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SABSTRACT

In this paper, we compute the mean of the equilibrium (steady-state)

total sojourn time distribution for the important class of infinite

capacity acyclic Jackson networks with a single server at each node. In

addition, for those acyclic Jackson networks with a Atree-likel structure,

we derive the Laplace transform of the equilibrium total sojourn time

distribution and then give a simple recursive procedure for computing the

higher moments of the distribution. Such basic results should prove help-

ful in testing procedures for simulation output analysis of infinite

capacity open networks of queues.
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0. INTRODUCTION

Queueing network models abound in applications, but despite the

immense practical importance of such models the body of available and

useful results for networks of queues is far from satisfactory; see

Lemoine 191, [10] for a comprehensive review of available equilibrium

results and weak convergence results for networks of queues. For

studying many queueing network models simulation would appear to be the

only practical recourse at the present time. The regenerative method for

simulation analysis has been applied to the study of passage time problems

in closed networks of queues and finite capacity open networks by Iglehart

and Shedler [4], [51, [6). The report of Lavenberg [81 discusses applica-

tion of the regenerative method to simulations of closed networks of

queues. However, the regenerative method would appear to be inappropriate

for the large and important body of infinite capacity open netwurk models;

such queueing networks are probably too complicated to return often enough

to some "regenerative condition" from which the entire network starts

afresh probabilistically. Nevertheless, any candidate procedure for simu-

lation analysis of infinite capacity open networks of queues requires a

-;basic model, and theoretical results for such a model to serve as a test-

ing ground for the procedure. For example, the M/M/l queue has been

invaluable as a testing qround for the developriqnt of the various aspects

of the regenerative method. For infinite capacity open networks an

appropriate test model is the classical Markovian network system of Jackson

[7] with a single serve at each node. And, for infinite capacity open

networks an important characteristic of system performance is the total
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sojourn time (total response time) distribution for typical customers

I in the network. In this paper, therefore, we compute the mean of the

equilibrium (steady-state) total sojourn time distribution for the

important class of infinite capacity acyclic Jackson networks with a

single server at each node. In addition, for those acyclic Jackson net-

works with a "tree-like" structure, we derive the Laplace transform of

the equilibrium total sojourn time distribution and then give a simple

recursive procedure for computina the hiqher moments of the distribution.

Such basic results should prove helpful in testinq procedures for simula-

tion output analysis of infinite capacity open rietworks of queues.
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1I. THE BASIC MO"FTL ArVr STATEMENT OF THE RESULT

The model of interest here is a Markovian network of cueues of the

type introduced in the classical paper of Jackson I7]. There are N

nodes with nooe i havino a sinqle-server, a firsL--ome-first-served

queue discipline, and a waitinc room of unlimited capacity. The external

input stream to node i is Poisson with rate \i , and these external

input streams are assumed to be independent. The service times at node

i are independent and have a common exponential distribution with para-

meter Ili and are independent of all customer arrivals at node i

A customer leaving node i is immediately and independently routed to

node j with probability p,1 , and the customer departs the system
N

from rode i with probability qi = I -1 Pi
.1 l

The state of the network at time t is taken to be

cot) -- ( cl1(t), c 2(t), ..... C (t)) 1

where cit) is the number of customers at node i at time t . Given

the independent Poisson external input streams, the exponential service

times at the various nodes, and the independent routing scheme, it follows

that {C(t), t 01 is a Markov process with stationary transition proba-

bilities. In this paper we are interested in the total sojourn times of

customers in the network when the process ('C(t), t - 01 has an equili-

brium (or limiting) distribution. In particular, we are interested in

Lhe distribution ot totali soiur iiit1Lime undcr ,the ,,quilibriu; gInar kov

|II
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queue--lenoths vector process

. {C~t , - t 4 1 11. 2)

This equilibrium process (when it exists) will henceforth often be denoted

by C(-) . And, this equilibrium process exists if (and only if) the

"traffic intensity" is less than one at each node in the network. Traffic

intensity in this network settinq means the foiluninq. Let -e be the

N x N matrix af the pij's and let a = (al, c. N be the row

"vector solution of the "traffic equation"

CL + \ -. j (3)

where A = (Nis N2 .... 1NN Since customers eventually leave the

system each entry of the matrix .*m converqes to 0 as m -o , so that

the matrix I -.;e is invertible and (3) has a unique solution given X

In row form (3) is equivalent to

N
N - i + piL a, i - 1,2,... N (3a)

j=l 1

This is a balance or conservation equation which says that the equilibrium

rate of flow throuqh node i , 'zi , is the sum of the external input rate,
N

Ai . and the total rate of internal transfers to node i , p

Then, if the "traffic intensity"

P Pi = til i < 1 (4)
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for each i , the queue-lengths vector process has a unique equilibrium

distribution Tr , where io,- C = (cl, c2, .... cN) a N-tuple of non-

negative integers

N

TT (C) = II ,i(ci) (5)
izl

with ýi(ci) 0( - pTi)Pi Thus, when (and only when) the condition (4)

holds for each node in the network, the random vector C(t) , vis a vis

the equilibrium process C(,) , has distribution n for each t in

-, +c) Another way of saying this is the following. Let p denote

the (stationary) transition probability function of the Markov queue-

lengths vector process; that is, if - < s < t < + - and C and D

are possible states then

PIC(t) = CIC(s)} = (D,C,t -s) (6)

on the set fC(s) = DI with probability one. Then 7 is the equilibrium

distribution if (and only if)

-.i(D) p(D,C,y) = i(C) (7)
D

for all y in (0,-) and all states C

Now, let the random epachs of external customer arrivals in the

equilibrium process C(.) be

-, t_2 < t 1 < 0 < t 2 I (8)

| 3-
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The points §tn, n + 1, + 2 ... are the superposition of f1

independent Poisson processes on C- •, + -,) with intensities

"Nit '2' .... , N ; and the customer arrivinq at epoch tn enters the

network via node i independently with probability ki/(Xl + '2 + + N)

for all n and i Let

tn + T (9)

denote the random epoch of departure from the network for the customer

arriving at epoch tn , so that Tn is the total sojourn time in the

network for customer n . Since the network is in equilibrium the sojourn

times :Tn' n = + 1, + 2, ... } have a common distribution which we denote

by H . In this paper we show that if the network is acyclic under .P

then the mean of the distribution H , say ET , is given by

E{T} = Xi 1 i a)

Moreover, if the acyclic network has a "tree-like" structure then we show

that the Laplace transform, say h , of the equilibrium total sojourn

time distribution H is given by

h(o) 0o- ., - q (lOb)

for 9 > 0 , where .1(0) is a diaqonal matrix whose ith diagonal

entry is (pi -ai +ao)/(i - ci) , N is a row vector whose ith entry

I4
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is + 2 + + N and q is a column vector whose ith

entry is qi . We also give a simple recursive procedure for computing

all the moments of the distribution with transform given by (lOb). The

transform result (lOb) extends a result of Reich [i11 for single-server

Markovian queues in tandem.

These results were derived by a heuristic argument in [91. The

argument given here proceeds in stages, each of which comprises a separate

section of the paper. The discussion in Sections 2 and 3, and the first

part of Section 4 does not require that the network be acyclic. From

thereon, however, acyclic structure plays a crucial role.

I5
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2. THE PROCESS (C(t.), -- t *- +

In this section we observe that the process {C(t-), -< ' t < + c"

is a Markov process in equilibrium, with equilibrium distribution

and (stationary) transition probability function p

Let the process .C(t), - t < + -' be defined on the proba-

bility space (%,.S,P) . Without loss of qenerality we take C(-) to

have sample paths which are constant except for isolated jumps, are

right continuous, and have left limits, all with probability one. With

this setup the process C(-) has no fixed points of discontinuity with

probability one, so that P(C(t) = C(t-)! = 1 for each t in (- 00,+ m)

Hence, in order to establ;sh that the process (C(t-), - - < t < + '}

has the stated properties, it suffices to show that for arbitrary

<s < t +C we have

PE'C(t-) = C'C(u-), u <_ s. = p(C(s-), t - s,C) (11)

for all possible states C with probability one.

Now, given the structure of the sample paths of C(j) we clearly

have

P{C(t-) = CIC(u-), u < s} = P{C(t-) = C;C(u), u < S)

with probability one. Let E= 1/i' for m = 1,2,..... Since

C(.) is a Markov process

P(t-c )= C(u), u <s - M p(C(s- C ) C, t - s)

I6
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for all m, with probability one. By Theorem 9.4.8 in Chung [3]

lim P:C(t -m) = CýC(u), u s -s m P('C(t-) = C'C(u) U<S;

with probability one. Moreover, we clearly have p(C(s -c), C, t -s)

p(C(s-), C, t-s) as -r , with probability one. The proof

of I1) is conplete.

i7



3. EXTERNAL ARRIVALS AND EXTERNAL DEPARTURES

As in (8) let {tn, n 1=+1,+2, ... 1 be the random epochs of

external arrivals to the network. Similarly. let

-•I_., • • • < d. < d l < 0 .< dI < d2 < ,•12

be the random epochs of external departures from the network. In this

section we observe that the random vectors (C(tn-), n = + 1, + 2, ...

and fC(d n), n ý + I, + 2, .... 1 are identically distributed and have

Tr for their common distribut 4 on.

Let {q(C), q(C,D)} den-ote the transition rates for the process

• C(-) .That is, upon enterinui state C , for extmple, th, process

remains there for a random time having an exponential distribution with

parameter q(C) , and upon leaving state C the process goes to some

state D ý C with probability q(C,D)/q(C) . The equilibrium distribu-

tioc, n sacisfies the "balance equation"

n (C) q(C) 7 'TT(D) q(D,C) (13)

for all states C . For 1 << N let E. denote the N-vector with

all components zero except for a I in component i . If C(t) = C

then the next transit 4 or. will be either to state C + Ei (external arrival
at node i t , to state C - Ei(external departure from node i ) , or to

state C - E1 + E. for j $ i(transfer from node i to node j ) Thus

for state C

3- -
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N N

q(C) -- q(C,C+ E1) + F (1(C, C -Ei)

1=

N N

+ F)J q(C, C - Ii + )
tl-1 j~l

.~ii

In addition to satisfyinq (13), the distribution TY also satisfies

the "partial balance equation"

N N

7(c) •q(C,C + Li) ; :(c + [) q(C E1 .C) (la)

for each state C ; cf. 191.

Consider the "reversed orocess" {C(-t), - t - . The

reversed process is also a Markov process in equilibrium With the same

distribution n . The transition rates Wtf(C), q'(C,O)l for the

reversed process are given by

IT(C) q(C,D) t(D) qO(DC) (15)

and

q (C.) q*(f) (16)

for all states C and Dl

I - (
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If we now apply (15) to each term on the right side of (14),

divide both sides of (14) by q(C) , and then invoke (16), we obtain

N q(C, C+Ei) N q-(C, C+E i)
-a n(C) F, - = r( C )• E - (17)

iil q(C) i=l q'(C)

for each possible state C . In the reversed process the transitions

from state C to state C + Ei , 1< i <' N ,are registered at the epochs

((_d n) + , n = + 1, + 2,...] . Note that the sample paths of the

reversed process are left continuous while those of C(-) are right con-

tinuous. Thus, since 7 is the common distribution of C() and of

the reversed process, and since the state space of fC(tn-), n=+- I, +2,...)

and (C((-dn )+) , n = + 1, +2, ... } coincide with the state space of C(-)

and the reversed process, we conclude from (17) that the random vectors

'(t -), n = + 1, + 2, ... I and f'C((-d )+) , n = + I, + 2, ... ) aren n
identically distributed and have it for their common distribution. More-

over, since C(H) and the reversed process are equilibrium processes

defined over the time interval (- , + •) , the vectors {C(dn), n = + 1,

2, ... ) and CC((-dn)+) , n + 1, + 2, ... I are identically distri-

buted.

10.II



4. EXIT SETS AND NODES

Let V be a non-empty set of nodes, that is, V is a non-empty

subset of (l, 2, ... , N) . Let VW denote the complement of V in

(0, 1, 2, ... , NI where node 0 denotes the network terminus or sink.

We say that V is an exit set if Pkr = 0 for each node r in V and

each node k in V , where pro qr for r in V . Equivalent'ly,

V is an exit set if upon leaving V there is no path in the network

leading back to V . Note that fl, 2, ... , N) is an exit set.

In the equilibrium process C(.) , let Erk(s,t] be the number of

customers who depart node r and arrive instantaneously at node k over

the time interval (s,tJ . If V is an exit set then by results of

Beutler and Melamed [1] and Walrand and Varaiya [14] the streamis Ejk

j in V and k in V , are mutually indeoendent Poisson processes

with respective intensities ij Pjk In particular, since {l, 2 ... , NI

is an exit set, the external departure streams Eio , 1 <_ i < N , are

mutually independent Poisson process on (- a, + -o) with respective intensi-

ties ciqi

From here on, suppose that the network is acyclic under ;R . For

node i , 1 < i < N , let V. be the set of all nodes r from which i

jis accessible under .e Observe that node i is not a member of Vi

and thatI
at, + .

1 i Vi r ri

Let V consist of node i toqether with the nodes of V. . Then

I I



both Vi and V(i) are exit sets for i = 1, 2, ... , N

Let Wi denote the complement of Vi in (1, 2, ... , N) Then

the streams Erk , r in Vi and k in Wi , are mutually independent

Poisson processes with respective intensities rPrk Thus, since

C(H) is in equilibrium, the set of nodes Wi is a Jackson network in

equilibrium with Poisson external input intensities

k XkSC',r Prk
Vi

for k in Wi Also,

ck = X k + r Prk = 'k
Wi

for k in WI . In particular, note that X= ci , so that if

< t 2i < t ii < 0 < tli < t 2 i < • (18)

are the random epochs of pooled customer arrivals at node i , external

* arrivals Dlus internal transfers from other nodes, then the points

J tni, n = + 1, + 2, ... ) form a Poisson process on (- -, + -) with

intensity a. The equilibrium distribution for the Jackson network

, say i , is given by

j -12
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i,(C) ( II )
-W

? w.

where C = (ck, k in W.1i) is a vector of non-negative integers.

Likewise, if Wi is the complement of V M in {1,2, ... , N)

then the streams E rj r in V(i) and j in W. , are mutually

independent Poisson processes with respective intensities (XrPrj

The set of nodes W1i is thus a Jackson network in equilibrium with

Poisson external input intensities

j X i + r Prj
"V(i)

for j in Wi , and

* ** *
• +- Earj 'j

W i
•-.

for j in W. . The equilibrium distribution for the Jackson network

i, say 7T ,is given by

Tr(C) = (c)

w.

where C (cc, j in W. ) is a vector of non-negative integers.

For - o < t < + let

C(t) = (ck(t), k in Wi)

-13-
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and

C*(t) = (cj(t) , j in Wi)|1

Note that c(t) (ci(t) , C(t)) and that if C = (c, C ) then

1T(C) = ýi(c)7n (C ) Thus, if {tni. n = + 1, +2, ... } are the points

in the Poisson process of external arrivals to the Jackson network Wi

then by Section 3 we have

P(C(t ni-) = (c,C )1 ýi(c)r, (C ) (19)

for all n , c and C The custumer arrivinn at epoch tni enters

Wi via node i independently with probability Y \/(Sik) for all n

Thus, the points t ni" n + 1, + 2, ... } are independently selected

from the points {tnit n + 1, + 2, ... } , and so from (19) we conclude

that

Pfci(tni-) c, C (t A C i(c r (C) (20)
1 ni ni1

"for all n , i , c and C

For the customer arriving at node i at epoch tni , let Sni be

the customer's total sojourn time at rvode i Since service times at

node i have an exponential distribution, the distribution of Sni is

completely determined by c.(tni) c.(tni-) + 1 Thus, it follows
1 ni i ni )+

that the sojourn times iSni, n 1 1. , 2, ... have a common

-14-
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exponential distribution with parameter vi = Ii i for i 1, 2 ... , N

Moreover, by virtue of (20).

P{Sni x, ci(t ni) c+l, C (t ni-) = C

0

x

P{S ni dylci(tni) ( c+ I, C (c)i*(C*)

0

P(S ni ýx, ci(tni) = c+l .T (C)

where

PfS , C(t jiYc e-I • dyni x ci(t ni) = +1} ____(c) -Ui

0

Hence, summing on c we have that

P{Snin ixcC x (tni-) = C f P{Sni <x) TT(C) (21)

for all n , i , C and x

Next, let Ei(s,t] be the total number of departures (external

plus internal network transfers) from node i over the time interval

(s,t] Since V (i) is an exit set we know that the stream Ei is a

Poisson process with rate a . We now observe that, conditioned on
1

I

SI



Sni , the total flow of customers through node i over the random time

interval (ti. tni + Sn) is also a Poisson process with rate a

For this it suffuces to show that for any x > 0 and any non-neqative

integer K

P{Ei(t ni, t ni + y] KJSi Cddx' (22)

-,,iy ()iy K

e , O1 y<x
K.

Now, the left side of (22) equals

P{Ei(tni tni+Y] , C i(tni) = CSnic dx =

C>K

P{Ei(tni tni+Y] = Y , Snie dxIci(tni) = c1 *Pfci(tni) = c)

c>K P{Sni ,- dxi
1-~i u.v.x )c-•- -•li(x-y)

(I iy)Kp ePi 1i (PO-Oi'-e-pix-yl dx
_K! (c - e 1 d(c

C>K Vie I dx

O Y -C( x (EiIX--(i)e EX 1

K. C>c (C - K -.I
and this last expression equals the right side of (22).

1This same phenomenon has been observed by R. L. Disney and co-workers.

-16-
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5. THE PROCESS fC (tni + S ni+ 0 t > 01

In this section we observe that the process {C (tni + )+

t > 0) evolves as a Markov process with the same (stationary) transition

probability function, say p , as the process (C (s), - < s <

and with C (tni + S ni) independent of ci(tni + S ni) and of Sni

For the customer arrivina at node i at epoch tni, let 6ni be

the node visited by this customer upon departinq node i Either

6•ni = 0 , in which case the customer exits the system from node i , or

Sni = j for some node j in Wi For j in Wi let E = (ek.1

k in Wi ) with e. - 1 and ek 0 for k/i

Now let Z (s) = C (s-) . We have

P{ci(t ni + S . c, Z (tni + Sni) C , S < x}

i* i i ni n ni + ) C -n
x

.IP{ci(tni+y) = c, Z (tn .+y) = C JZ (tn.) 0 , Snic dyl

Pz (tni= , Sni. dy)

Now (22) implies that, conditioned on Sni node i contributes to the

Poisson external input stream of the Jackson network W. at rate

1 i Pij over the random time interval (tni, ti + Sni) Moreover
1 * ni)

1 i
by virture of (21) the sojourn time Sni and the vector Z (tni ) are

independent. And, the total stream of arrivals to node i is Poisson

-17
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with rate a. Hence, the integral above is equal to

feiy p (D C y) (D) vie 1  dy

0

Thus,

P{ci(tni + Sni) = C, Z (tni + Sni) = C , S < x)

n OL i niay c * * 1i

j e (D)p (D ,C Y,) vie dy : (23)

0 0D
* Vox (Viy) c -piy

(i)• (C i c e dy

0 C.

where we have applied (7) to the transition function p and the equili-

brium distribution Tr Letting x - + - in (23) we see that

ci(tni + Sni) and Z (tni + Sni) are independent and have joint distri-

bution 1i(c) .(c Summing on c in (22) we find that Z (tni + S ni)

and S ni are independent.

We consider next the vector C (tni + S ni Now

P{Sni < x, C*(tni + Sni) = C*1 = PISni < x, Z*(tni +S ni) = c ' 6 ni O}

+ P{Sni x. Z (tni + Sni) = C - E. , = i

W i
Iy.(

t Sni x' • yi(C (74i (24)

- 18 -
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where

Yi(C) qi- (C) +F4 p..*(C - E (25)

W.! 1

Now

7*(C*- E j* ) E (D* = 1
C =D*+E

1C

for any i in W. Moreover,! "; 1

oi + pij 1-
wi~

Hence, yi is a probability distribution on the states of {C (s), - s <+co

and we conclude from (25) that both Sni and ci(tni + S ni) are independent

of C (t ni + Sni) and that yi is the distribution of C (tni 4 Sni)

We now consider the orocess {C (tni + Sni + t), t > 0) . Let p

denote the (stationary) transition probability function of the process

(C(s), - < s < + w} The epoch of departure tni + Sni from node iI
is a stopping time for process C(-) . And, the pure jump process C(.)

j enjoys the strong Markov property; cf. Breiman [2, pp. 323,3281 . Then,

for u, x > 0

-19-
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P{C(tni + S ni = (d,D), C(tni + Sni + u) = (c.C

P{C(tni + Sni) = (d.J)}-p((d,D*),(c,C*),u)
ni+ni

(26)

- - - (d)7*(D*) * ((d,D*).(c,C*),u'

((Du

Yi (D) [1.

PICO) = (dD C(u) = (c,C

r (D )

where we have invoked (23) and (24), followed by the (ordinary) Markov

property of the process C(.) Summing on d and on c in (26), we

find that

PIC*(tni + S ni) = D, C (tni + Sni + u) - C } =

*i(D [W -= D* C*(u) = C*} (27)•(D)

- - ~ Yi(D ) •p (D ,C u) ,* *"
using the (ordinary) Markov property of the process {C (s), -o< s < + o}

Now suppose u,v,x > 0 . By the conditional independence of the

past and the future given the state of the process CE-) at the stopping

time tni + Sni + u , cf. [3, p.3161 , we have

-20-
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P{C(tni S ni) (dD*),C(tni + Srni + u) = (cC), C(tni + Sni u+b) = (bB*)-

P{C(tni + S ni (d.D), C(tni + Sni + u) (cC )I.p((cC ),(bB )*v)

y.(D (28)! ~ ~~~~Yi(D ) ^* "*)u

--v- -. P{C(O) = (d,D). C(u) = (c,C )-p((cC*),(bB ),u)7T (0-
i(D) . . .

-( PýC(O) = (d,D C(u) = (c,C C(u + v) = (b,B)}

also making use of (26) and the Markov property of the process C(-)

Summing on d and on c and on b in (28), we find that

P{C (tni + Sni) D , Cti + S + u) = C, C(tni + Sni + u + v) B}

•! Y~i(D)• .

-----•- P{C (O) = D * C (u) = C C (u + v) = B*} = (29)
iT (D

Yi(D )-p (D C u) p (C ,B ,v)

Proceeding by induction, we find that, for all 0 u, uI < u1 2 < ...

S< + - and x > 0 and all states CO C1  C2 . Cm of the

process (C*(s), - '< s < + •} , we have

|21

I
I



I-n4

P (, fC (tni + Sni + Ur) = Cr }
zr

r r= 0

(30)

m*

yi(C•) " pJ P(C Cr Ur - U.-)
r=l

And, as a consequence of (30), we conclude that (C*(tni + Sni+ t), t > 0)
l *

evolves as a Markov process with initial distribution yi and stationary
|*

transition probability function p

-I
i

I
I
I
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6. SOJOURN TIMES {Tni, n= + 1, + 2, ..

In a manner similar to that of (9) of Section 1, let

tni + Tni

be the epoch of departure from the network for the customer arriving at

node i at epoch tni (external arrival to node i or internal transfer

to node i ) . Since the set of nodes Wi(as defined in Section 4) is a

Jackson network in equilibrium, the sojourn times {Tni, n = + , + 2, ... }

are identically distributed; let gi denote the Laplace transform of

their common distribution. In this section we use the strong Markov

property, in conjunction with the developments in Section 5, to derive an

expression for the transform gi which leads to the results (10a) Lnd

(lOb).
Let Yni = Tni - Sni and 0, 02 _> 0 By the conditional

independence of the past and the future of the process {C(t), -- < t < + a}

at the stopping time tni + Sni , we have that

E -ISn e82Y i ni ii

(31)

Ef (j ~nil Sni ifE I Zlnt .+ Sni 1 1 c .(t .+S .~~ (c ni + ni) :c'•

I
Since ci(t ni Sni) and C (tni + Sni) are independent

I
I ~- 23-
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Ee l CiI(tni + Sni)l E e 1'ic(tni + nj

with probability one; and a version of the conditional expectation on

the right side immediately above is clearly

( i c1  i (tni +Sni +I

1.11 + 01

Hence, the right side of (31) is equal to

(Pi + 01 +tni + sn

The expectation immediately above is

E El-Ie'nilc~i(tni + SniI 11 i nt + ~ S
I~ (t +S .) =l

which in turn equals

qiqpi(c) +, EEe- 2 Ynilci(tni + Sni)I llci(tni+Sni) c, 6ni =l

If the customer is routed to node j in Wi then the customer enters

the Jackson network Wi as an external arrival in the sense that

-24-
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Z (t ni SOi) has distribution n* and Z*(tni + Sni) ,ni and

ci(tni + Sni) are all independent of one another. The process

(C*(tni + Sni + t), t > 01 evolves as a Markov process with stationary

transition probability function p , and upon entering the set ol' nodes

WI a customer remains within Wi until exiting the system. Moreover,

the distribution of ci(tn ) is qi for all n and J in Wi by

virtue of Section 3 applied to the process C(.) . We conclude that

Ele 2 Ynhic i(tni + Sni)l " c .(t c+Sni) -c 6 .
11 ni ni C ni j

P.i j*i(c) "EIee2 TnJici(tnj) c

Pij Ele njIci(tnj) =c

for all j in W i Thus,

I ~0 EiSOie_2Yni I
E le e c (t +Sn = c1

1 i nII ni' It

S~c+l

"0q ",.i(C) + P-• E e 1( 1c1) i,(tnj)
• +nWi

Summing on c we find that

-25
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Elie- °IS nie-°02 Yni l

E ' (32)

00 c+l -' ' i ~"qj Ni j=l P C=O E'i"- 1 Ee i(t'n) = C

for all n = + 1, + 2, and all i= 1, 2, ... , N Putting 1 0

and 02 = 9 in (32) we find that

:y ) e . n i l) N

E e qi + P7ij g ) (33)

j=l

If the acyclic network also has a "tree-like' structure, then Tn , and

c i(tnj) are independent for j in Wi , whence

Thus, if the network has a "tree-like" structure, then on putting

" =8 el = 02 in (32) we obtain

•-gi(0) -"qi + E, pij gj (0) (34)

+j=l j

I for i + 1, 2, ... , N

i2I

I
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7. THE SOJOURN TIMES (Tn, n + 1, +2 ...+}

For the external network arrival at epoch tn let 6 be the

node through which the customer enters the network. The sojourn times

{Tn, n = +1, + 2, ... } are identically distributed, and if h is the

Laplace transform of their common distribution then

N e
h(e) Ele nE 16ei

I 1

If = xi(x 1 + X + ... + XN) then = = By virtue of

Section 6 we must have

-eT i l~~i : i Mie)

and so

N

h(e) )" xi gi(e) (35)

When each transform gi satisfies (34), it is a straightforward matter

to solve for h(G) . Begin by rewriting (34) as

N

[(vi + e)/OVigi(6) = qi + Pij gj(O)1 11 j=lI 1

for i 1, 2, ... , N If g(O) is a column vector whose ith entry

I
- 27 .
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is gi(O) and if 9(0) and q are as defined in Section 1, then (34)

is equivalent to

('d(0) -. 9 )g(O) = q (36)

The matrix 9(6) is clearly invertible for any 0 > 0 and so we can

write

) - ((37)

Each diagonal element of the diagonal matrix [tt (0)]"1 is in (0,1,

and so it follows from (37) that (9 (8) -o9) is invertible for any

0 > 0 . With * a row vector whose ith entry is i , we now see that

the right side of (35) is equal to

The proof of (lOb) is now complete.

Applying Cramer's rule to (36), we see that when (34) holds each

transform gi is a rational function whose denominator is a polynomial in

0 of degree at most N . Thus, h is the transform of a mixture of

exponential distributions where (34) holds.

1
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8. THE MOMENTS OF TOTAL SOJOURN TIME

Let TV T2, ... , 1N9 T be random variables whose distributions

have Laplace transforms gl' g2 ..... N h , respectively. Any

customer never visits a node more than once, and under equilibrium con-

ditions each node is a M/M/l queue in equiliorium. Thus, each of the

variables T1 , T2 , .... TNs T has finite moments of all orders. It

follows from (33) that the residual sojourn time Yni has mean
N
S: PijEtT } for all n and i , and so
j=l

N

E{TiI = 1/vi + ": Pij E{T.) (38)
'i

t"Sl
for i = 1, 2. ... , N . Then

N N N N

1 i-- i= i=I i -- I

N N N

i + ) E(TI Ei

N N

_ =Z /vi +Z(j-X.)EtTj ,1

with the l.ast equality holding by virtue of (3a). Hence,

-29
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N N

SX 1 E{T11 = E ivi (39)i=I i=l

Noting that N. = vidl -p.) , it now follows from (35) and (39) that

(N 1N
1=

Moreover, if v is a column vector whose ith entry is I/vi , then it

follows from (38) that E{Ti} is the ith entry of the column vector

P[I -. 1uv for i = 1, 2, ... , N

When each transform gi satisfies (34), it is possible to compute

the higher moments of total sojourn time by a straightforward recursive

procedure. For example, taking the second derivative with respect to 0

of both sides of (34) and then setting B = 0 gives

N N
E{T 1 } = p Pij E{TJ + 2( EfTjI)/i+ 2

j=l 'j=1

for i = 1, 2, ... , N , which, in view of (38), is equivalent to

N

E(T1 } = 2E{TiI/i + E Pij E(Tj21 (41)

-30
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for i 1, 2, ... N . The same approach used in deriving (39) yields

N N

-E X EiE{TJi2 -2 ai E{Ti}/vi - (42)

Thus, we have

N N
UT --- ETi} (43)__ __• ~ ~E{T2 } =2 X p

when (34) holds. Also, it follows from (41) that if a is a column

vector whose ith entry is 2E{TJi/vi , then E{T.2 ) is the ith entry of

the column vector [I - o.]-a for i = 1, 2, ... , N . This method of

computing E{Ti} I EfT.i2 , for i = 1, 2, ... , N , and E{T} , E{T 2

can clearly be continued to obtain further higher moments when (34) holds.

Methods for computing mean sojourn times in some other queueing

network models are given in [121 and [131

31I
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