-6)
The formuia holds for inultiple valued functions (13:95) such as

xl = f,_'l(y), x:)_ = fg"(.‘r’), e

f(y) = fo(xdy/dx,| + f(x-)/Idy/dxsi + ... (A-7)

Random variables are usually classified as stationary or nonstationary depending on
whether the statistics of the variables are independent of or dependent on the independent
variabie time. Jince this paper deais swrictiy with wide sense statonary (WSS3) variabies,
only thai type will be described here. A variable that 1s WSS possesses a first order pdf
that s independent of ume (a constant), aﬁd its second order pdf, known as the
autocorrelation function, is dependent only on the time difference T=t,-t; (14:4).

The expected value or mean of a random variable X is defined as follows.

>0

f
E[X]=m =} x£xdx (A-8)

00

The variance and the standard deviation of the random variable X are detined as
VAR(X) =s? = E(X%) - EX(X) (A-9)
SD(X) = [VAR(X)]2 (A-10)

where E[ X ] is commoniy referred to as the DC component, E(X?) is the mean square

value, and SD(X) is the AC component if X represents a voltage (14:5-6).
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One of thc most important second order quantities of interest is the autocorrelation

function R(T), which is defined as

R(7) = E(X; X3) = E[x(t) x{t+7)] (A-11)

It may be noted that for T=0, R(T) is equal to the mean square value, and as
approaches infinity, R(T) approaches the DC value squared (14:6).

The power spectrum or power spectral density (PSD) is another second order pdf
thatis of importance. It is the fourier transform of the autocorrelation function and
provides information about where the energy in a function is concentrated (13:265). Itis

defined as follows.

X(f) = j R(T) exp(-j2% f7) dT (A-12)
nr-1
X(f)= 7 Z x(i) exp(-j 2mifT) o0 < f < o0 (A-13)

i=

It can easily be shown that since R(-T)=R*(71), the power spectrum of a real or
complex valued process is a real function of £. Other transtorms are used to provide
information about the PSD, inciuding tie cosine wansform. The cosine rransform uses this
real value property to simplify the representation. It deals directly with the discrete sample
values of the random variable and does not require transtormation of the autocorrelation
function (12:139).

The moment generating funciion (MGF), us presented in chapter Z, is useful in
transforming a random variable from one distribution to another. For a variable Z=X2, the

MGEF is defined as
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M, (1} = E[exp(tz)] = E[exp(tx?)]

o

= I exp(tx?) f(x) dx (A-14)
M,(t) = (1/vV2T o) f exp(tx2) expl-(x-p)2 /202 ] dx (A-15)

for a gaussian random variable X with mean p and variance 02, .

After expanding the exponential, completing the square and making some

substitutions,
M,(1) = (1 - 202 )12 = [ (1/202) / (1/262 - 1) ]2 (A-16)
If ¢2=1, then X2 has a chi-squarcd distribution with one degree of freedom

Meyer proved that the sum of n chi-squared variables each with 1 degree of freedom is a

chi-squared variable with n degrees of freedom (9:201). It can also be shown that this

variable is exponential with parameter a=1/2. Below are moment generating functions of

some well known distributions (9).

Uniform on [a,0] M, (t) = [exp(bt) - exp(at)] / (b-a)t (A-17)

Binomial (n,p) M,(t) = [p exp(t) + (1-p)]" (A-18)

Exponential (a) M,(t) = a/(a-t) tca (A-19)

Gaussian (B, 02) M,(t) = explpt + 02 14/2] (A-20)
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& (R 2 B 8 555 o™ S O eE & =X

CE

LA AR SRR T2 A2 2 R R a0 222222 R R df 2l il s s Rad bl i Rl 2,
L2 22T 22T T2 R 22 222 2 2R 22 R AR X 22 2222 dd 22222 R X222 ]}

LA A 2 1] LA A A 2 J
wawnn SIMULATION OF newwa
LA A 2 2 3 LA A A
wannm CHAFF CLOUD "
LA A A A ] LA A4 & ]
wamww SIGNATURE waww
WNNRW LA AR &}
wRAN Captain Richard P. Fray, USAF wwmaw
L2 A2 2] ek e W W

LA A AR 2 A 22 2 R 2 R A2 A2 R R R R 2 A2 R d i 2 Rl l i didddld) ]
LAAARZ L £ 2R 2 222 A dd Rl A 3R AR X222 i d il dlid ] ] sl

real ac(109).c(1008,108),cells(5),comp(5).cs,freq(bl),q
+,91,q2,ray(l188) ,rhol1088),s(102),smean.spe(51),spactr(5
+1),sum,suml ,svar ,s1{108),vc(100,109%) . w{489) ,waib(100),
+x(100) ,xmean, xvar ,x1{1098),y{199),ymean,yvar ,yl(1282),z,
+zl1,z22.zmean

integer fi¢,idf,ler . ip,k,nr,nl2,n%5

double precision dseed

external norm,wetbi,ray)

data calls,.freq.rho.spectr ,x/387*9.9/

icm]

{dfsg

ip=]

nl2=2

n96=9%

scmngd . @

sumi=g3.4

1+

tau is the time interval
consecutive radar retv-

tau=.991

o nr 's the numk
* cross sectir
+

nr=198

hd zme-
g"

*

18

15
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ylitim)=y{im)+zmean
sum=sum+y{ tm)
continue
ymean=sum/nr

vector yl now contains variaples
with a wmean=zmean

generste a second vector of {ndependent
random varizhles ffor use in gonerating
the weibull and rayleigh varfables

dseed=283183
write{(6,18)dsead
format(" dseed 2 =",f12.1)
call ggnmi{dseed.nr,s)
sum=g .3

suml=8.9

do 2 1del,ar
sumssum+s({d)

continue

smean®=sum/ni

do 25 if=l.pnr
sumi=sum]+{s(i{f)-smean)**2
coantinue

svar=suml/nr

sum=g .8

do 26 in®}l,.nr
s{in)mg({in)-smoan
sl{in)=g{in)+zmean
summssum+s{fn)

cont {nue

snean=sum/’ -

vector Ti now contains variables
with a mean=zmean

generate the dasired varfance-covariance matrix

do 32 {=l,nr
do 38 j=1.1
if (1z.,2eq.2) then
ve(i,J)maxp(~{(abs{(t-3))"tau*v2)
else
vetl , JY=exp(~(abs{{-4))*tau)
endif
conti{inue
continue

generate transformation matrix C

J0 40 k=l . nr
c(ik,l)syn(ik,.i?
continue

do 48 'm=2,.nr

Jo 46 jm=2,1m

f ‘im.eq.jm) then

sume=d.3

do 42 km=l.,im-]
sumesum+{c{im,km))**2
continue
ci{im,im)=ssqrt{vc(im,m)~sym}
else
suml=g.4
do 44 kn=], m-1
sym!lasuml+c(im,.kn)*c{Im.kn)
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44

46
48

Sg
52

6g

79

8g
82
84

*

86
88

coniinue

clim, jm)alvclim,Jm)-xuml)/c{ Im, Jm)
eng 17
continyan
continua

ganarate cor. slatad vector X

do S2 tl1=],nr

do S# jk=1,11
CIP)mx{(11)+{c(11,dk) I *y{ Ik}
continue

continue

calculate mean of correlated vector X

sum=A . J
d0 68 fa=l,.nr
sum=sym+x{ fa)
continue
XMmesan=sun/nr

compute variance of correlated vector X

sumi=®d.g

do 79 tds=1,.nr
suml=suml+{x(1d)-xmean)**2
continue

xvar=suml/ner

transiate X into a random varigbla

with a2 mazaepmaan

do 72 14=}.nr
xl{14)ex{({4)~xmaan+zmean
continue

calculate the sutocorrelation
of the correlated vector X

do 82 {w}l.nr

sum=9.8

do 88 jf={,nr

Jinji-1+1
sumssum+x{J)*x({]§)
continue

ac({)=sum/nr

continue
write(s.84)xmean, xvar
format(" xmaan=" . fl@.7,% xvar=",f19.7)
do 88 kl=1,nr
rrhalkl)=ac(kl:/acl{l)

print out zorrelated vector andg
autocorrelation values

write(6,86)0k!l . x{(kl),kl xI{kl),kl~-1,rho(kl)
format{"” x(",13,")=" ,f9.5," xl{",13.")»",f9.5,"
+,13,71=s" ,F£9,9)

continus

compute the power spaciral density
of correlated vector X

call cotraninr,tau,.freq,spectr,x,spe}

rho
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ii 182
ﬁ 194
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116
118

128
122

print out autocorrsiation values

do 92 i=)l,nr/2+1
write{6,98)1-1,freqi{i),1~1,3pe(1)

foermat(® freq(",i3,")=",f9.3," Hz spe(",13,")a"
+,fl8.7)

continue

if ({z.q9.2) then
goto 174

recompute psramaters with different
varfance-covariance matrix

else

generates weibull and rayleigh vartables

dg 182 i=|,nr
Zuliy{1))"*2+(8(1))"*2
ql=1.8/3.8

Zl=2""ql

waibl{f{)=z]

qi=§.5

Z2=z*%q2

rav(i{)sz2

print out {ndependent normal vectors y asnd s,
print out tha!r corresponding mean=zmean vectors,
and print out weibull and rayleigh vectors

writelE.180)1 ,y(1},1,yl{1), 1,5(1).1 , waibi1),t,rayl{)
format("y(",13,%)=" 9,58, yl(",13,")=" ,f9.5," s(",
+i3,")=",f9.5," wafb{(",13,")=",F9.5," ray(",13,")=",
+£9.5}

coantinua

write(6,104)ymean.yvar,smean,svar
format({ " ymeans" flg.7." yvarw" ,fl8.7." smean=",
+f18.7,% svar=",f10.7)

parform goodnass of fit test on gaussian variables

k=d

call gfitinorm,k,y.nr,cells comp,cs, tdf.q, ler)
writa(g.114)

format{"goodness of fit test for gaussian variables")

write{g.116)cells{(l).calls(2),~alls(?) calle(4d,,
+zel1s{5)
format("cells=(" f5.1,"," f5.1,",",f5.1.",",

L33 - T S I S I

write{6,1i8)cs

format("zhi-squared statistic for gaussian variables
+= " _f9 5)

write(g,120)1df
format{”"gaussian degrees of freeadom =",{Z)
write(6,122)q

format{"probabtlfty of chi-squared statfistic exceedfin
+g gavssian c3 if null hypothesis is true =" ,f158.7)

graph normal vector vs&. theoretical cdf

call vsrta{y,nr)
call uspcinorm,y,nr,nl2.,n9%,p,fc.w)

perform goodness of fit test on wefbull vari{ables
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bl graph weibull vector vs., theoretical cdf

1df=9
kud
do 124 i=],86
collis(i)=@.&
124 continue
call gfiti{weibl k,wsib,nr,cellis,comp,cs,{df,q,fer)
writel(6,.138)cells{l), calls{2),calls(3),cells(d),
+calin(5)
138 format(“cellgm(" f5.1,%," f5.1,",",f5.1,",",
+fg.1,",",f5.1,")»")
writa(B8.132)cs
132 format{“chi-squared statistic for weibull variables -
+ *,f9.5)
write{(6,134)1idf
134 format{“"weibull dwgrees of freedom = " 12)
write(6,136)qg
136 format(“"probability of c¢hi-squared statistic exceedin
+g weibull ¢s {f null hypothesis s true = ",f18.7)

call vsrta{weib.nr)
call uspc(waibl ,waib,nr,.nl12,n95,1ip.fc.w}

» perform goodness of fit on rayleigh variables

1df=9
k=5
do 138 f=1,6
cellis(i)=8.48
continue -
call gfit({ray) . .k,ray,nr.calls,comp,cs.idf,q,fer)
wrtitei6,l44)cells(l),calla(2),cells(3),cells(4),
*cells(5)
144 format(“cells=(" f&.1,"," . f5.1,",",f5.1,"°,",
+F8,1,",",Ff5.1,"»")
write(b6,l46:cs
146 formag(;chi-squared statistic for rayiefgh variables
*= " £9.5)
writal6,148)1df
148 format!{"rayleigh degrees of freedom = " ,{2)
write(6,158)q
150 format(“orobability of chi-squared statistic axceedin
+g rayleigh cs 1f nuil hypothesis s trua = ",f190.7)

—
[N
[- {1

grapn rayleigh vector vs. theoretical cdf

call vsrtal(ray,nr)

call uspci{rayl.ray.nr,nl2,n95,1p,ic,w!}

endif
179 tonitinue

end
AN R AR T R AN R AN AR R TN RN RT PR NTRAARANANRTNRAARR TN RAANNT R RW
* w
- subroutine cotran i
* computation of cosine iransform (PSD) of samples .

»”
AN RN R AR RN TR TR TR RN R RN R RN W R RN RTANN AR AT AN TARTRA TN EANR N TR

sybroutine cotran(nr.tau.freqg,spectr,x,.spe)

real freq(5l),pi,spe(51).spactriSl),tau,temp,thet,
+x(igF) . yy.z2

intager {,ka,nr

pi=3.141592654
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do 205 ka=l,nr/2+l
kbska~1
tempeg .9
yy=kb/(nr*tau)
freq{kal=yy+.£8§1
do 209 {=],pr
thet=Z®p{¥{*kE/nr
zz=cpa{that)
temp=tomp+zz®«(1)
2ES continue

“ spactr is tha raw computoed power spectrum

spactr{kal=tamp*tau

® spe is the normalized magnitude of the powar spectrum
spe(ka)=abs(spectri{ka)/spactril))

2Rs zontinue
raturn
end

LAA LA R 222223 22202222 2222222 Xai2 22223 22 222 2 X 2%

» w
bl suisroutine norm *
hd gaussian cumulative distributtfon function w
- L]

LA AR 22 22 2 22 222 2 2 2 2 a2 2R 2 22222l r22 2222 222222221232

subroutine normix,.pl)
ple.S5%arfc{-x*.78071868)

raeturn

and
LA A AR AR A2 222X 2 2 A2 2R R X2 sl s8R 22X s 20 2 8Y
W L]
» subroutine weib! »
» weibull cumulative distributfon function *
W "

"*ﬁ'ﬂ'E"'.itﬁi"tﬂ'.t‘.!.'-i..-..'..".W'*'-ﬂ"."ﬂ'.."i‘

subroutine welibl(x,y.}
yintl-axp(=-{x*=*3)/2)
~eturn

end

A S A AR SRR RR2AR R XA Al dada il issdiililT i s sl X2 X 0 28 2

ww w
" subroutine rayl -
* rayleigh cumulative distribution functicn hd
k] »

LA A AR 22X NAS a2l Rl RARARRR Al a2 2R XX X 2

subroutine raylix,y2)
yeul~axp(-(x**2)/2})
raeturn

end

44
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