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IRST p.I Infrared search and track
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K p.4 Gain constant
K,, Eq. (A -3) Ratio of focal plane irradiance to scene radiance
mA Eq.(33) Expected value of A (W); A (W) may be Y, k, k,, etc.
M Eq.(3) Expected value of the unfiltered current XW)
my Eq.(4) Expected value of the filtered current Y(t)
mj(OT) Eq.(8) Mean crossing count on the interval It I< T/2
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mj(:) Eq. (9) Threshold crossing rate
Ai,0 Eq.(9) Positive slope zero-crossing rate
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(I Y,.) Eq. (48) Threshold-conditional crossing rate
m1 (r) p.27 Scene spatial radiance distribution
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R, Eq.(A-4) Current responsivity of photodetector
r( ) Eq.(52) Correlation co-efficient of Y(W) and Y(t)
1 p.3 Time
T Eq.(8) T'me interval
7." Eq.(12) The time interval It I< T12
T, p.4 Delay time (sensor dwell time)
1111 Fq.(76) Mean-crossing time
flu Eq.(78) Time of closest approach
Tf Eq.(A-8) System frame time
To Eq.(C-I) Reference time interval for FAR calculation
TDI p.25 Time delay and integration
TIS p.27 Thermal imaging system
u Eq. (II) Normalized threshold level
v Eq.(A-8) Focal plane scan velocity
X(%) p.3 Unfiltered photocurrent
Y(f) p.3 Filtered photocurrent
Y,,1) p.3 Threshold current
y(,;n) Eq.(1) Sample function of the random process Y(t)
y,, Eq.(l 1) Fixed threshold level

'(t) p. 13 Time derivative of Y(W)
V0,(() p.13 Time derivative of Y0(t)
Z Eq.(B-7) Shorthand notation for k(t)
a Eq.(90) Ratio of noise bandwidths
8(0) Eq.(B-18) D'.ac delta function
a, Eq.(B-8) Partial derivative operator on variable f
AX, p.27 Spectral band
4 Eq.(51) Relative error term in Gaussian approximation to fL(y)
71 Eq.(3) Detector quantum -fficiency
A Eq. (28) Covariance matrix

Eq.(A-4) Optical frequency (Hz)
V Eq.(2) Standard deviation of .)(t)
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PASSIVE INFRARED SURVEILLANCE
PART 1: MODEL FORMULATION

INTRODUCTION

This paper desa.ribes an analytical model for predicting the performance of a particular
clan of infrared sensors generically described as infrared search and track (IRST) devices. An
IRST system generally consists of one or more photodetectors located in the focal plane of a

scanning optical telescope, and s complement of signal processing elecionics !a, process the
detected phaltocurrents. The signal proessor's task is to determine whether or r~ot an object of
a particular type (a "targetl) is anywhere in the sensor's field of view, while keeping the fre-
quency of false target reports to an acceptably low level.

Thus, the Neyman-Pearson criteria conventionally applied to radar systems is appropriate
also as an objective or IRST processor design: the target detection probability (PD) should be
maximized for a given maximum tolerable false alarm rate (FAR).,

The IRST is a nonimaging device, as contrasted with forward looking infrared (FLIR)
imaging systems (1,21. The search and track device may be required to keep a full hemisphere
(2w steradians) under constant observation, to have c resolution of one milliradian or less, arpi
to operate without human assistance for long periods of time. The challenge this presents to
the system designer is further magnified by the abundant opportunities for target/background
confusion offered by such typical background scenes as cloudy skies and cities.

Previous attempts to model background elfects on IRST system performance have focused
on the Wiener spectrum approach (3-91, a frequency domain technique originally developed for
calculating the noise variance in communication circuits. Unfortunately, unlike the noise
processes typically assumed in statistical communication theory (10,111, the IRST photocurrent
is a highly non-stationary random process. As the sensor scans across a structured background,
the spatially non-uniform scene brightness is mapped into a photocurrent whose mean and vari-
ance are both functions of time. The inadequacy of the Wiener spectrum method under theze
conditions has been appreciated for many years 112,131.

The IRST model developed in this paper requires as input complete descriptions of the
IRST sensor and the scene radiance distribution (possibly including a target). As cutput, the
model generates the probability that the IRST device declares (rightly or wrongly) a target's
presence in the sceie., A priori knowledge as to whether a target was in fact present in the

* specified scene allows interpretation of the probability of target declaration either as a probabil-
"ity of target detection (Pt)) or as a "false alarm."

Photon fluctuation noise is the only stochastic aspect of the model; the background must
be specified as a radiance map of arbitrary, but deterministic, structure., Thus, the performance
predictions made with this model are background-conditional.

Manuscript submitted Februjr) 13, 1979
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Previous works describing analysis techniques for IRST systems (e.g., Refs. 14 and 1)
are restricted in validity to uniform scenes. The contribution of this paper is an original
method for calculating IRST performance (i.e., the parameters PD and FAR) that is inherently
applicable to non-uniform scenes. The method described here can be used to assess the rela-
tive merits of a variety of IRST system concepts, all operating against a particular infrared
scene. Alternatively, an IRST sensor's background-conditional performance can be evaluated
for each member of an ensemble of scenes, in order to establish ensemble average performance
statistics for a realistic range of operational environments. o1

Before launching into the main body of analysis, a treatment of the elementary concepts
involved is first presented in the next section. The latter part of the subsection (Current Statis-
tics) presents a brief discussion of how values for the mean and variance of a photocurrent
(i.e., the "current statistics") are obtained from knowledge of the brightness of a presumably
uniform background scene.

The final part of the next subsection (Crossing Rates for Fixed Threshold Detection)
presents Rice's well-known equation, which is Eq. (9) in this text, for the threshold crossing
rate of a stationary Gaussian random process 1161., Evaluation of Eq. (9) requires knowledge of
the mean value and variance of the Gaussian process. A description of IRST performance
against uniform background scenes is obtained by inserting the current statistics from the
Current Statistics Subsection into Rice's equation, Eq. (9).,

Rice's equation, by itself, is devoid of physical content: it applies equally well to any sta-
tionary Gaussian process. All of the physical parameters-the optical and electrical characteris-
tics of the IRST sensor and the radiance of the background scene-are introduced through Eqs.
(3)-(5) for the current statistics.

The method described above, using Rice's equation to evaluate search set performance
against uniform scenes, is well known 14,141. Since a target's presence in the scene would
necessarily render the scene non-uniform, and since the method based on Rice's equation is
valid only for uniform scenes, Rice's equation can be used to calculate FAR, but not Po.

The first method presented for calculating search set performance against non-uniform
scenes is gi~ien in the Non-Uniform Scenes Subsection. Although this method is a simple,
heuristic, extension of the well-known uniform background result reviewed in the subsection
on Uniform Scenes, it appears to be original. The heuristic approach of the subsection on
Non-Uniform Scenes has the advantage of being both easy to understand and easy to apply.
Moreover, comparison with rigorous methods indicates that the heuristic method yields numeri-
cally accurate performance predictions as long as the variations in the background scene are not
too rapid 117,181.

The IRST performance model developed in the Analysis Section is a rigorous generaliza-
tion o; the Rice equation method. In fact, a point-by-point correspondence can be established
between the simple, well-known analysis of the Uniform Scenes Subsection and the more gen-
eral, new analysis in this report.

2
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Appendix A generalizes Eq. (3).

Appendix B generalizes Eqs. (4) and (5).

FEq. (55), originally derived by Cramdr and Leadbetter (191, generalizes Eq. (9).,

As expected, the analysis in this report redtces exactly to the simple Rice equation
method in the uniform backlround limit. More generally, the method developed in this report
is also applicable to non-uniform scenes (i.e., scenes containing targets and/or structured back-
grounds).

The techniques developed in this report are applied to the evaluation of a number of can-
didate signal processing structures in a companion paper to the present work 118).

It is noted that tracking a! ,orithms are neither modeled nor discussed, although they may
play an important role in clutter rejection as well as target tracking (201., Moreover, no con-
sideration is given to the availability of target and backgound infrtred radiance data suitable as
model inputs. No strategies ire proposed for synthesizing IRST processor structures to satisfy
either a priori perfornr.nce requirements or optimization criteria. The contribution of this paper
is the formulation of a performance analysis model: Complete descriptions of an IRST sensor
and the radiance distribution of a particular scene are required as inputs. As output, the model
generates the probability that the IRST device declares (rightly or wrongly) a target's presence
in the given scene.

SCANNING BLIP SEN.SUiRS: ELEMENTARY CONCEPTS

A Basle Threshold Receiver

In order to provide a frame of refereesce for the following discussion, it is necessary to
describe a simple IRST receiver structure, and to define the parameters used to characterize
IRST performance.

The probability that the IRST device makes a target declaration when a target is in fact in
the sensor's field of view is called the Probability of Detection (P,,). The average rate at which
false target declarations occur is termed the false-alarm rate (FAR).

A basic threshold comparison receiver is shown in Fig. 1. The current X(W) at the output
of the detector is input to an electrical filter of transfer function H(f). The output current
Y(W) of the electrical filter is compared with a threshold Y,,(I). If Y(W) exceeds the threshold,

the presence of a *target' is declared* otherwise, no target declaration is made. Target detec-
tions and false alarms are both manifested as threshold crossings, suggesting the following
approach to IRST performance assesrment:

* The expected number of threshold crossings that a particular processor experi-
ences against a given infrared scene is first calculated. As discussed in Appendix
C, the expected number of threshold crossings during a given time interval may
be interpreted as a probability of target declaration.

3
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DIRECTION OF

SCANNING

' ]NO TARGET

DE•CLARATION-

Big I - A basic threshold Comparison receiver. The photodetector in this

figure is "idealizod., in the sense that it is presumed to have .a pertec! all-pass
electrical rrequency charactertstic', the I'requcncy.dependei•t part of the detector
reaponsivity is lumped togcthcr with the transfer runction or the post.detector
filter to obtain I1( ',. A "targct declaration" is made whene:ver the filtered
currcnt Hi() ececeds the threshold level Y.A'•)

0 If the specified scene is known to contain a target, the computed probability of
target declaration is interpreted as a Probability of Detection (P1 )); otherwise, a

: False Alarm Rate (FAR) interpretatiotn is given.

I Ag will presently be discussed, it is highly desirable that the threshold-establishing
I ~mechanism suppress clutter-induced threshold crossings by increasing ',(,() when Y(t) is

"clutter-like."

i Rather than allow V,,() to take on an a prior constant or functional value, it is necessary
to establish the thresho•,d by some means that "adapts" Y,,(i) to the prevailing background con-distonts.

SA similar type of signal processing problem has been addressed in the radar 121,221 and
sonar 1231 literatures,. A candidate adaptive threshold scheme adapted from the earlier work

E 1i 241 is depi~ted in Fig. 2.

The block with transfer function exp (-j2ir/T,•) introduces a delay of Td seconds. The
triangular-shaped block in this figure denotes an ideal all-pass amplifier of gain K. Note that
the delay time Td, gain K, and transfer functions 1,,(f') and 11(f) are all design variables.
Strategies for choosing the design variables in order to satisfy particular performance require-
ments or optimization criteria will not be discussed. This report is devoted to developing a for- '
mulationi for the expected number o•f threshold crossings for IRST receivers structured as in
Fig. 2, under the assumption that the design variables have ,ill been specified.

4
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Fig 2 -A simple adaptive threshold scheme is iltustrated The transfer
function exp - i2vI /:,) iniroducca a delay of 1,1 eton',e nsurins
decorrclation or the random processes YOi) and k;Ai) The - itilancc of
the random currents is seen by inspection (if Fil I

Uniform Scenes

C'urrent Statistics

Wht-r the sensor of Fig, I scans across a uniform background scene, the oul~ptit current
YO) is "statistically stationary," Thc meanini of statistical stationarity will now bc discussed as
background to the discussion or non-uniform scenei. and non-stationary procc~sss that follow inl

r ~the Non-Uniform Scenes subsection.,

It is assumed that the sensor is scanned and re-scanned over the same scene, and thatl
thcre are no changes in either thie scene or the sensor from one scan to lthe next.

The current y0,) during the course of tiny one particular scan is called it "sample func,
tion" of the random process YOi) (The process H0O, in turn, may he thought of as thle
infinite ensemble of possible sample functions.) The current sample function ohtained oin the
11,4 scan is designated i'(tn,), We now consider a particular one of these sample functions.
r'(i 1). depicted in Fig. 3.

The time variations in v (~l) have their origin in the ttme-of'-arrival fluctuations of' thle
individual photons incident on the detector.t Thus, the fluctuations in i (iJ) are independent
of the scan velocity and are present regardless of whether lthe sensor is scannling or motionless
The average current at a particular instant of time t,, may be defined as thle "ensemble average":

% - IN -I I

In order for Y 0i) to be a stationary process, t1 is necessary that in)~ 0i), as defined in Eiq. (I), be
independent of time. Thus,

%.atuc% demitnitetd lit lite wairrcipoiding ta.wvr taiw letter%

tI hi% kind ilt uuoi~ i% at ili' cilttct "phiaoii Mit alu.ii ia)i iitied tit "414illOUill iiaoisd " w'ilvil til lid 1 ij~ll iii aaw .i 1i .ited
wiath the bacligataund tight i% lite Jormiilaui ii,1% a ti v il t la ike %ellua * tile s iwrial %i.ad ill tit opetwr ii aisi lite "Hatic ~ k
ground I rnited Petdovninvewc thll 11) reginic
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y(t;lI

Sto •. ti t

Fit. 3 - Three sample functions of the random
current Y(N) are shown as functions of time. The
current Y(N) is taken at the output of the post.
detector filter as the sensor is scanned over a uniform

Vo. -- _scene (cf., Fig. I). The sample functions are desig.
nated v (0 ,), n - 1,2,3 ... The sample functions
display random time variations caused by time-of,

i • arrival fluctuations of the individual photons incident
on the detector. Since the current O(i) is stationary,
the ensemble average mean value (variance) defined
by Eq. (I) (Eq. (2)) is the same at time t,, as at time

yft;3)1 At, where times t, and it are arbitrary.

Yo.

where the times 1,, and 11 are totally arbitrary (cf. Fig. 2)., Similarly, the mean-square deviation
of Y(i) from itq average value (i.e., the "variance" of Y) may be defined at each instant of time
as

N-f-/ -- lim Mimi - n,()O -=EI l Y()-ni,()12 1., (2)

Thr, variance a J,, like the mean m 1 , is independent of time for stationary processes.

Equations (I) and (2) are satisfactory for illustrating the concept of "ensemble averaging*,
however, it is desireable to have a different means for actually calculating the values of inm and

ar V in terms of stanaard background jinj sensor parameters.

It is first necessary to define the average value m, of the current X(W) (cf. Fig. I):

4€mv - E(XI)} - qtemcp (3)

where

S- quantum efficiency of the detector electrons
IphotonI coulombs f,

e - electronic charge c lectron

6
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and

mo- average background photon flux I photons incident on the detector.
sec

It may be shown that for sensors operating in the BLIP regime the mean value and variance of

Y(t), originally defined by Eqs. (1) and (2), can be calculated in terms of mx as follows:

my - tt(O) Mx, (4)
and (251

a - 2emxAf, (5)

where H(O) is the zero-ordinate of the transfer function H(f) (cf. Fig. 1), and Af is the noise
bandwidth of H(f). For bandpass H(f), H(0) - 0. It follows from Eq. (4) that my - 0 for
this case.

SSince the 3cene is spatially uniform , the average photon flux mo is independent of time.
It follows from Eqs. (3) - (S) that the mean my and variance ar j are also independent of time,
justifying the claim of stationarity for the current Y(t).

Assuming that the transfer function H(f) is normalized as follows:

max HW(') - 1, (6)

the noise bandwidth A1 in Eq. (5) may be calculated from the equation:
A/. - o" In(f )JI ,d. (7)

Crossing Rates for Fixed Threshold Detection

It is now assumed that the signal processor of Fig. I is implemented such that the thres-
hold y,, is equal to a constant. The fixed threshold y,, is depicted on the sample function plots
of Fig. 3. A brief outline will now be given of a method for calculating the average number of
times ms that the random process Y(t) crosses the threshold during a time interval of duration
T seconds. (The relationship between the mean number of crossings mj and the usual search
set performance parameters PD) and FAR is discussed in Appendix C.)

The expected number of threshold crossings ms(O, T) during the time interval It t < 7/2

may be written in terms of a "crossing rate" ms as:

m,(0, T) - ,j T (8)

According to Rice (161, m, may be calculated as

Ajs - ths0 exp (-u0/2), (9)

where

= f0  J1(f) 2dj (10)

7
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with Af given by Eq. (7). Also,
u (yo-my)lo0, Y11

with my and oa given by Eqb. (4) and (5).

The quantity u defined by Eq. (11) may be thought of as a normalized threshold level.

It follows from Eq. (9) that the expected number of threshold crossings drops off rapidly
as the theshold level is increased

Finally, it should be noted that the uniform-background threshold crossing formalism
described above cannot be used to calculate the expected number of threshold crossings associ-
ated with a target's presence in the scene*, because a target's presence would render the scene
non-uniform.

Non-Uniform Scenes

Current Statistics

It is now assumed that the sensor of Fig. I is scanned a number of times over the same
non-un(form scene, and that there are no changes in either the scene or the sensor from one
scan to the next. A number of sample functions of the resulting current process YWt) are dep-
icted in Fig. 4.

Once again, the ensemble average mean and variance of Y(t) are defined by Eqs. (1) and
(2)., However, as discussed next, Y(t) is now a non-stationary process, i.e., my and o, are
functions of time.

As an illustration of how such non-stationary processes arise, it is now assumed that the
infrared scene encompasses regions of blue cky and clouds where

mo(tiv) - average photon flux incident on the detector when blue sky is being observed,

and

mQ(t,) - average photon flux incident on the detector when cloud is being observed.

The photon flux mQ in Eq. (3) is seen to be a function of time: mQ(t) takes on the value
mo(tI.) at a time t(. when a cloud is in the field of view, and it takes on a different value
mo(tfi) at a time tsq when the scanning fild of view includes only blue sky.. Thus, the process
Y(t) is non-stationary when the scene is non-uniform, because the mean and variance of Y(1)

* are seen from Eqs. (3).(5) to be functions of timet.

"Ast discustsed in Appendix C, the incremental number of threshold crossings associated with a target's presence in the
scene provides an estimate of the conventional search set parameter Pp By delinition, PD is the probability of target
detection
t For the present,. it tuffices to say that the forms of Eqs (4) and (5) indicate that a time-varying mtv must give rise to

time varying my and r y hlowever, it should be noted that Eqs (4) and (5) are only strictly valid for statuonary
processei, t e,. for time-invariantl mX Gencrili/alion,; of Eqs (4) and (5) valid for both stationary and non-stationary
procexses are given by Eqs (B-30) and (B-31)
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i' yt;l) Yt-

Fit. 4 - Three sample functions of the ran-
dom current Y(, arc shown as functions of
time. This figure is similar to Fit, 3. except
the sensor is now presumably scanned over yit;2t
a non-uniform scene The time-varying
ensemble average tnyar) of Y(i) is shown as
a dashed curve superposed on each of the
three depicted sample functions (solid
curves). The ensemble average 'ty is still /
defined by Eq. (I); however, the fact that
in, is now a function of time implies that
)'(;) is now a nonstationary random pro-

cess. VI;3)

The time-varying mean value m.t() is superposed as a dashed curve on each of the sam-

Spie functions y(t) depicted in Fig. 4.,

Crossing Rates for Fixed 7Threshold Detection

The performance of a fixed threshold signal processor (cf. Fig.. 1) against a non-uniform
scene can be characterized in terms of thu quantity mnj, where*

injmO,T) =E{J}= f, ih.(i)d,. (12)

where T,, is the time interval Itl < T/2, Jis an integer random variable equal to the number of
times that the current Y(t) crosses the threshold level w,, during the time interval T,,, and E{.)
is the statistical expectation operator as defined in Eqs. (i) and (2). Equation (12) is a straight-
forward generalization of Eq. (8) to allow for the possibility of time-variable threshold crossing
rates ths.

As long as the time variation of ini(t) is slow compared to the time variation of the
impulse response h(i) of the post-detector filter (cf. Fig. 1), a good estimate for ihs(1) can be
obtained from Eq. (9).

"Cf Appentix C for a dis.usion ot the relationship (lt i j(O. 1) io the usual IRS t' irlormanc, iprnwieler, I)) and
FAR,

9
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The following steps are then followed in calculating ms(0, T)

a. The time-varying mean current mv(t) is derived from the time-varying photon irradi-
ance mo(t) by means of Eq. (3)., (A detailed formulation for mre(t) in terms of the back-
ground radiance distribution is provided in Appendix A.)

b, Estimates of my(l) and o,0() are obtained from Eqs. (4) and (5). (More rigorously,
Eqs. (B-30) and (B-31) may be used to obtain my(t) and a-J(t.)

c. Equation (11) is evaluated for the time-varying normalized threshold u (1),

d, Equation (9) is evaluated for the time-varying threshold crossing rate ths(t).

e. Equation (12) is evaluated for the expected number of threshold crossings m(0, T)

Numerical examples following the above prescription typically show that the crossing rate
function mbh(t) is extremely sharply peaked (cf. Fig, 5), Consequently, appreciable contribu-
tions to mj(O.T) only accrue in the near neighborhood of points such as 1, in Fig. 5. It is
shown in Ref., 17 that the time t. in Fig. 5b is a saddle point of the crossing rate integral Eq.
(12), and that Eq. (12) may be approximated asymptotically as:

mj(O, T) =- di(t,,) 8zp, (13)

with thh(t,) obtained from Eq. (9), The quantity 8t, is the effective interval of time during
which mr(t) remains in the near neighborhood of its peak value, from the standpoint of cross-
ing rate calculations. An expression for 8t, is derived in Ref. 17.

The implications of Eq. (13) for system performance are illustrated with the aid of Fig. 6.

t mylt)

Fig 5 - Part a) is an illustrative plot o1 in,(O) vs i,
where my is the mean value of the filtered .urrent

/) A a YO) Also shown is a constant threshold current

_1t ! . v,, lying above the peak value of m, The function
ntpt n() takes on its peak value at the time I,

V Part (b) is a plot ol the threshold crossing rate
(a) t/n(t) corresponding to the threshold r,, and mean

)current ony(t) of' part (a). The entire contribution
mjlt) to the crossing rate integral, Eq (12), accrues n thie

very near neighborhood of t,

St~pt
(b)

10
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Fig. 6 - This figure illustrates a critical shortcoming of constant
threshold processing. The slowly varying maximum centered at
presumably has its origin in the non-uniform background scene. The
narrower, lower amplitude spike centered at t,, is due to a target.
The likelihood of a false alarm (i e., a clutter-induced threshold cross-
ing) grows rlpiJly as the threshold level v,, is reduced There is no
way for the constant threshold processor to detect the target peak at
', without also incurring a false alarm arising from the clutter peak
centered at,

A plot of the threshold crossing rate ;tj.(i) corresponding to
thi• figure would show that the probability of a threshold crossing,
and hence a rake alarm,, is far greater at time it, than at mny other
time

The large, relatively slowly varying maximum centered at it, in Fig. 6 is presumed to have
its origin in the background scer,e. The narrower, lower amplitude spike centered at t1, in Fig. 6
is presumed to be due to a "target."

It follows from Eqs. (13) and (9) that the likelihood of a clutter-induced threshold cross-
ing grows rapidly as the threshold level y, in Fig. 6 is lowered. A clutter-induced threshold
crossing (i.e., a "false alarm") becomes a virtual certainty6 when there is a "mean-crossing," i.e.,
when the threshold level actually intercepts the mean current m?(O). [17,18) There is
apparently no way for the constant threshold processor to detect the target peak at t,, without
also incurring a false alarm arising from the clutter peak centered at tp.

('Crossi Rates fr (Constant Fale Alarin Rate (('FAR) Adaptive Threshold Detection

The performance of an adaptive-threshold processor ts illustrated with the aid of Fig. 7..

The processor is presumed to have some means for deriving high-confidence estimates for
'ti(l) and (Y t (t), defined as tit and 4 t, respectively. When n) (1) is "slowly-varying" the pro-
cessor establishes v,,(t) as:

v,,(t) = ih,(t) + Kn,(i). (14)

-This has hcen etablihed by integrating the cro,,irig rate lunction 'Pij over an interval ol time contining a time point
St,,, o r whit.h min (i,,,, = An asymptoiic analysis Itl Ref 17) has shown that he .ro ,,ing rate integril I q (12) is
incremented by unity for each such time i,,, contained in the interval oil integration I,, 1 his result i, not at all ,urpri,-
rng, and may me taken i, evidemce that the theory developed here is conitent with common ,ense

11
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mv (t)I zY~t)

i Fill. 7 - This figure illustrates an important potential

advantage of adaptive threshold processing. The mean
' current iny(t) is the same as for Figl. 6, with a clutter peak

cntered at time t,, and a lower-amplitude target spike cen-
tered at time i,,. The adaptive threshold v,()is presum-
ably able to accurately track the slowly varyingl backglround

signal, but not the more rapidly varying target signal.
Thus, targlet detection is assured, while the probability of a
false alarm is kept acceptably small As contraslted with the
situation of Figl. 6, the probability of a false alarm is now
no glreater in the neiglhborhood of time t•, than at any other
time,

The threshold is interpolated through periods of "rapidly varying" t"t (I) by means of a smooth.

ing filter (cf., for example, the neighborhood of 1,, in Fig. 7). The adaptive-threshold constant
K in Eq. (14) is a design parameter.

From Eqs. (II)) and ( 14),

it (I) -K (t[ 1/r)(t I)I(t 1)1 /f 1,(5

When the ustimation errors are sufficiently small,

• •() ---- r •t),(16)

and

it follows from Eq. (15) that

u(K) K. (17)

Thus, u(t) is rendered time-invariant by the adaptive-threshold processor when there is no
rapidly-varying target contribution to ,,i,(I). When there are no targets in the scene, the mean
current ti)(I) is assumed to be slowly-varying, and the expected number of crossings during
the time interval T,, may be calculated from Eqs. (9), (12), and (17) as

inj(0, T) - fr., Aij,, exp (-K212) (it.(8

Since both ths,, and K are time-invariant, Eq. (18) becomes

in1(O. T) = thy,, exp (-K 2/2) T. (19)

Equation (19) has the same form as the crossing rate expression for uniform scenes, Eq. (8).

12
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The kind of processor just described has been called a constant false alarm rate (CFAR)
processor, since the threshold crossing rate is now independent of time, i.e., a crossing is no
more likely to occur when scanning a region of non-uniform background thani when scanning a
region of uniform background. For example, with reference to Fig. 7, the crossing rate is now
no greater at t, than at any other time.

Unfortunately, the CFAR processor is generally a non-realizable ideal: it has been
assumed that the processor is able to estimate the quantities my(t) and o y(f) to as high a pre-
cision as desired. Errors in the estimated values for my and o. y are usually unavoidable, giving
rise to appreciable time-dependence in Eq. (15) for u(W).,

ANALYSIS

Introduction

The objective of the next subsection is to present an expression for the expected value of
the number of times a nonstationary noise Y(W) crosses a nonstationary stochastic threshold

The crossing-rate formulation that results, Eqs. (25) and (27), requires knowledge of the
joint density function f .y,,y, of the current Y(W), its time derivative Y(t), the threshold W,,),
and its time derivative ko(1).'

As discussed in Ref. 17. the currents Y(W) and Yo(W) are non-stationary Gaussian
processes. It follows that Y(O, t(e), Y0(:), and kW(:), are jointly Gaussian processes. The
joint density fvyy, .o can thus be expressed in terms of a covariance matrix A,,,

Assuming that the filtered current Y(W) and the threshold YW(i) are uncorrelated
processes, the fourth-order density function factorizes into

fyyyo y" fy f- o V." (20)

The justification for Eq. (20) is discussed in the next section. Expression (52) for the jointly
Gaussian fyj is then used with the general crossing rate Expression (48) to derive a more
explicit crossing rate expression, Eq. (55), Evaluation of Eq. (55) for lhi requires the expres-
sions derived in Appendix B for the time-varying current statistics arz(t), ar y(t), and r(t) (cf.
Eqs. (B-30) - (B-34)).

The complete expression for the average crossing rate, Eq. (47), generally requires the
4 numerical integration of a somewhat complicated integrand. The section called Crossing Rates

for Adaptive Threshold Processors is devoted to deriving an approximation to Eq. (47)., The
result, Eq. (67), is the principal analytical result of this report.

A Basic Equation for Curve Crossing Rates

The integer random variable J is defined as the number of zero-crossings of a random
process G(W) on a time interval ltl < T/2., The expected value of J is defined as mj(O, T).
Thus,

mj(O, T) - E{,I, (21)

13
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where E(.) denotes an ensemble average. Defining the crossing rate function mhj(t) as in Eq.,
(12), it can be shown that (cf. Ref. 26, p. 514)

-h(t) " flkilf (oG ) di., (22)

The function fad in Eq. (22) is the joint probability density function of the process GO) and
t its time derivative G(t).,

* Equation (22) is well known; however, most references to it appear to impose a stationar-
ity requirement on G that is not actually necessary. The applicability of this equation to nonsta-
tionary processes appears to have first been recognized by Cramdr and Leadbetter 119).

The domain of integration in Eq. (22) is a matter of some interest. If one wishes to cal-
culate only the expected number of positive slope zero-crossings, i.e., the expected number of
times that both

GO,) - 0 (23)

and

G(I.) > 0 (24)

are both satisfied on the interval IiI < T/2, the lower and upper limits of integration in Eq.

(22) should be chosen as 0 and co, respectively., The resulting expression for mj(O. T),

mj (0, T) - f"dtif f di I i fGd (010)I (25)

does not include zero-crossings or the type depicted in Fig. 8, for which , < 0. Apparently, mj
is sensitive only to the *right type" of zero crossing, as defined by the limits of integration in
Eq. (22).

git)

Fig 8 - A sample function x(W) of the random process GlW) is dep-
icted as a function of time. The particular sample function chosen
has a down.crossing at time t,,

14
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The process G(t) is now assumed to be formed as the difference of two stochastic
processes Y(t) and Y(t)., Thus,

G(t) = Y() - YO.(t) (26)

S4 \ where Y0(e) is referred to as the "threshold process".. Without making any assumptions with
respect to the statistics of Y(t) and Y0(t) (e.g., each process may be both nonstationary and
non-Gaussian) it follows from Eq. (26) that

SfGd(O-) - ffdCdfn ,•,,k + q, C.,)., (27)

The proof of this equation is straight-forward (cf. Ref. 27, p. 131). Assuming that the
processes, Y, Y, Y., and k., are jointly Gaussian (cf. Ref. 17 for justification), their joint density
can be expressed in terms of their covariance matrix 1271 A. The matrix A has four rows and
four columns, for a total of sixteen elements. Written In partitioned form, we have

A-If C (28)
C- C o [(

where the superscript Tdenotes the matrix transpose operation. The submatrices C, C,,, and C1
are defined as

. W(t) E- (Ai , (29)
: "• (" ky.u) •,•.010)I

Co- J'.W y"(u) (•.)I 30)

and

' ~ ~~CYV016~t Cr, JUtt)

SCt" Cýi.r(t,1) Cyr,.6~~) (31)

The scalar covariances that comprise these elements are defined by

where A and B take on the values Y. Y, Y,, and k',,, as appropriate. Also,

Sm.4(t) E- I A(W) (33)

and

O'ArO~) CAA(I,)., (34)

It follows from Eq. (32) that Cyy(u,) - Cvr(i,i) and C( V. V )- U C,(,,(,t). Thus, the
matrices C and C, are symmetric.

15
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The elements of C are obtained directly fron- Eqs. (B-17), (B-20), and (B-23),

a f(t) - e mg(I) @ h2(O), (35)

n OA - e (mx(t) @ Ih()1 21, (36) (
andy

cry(o) - W 6, . Yt) W.() (37) • i

where e is the electronic charge, h (t) is the impulse response of the post-detector filter (cf.
Fit. 1), mx(t) is the mean value of the current X(t) (cf. Fit. 1), and P is the convolution
operator:

f(W) a g () f"f(0-x)g(x)dx. (37a)

The relationship of mx(t) to the radiance of the scene under observation and the optical
parameters of the IRST sensor is discussed in Appendix A, and expressed quantitatively by Eq.
(A-2).

Expressions for the elements of Eq. (30) may be obtained as direct adaptations of Eqs. (35)
(37). It follows from Fig. 2 that

ot)- Kh.,(t-Td) 0 Xet), (38)

where h,,(I) is the Fourier inverse of H,,(f). Taking the expected value of both sides of this
equation, we have

my,(t) Kh.OA-Td) 0 mx(t). (39)

which is analagous to Eq. (B-30). It may also be shown, analagous to Eqs. (35) - (37) that:

-1(i) -eKmx(t) 0 hOt(I-Td), (40)

U] r() - eKmin(t) @S [(I-Td)12 , (41)
and

Cy, (.t) - "r,,(t) y,(I). (42)

It remains only to formulate similar expressions for the elements of C, in order to complete the
specification of the joint density frk,

Assaming that the processes Y(t) and YO(t) are both derived from the process X(t) by
means of the structure shown in Fig. 2, it is shown in Ref. 1' that, if

h,, (t - Td) h (t) - 0, (43)

then
C, - 0. (44)

That is, choosing a sufficiently long time delay Td in Fig. 2 validates the factorization of the
fourth order density fvv.,, into the product of two second order densities:

f yy,, ',YJ) - fry (',y. Y)f r (Y") (45)

16
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From Eqs. (22), (27), and (45),

mJWI - ffd~d'q fy,, (Chi) ffd~ilifry (c*+71)j1. (46)

With the change of variable z - j+•1, Eq. (46) may be written

where, by definition,

'I'AI'4110.') fj Iz -A9 fyy(yn,.z) dz, (48)
and

Ey,,Y, H = f fd}- , Q, q,) 1.) (49)

The quantity ms, previously interpreted as the zero-crossing rate of the process G (cf. Eq.
(22)), is now interpreted as the threshold crossing rate of the process '(I) (cf. Eq. (47)).

The quantity

(IY.,j',) --_- #h, .) (SO)

defined by Eq. (48) will be referred to as the "threshold.conditional crossing rate."

Non-Stationary Gaussian Processes

Further dovelopment of Eq. (48) for the threshold-conditiosal crossing rate is contingent
on obtaining a suitable expression for the joint density fvy. ThtK objective of this section is to
evaluate Eq. (48) for the particular case of a bivariate Gaussian density, Eq. (52).

The justification for assuming a Gaussian distribution for J), (',nd hence for f, and fyy as
well) is discussed in Ref., 17. As shown in Ref. 17, th-. relative error in thj is approximately
equal to the relative error i in the density function of YO().

fyI (Y ) = r jl • j j (0 + 1)4 (5!m)

where 4. (.) is the Gaussian density function, Eq. (57).. The Edgeworth series expansion [161 of
* fy(y) provides a simple and easily evaluated expression for the relative error C. Sample calcu-

lations described in Ref. 1171 show that e is negligibly small for typical system and background
parameter values. Thus, the joint density fy, is now assumed to have the following bivariate
normal form:

fvyi,(,Z) 2"rcr2ya/(l-r2)1/2 exp u2 +v 2 - 2ruv (52)1-rp ( 2 r2 ) 1'(

where the quantities mya, oy , o17z, and r, are obtained from Eqs. (B-30) - (B-34). Also,

17
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u (y,,-m))/lra (53)

and

v (z-mz)l/a,. (54)

Substituting Eq. (52) into Eq. (48), it may be shown that 1171

thi~ly" - 1 Jr (O-M2)/ O(U) 4'O(P) + p 4(p), (55)

where, by definition:,

P j(I.-r.)/2) 1 •-j (M/ + rur 7 -7,,), (56)

The functions 0(.) and 0(.) in Eq. (55) are defined as follows:

O(x) = (2r)-112 exp(-x 2 /2) (57)

and

40 f1,(z)dz (58)

The crossing rate Eq. (55) is originally due to Cramir and Leadbetter (191.

Equations (47) and (55), together, represent a formal means for calculating the mean threshold
crossing performance c• the adaptive threshold processor depicted in Fig. 2. However, the
evaluation of Eq. (47) appears to present some significant calculational difficulties. These
difficulties are obviated by means of the approximate method of evaluation pursued in the fol-
lowing section.

Crossing Rates for Adaptive Threshold Processors

Numerical results obtained thus far indicate that the correlation coefficients r and r,, are
typically much less than unity, as follows:

I,()1-I r (,.) CrV(,)C-,(,)j-'l << i (59)

and

.( )1- I ', U.) (a ,(() ,, ,(,)-1 << 1. (60)

where Eq. (59) comes from Eq. (B-24), and Eq. (60) is obtained by analogy to Eq. (59).

It follows from Eqs. (47) and (49) that the threshold crossing rate for stochastic threshold
functions Y,(t) may be written as

mJO) - ffd~d'q mh(tj4ik).fQ,,,(C, i)" (61)

Equations (59) and (60) permit considerable simplification of the functions appearing inside the
integral in Eq. (61).,

18
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From Eqs. (55) and (59):'

thj(:,I?,v) z 10je(01'0(p) + p0b(p)), (62)

where u, 0(0), and C(), are given by Eqs. (53), (57), and (58), respectively. From Eqs. (56)
S~and (59),

p - (mi-0)/0'z.' (63)

By analogy with Eq. (52), and making use of Eq. (60),

V.4, 71 - *c .,q( u,)JI fuTi. *(p,) 1. (64)

where u,, and p,, are defined similarly to Eqs. (53) and (63) as

( a Q - my)•/aV (65)

and

U "a (M.,, - ( (66)

It follows from Eqs. (61) - (66) and some algebra that

mj(t) - (2w) t 1 (ikin Fm-m ,(67)
V yo. Y I',

where, by definition

= a', 4 a (68)

and

,r fir + ,r . (69)

The quantities in.,(i). ir 1(1), and 4r (i), in Eqs. (67) - (69) are calculated by means of

Eqs. (39), (40), and (41), respectively. Finally, the expected number of threshold crossings in
a time interval T,, may be obtained as

"" ,j(O, T) - ,hjnA) di, (70)

* :with ti•(i) given by Eq. (67).

Equation (67) provides the basis for analyzing a much broader range of possible adaptive
threshold schemes than Fig. 2 might suggest. For example, straightforward generalizations of
Eq. (67) may be applied to the structures depicted in Figs. 9-11.

19
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Holf) Yot)

Fig 9 - An adaptive thresholdwheme is illuitrotcd. Each
or the delay elements introduces a delay of 1:1 second%.
The sionificance or the random currents M(), 1(i), and
),,(I is seenl by inlspectionl of Fit. 1. The block diagram

shownl here is actuAlly just one part of the threshold pro-
Lemsing receiver shown in Fig 1,

XII DELA14$ DELAY DELAY

HMf Ylt)

1'# 10) - A candidate adaptive thireshold scheme is ittus-
trated that generialies the %tructure ot Fig, 9 The
thresthold-citahlishing approich shoiwn here is realmied in
ter ms of a taptwd delay tine with 2 V lap% O)nce again, ttte
iiigitknifcne of*~ VIO ) , and ),it) tfollow% fromi Fig 1
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S: Yo(t)

XWt DELAY DELAY DELAY

:• I I' Ylt) •

Fig II - The tapped delay linc adaptive threshold schenm,
shown here Seneralitcs the structure of Fig. 10. The ramnsfer
function, I1,, M,i - I, 2,. 2N at each of the 2N laps of the
tapped delay line are design variables, chosen to maximilc the
receiver's performance against a particular background scene, or
set of background wcenes There is no to pium reason why thti
various delays should be chosen as equal to one another, other
than fo, fabricational simplicity. More generally, additional
dereew, (f freedom are incorporated by allowing these delays to
take on distinct values.

While the function F(mi,-im,) in Eq. (67) is fairly complicated. its zero-ordinate is
unity:

F(O) - ., (71)

Equation (71) is a highly desireable feature, as explained in the next section..

It is noted that for uniform backgrounds,*

an (,r ,/0' 02 - (A.i;,/.i) (72)and

t (Cr /, d2 -a (4,*1l/4'), (73)

where A/is the noise bandwidth of 1(41), and 4.i', is the noise bandwidth of It,,(') (cf. Fig.
2). It follows from Eqs. (68), (69), (72), and (73) that

I+, = + ( /) (74)

and

•r,, r + (Afj ,I 1) (75)

S'E~~~~~~q (73) is, dcri•,ed by ass'.uming.. reci.tmulair-,haid I1/(1) ha..nng an uppe~r c.ut-off" Ircque='.'O And J "Ols,,

bandwidth 11- I,
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Equations (74) and (75) are good approximations so long as mv(t) is slowly varying compared
to h(t) and h,,(t).,

DISCUSSION

Experience with the numerical evaluation of Eq.: (70), with thj(t) given by Eq. (67), has
shown that the principal contributions to the integral mj of thm accrue in the neighborhood of a
discrete set of times.

Moreover, it has been shown that these important discrete times are of two types:
"Hmean-crossing times," and "times of closest approach" [171.

Mean-crossing times ,,,, satisfy the following two conditions simultaneously:,
my(l ..,) - mý,(t .... (76)

and andtht,,,) > th ý, (0.•. (77)

For each solution of Eq. (76) that satisfies constraint (77), i.e., each time the mean current
m)(t) crosses the mean threshold in, (1) with positive slope, the expected number of crossings

inj is incremented by unity. Whenever mean-crossings exist during the interval T,,, it is gen-
erally not necessary to perform the integral of Eq. (70), in this case, the expected number of
threshold crossings inl(O,T) is well-approximated by the number of mean-crossing times /.,
during the interval T,,. Clearly, it is desireable that no meai-crossing times exist except when
there is a target in the scene, this may be taken as a reasonable first principle of search set
design for operation against structured backgrounds.

If ný(O) lies below in,,() on the time interval 1,, i.e., if there are no mean-crossings

during T,,, the crossing count integral Eq. (70) is generally uominated by contributions accruing
in the neighborhood of "closest approach times" ,,,, where by definition

/( ') = ,,) (78)

It follows from Eqs. (67), (71), and (78), that the mean threshold crossing rate for adaptive-
threshold (AT) processors is

I =I(/) - (2w) I/2 _ I (79)

in the neighborhood of all closest approach times. Thus, the complicated function I') appear-
ing in Eq. (67) is generally not needed in evaluating Eq. (70).,

Analogous to Eq. (79), the mean threshold caossing rate for fixed-threshold (FT) proces-
sors is given by

, i '(1 ) = ,hj(• i',,,0) = (2w) i2( - t r . .7 ' (80)
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Equation (80) is derived from the background-conditional crossing rate, Eq. (62), by imposing
a saddle point condition analagous to Eq. (78):,

p - (in -(M).,r - 0. (81)

Alternatively, Eq. (80) may be derived by noting that for fixed threshold processors:

}-a -o (82)
and

my., -y, (83)

From Eqs. (68), (69), and (82),

r a (84)

and or - ,r (85)

for fixed-threshold processors. Substituting Eqs. (83) (85) into Eq. (79), the advptive-
threshold crossing rate tihIr is seen to reduce properly to the fixed-threshold crossing rate #ih, g

given by Eq. (80).

The advantages and disadvantages of adaptive threshold (AT) processing vis-i-vis fixed
threshold (FT) processing may be evaluated by comparing the crossing-rate expressions in Eqs.
(79) and (80).,

It follows from Eq. (80) that fixed threshold processors will suffer background-induced
mean-crossings whenever the peak target amplitude is less than the clutter amplitude., This
situation is depicted in Fig. 6. Thus, it may be said that target-to-clutter ratios less then unity
cause the FT processor performance to be "background-structure-limited" (BSL)., In this case,
each "false alarm" can be associated with a structural feature in the backgound. The effect of
quantum noise (as reflected in the magnitude of or ), for example) is then totally overshadowed
by background structure effects.

Inspection of Eq. (79) and Fig. 7 shows that an Adaptive Threshold (AT) processor need
not suffer background-induced mean-crossings. If the filter I,(f) (cf. Fig. 2 ) can be chosen
such that inI(") "tracks" the background-induced variations in in (I), the background-induced

mean-crossings can be eliminated.

Such false alarms as then occur are distributed randomly in time, and are not associated
with particular features in the background scene: the residual false alarms are due to quantum
noise.. An IRST sensor operating in this regime (e.g., Fig. 7) is said to be "quantum-noise-
limited" (QNL) in its performance. Clearly, QNL (quantum-noise-limited) operation is
preferable to BSL (background-structure-limited) operation.

It should be noted that the adaptive threshold performance advantage just described is
only realized when the background scene is non-uniform. The performance of AT processors is
generally inferior to the performance of FT processors when the background scene is uniform
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and of known brightness. In this case, the adaptive threshold false alarm rate (FARAT) is
greater (i.e., worse) than the fixed threshold false-alarm rate (FARFT):

FARAT > FAR.T, ,(86)

In order to make the false alarm rate comparison above meaningful, it is assumed that the
adaptive-threshold gain A in Fig. 2 has been adjusted to achieve equal target-detection sensitivi-
ties for the two processors being compared.*

A false-alarm penalty (FAP) is now defined:

FAP 1019o10 (FARA-T/FARIT).. (87)

The raise-alarm penalty is a measure of the performance disadvantage that accrues when an AT
processor is used when it truly isn't needed. Eq. (87) may be written as

FAP - 101o010 (•hAT'/r1,rI dB. (88)

with dh,4r and 11 1T given by Eqs. (79) and (80), respectively. The evaluation of Eq. (88) is
simplified considerably by making use of Eqs. (74) and (75). It follows from Eqs. (74), (75),
(79), (80), and (88) that:

"FAP 2 + 2.o7l[- - , dB. (89)I a
where, by definition,

1A_ (90)

Equation (89) simplifies still further in the limit a << I. Thus

FAP "i 2.17 I In) dB d a<<l. (91)

As an example, it is assumed that the threshold-constant K in Fig. 2 is adjusted until " the
threshold is five sigmas above the mean," i.e.,

rm-ml, (92)

when the search set is observing a uniform scene of known brightness. Furthermore, it is
* assumed that the noise bandwidth of the target filter HQ(I) in Fig. 2 is twice as large as the

noise bandwidth of the threshold-setting-filter i,,(i),

a = I -( 193)

iti suith 11m the ithreshotl(d hiler 111)resixinds too sliowI) to suplircss las~t rise-time~ titrgL't-tlndukd thireshold
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It follows from Eqs. (89), (92), and (93) that the false alarm penalty is-'

FAP - 17.46 dB, (94)

corresponding to a value of FARAT ( adaptive threshold false-alarm rate) about 56 times worse
than FARFT (fixed-threshold false-alarm rate).,

Generolly, A.f,, should be chosen smaller than Af to both minimize the false alarm

penalty, (Eq. (89)), and to prevent a too-rapid threshold response that would tend to suppress
target-induced threshold crossings. On the other hand, Af, should be chosen large enough to
allow the threshold to accurately follow most of the structure in the background scene. Clearly,
the choice for Aff, involves degrading system performance against uniform backgrounds for the
sake of improved performance against non-uniform backgrounds.

It appears likely that a more favorable trade-off could be achieved with the receiver struc-
ture shown in Fig. 9, both from the standpoint of (a) decreasing the false alarm penalty, Eq.
(89), and (b) improving the background tracking properties of my( ). Equation (79) and the
entire analysis of the preceding section is easily adapted to the structures of Figs. 9-11. The
false-alarm penalty, Eq. (89), decreases roughly as (2N)-1 2 for the detector of Fig. 10. The
improvement in uniform background performance thus obtained for large values of N is gained
at the expense of degraded performance against cluttered scenes, as compared to detectors with
small values of N. The good background-tracking capability of the structure in Fig. 9 combined
with the low false-alarm penalty of the structure of Fig. 10 can be obtained by employing a
two-dimensional-detector array with time-delay and integration (TDI) logic.

In order to put this discussion on a concrete quantitative basis, particular background and
target radiance distributions must be chosen, and the mean current tit () calculated by means
of Eq. (A-2) in Appendix A. The target detection and clutter rejection capabilities of a given
candidate adaptive-threshold processor can then be analyzed by means of Eq. (79), Intercom-
parisons of the numerical results thus obtained for a variety of different processor structures
should then allow quantitative conclusions to be drawn concerning such issues as:

0 The performance penalty caused by failing to match the sensor's instantaneous field-

of-view to the angular size of the target.

0 The potential performance advantages of time-delay and integrattion (TDl0.

0 The best value of N, and the desireability of having different transfer functions II,,(/)
for each of the 2N taps in the tapped delay line structure of Fig. iI.,

0 The advantages that may be gained by employing two-dimensional threshold process-
ing, in which the "target signal" Y(i) and threshold function Y,,(,) are derived from detectors
scanning at different elevations.

The only important obstacle to performing analyses of the kind described above is the lack
of high-spatial-resolution, radiometric, infrared background imagery.
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Appendix A

CALCULATING THE AVERAGE PHOTOCURRENT

FROM BACKGROUND DATA

The objective of this Appendix is to present Eq. (A-2), which expresses the average value
of the random current X(W) (cf. Fig. I),

- (A-I)

as a function of the scene radiance distribution mL(r) and a number of important sensor param.
eters.

As derived in Ref. 17,

mx(l) - K,,R, f MTF(f) 9 (1) my(f) exp Wi2rrf. vdf. (A-2)

The various quantities appearing on the right-hand-side of Eq. (A-2) will now be defined.

The constant K,, is given by

K -, "•r,/(2V)2, (A-3)

where t,, is the transmittance cf the optics, and ./ is the focal length ratio or the optics.

The constant R, is the current responsivity, given by:

R1- ije/hv. (A-4)

where qJ is the detector quantum efficiency, e is the electronic charge, h is Planck's constant,
and P is the average op:ical frequency of the incident light.

The variable of integration in Eq. (A-2), f, is the two-dimensional vector spatial fre-
quency. The quantity MTF(f) is the modulation transfer function that characterizes the image
blurring effect of the optical train, normalized such that

MTF(O) - 1. (A-5)

For the detector geometry depicted in Fig. Al, the quantity P(r) is defined as follows:

26 - I " (A-6)
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The function O(f) is defined as the two-dimensional spatial Fourier transform of P(r):

90(f) f f P(r) exp(12wrf r)dr., (A.7)

Similarly, e,1(f) is the two-dimensional spatial Fourier transform of the radiance distribution
.m, (r), It should be noted that in, (r), like ini(I) in Eq. (A-2), is an ensemble average value

over the photon fluctuation statistics of the incident light.

The radiance distribution tit (r) is characteristic of a particular infrared scene, and may be

estimated by means of a radiometric Thermal Imaging System 11,21 (TIS) of higher spatial

resolution than the model system., It is also highly desirable that the dwell time of the TIS be
much longer than that of the model system, since the analysis requires knowledge of the mean

radiance of the scene established by averaging over the photon fluctuation statistics of the
incident light..

The spectral filter chosen for use with thW TIS should match the combined TIS optical
train/photodetector spectral response to that of the model system. This is necessary because

there is no way to reliably calculate the radiance of a scene measured in a waveband ,ki in

terms of the radiance of the same scene measured in a different spectral band ,A2.

The quantity v in Eq. (A-2) is the focal plane scan velocity, which may be calculated as

* IvI = 21r/4 D /Tj. (A-8)

where D,,,, is the diameter of the optical aperture, and T, is the system frame time.

AAver,a•,iln out the pholon in nle h) eili er incre••inlg the TIS dwell Ilini or h% pertornming Irjon¢e ,titoijcon det| re~'es, Mihe

noi(ine¢. of the FIS l in.1•ge, . ind ipro%,e's I he goo dness, ol IIte ri• tniler)d .inf.ln ¢,-i.lini1 o ili, if
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Appendix B
NOISE CURRENT CORRELATION FUNCTIONS

The object of this Appendix is to derive Eqs. (B-30) - (B-34), which are needed to evalu-
ate Eq. (55) for the threshold crossing rate Sij(tIy,,, l ,).

'rhe starting point for this discussion is the linear system input/output relation between
the random processes X(i) and Y(M) (cf, Figure 0):

Y(f) - dju X()h(I-j ). (0-1)

It follows directly from Eq. (B-I) that
CW,,(,. 11)- S dI h ,/,h0',1,:),I-A)I,(02-10. (8-2)

where the covariances (C)) and C% k are defined by
CI t((11, 12) =El YO 1) -in (101) 11 Y(02)-#n) 02)11,, (B-3)

-'llX(A)-.,%(A)i IX(d)-.,11(M)1l, (8-4)

and where
hin) M E' Y( M, (8-5)

and
in EI%(M)E . (B-6)

With the definition
7(t Y(,) (B-7)

it follows from Eq. (8-3) that

' /(11, 12) = ' ý, I ( 11.• 12) } (B -8 )

and
'//0 1, 12) - 8,1 , ,2 0(' ( , 12)} . (B-9)

From Eqs. (8-2), (B-8), and (B-9),

( 1,(', ' f fJJ dA.dA C% (A,•0(. 1)( - 8,) •,h(i 2 -A,) (B1-l)

and

0 '( f = f lA.slA (C% (A.A) 0,1h (t - A) 8,'(12 •• -). (B-Il)

Setting 1 = i,=i in Eqs. (B-10) and (B-I !), and noting that

(',(., 1) = Wr3.(i) = E{( 2G), - in2(i),. (B- 12)
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it follows that

CYz(1, f ff dA dh Cxx(4,M)h(0.-t) 8,/h 0- X) (8-13)

and

04(f) - S-'. ditdX Cxx(k. A) 8,h(0 , X) O,h0 -iA). (B-14)

Setting -I ,- t in Eq. (B-2), and noting that• ~c'vv,,) - a J(W - E'( r2()l - M•O), (B- 15)

it follows that

(- W f [". ditdX Cgx(,, I)h(t - ,X)h (-it), (B-16)

An expreoion for Cxx(. A&) is now required before the analysis can be carried any
further. An adaptation of Eq. (4.3.13) on p. I 5 of Ref. 28 leads to:

tf(t) - e dit 2( t -iU) my(gO). (B-U)

where e is the electronic charge. Consistency between Eqs. (B-16) and (B-17) requires that

Cy (A.( ) - e In( j) a(A) -J), (B-I8)

where (10 is the Dirac delt, function. Covariance functions like Eq. (B-18) are characteristic
of non-stationary white noise (26,291. From Eqs. (B-13), (B-14), and (B-18),

Cz0(,. 0) - e d# h/(t -it) 8,/h(0 -IA) my(s) (B-19)

and
cr (1)W- eJ dit [8, h(0 -A) 12 M x(!A).: (B-20)

Noting that

!A) A(_) 8 0 -is). (B-21)
2'

it follows from Eqs. (B-19) and (B-21) that

(•'l0, t) - L ea, dj h•0 -iJ) m(1i()J. (B-22)

From Eqs. (B-17) and (B-22),

10,- (7 ,(1) Y,(,) (B-23)

Defining r(t) as

r (1) j (z 0, 1) to, yW)a-,,)W-I, (B-24)
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it follows from (B-23) and (B-24) that

r(t) (4 (y(t)/O'z(t)), (B-25)

Taking the expected value of both sides of Eq. (B-1) leads to the result:

nly(t) - dot mx(As) h(t -is). (B-26) 4

Taking the time derivative of (B-I), we have

Y() - Z(1) - d# X(A) 8,h(t -).

Taking the expected value of both sides of (B-27), we have

MAI) dA m~r(jt) O,h(t -tS),

That is,

M O- 8IfMdit M r(J.4 UI1) I. (B-28)

From Eqs. (B-26) and (B-28),

ms) - thy(f). (B-29)

Defining the convolution operator as in Eq. (37a), Eqs. (B-26), (B-17), (B-20), (B-29), and

(B-25) may be written as:

'rV (1) - h () Q m (V). (B-30)

Cr W- e h2(t) 0 m•(:). (B-31)

eli;(l)], 0 mV(t), (B-32)

M.) - m)(1). (B-33)

and
r (t) - (1r I (t/cr 7(6)}. (B-34)

Equations (1-30) - (B-34) are the desired results.
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Appendix C
RELATIONSHIPS BETWEEN FAR, PI), and mj

Relationship Between FAR and mj

I; The complete description of an IRST sensor's performance under a given set of opera-

tional conditions requires the simultaneous specification of both the False Alarm Rate (FAR)
and the Probability of Detection (Pj)) for a "target" within the sensor's field of view.. However,
both "false alarms" and target detections are manifested as threshold crossings by the signal pro-iV cessor. Thus, the object of this Appendix is to relate the traditional IRST performance meas-
ures, PI) and PAR, to the expected number of threshold crossings trj over prescribed intervals
of time,

It is assumed that the average current mx(i) is known" on an interval of time III < T/2.:

The expected number of threshold crossings on the interval I I<T/2 is defined as
m,(O, T), Defining the false alarm rate as the expected number of threshold crossings per
"reference interval" Trct, the fnllowing relationship obtains between FAR and mj:

FAR (T,,r/T) mj(O, T).A (C-I)

For example, if FAR is defined as the averaee number of false alarms per week, T,.r is set
equal to the number of seconds in one week; if FAR is defined as the average number of false
alarms per system dwell time, then 7 rcf is set equal to the dwell time (again expressed in units
of seconds).,

It is implicitly assumed in Eq. (C-I) that the scene under observation does not include a

target, so that each threshold crossing that occurs gives rise to a "false alarm."

Relationship Between PI) and in p: First-Order Approximation

Although not as straight-forward as Eq. (C-0), a relationship between PI) and m, can also
be established.,

As prelude to the definition of Pp), a "decision interval" Tp is first defined. The interval
T1) is presumed to bracket the entire period of time during which she current Yh) manifests
target-induced fluctuations.

Assuming that a target is present in the scene, the number of threshold crossings that
occur during the interval T,, is defined as the integer random variable J. The discrete probabil-
ity density function of J is denoted as/l(t),

-The quantity iD.(i) may he spccitied a iri,, or it m.y he .akultied in terms of the ra&dia.nce of .t pdriucultar hack-
ground scene Lis diwu'u•ued in Apilndix A)
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The probability of detection Po is now defined as the probability that one or more thres-
hold crossings occur during the decision interval:,

Do h W.fU (C-2)
i-I "

(The likelihood of a background-induced crossing during TD has been neglected.) Unfor-
tunately, the problem of obtaining a formulation for fs appears to be quite difficult 1301. The
focus of this paper has been on the development of formulations for the expected number of
threshold crossings:

,,, =- E(J). - r U~)., (C-3)
'-I •.

lYn order to establish a relationship between P0 and mj, Eqs. (C-2) and (C-3) are written as:

PI) " fj(l) + hf(J) (C-4)

and

mj - fj(l) + •jfj(j)." (C-5)

Assuming that the probability of two or more threshold crossings is negligible during the deci-
sion interval TI), Eqs. (C-4) and (C-5) can be estimated ss

P0  fh() (C-6)

and

(C-7)

It follows from (C-6) and (C-7) that

Pi) = mj(O, Ti). (C-8)

According to Eq. (C-S), the expected number of threshold crossings during the decision inter-
val T,) provides a good estimate of the detection probability P,), so long as the probabilit; of
two or more crossings during TI) is negligible.

Relationship Between PI) and inj: Prvosal for a Second-Order Approximation

It appears only reasonable that an improved estimate could be obtained for P,) if the vari.
ance (Ys2 of J were known in addition to the mean rnj of J. It will now be shown how
knowledge of crj can be used to calculate a second-order approximation for PI) (compare with
Eqs. (C-4) and (C-6)):'

P.) P= "(!) + ./j(2). (C-9)

Unfortunately, the technique described in this section for calculating the second-order
approximation to PI) cannot be implemented until a formulation for a'j is developed analagous

32



NRL REPORT 8320

to Eq. (67) for mAj. In this connection, it is noted that Bendat has derived an equation for the
crossing count variance of stationary processes 1311 His result (cf. also Ref. 30) is far more
complicated than the analagous Eqs. (8) and (9) for mj. Thus, a generalization of Bendat's
result for o3r to the case of nonstationary processes and stochastic threshold functions may
prove to be a difficult problem. Nonetheless, it is now assumed that a formulation for 0r3 can
be obtained, analagous to the development for tit, as noted above and found in the main text.,
Analagous to Eq. (C-3),

F"
7 2  hO)1 -Mi) (C-10)

Substituting Eq. (C-3) into Eq. (C-10) leads to the following expression for o3:

o'j MI~) jI-f,(l)J + 4fj(2) Il-fj(1) -fj(2)I + Ej, (C-l11)

where

"Ej J~f- 2i +2 I i - (C 2

Assuming that the probability of three or more threshold crossings is negligible during the deci.
sion interval, Eqs. (C.3) and (C-I i) are approximated as:

mJ =- fi(1) + 2f,(2) (C-13)
and

and =7 ft) IjI -fj~l) I + 4fj(2) [I -f(l) -fi(2)j. (C-14)

Calculation of mj from Eqs. (67) and (70), and an analagous calculation for 1r), enables Eqs.
(C-13) and (C-14) to be solved for approximations to f/(1 and Jij 2)., The second-order
approximation to PI) is then obtained by means of Eq. (C-9).

If Eq. (C-9) is found to yield an appreciably different result than Eq. (C-6), third-order or
even higher-order approximations to PI may be required; otherwise, the first-order Eq. (C-6)
is then verified as a good approximation for P,).
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