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INTRODUCTION

In March of 1978 we began work on a contract with Army Materials and Mech-

anics Research Center to study tungsten heavy alloys. Primarily we were to

study the 97.1W-1.6Ni-0.7Fe-0.5Cu-0.1Co alloy. The contract was divided

into three overlapping phases. The first was to see how uniformly we could

produce bars of the W-Ni-Fe-Cu-Co alloy. We were to check uniformity

within a sintering run and among sintering runs. Uniformity was to be

defined by several physical and chemical analyses.

In the second phase we were to characterize the variables in the processing

of the bars. In the final phase we were to look at variations of the alloys to

see how uniformity and properties were affected.

As a prelude to Phase I, we began tests to develop a procedure to achieve

high sintered densities. We considered anything above 99.4% dense to be

high density. For these tests we drew on our experience with W-Ni-Fe

systems. Unfortunately, the addition of copper and cobalt to the alloys made

it behave very differently, and it was almost a year before satisfactory den-

sities were achieved.

We then proceeded with our uniformity studies and alloy variations. We found

the bars to be uniform but the elongations were very low. Our work was

then directed towards improving the tensile properties. Once we achieved

this, we again did a uniformity series and looked at alloy variations to com-

plete the contract.

To simplify our reference to the alloys used in this work, we adopted the

following nomenclature. A three-digit number is used to represent the tenths

of a percent for the iron, copper, and cobalt. Thus, the standard 97.195W-

l.6Ni-0.7Fe-0.5Cu-0.lCo alloy became the 751 alloy. Because the tungsten

was held constant at 97.1%, the nickel content can be determined from the

balance. The only exception was a standard Sylvania alloy, WN-107. This

alloy has 97.3% tungsten with equal parts of iron and nickel.



OBJECTIVES

The objectives as set forth in the scope of the contract are as follows:

1. Evaluate the uniformity of physical properties, mechanical properties,

chemical composition, and structure of W-Ni-Fe-Cu-Co alloys. Assess

the variation among and within individual bars of the alloy with respect

to (1) density, (2) hardness, (3) tensile properties, (4) fracture mode

(SEM), (5) interstitials, (6) metal composition, (7) microstructure, and

(8) macrodefects (ultrasonic inspection).

2. Characterize the powders and the process used in fabricating the bars

used in the uniformity study. Examples of characterization shall in-

clude, but are not limited to, (1) tungsten particle size and distribution,

(2) blending, (3) sintering schedule and atmosphere, and (4) post-sin-

tering heat treatments.

3. Evaluate different compositions for uniformity using the eight criteria as

referenced in the first objective.
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CONCLUSIONS

A. For the 751 alloy (97.1W-1.6Ni-0.7Fe-0.5Cu-0.1Co) we concluded the

following:

1. The elongations show a strong correlation to oxygen levels with

lower oxygen levels giving higher elongations. It appears that for

optimum elongations the oxygen must be below about 6 ppm.

2. Sintered density increases with decreasing tungsten particle size.

A Fisher Sub-Sieve Size (FSSS) of 1.0 to 1.5 appears to be opti-

mum.

3. During sintering, the bars must be heated slowly ('-30 0 C per

hour) through the 1000 IC to 1400 'C region to develop good ten-

sile properties.

4. The bars must be very slowly cooled (-.50 IC per hour) from the

sintering temperature to avoid poor tensile properties in the center

of large-diameter bars (1.35" diameter).

5. Because of center-to-edge density gradients, it becomes increas-

ingly difficult to sinter large-diameter bars to full density.

6. Sintering in a wet H2 atmosphere increases porosity and oxygen

content with a corresponding decrease in tensile properties.

B. For the W-Ni-Fe system we concluded the following:

1. Good density can be achieved over a wide range of sintering sched-

ules.

2. It doesn't show the tungsten particle size dependence that the 751

alloy does. Coarser particle sizes appear to be slightly better.
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3. Low oxygen values and high elongation can easily be achieved.

C. The microstructure of the 751 alloy has more angular tungsten grains

than W-Ni-Fe alloys.

D. Oxygen analysis for tungsten heavy alloys must be done with methods

that can use large sample pieces. Grinding of the sample causes severe

oxidation.
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EXPERIMENTAL PROCEDURE

A. Powder Blends

Our powder blends were made using the elemental powders listed in

Table I. Also given are some physical and chemical properties of these

powders.

Blends were made by first sifting all powders -200 mesh and then blend-

ing them in a V-blender for one hour. Table II lists all blends made for

the contract.

B. Pressing

All pressing was done in an cold isostatic press generally using a pres-

sure of 30 ksi. Molds were tapped while being filled and were sealed

without evacuation.

C. Sintering

Most of the sintering took place in a Brew Model 901 vacuum furnace.

This furnace has tungsten mesh elements, tungsten heat shields, and a

12"x12"x12" hot zone. Dry hydrogen with a dew point of less than

-25 'C and a flow rate 10 liters per minute was used for our atmos-

phere. Temperature was measured by a W-5Re/W-26Re thermocouple in a

molybdenum protection tube. All tests run in this furnace are listed in

Table III.

A few sintering tests were run in a Vacuum Industries furnace. This

furnace has tungsten rod elements, molybdenum heat shields, and a

8"x6"x6" hot zone. It also uses a W-SRe/W-26Re thermocouple in a

molybdenum protection tube. Tests run in the V.I. furnace and a few

other miscellaneous tests are listed in Table IV.
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TABLE I

PROPERTIES OF ELEMENTAL POWDERS

FSSS C N2  02
Powder Type EM Porosity (%) (ppm) (ppm) (W/O)

Cobalt-African Metals

Extra Fine 1.41 0.767 174 <1 0.310

Nickel Inco 123 4.25 0.610 580 3 0.073

Iron - GAF 4.26 0.610 697 40 0.144

Copper MID-151 14.50 0.617 90 4 0.155
Copper MD-301 8.70 0.555 --- 2 0.090

Tungsten M-55 237C 5.25 0.632 12 4 0.018

Tungsten M-30 247C 1.85 0.738 23 116 0.102

Tungsten M-30 294C 2.03 0.727 38 77 0.710

Tungsten M-17 789C 1.06 0.732 ...... ...

Tungsten M-17 918C 1.15 0.721 53 --- 0.500
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TABLE II

HEAVY ALLOY BLENDS

Composition (W/O) Tungsten Wt.
Blend Ni Fe Cu Co Lot (kg)

3781 1.6 0.7 0.5 0.1 WA55-237C MD-151 10.0
3782 1.6 0.7 0.5 0.1 WA55-237C MD- 151 5.0

(-325)
4781 1.35 1.35 - - WA55-237C - 5.0
4782 1.6 0.7 0.5 0.1 WA55-237C MD-301 5.0
5781 1.9 0.9 - 0.1 WA55-237C - 5.0

5782 1.8 0.8 0.2 0.1 WA55-237C MD-301 5.0
5783 1.9 0.7 0.5 - WA55-237C MD-301 5.0
6781 1.6 0.7 0.5 0.1 WA55-237C Cu,Ni, Co

co-reduced 2.5
6782 1.6 0.7 0.5 0.1 WA55-237C Fine Cu 2.0
6783 1.6 0.7 0.5 0.1 WA30-247C MD-301 2.0

8781 1.6 0.7 0.5 0.1 WA30-247C MD-301 5.0
9781 1.35 1.35 - - WA30-294C - 2.0
9782 1.6 0.7 0.5 0.1 WA37-227C MD-301 5.0
10781 1.6 0.7 0.5 0.1 WA30-294C MD-301 10.0
10782 1.6 0.7 0.5 0.1 WA30-294C MD-301 15.0

10783 1.6 0.7 0.5 0.1 WA30-294C MD-301 16.0
1791 1.6 0.7 0.5 0.1 WA17-789C MD-301 12.0
2791 1.6 0.7 0.5 0.1 WA17-918C MD-301 12.0
3791 1.9 0.9 - 0.1 WA17-918C MD-301 2.5
3792 1.8 0.8 0.2 0.1 WA17-918C M4D-301 2.5

3793 1.7 0.7 0.5 - WA17-918C MD-301 2.5
3794 1.6 0.7 0.5 0.1 WA17-918C MD-301 12.0
4791 1.6 0.7 0.5 0.1 WA17-918C MD-301 15.0
4792 1.6 0.7 0.5 0.1 WA17-918C MD-301 6.0*
6791 1.9 0.9 - 0.1 WA17-918C MD-301 2.5

6792 1.8 0.8 0.2 0.1 WA17-918C MD-301 2.5
6793 1.7 0.7 0.5 - WA17-918C MD-301 2.5
6794 1.6 0.7 0.5 0.1 WA17-918C MD-301 8.0
8791 1.6 0.7 0.5 0.1 WA17-918C MD-301 24.0
12791 1.6 0.7 0.5 0.1 WA17-918C MD-301 24.0

1801 1.9 0.9 - 0.1 WA55-237C - 12.0
2802 1.6 0.7 0.5 0.1 WA17-918C MD-301 12.0
2803 1.6 0.7 0.5 0.1 WA17-918C MD-301 24.0
3801 1.6 0.7 0.5 0.1 WA17-918C MD-301 12.0

*Tungsten powder Wellexed 3 minutes (high-intensity blender).
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TABLE IV

SINTERING TEST NOT RUN IN BREW FURNACE

Test 16 - V.I. Furnace - H2 and Vacuum

15 minutes to 900 0C - hold 1 hour in H2
Cool to 600 OC and evacuate
20 minutes to 1580 0C - hold 4 hours

Test 17 - No. 3 Muffle Furnace - H2 Atmosphere

1-hour stoke into hot zone
Hold 4 hours at 1585 0C

Test 18 - No. 3 Muffle Furnace - H2 Atmosphere

3-hour stoke into hot zone
Hold 4 hours at 1585 0C

Test 19 - Same as Test 18

Test 21 - Small Induction Furnace - H2 Atmosphere

3 hours at 1560 0C

Test 22 - No. 6 Muffle Furnace - Wet H2 Atmosphere

2 hours into hot zone
Hold 4 hours at 1585 0C

Test 23 - V.I. Furnace - H2 Atmosphere

30 minutes to 1000 0C - hold 15 minutes
15 minutes to 1400 0C - hold 30 minutes
15 minutes to 1490 0C - hold 5 minutes

Test 29 - No. 3 Muffle Furnace - H2 Atmosphere

lA-hour stoke into hot zone
Hold 2 hours at 1500 0C

Test 32 - V. I. Furnace - H2 Atmosphere

30 minutes to 1000 0C - hold 15 minutes
15 minutes to 1400 0C - hold 30 minutes
15 minutes to 1500 0C - hold 2 hours

15



TABLE IV (Cont.)

SINTERING TEST NOT RUN IN BREW FURNACE

Test 38 - V.1. Furnace - H2 Atmosphere

15 minutes to 1000 OC - hold 5 minutes
15 minutes to 1400 0C - hold 15 minutes
30 minutes to 1500 0C - hold 2h hours

16



D. Heat Treating

Most of the heat-treating work was done in the V.I. furnace in vacuum

at 1200 0C for 2 hours (Table V). A few tests were done in a tube

furnace using a nitrogen atmosphere.

E. Tensile Tests

Tensile tests were made using threaded tensile bars with a 0.25" diam-

eter x 1.25" reduced section. The gauge section was polished circum-

ferentially with 4/0 polishing papers. Cross-head speed was 0.05" per

minute to yield and then 0.005" per minute to failure. Elongation was

determined by piecing the broken tensile bars together and measuring a

l"-gauge length that had been scribed on the bar. These results are in

Table V.

F. Oxygen Analysis

Oxygen determinations were made by Luvak Inc. of Boylston, Massachu-

setts. They use a vacuum fusion instrument with an iron bath at

1650 0C.

Because extraction time is several minutes, relatively large chunks of

material can be used. We initially tried to use our Leco TC30 inert-gas

fusion instrument. Maximum operating temperature is 3000 °C and uses

a nickel flux with a 40-second extraction time in helium. Because of the

short extraction time, smaller pieces must be used. In the comminution

of the samples we found that oxidation occurred giving us erratic re-

sults. Oxygen results are contained in Table V along with the tensile

results.

G. Density

Density determinations were made by water immersion. We believe our

standard deviation to be <0.007 g/cc for individual determinations.
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Center-to-edge density gradients were determined by taking about a 0. 1"

slice of the bar and sectioning it as sketched:

/

Table VI contains the density determinations made for Tests 5 to 42.

These densities are for the whole bars. Table VII contains the density

data for Runs 43 to 66. In a few cases, the density was determined

from a large piece cut from the center of the bar.

23



U-3~

00

2l )L~ z~0bflOj

E- ~ -a

~ ~ c'~~~0c~~- -~ - - - - -

U3

V2 00(M0 0ccc0 0 00 0000 000c ca0

E-'I

ZI. bo

UL n L n t n o0 0L I nU) 1 oL nC

C)C1 ) V3c c).Y ) ) (nC - l c)cm - mC)24Cl 1



-d 0 S.

Ca - a .

m - o
tV 0 SOm4 -4U-

>1 c -T nC n c -- m L- 0 (M L-a

a)ma0 )Mma Q0 m 0 mMa

LO ccC~

w 0 0

E-.-

boy

W V) m mV)cl " l V m m V0) -l C)m C

-m co - .-4 -4 - t- ---- 0-t- I- (n- - r- C- I C-

* 0 00 000c 00 00 occ000co00 00 00 00 c00
C Lu V C0t- L0 t -t t L -t -t -t -t -t -L

Vn 4)oL nL qV nTq T L oL te L o--1

L.25



co~

443

C.l)

c~c

w3 43 4
E--

0
C.)

E- ~ 4 -4 --- -4-4--- - -- 4 -4 - -4 -4

000000 V L U 00000l U L 0000000 00LUO0000 L

-4 -4 ) -- 4 - 0 -40-4 ~- 04 -0 .-

a N c~l 4 n C N n L Ln 0 ( LoLO 4 L. 0 c'i n i~n L -

M in0nEt- 4I n 00 C-t - M0 -L t n 0 -L -E

z z z26



I-u

4).

0 :3

Q0 0

'00

(M M 0( ) mM () nmc M 0

E-4-

mJ bio
E- (

E- g -4 - -4 4 - 4 1 -4 -4 -4 - 4 - -4 - -4 - -

C Z
*0060 0060 000 00 '' 0 00(M C 060

E- bD

' 0 -4 -

Zz zz z

Clq~ ~ ~ (NMCl qC) 4 "N.N - 4 CI 4-

27



0

00

0

N 0n

U22

btC-
E- lz r

44-

00

N ~ - -4- -- - --0 .4 -4 C^ I" C

000 0ow 00 0 00 000 00 000c0ccoc o mc

000

28-



E- ba

oo

ELI)

b Q

LO Ln in L.3 ini O n 0 o Lo L. L L

C4 ~ C% Cq NC
coc og o c oc o0 o 0 00 o0 0 a 3 3

- - - C- t- t-' LI- L-t t- t- V- L- c.- t- .- t -t

c oo -- 00 a)M0 0a * o )( o< 0 0-C 0

'S L

zl
- bfl E

Lfl~fOOOOO~~U 00 ~4 L290~



0
u

OcOl C!O -09 -1!)O OiO)90O
*m co0 c 0 n 0 m( (

0 1 dQa )( M M()(

CM~

E- Lj) Q)
cjO m

O aLo s l ~ L ) L Ln 0 1
4  

" vUl

z OL0 Oo~ .0 coo coo

z

cq -4 0 - - -- - 4
go ccU-~ 00 ~ ff Gol Lf0L cc 0 0 o o M

00 0 00 o 0~ V I
-44 ~ 4-4 -4

000

30



TABLE VII

SINTERED DENSITIES - TESTS 43 TO 66

Sintered Density (%)
Sliced Sections Center

Test AUoy Bar 1 2 3 Section

1 2791A 99.63 98.87 98.48

43 751 3794A 99.64 98.75 98.46
751 3794B 99.46 99.07 98.78
901 3791 99.46 99.39 99.38
821 3792 99.41 98.76 98.97

44 751 3794C 99.37 98.72 98.61
751 3794D 99.48 98.57 98.71
751 3794E 99.73 98.32 98.83
750 3793 99.74 98.99 98.90
751 2791B 99.55 98.93 98.85

45 751 2791C 99.78 98.84 99.46
751 2791D 99.84 98.75 98.58

46 751 4791AA 99.41 99.28 99.24 99.20

47 751 4791BB 99.60 99.59 99.24 99.49
751 4792 99.70 99.42 99.19 99.63

48 751 4791CC 99.58 99.43 99.33 99.38
751 4792B 99.75 99.71 99.68 99.74
751 4791A 99.19
751 4791B 99.33

49 751 4791C 99.22
751 4791S 99.72
751 4791L 99.38

51 751 6794-3 99.72 99.43 99.29

52 751 L8791A 99.73 99.53 99.41
751 L8791B 99.63 99.46 99.34

53 751 8791A 99.84 99.71 99.38
751 8791B 99.79 99.60 99.46

54 751 8791C 99.98 99.48 98.93

55 751 8791E 99.79 99.42 99.29
751 8791F 99.72 99.58 99.44
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TABLE VII (Cont.)

SINTERED DENSITIES - TESTS 43 TO 66

Sintered Density()
Sliced Sections Center

Test Alloy Bar 1 2 3 Section

56 751 8791G 99.82 99.64 99.50
751 8791H 99.87 99.71 99.65

57 751 12791A 99.74 99.51 99.28
751 12791B 99.80 99.57 99.20

58 751 127910 99.61 99.46 99.38
751 12791D 99.77 99.38 99.12
751 12791E 99.77 99.47 99.20

59 751 12791F 99.78 99.39 99.26
751 12791G 99.79 99.40 99.08

60 751 12791H 99.74 99.41 99.08
751 12791K 99.78 99.58 99.11

61 751 12791M 99.84 99.76 99.72
751 2802A 99.88 99.68 99.51

62 751 2802B 99.78 99.56 99.50
751 2802D 99.77 99.61 99.37

63 901 1801A 99.39

64 751 2803B 99.93 99.79 99.57

65 751 2803D 99.94 99.90 99.52

66 751 2803F 99.98 99.21 98.71
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EXPERIMENTS AND RESULTS

Our experimental work can be divided into two general areas which encompass

the three phases of the contract. The first was our efforts to develop good

density in the 751 alloy. Once the density was achieved we directed our

efforts to improving the tensile properties and uniformity of the large bars

(1.35" green diameter) of the 751 alloy.

A. Development of High Density

In our initial work we used small diameter bars (0.64" green) to develop

sintering schedules. Blends were made using a Sylvania M-55 tungsten

powder with a FSSS of 5.25. We chose M-55 tungsten powder based on

our experience with tungsten-nickel-iron systems in which the best

density is obtained using M-55 tungsten powder. Our first few blends

used a MD-151 copper powder which had a FSSS of 14.5. From the

appearance of the parts, we decided this was too coarse and switched to

a MD-301 with a FSSS of 8.7 for the remainder of the contract. Also

included in these initial tests were parts made of Sylvania's WN-107

alloy. The composition of the alloy is 97.3W-1.35Ni-1.35Fe.

1. Sintering Schedule Variations

In Tests 5 to 14, which were all run in the Brew furnace, we tried

variations in the sintering schedule to develop good density in the

751 alloy. The things we varied were heating rates to hold points,

the temperature and time of these holds, and the cooling rate from

the sintering temperature. None of these variations proved success-

ful as the 751 density ranged between 94.7% and 96.1%. However,

densities for the WN-107 alloy ranged from 98.2% to 99.6%.

Figure 1 shows an interesting comparison in the microstructure of

these two alloys. In addition to porosity, the 751 alloy has squarer

grains with several places where four grains meet instead of three.
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2. Prealloyed Matrix and Attritor Milling

During sintering of a W-Ni-Fe alloy, the nickel will melt at about

1455 °C and the alloy formed will have roughly the same melting

point. When copper is added to the system, the situation is more

complex because the copper will melt at about 1080 °C and continue

to form new matrix compositions dissolving more nickel, iron, and

tungsten as the temperature increases. It is for this reason we

tried to prealloy the matrix elements.

In Test 15 we did this by milling the blends in a small Attritor mill

using tungsten carbide balls as a grinding medium. Only a small

amount of powder was milled and the bars were difficult to process.

We had mixed results with this test as one piece had a slightly

lower density than normal and the other had a slightly higher

density than normal. In our other attempt, the nickel, copper, and

cobalt were coreduced from dried solutions of the salts. Iron was

not included because of difficulties in reducing it along with the

others. The coreduced powders were mixed with the tungsten and

iron powder to produce the blend. We sintered samples of this

blend in Tests 15, 17, 18, and 19. Densities ran about 2% higher

on this blend compared to standard blends.

3. Alloy Variations

Starting with Test 10 we also began looking at variations of the 751

alloy. These included a 901, 821, and 750, all having 97.1% tung-

sten. The general result from these tests (10 to 19) was that

density went up as the copper content decreased.

4. Tungsten Particle Size

In Test 19, which was sintered in a muffle furnace, we included a

piece that had been pressed from a blend made with a finer tung-

sten powder (M-30). This piece achieved a density of 99.0% which
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was the best we had seen in the 751 alloy. Subsequent tests in the

Brew furnmace with this blend yielded pieces that were cracked as

shown in Figure 2. Because of the cracking, we couldn't deteimine

density, but the microstructure (Figure 3) revealed a dense struc-

ture. We continued to get cracking in samples made with M-30

blends until we sintered a larger diameter bar (1. 1") in Test 31.

This bar had no cracking and a density of 99. 1%. Although further

tests showed reasonable density and no cracking, we did see a

defect we called ring porosity. Figures 4 and 5 show this defect

which is a narrow band of small pores under the surface of the

bar.

Our next step was to increase the diameter of the bar to 1.35"

which was the size we wanted to make for the contract. Densities

for these bars ran between 98.4% and 99.3%.

In hopes of raising the density, we went to even a finer tungsten

powder (M-17). These bars gave us better than 99.5% density, so

we stayed with M-17 tungsten powder for the rest of the contract.

One interesting result was that a small diameter bar (0.64) made

from a M-17 blend sintered to a good density and didn't crack.

5. Pressing Pressure

For the l.1"-diameter bars we found in Tests 37 and 38 that a

lower pressing pressure gave lower sintered densities. We didn't

see this in the 1.35"-diameter bars.

6. Furnaces and Atmosphere

Test 22 was run throug.1 a large muffle furnace using a slow stoke

and a wet atmosphere. This run gave us our best density (97.8%)

for a 0.64"-diameter piece made with a M-55 blend. However, a

piece from a M-30 blend ctracked badly.
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Figure 2. Macrophotograph showing cracks in sintered 751 alloy sample made

from M-30 tungsten powder
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Other tests were run in a smaller muffle furnace in which dry

hydrogen was used but probably had a dew point 0 1C. No density

improvement was noted but a piece from a M-30 blend sintered

without cracking where similar pieces sintered in the Brew cracked.

Another interesting test (34) was run in the Brew furnace using

nitrogen after the hold at 1000 1C. No density improvement was

noted for the 751 alloy but no cracking occurred in the piece made

from a M-30 blend.

B. Improvement of Properties

Once we were able to achieve good densities in the 1.35"-diameter bars,

we started a series of tests (43 to 45) to determine uniformity within and

among sintering runs. Also included in these tests were bars of the

alloy variations we had tried in the small pieces. Although the bars

appeared to be uniform, they had very poor elongations ranging from 1%

to 5%. Our next series of tests was then aimed at improving the tensile

properties.

1. Heating Rates

In Tests 46 and 47 we cut the ramp rates (heating rates) to one-

third of what we had been using for the first and second ramp.

This gave us an immediate improvement with elongations of 5% to

10%. A further reduction was tried in Test 48 for the second ramp

with no apparent improvement.

In Test 49 we lowered the third ramp rate and saw no improvement

in properties. The interesting result of this test was that tensile

bars taken from the center of the large bars had elongations of

only 4%. Bars taken from the bars side-by-side, as we had been

doing, had elongations of 8% and 9%. Tests 57 and 59 were run

with a fast first ramp to show the critical ramp was the second.

Test 52 was run at a 25 IC higher sintering temperature, and

Test 55 was run 25 0 C lower.
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2. Cooling Rates

In Test 51 we lowered the cooling rate from the sintering tempera-

ture from 30 mv per hour to 1 my per hour. As a result, tensile

samples taken from the center of the bars had comparable elonga-

tions to those taken near the edge. No improvement of the density

gradient was noted. Most of the subsequent sintering runs were

done with this slow cooling.

3. Atmosphere

In Tests 58, 64, 65, and 66 we added water to the hydrogen to

vary the dew point from -30 0C to +20 0C. A normal dry run was

about -40 1C. These tests showed a slight increase in oxygen in

the bars with a corresponding decrease in tensile properties. We

also developed porosity in the center of the bar sintered at +20 °C

(Figure 6).

In Test 56 we doubled the hydrogen flow rate. No effect on proper-

ties was noted.

4. Alloy Variations

In Test 50 we looked at some of the same alloys we did in Tests 42

to 44. Like the 751 alloy, we showed a marked improvement in the

tensile properties. We felt the tensile properties of the 901 alloy

(no copper) should have been better so in Test 63 we sintered a

bar of the 901 alloy made from M-55 powder instead of M-17. This

test gave us elongations of 16% and 17- compared to 6% and 10% for

the test made from a M-17 blend.

C. Uniformity of Properties

We looked at uniformity of properties in the 751 alloy in Test 43 to 45

and 64 to 66. We looked at only tensile properties, oxygen, and density

in Tests 64 to 66.
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1. Hardness

Table VIII contains the hardness values taken on bars sintered in

Runs 43 to 45. They represent hardness taken across the face

about I" in from the end of the bar.

2. Composition

Table IX contains the composition determined by atomic absorption

for bars in Runs 43 to 45. Samples were taken from a slice I" in

from the end of the bar.

3. Ultrasonic Inspection

All 12 bars from Tests 43 to 45 were ultrasonically scanned from

both ends with no defects found. We used a 5 MHZ - 0.064"-diam-

eter crystal.

4. Density and Tensile Properties

These results, as previously noted, are contained in Tables V and

VII. Figures 7 to 12 are SEM photographs of the fracture surfaces

from Tests 43 to 45.

5. Microstructure

Light micrographs from Tests 43 to 45 are shown in Figures 13 to

15.

44



L-4 m 00 t- Ln 0co

c LOL 00 -00 00 00 000ot-ODL

C~ 0! Ci C4 C iCiC

col CD - 00 - co 000 0 0L )0
N N CI4c C' cJi N0 C11 N' cq (

(n C1 Ci4 m~ t C'3 Lr C,3 C4

Ni Ni cq c Cq Ni Ni c C4 CI4 eqC

V i CO a) C) C4 Ni L- LO C i co

0

C iC C i Ci C 4 C-1 C3 Ci4 N CN

:z 0 co - t - mC C13 CQ 00 00 0

CI 19 Ci Ii -1 t'7 Ci C! 9iC Ci Ci

V-I L- 00 00 V- G 0a 0a c
i C13 cQ C4 CQ Ni CI C,] C4 C4 C4 4:1

t-4 LL- (7 - L- - 0 - L- L- 0-

cn m~ m~ m~C~C C: mi c CI3 C4 m

45



TABLE IX

COMPOSITION - RUNS 43 TO 45

Composition, % (4 to 5)
Lot Run Alloy Ni Fe Cu Co

2791A 43 751 1.68 0.73 0.45 0.11

3794A 43 751 1.64 0.73 0.45 0.10

3794B 43 751 1.60 0.72 0.50 0.10

3791 43 901 1.89 0.90 <0.05 0.10

3794C 44 751 1.65 0.73 0.49 0.10

3794D 44 751 1.66 0.73 0.49 0.11

3794E 44 751 1.65 0.73 0.50 0.11

3792 44 821 1.83 0.82 0.19 0.10

2791B 45 751 1.64 0.72 0.48 0.10

2791C 45 751 1.59 0.72 0.50 0.11

2791D 45 751 1.60 0.71 0.49 0.10

3793 45 750 1.74 0.71 0.51 <0.01
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DISCUSSION OF RESULTS

In discussing the 751 alloy (97.lW-l.6Ni-0.7Fe-0.5Cu-0.lCo) and the results
of our work, the most important consideration is the role the copper plays.

Without copper density is easy to achieve as well as low oxygen levels and

high elongations. All are problems with the copper-containing alloys which

appear to be gas related. The pores in the low density pieces are rounded

indicating a gas bubble as opposed to areas where matrix never entered.

during solidification.

One possible source of trapped gas in the copper is hydrogen diffusing

through the copper and reacting with oxygen to form water. The water

molecule in turn can't easily diffuse out.

A. Density

In solid state sintering we expect higher densities as the particle size

decreases. We didn't expect to see this, however, in the liquid phase

sintering of the 751 alloy. Because of the enormous growth that the

tungsten particles experience during sintering (>1OX), it doesn't seem

that starting particle size would be all that important. Our experience

with WN-107 was that coarser particle sizes gave slightly better den-

sities.

A possible explanation is that with finer tungsten particle sizes the

higher surface to volume ratio would yield lower oxygen levels in the

tungsten prior to the melting of the copper. Surface oxygen which is

higher in fine tungsten particles would be removed during the low temp-
erature holds.

The necessity of using slow ramps between 1000 0C and the sintering

temperature to achieve good densities in large diameter bars must be

related to the low melting point of the copper. After it melts at 1083 C,
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it continues to form new composition in equilibrium with the temperature.

In the nickel-iron system when the nickel melts (1450 OC), all the iron

will dissolve forming a composition that remains liquid because the eutec-

tic occurs at about the same temperature as the melting point of nickel.

In small bars of the 751 alloy we got better densities when the copper,

cobalt, and nickel were prealloyed.

Another possible reason for difficulty in obtaining good density when

copper is present may be related to the shape of the tungsten grain. In

alloys with copper the grains appear squared with more straight sides.

This makes long narrow channels which may hinder the removal of poros-

ity. Many times we found a pore in the center of a tungsten grain

caused apparently by tungsten grains coalescing around a pore.

We think that the crack and ring porosity we saw are manifestations of

the general porosity problem with the 751 alloy.

It appears that these defects result as gas is rejected from the matrix

during solidification. Because no cracking occurred during a nitrogen

run, the gas must be hydrogen or water.

B. Tensile Properties

From our results it is clear that elongation is related to oxygen levels.

Figure 16 is a plot of oxygen values versus the elongation. Below

20 ppm of oxygen there appears to be an inverse relation of tensile

elongation to oxygen. We suspect that if we could have obtained low

oxygen levels in the 751 alloy we would have obtained tensile properties

similar to the 901 alloy. Some have suggested that the increased elonga-

tion with low oxygen levels is due to a purification of the tungsten

grains. The purer tungsten grains can be elongated more before fail-

ure. We agree with this because once a bar is properly sintered frac-

ture appears to be dictated by when the tungsten grains fail. In poorly

sintered bars the fracture occurs due to the separation of the matrix

and tungsten particles.
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What is difficult to explain is why it is so hard to obtain low oxygen

levels in copper-containing heavy alloys when in similar alloys with no

copper low oxygen levels are easy to obtain. We think the problem is

related to the wider melting and solidification range that the copper

causes. This is why slow heating and cooling rates must be used.

C. Uniformity of Properties

The properties we measured on the large bars (1.35"1 diameter) appeared

to be very uniform. We believe this is because of the close control used

during processing. Using a batch-type furnace like the Brew for sinter-

ing certainly aided in uniformity. Had we used a tube or muffle fur-

nace, we suspect uniformity wouldn't have been as good. Ironically, we

feel that we might have developed better tensile properties in a muffle

furnace because of directional cooling.
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