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SUMMARY

This report presents a demonstration of the usefulness of
the ATLAS system in performing three-dimensional elastic stress §
analysis of a turbine blade.

Modeling details for a shrouded uncooled turbine blade are
outlined and program execution and data management techniyues
are discussed.

It was concluded that three~dimensional elastic stress
analysis provides an accurate means of predicting stresses in
a complex structure. However, high computer costs require that
this method of stress analysis be used with discretion. Areas
for further study are suggested.
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1.0 INTRODUCTIO:!

Assessment of the state of strass in solid structures has
long been the goal of stress analysts. !lowever, thrre-dimensionel
stress methods have been limited, for the most part, to
photoelastic methods which provide good results for a very limited
number of loading types. For example, analysis of turbine blades
has been limited to centrifugal loading because thermal and
aerodynamic loadings have been difficult or impmossible to siruvlate
oy photoelastic methods.

In recent years the stiffness method of finite element
stress analysis has provided a solution for three-dinensional
stress analysis through the isoparametric solid element (ref.
1), Since 1968 there has been a proliferation of finite element
programs, both public and proprietary, which incorporate some
form of the three-dimensional isoparametric solid element. The
ATLAS System (ref, 2) is one such program, available to government
agencies and certain of their contractors, which provides the
user with a highly versatile isoparametric brick familv.

However, users soon found that something more than an
accurate finite element was necessary for a successful three-
dimensional stress analysis. Even relativelv simple three-
dimensional models can produce very large and costlv computational
problems which may exceed the capacity of the largest computers.
It became evident that an efficient data management svstem and
substructuring capability were as important as the finite element
itself for a successful three-dimensional stress analysis.

This study was undertaken to demonstrate the usefulness
of the ATLAS system in executing an elastic stress analvsis of
a turbine blade. The problem selected reguired use of the
system's isoparametric element family, various loading options,
data management features, and automated substructuring capabilitv,
all of which are essential for successful execution of nmoderate
to large three-dimensional stress analyses.

The authors gratefully acknowledge the support of the program
manager, M. Aarnes and of the ATLAS Staff in accomplishina the
goals of this document.
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2,0 THE ATLAS SYSTEN

ATLAS is an integrated structural analysis and design svster
operational on the Control Data Corporation {CDC) 6600/CVBER
computers. It is a modular system of computer codes integrated
within a common executive and data base framework. The syster
has a broad scope in that its analytical capabilities support
many different put related aeroelastic technological disciplines.
However, in this report, ATLAS will be discussed only in .ts
role as a three-dimensional elastic stress analysis tool.

The element selected for this demonstration is the
isoparameter brick element. The ATLAS brick element familv is
composed of four major elemeents with orthotropic material
properties. They are the linear, quadratic, cubic and gquartic
bricks. That is geometry, displacement, thermal strains, and
pressures are cxpressed as linear through quartic polynomials
along the edges of the brick. Each element is defined by 3
corner nodes and 12 edges each of which may have up to 3
intermediate nodes. l!odes are allowed 3 translatory deorees

of freedom.

Loadings provided by ATLAS include anv or all of the
following:

a) Inertia loads
b) Point loads
c) Pressure loads

d) Thermal loads

e) Specified displacements

Centrifugal loading, which is a special case of the inertia
loading option, is accomplished by defining a rotation vector
which provides both direction and anqular velocity of the
rotation. The number of load cases in a given analvsis is limited
only by the capacityv of the computer svstem used,

Three types of coordinate systems are availalble to the user,
These are the rectangular, cylindrical and spherical systems.
Any number of each may be used within a problem to define both
input and analysis reference frames. Thus, complex gecmetrics
and supported and specified boundary conditions mav be
conveniently selected by the user in order to simulate ncarly

any real situation.

Element stresses in terms of 3 normal and 3 shear stresses
are computed for the global coordinate system at the element
centroid. The user may also request that stress at the nodes
be printed instead of or in addition to the centroidal stresses.

D) 43100 7740 OMIG.3/7
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FORTRAN program used for auxiliary processing.

for a more detailed description of the system.

Computational module control is maintained by the user via
a concise technically oriented language which may include a

The reader is referred to the ATLAS Users Manual (ref. 2)

no D6-42730
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3.0 THF BLADE MODLL

This section describes the geonetric and loading models
generated for a shrouded, uncooled power turbine blade. Blade
geometry, metal temperature, and cas pressures were provided
by Lvcoming Division of the AVCO Corporation. The subject blade
had previouslv undergone a partial three-dimensional analysis
in which a portion of the blade was modeled three-dimensionally
and the remrmainder modeled two-dinensionally, It was the goal
of the current study to provide a more detailed, fully three-
dimensional stress analysis of the blade and thereby demonstrate
the usefulness of the ATLAS system in three-dinensional stress

analysis.

The original three-dimensional mocdel of the blade included
tl:at portion of the blade from .5 inch above the platform down
through the first serration of the fir tree. Iorce louadarv
conditions from a two-dimensional model were apnlied to the ton
of the model and support boundary conditions were anplied to
the fir tree.

The current model was built from the original by adding
the remainder of the fir tree, the airfoil, and the tip shroud.
Element corner node numbers from the original three-dimensional
model were retained in the updated model, but the element
definition of the original section was upgraded from 20 or 24
node bricks to 32 node bricks. The purpose cf the refinement
was to more accurately determine *he stresses in the arca of
the blade root fillet. The addition to the fir tree was modeled
with 32 node bricks and the airfoil and tip shroud were riodeled
with 8 node bricks. The full blade model was then substructured
as shown in figure 3.1

~"he decision to use substructures wvas made at the cnutset
in order to allow for subsequent modifications to boundary
conditions and tip loads. However, it was found during crecution
of the problem that substructuring would have been necessary
in any case to reduce the problem size to fit the production
configuration of the Boeing Computer Services (BCS), CDC 6600
computer. That problem is discussed in more detail in section
4.0.

Each substructure was defined hy a corresponding stiffness
data set containing nodal point coordinates and element
definitions. The substructure nurmbers and data set numbers
together with otber pertinent data ar~ given in table 3.1.

REV SYM BDOSING INO D6-42735
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Table 3.1 Substructure lescription

j Substructure number 11 13 14 15 16 21
? Stiffness cata set 1 3 4 S 6 -
; Number of nodes 1076 219 57 395 953 315
3 Jumber of elements 92 81l 23 €6 90 --
! Hodes per =lement 32 8 8 32 32 --
| Retained nodes 145 46 6 269 154 -
! Free freedoms 2616 510 120 1869 238¢ 945

Pirtained freedoms 435 138 48 807 462 -

Supported freedoms 132 0 2 ¢ o --

Average half bandwidth 848 86 76 1281 732 531

; HMaps of cach substructure together with element corner node

‘ numbers are given in figures 3.2 and 3.4-3.6. Element nurbers

s in data set 1 were generated Ly adding the two least significant
: digits from one of the node numbers on the element upper face

to an in%=eger equal to or greater than 4200. This methor way

be demonstrated »y observing the fir tree section map shown in

; figure 3.3 in conjunction with figure 3.2. One may obzair eny

y of the =lement numbers in data set 1 by using the prefixes given
in figure 3.2 and adding the integers found encircled in figure
3.3. Element numbers for data sets 5 and 6 correspond tc a node

number usually found in the second quadrant of the elemen* upper

, face.

The stiffness data set information was checked for accuracy
via the plot postprocessors found in the ATLAS systen. aAdditional
checking for some of the more complex geometries vas done on
Vector General 3-D Vector scope driven by a ¢DOP 11,45 computer.

The global coordinate system used for nodal poiunt defirition
was a right~hand rectangular coordinate system with the :-axis
as the center line of the engine (positive aft), the y-axis as
the tangential direction, and the z-axis as the bHlade atacking
axis., 7Two additional coordinate systems were used for purposes
of boundary condition specifications. ‘The x-axis of the svste:s
lay parallel to the longitudinal axis of the fir tree (positive
aft). The ,ressure side system was rotated 45° about its x-axis,
while the suction side system was rotated -45° about iuvs x-axis.
These systens appear in the ATLAS coorcinatc system definitions
as ROOTPS and ROOTSS respectively, and are shown in fiqure 3.8.
Note that the [ir tree lands were free to slide parallel te the
coritact surface., o shearing forces werzs allowed.

e,

The tip shroud boundary condition allowed translations in
all directions but no rotation about the ylobal z-axis. This

3| was accomplished by attachincg 8 massless beans with stiffness
. 2 properties defined in the x-y plane only from each of he corners
°f of the tip shroud to 2 nodal points on the upper and lower:
Il surfaces of the tip shroud at the intersection with the z-axis
¢| as shown in figure 3.9. The 2 nodal points werc constraired
«| agyainst rotation abcut the z-axis.
[e]
REV SYM SOEING |vo 16-42135 > |
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Four basic loadcases were considered in this analysis.
They were centrifugal loads, thermal loads, aerodynamic loads,
and a tip rub load. 1In addition to the basic loadincs, various
combinations of the basic loads were considered.

Centrifugal loads were generated by an external data
generator since the ATLAS inertia loading capability was not
operational at the time of this analysis. The loads generated
were due to rotation at 16,000 rpm around the global x-axis and
were input to the ATLAS system as external nodal forces.

The metal temperatures provided by Lycoming are shown in
table 3.2, All temperatures input to the program were
interpolated from the Lycoming data by a computer program in
order to obtain the necessary accuracy for the fine eclement mesh.

Table 3.2 Temperature vs. Z--Coordinate

Temperature, F Z-Coordinate, Inches
1145 4,00
1145 4,95
1145 5.00
1150 5.20
1170 5.70
1192 6.00
1240 6.50
1285 7.00
1323 7.50
1354 8.00
1367 8.50
1362 9.00
1325 9.50

Aerodynanic pressure loads were also provided by Lycoming
and are given in table 3.3, Pressure loads were computed as
a function of chord length and Z-coordinate and input to the
program as element surface pressure loads.

The tip rub load was assumed to be 50 pounds acting in the
negative tangential direction at the tip shroud.

Ot 4100 7740 ORIG. 3/ 7
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Table 3.3 Blade Pressures

Z2=5,13 Inches

e ——— e —

Percent Pressure, psi
Chord Pressure Side Suction Side
0 17.87 17.87
10 15.11 12.54
20 15.20 12.03
30 15.26 11.95
40 15.26 12.02
50 15.26 12.09
60 15.01 11.99
70 14.90 11.97
80 14.79 12.18
90 14.59 12.78
100 17.87 17.87
Table 3.3 Blade Pressures (Continued)
Z2=7.30 Inches
Percent Pressure, psi
Chord Pressure Side Suction Side
0 19.90 19.90
10 18.51 15.37
20 18.44 14.75
30 18.32 13.95
40 17.95 12.68
50 17.71 11.83
60 17.61 11.52
70 17.41 11.75
80 17.01 12.37
90 16.33 13.53
100 19.90 19.90
Table 3.3 Blade Pressures (Concluded)
2=9.04 Inches
Percent Pressure, psi
Chord Pressure Side Suction Side
0 23,28 23,28
10 19,57 14.31
20 19.19 13.66
30 19.10 12.65
40 19.15 11.74
50 19.03 11,20
60 18.76 10.99
70 18.18 11.36
80 17.41 11.70
90 16.82 12.85
100 23.28 23.28
D6-42735
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4.0 PROGRAIM EXECUTION

Execution of a stress analysis using the ATLAS System can
oe as simple as inputing the words "PERFOR1 STRUSS." ilowever,
large three-dimensional analyses will require more user
interaction. For those analyses requiring such interaction,
ATLAS provides a concise control language that allous step by
step management of the solution process. This approach wvas used
extensively in the execution of the demonstration problem.

The solution steps for tihe demonstration problem were grouped
into five logical blocks as follows:

1. Input data

2. Generate stiffness and loads matrices
3. Interact suostructures
4. {ferge and reduce substructures

5. Back substitute for displacement solutions, calculate
stresses and print out nodal point stresses.

The first three blocks were executed for all substructures
at once while the last two blocks were executed once for each
substructure except substructures 13 and 14 which were executed
together. Each of the above blocks utilized one or more ATLAS
executive statements.

It was found in the first attempt to execute the problem
that the initial substructuring arrangement contained a
substructure which produced more data than could be stored on
a single disk storage device on the production configuration
of the BCS CDC 6600. The job would have aborted due to a track
limit error. The offending substructure was brokan into two
substructures, numbered 15 and 16, and, as a result of this
experience, guidelines were set up which reduced the probability
of further track limit aborts. These gquidelines involved careful
data management through the use of substructuring, ATLAS exccutive
statements, and CDC 6600 job control cards, together with a good
understanding of the substructure's gross stiffness matrix
effective half bandwidth., The quidelines are outlined helow.

First, if the length of any one substructure data file such
as the stiffness matrix file or merge data file exceeds one-half
the capacity of the device on which it is stored, the »nroblem
size should be reduced by replacing that substructure with two
or more substructures whose data files fit the above criterion.

Second, whenever possible, assign the largest data files
to different disk storage devices through CDC 6600 job control
cards. For example, restart files such as SAVESSF should be

REV SYM
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assigned to a different disk than the files being loaded to or
from SAVESSF such as STIFRNF, etc,

Third, use the ATLAS "SAVE MATRIX" option to separate data
files according to when they are needed in the execution process.
For example, store the element stiffness matrices and the element
stress matrices which are generated at the same time on separate
save files so that they may be loaded as needed rather than in
one large file.

Execution of the demonstration problem without substructuring
would have required up to 40 million words of disk storage space.
However, with the use of the guidelines given above, the reqguired
disk space was reduced to about 12 million words. The maximum
length of a single file was about 3 million words which was well
within the 10 million word capacity of a single storage device.
Thus, the problem could be executed on the production
configuration of the BCS CDC 6600.

The interested reader is referred to the ATLAS control
program listings in appendix A for details of data manacgement.
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5.0 STRESS CONTOUR PLOTS

Contour plots of the pressure and suction surface radial
stresses were made for stiffness data set 6. Plots for each
of the following loadcases are shown in figures 5.1-5,12,

a) Centrifugal force (fig. 5.1, 5.2)

b) Aerodynamic loads (fig. 5.3, 5.4)

c) The -ral loads (fig. 5.5, 5.6)

d) Tip rub loads (fig. 5.7, 5.8)

e) Combination of cases a-c¢ (fig., 5.9, 5.10)

£) Combination of cases a-d (fig. 5.11, 5.12)

The periodic islands that appear in some of the plots are i
a result of the contour plotting method used. The magnitude
of the stresses at the center of those islands is correct, but
the adjacent contours are distorted as far as location is
concerned and should be judged accordingly.
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6.0 TWO- AND THREE-DIMCNSIONAL ANALYSIS COMPARISONS

The subject turbine blade had undergone several earlier
analyses including a two-dimensional NASTRAN plate analysis,
a three-dimensional ATLAS analysis with force boundary conditions
provided from the NASTRAN analysis, and a full scale photoelastic
analysis. In addition to the analytical data, Lycoming test
experience provided information as to where the blade failed
under overspeed conditions. These data are compared in this
section.

Boundary conditions for the numerical analyses described
above varied widely according to the complexity of the analvsis.
The NASTRAN plate analysis boundary conditions assumed that the
airfoil was rigidly fixed at the root and constrained aqainst
rotation at the tip as shown in figure 6.1. The comhination
analysis using !JASTRAN and ATLAS assumed that the fir trec was
supported against radial motion at the bottom of the first land
of the fir tree and against translations and rotations along
the sides of the fir tree as shown in figure 6.2. MNote that
the effects of the upper portion of the airfoil and tip constraint
were generated by HASTRAN as element forces and subsequently
input to ATLAS as nodal forces.

Boundary conditions for the photoelastic study were provided
by a real hardware disk. Since the disk material was far more
rigid than the plastic blade model, the boundary conditions for
the photoelastic study should have been very similar to those
shown in figure 3.8.

Field experience for failures due to overspeed indicated
that the most frequent point of failure was about .15 inch above
the blade platform. This location corresponds to a Z-dimension
of 5.13 inches and was used as a basis for comparisons of the
results of the three analyses mentioned above and the
demonstration problem results. Figures 6.3a and 6.3b show the
radial stresses due to centrifugal forces predicted by the four
methods (at a Z-dimension of 5,13 inches) for the pressure and
suction surfaces of the blade respectively.

The NASTRAN 2-D analysis predicts average stresses well,
but it does not follow the local stress shape displayed Ly the
photoelastic model well. The combination 3-D and 2~D analysis
seems to have similar characteristics to the 2-D run only greatly
amplified and is the farthest from the photoelastic results.
The force boundary condition is thought to be a major contribhutor
to this behavior. The fully 3-D ATLAS analysis has very similar
shape characteristics to the photoelastic 1inalvsis, althoaagh
the amplitudes do not match exactly.

The unknowns in the photoelastic study probably outweigh
those in the ATLAS analysis. For example, the photoelastic
material has a modulus to density ratio of 107 while the 713C
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blade material hhas a ratio of 108, Thus, the nonlinear chtiffening
effects produced by the centrifugal forces should produce
different deflection patterns and different stresses in och
rodel. There is also the possibility that the photoelastic rodel
underwent local yielding at the point of stress concentration
which would change the stress picture considerably. It% is
interesting to note that if yielding had taken place in :he
region of ¢N-80% chord on the pressure side of the photoelastic
model the stress on the suction side, being below the elastic
limit, would have incrcased due to the transfer of load. If

one apnlies this hypothesis to the ATLAS 3-D data in figure 6.3,
the resulting curve shapes would be nearly identical o the
photcelastic curves.

A comparison of the ATLAS 3-D, the photoelastic, and test
experience data is shown in figure 6.4, Assuming that the
overspeed failures were due to centrifucal force overload
exclusivelv, the ATLAS 3-D analysis comes much closer to
predicting the failure point than the photoelastic studly.

I+ would appear from the results of these comparisons and
other related experience with tne three-dimensional isopararetric
elemerts that they provide the most accurate and most versatile
three-dimensional method of stress analysis available. e
analysis of any geometry should be feasible through the use cf
substructuring, and the accuracy of the results should be limited
only by the analyst's ingenuity and experience and the ccruter
resources available.
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7.0 CONCLUSTOS AND RECOMMINDATIOWNS

The following conclusions are a result of this study:

1. ATLAS provides an accurate three-~dimensional elastic
stress analysis capability for analyzing complex
structures such as turbine blades.

2. Efficient management of very large volumes of data
is as important to successful 3-D analysis as the
element itself.

3. Substructuring is essential to three-dimensional
analysis of complex structures such as turbine blades
and disks.

The following are recommended areas for further studv:

1. A nonlinear analysis using an iterative displacement
and/or differential stiffness approach should be made
to determine the effect of centrifugal stiffening on
local stresses.

2, Plastic analyses through the use of substructuring
and piecewise linear analysis should be explored.

3. Known stress concentrators such as fillets should bo
modeled with different order bricks and results
tabulated. This could be accomplished by modeling
the concentrator configurations documented by Roark
(ref. 3) or Paterson (ref. 4).

4, Boundary condition options which allow tensile or
compressive reactions but not both should be tried
in modeling fir trees in order to studv the effects
of loss of contact along the lands.
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APPENDIX A--ATLAS OUTPU™

This appendix contains a complete listing of the ATLAS
execution of the demonstration problem. It is intended to provide
detailed information for those wishing to carry on further studies
of the demonstration blade and to nrovide a general guide for
anyone intending to do three-dimensional stress analysis using
the ATLAS system.

The microfiche file at the end of this appendix is organized
in blocks according to the ATLAS executive modules used, and
corresponds to the following outline:

A.l Read input

A.2 Execution of STIFFNESS and LOADS modules and printing
of stiffness data

A.3 Execution of INTERACT preprocessor and printing of
interact data

A.4 Execution of SS-MERGE and SS-REDUCE procedures to
perform matrix merge and reduce operations, and SS-
PARTITION procedure tc partition the highest level
substructure

A.5 Execution of SS-BACK procedures and STRESS and OQUTPUY
modules and the nodal stress output routine

Program execution times and computer resource units are
given in table A.1l for the major blocks.

REV SYM DOLING |vo D6-42735

lpAG[ 309




FEL g

Table A.l Computation Time and Resources*

Substructure ''umber ‘

11 13,14 !
Procedure Time, sec CRUs Time, sec CRUs
CF Loads - 54 - 22
Stiffness/Loads 1696 278 39 25
Merge/Reduce 3673 998 85 29
Backsub/S:ress 973 254 220 63
Totals 6342 1584 384 13°

Table A.1 Computation Time and Resourccs* (Continued)

Substructure Humher

15 16
Procedure Time, sec CRUs Time, sec CRUs
CF Loads - 46 - 46
Stiffness/Loads 1149 192 1551 254 :
Nerge/Reduce 6667 2026 3034 778 ‘
Backsul,/Stress 761 214 854 199
Totals 3577 2478 5439 1277

Table A.1l Computation Time and Resources* (Concluded)

Substructure Jumber
21
Procedure Time, sec CRUs
Merge/Reduce/Partition 802 156

Problem Totals - 21554 seconds and 5634 CRU's.

*Dollar costs are directly proportional to computer resource units.

: The total input card count for the demonstration problem
’ was approximately 10,900 cards.
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) APPENDIX B--STRESS CONTOUR PLOTS
-! This appendix contains Mises-Hencky ecuivalent stresc contour
1 plots for stiffness data sets 3 and 6, They are recorded for
3 both pressure and suction surfaces of the bhlade for the following
§ loadcases:
B
i a) Centrifugal force
! b) Aerodynamic loads
| c) Thermal loads
: d) Tip rub loads
e) Combination of cases a-c
] £f) Combination of cases a-~d
i
i
¥
3
¢
)
:

g

[ 4

o

3

¢
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Figure B.2 Equivalent Stress, CF Load, Suction Side, Set 6
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Figure B.7 Equivalent Stress, Tip Rub Load, Pressure Side, Set 6
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Figure B.19 Equivalent Stress, Tip Rub Load, Pressure Side, Set 3
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