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Panels and Time Series Ansglysis:

)

Markov Chains and Autoregressive Processes

by

T. W. Anderson

Stanford University

1. Introduction

In a panel survey a sample of individuals is interviewed at sev-
eral points in time; the resulting data are a sequence of responses. .
The techniques and objectives were described by Lazarsfeld, Berelson,

and Gaudet in The Pecple's Choice (194k). That study was based on re- ' 3

peated interviews of many voters in Erie County, Ohio, in 1940. Re-
spondents were asked in May, June, July, August, September, and October
for which party (or candidate) the respondent intended to vote. For
some purposes the responses to this question were coded as Republican,
Democrat, and "Don't Know": that is, each person at each time was put
into one of three categories. The reccrds of the 445 persons who re-
sponded to all six interviews can be considered as LLS obuervations ‘ §
(or "realizations”) from a probability distribution of such records
(that is, a segment of a stochastic process).

A discrete-state, discrete-time Markov chain can serve as a %

model for panel data. The development of this model, illustrated by .

the survey of vote intention, was reported by Anderson (1954). The
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statistical methodology, developed further in collaborstion with Leo

Goodman, appeared later in Anderson and Goodman {1957).

In some panel surveys the responses may be quantitative, such as
ansvers to the question how many hours did you spend last month reading
the newspapers. In economic surveys the questions are more likely to
produce numerical answers: how many hours did you work last week and

how much money did you spend on groceries last month. Analysis of such

T R AT W,

data are sometimes called cross-section studies by econometricians.

A possible model for time series consisting of measurements on
one or more continuous variables is a univariate or multivariate auto-
regressive process. The statistical methods for autoregressive pro-
cesses have been developed mainly for one observed time series, that
is, the record of one unit of observation. However, a characteristic

feature of panel data is that there are available the records of sev-

eral units of observation. Of course, such repeated measurements
occur in other situations. A psychologist may obtain a test score on
several individuals at several points in time; a physician may read
blood pressures of several patients daily.

The purpose of the present paper is to review some statistical

methods for Markov chains and present similar methods for correspond-

ing problems in autoregressive processes in the case of repeated

measurements. The statistical problems treated are those presented

o, R Bk s et

by Anderson and Goodman (1957) and suggest that other procedures for

Markov chains have their analogs for autoregressive processes., The

o Leaamv

development of the methods for autoregressive processes and proofs

of the mathematical statements will be given in a later paper.
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Statistical methods for a single observed series from a Markov
chain®* have been discussed extensively by Billingsley (1961). The
autoregressive process with one observation on the series is treated
in depth in Anderson (1971).

Each section of this paper is divided into three subsections,
the first dealing with the Markov chein model, the second treating
the autoregressive model, and the third displaying correspondences
between the two models. Section 2 defines the models and reviews
some of their properties. Section 3 discusses summary data and es-

timates of parameters. Section 4 develops tests of hypotheses.

2, Probability Models for Time Series.

2.1. A Markov Chain Model for Discrete Data. A Markov chaln can serve

as a model for the probabilities of a sequence of statistical variables
that take on a finite set of values. Let the values or states or cate-

gories be labelled 1, ..., m, and let xt be the statistical varia-

ble at time t , t =1, ..., T . For instance, X, = 2 might denote

an individual holding opinion 2 (Democrat) at the first interview

(May). Then a Markov chain model specifies the probability of state

J at time t given state i at time t - 1

(2.1) Pr{xt = Jlxt_l =i} =p, . (t) , 1, =1, «vuym .

i}

¥ Bartlett (1951) developed some methods in the context of a single
observation.
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These transition probabilities satisfy the conditions pij(t) >0 and

m
(2.2) ) pij(t)=l, i=1, oo, m.
J=1
E While the period of observation is usually finite (t=1,...,T) ,
; the stochastic process may be defined for all integers,
: t = ,..,-1,0,1, .. . In any case, there is a marginsel distribution
t
3 «f the statistical variable at each time point; the probability of
4 \
; state i at time t is denoted p,(t) [pi(t) >0, E?—l pi(t) =1] .
3 * -
A
4 The joint probability that x, , =1 and x =3 is pi(t_l)pij(t) :
truz, the mareinal probebility that X, = J follows from the marginal
‘igtrivution at t - 1+ by
m
fo.3) N pj(t-l) pi.(t) =p.(t) , =1, ., m .
i=1 J J

order Lo describe the probsbilities of the observed random variables

v =1, «.., T) , it is only necessary to prescribe the vector

)

i) o= [pl(l), cees pm(l)] and the matrices g(t)= [piﬁ(t)]’ t=2,...,T .

Tt sistinguishing feature of o Markov chaiin is that the conditional

rrobuabidticy of X lven the entire past x

¢ depends only

t=1°® *top> v

Beootime diately poeceding varlatile x, |

woroeitaat o e transition probabilities ars homogenecus;

T T T S S A B & v LT ey =Ly O, 0, Lu . Then
b ! | . : . -
g i I redit Tongy the marginal distributions are homeogeneous. that
; S sotLE o and e proeess ic ostationary. oo this case {(7.3) is
i i
: ; LT i=1 n
p i:AYJ}u P . [y ’
G :
atrix forr oo )
tre *
. p PEpo
)
/“
b,
7
Y
N . |




‘shows that p 1is a left-sided characteristic vector of P correspond-

ing to a characteristic root of 1, that is, a root of
(2.6) P -1l =0

of 1. The equations ({:.2) can be written Pe = € , where €= (1,...,1)";

thus € 1is a right-sided characteristic vector of P corresponding

to a characteristic root of 1. There are m roots XA, = 1, Xz, P

1 m

of (2.6); each root satisfies Ilil <1 . The Markov chain is called

irreducible if the root of 1 is of multiplicity 1; then there is a

positive probability of going from one state to another in same in-
terval of time. In that case p is determined uniquely by (2.5) and
the normalization g'g =1.

In & more general model the probability of a state at time t
mey depend on the states at several time points earlier. For example,
a second-order stationary chain is defined by the transition probabi-
lities

(2.7) Pi'{xt=k|xt_2=i , X i3, k=1, ..., m,

t-1 = 3 =Py s
> = i = i -
where pijk >0 and Z§=l pijk 1, 1, 1, ..., m . Higher-order
chains and nonstationary chains are defined similarly. For some pur-
poses it is convenient to redefine states so as to construct a Markov
(first-order) chain that is mathematically equivalent to this second-

order chain. For example, if m =2 , let

(2.8) x, = 1 if X g = 1, X, = 1,
=2 if x . =1,x =2,
=3 {if x =2,x =1,
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Then the mairix of transition probabilities for X(t) is
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P11y Pz O 0]
N O 0 Py Prop
(2.9) P=
Po1z P2 0 O
| 0 O Py Poppf

The Markov chain model also includes multivariate cases. As an

illustration, consider two dichotomous variables yt =1 or 2 and
z, = 1 or 2. Define X, by
(2.10) x, = 1 if y, =1,2 =1,
=2 if Yy = Lyz, = .
=3 if Yo T oo, 7 .
=l if Yy = o
The model may be further developsd *« 1. .1 effects of other

variables by stratification. If there is & div-rete conditioning
variable, the transition probabilities cun derena on it; that is,

the (homogeneous) transition probabilities in the h-th stratum may

(h)
i3 I

From a statistician's viewpoint the Markov chain model is con-

be the set {p

structed from a family of elementary multinomial distributions; in
the case of a dichotomous item (that is, two states) these are Ber-

noulli distributions. Each conditional distribution is such a
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discrete distribution. The appropriate statistical procedures for 1
a Markov chain are similarly developments of methods for multinomial

distributicns.

2.2, An Autoregressive Process. An autoregressive process can serve

.

as & model for a sequence of continuous random varigbles. In the sim-
plest case the (univariate) stochastic process {yt} has the property

that the conditional distribution of yt given Yi nas

~l, yt’_z, er ey
expected value B(t)yt-l and y, - B(t)yt_l is statistically

independent of Ye_qo Ypops =ot - This is often written
(2.11) v, = Bty o+,

where '{ut} is a sequence of unobservable independent random vari-
ables with means 0. If the autoregression ccoefficients are homoge-
nous, that is B(t) = B8 for some 8 , |B| <1, and the u, are

identically distributed, the prcocess is stationary and we can write

e o]
S
(2.12) vy = Y B u,
s=0
' . 2 . " 2 2
If the u's have variance ¢° , the ¥.'s have variance © /(1-R%)
and covariances
|t-s| 2
g
(2.13) dy’rys = -B-——2— .
’ 1-8
If the ut's are normally distributed, any set of yt's are normal

and the covariesnce structure (2.13) determines the process.
It yt is a p-component vector, a Markov (first-order) vector

process is defined by

(2.1k) Yy = B(t)




wvhere B(t) is a pxp matrix and {ut} is a sequence of independent

(unobservable) random vectors with expected values ngt =0, covari-

] »
ance matrices 51~1t3 = §t , and ljt independent of Xt—l’ Yiops +o-

Let the covariance matrix of y, be 6§&lé = F, . Then from (2.1L)

and the independence of Yi1 and u,  we deduce

(2.15) F, = B(t) F,_, B(t) + 1% .

If the observations are made for t =1, ..., T, the model may be
specified by the marginal distribution of ¥y and the distributions

of Ups eeey Un o In particular, if Y1 and the 's are normal,

4y

the model for the observation period is specified by

B(2), ..., B(T), & z

i Loy wees Lpo-

When the autoregression matrices are homogeneous, that is,
P(t) =B, and the Bt's are identically distributed with mean 9
and covariance matrice § ,» the process is stationary if the charac-
teristic roots of g are less than 1 in absolute value and the pro-

cess is defined for t = ..., -1, 0,1, ... or y is assigned the
? ~l g

stationary marginal distribution. 1In this case the covariance matrix

of Xt is
® !
(2.16) F= ] BrB°,

s=0

and the covariance of yt and ys is

t-s

(2.17) (:yty' =B F, s <t .
~tis = ~ =
(Note that F =F =F . satisfies (2.15) for B(t) =B and L =I .)

A second-order stationary autoregressive vector process may be

defined by

[P
v A

K
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2.18 i
( ) Yeu1 T B0 Yo * Yy

~1

This model can be written as a first-order process by writing

2.1 v = B ¥ G
(2.19) Yo = B ¥y * Y o
where
) It u,
(2.20) Iy = s BT ’
Vi1 0
B. B
(2.21) 3=t ~2} .
- I ©

are the roots of

I v s

The characteristic roots of

(2.22) |-2°1 + AB, + B,| = 0 .

For a stationary process these roots are to be less than 1 in ab-

solute value.
The autoregressive processes appropriate to several subpopula-

tions (strata) may be different. In the homogeneous first-order case

the matrices of coefficients and the covariance matrices may be dif-
ferent. If other influencing variables are continuous, they may be

taken account of by adding them to the regression to yield the model.

~1 ~

. = + + 1
(2.23) Vo T B¥eq Y Z o

where zZ, is a vector of such variebles and Y 1is a vector of para-
meters. In particular, when zt =1 and Yy 1is & scalar, the process

' bt} may have a mean different from O.

Sl
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The autoregressive process is constructed from multivariate re-~
gressions. In (2.14), for example, the vector Yi 1 constitutes the
"independent variables" and the vector y, constitutes the "dependent
variables" in ordinary regression. To a large extent the statistical

methods for autoregressive models are regression or least squares

Lr.celures.

J.rrespondence between markov Chains and Autoregressive Processes.,

B T i

Thee tizerets variable X, which takes the values 1, ..., m can be
=} .avel by the m-component vector Yt in which the i-th component
s L 1Y %, =1 and iz 0 if Xy #1i . If we define £ to be the
mesorronent vestor with 1oas the i-th component and O as the other

components, we can define yt as Ei when X, = i . Then

(o >l Yye { = ¢ = = i, = . X
‘2.el) Pry, Eji}:t,—l e; ) pi.j(‘t)’ 1y =Ly e,

Thus the conditional expectation of ¥y given the past is

1
2,25 I L) = =
(2.29) QUlyy 1o Yoo ) = Gy lyy ) = Bil0)y,
al hi ! ” 03 . =
If we 1 P A P(t) Ye_p » bhen (2.25) implies @E% =0 and

1
A L L R IS

-~ E) s = 1) 2’
The latter is eauivalent to
. < '
(2.27) Ey, v =)
e VoY TR Gy v
!
lote that here n,  Las a singular distribution since € u, = 0

Conditional on yt 1 = €1 the variance of the j-th component of

y, 1is pij(t)[]_pjj(t)] and the covariance between the j-th and k-th

comporents is —pij(t)pik(t) . The uncenditional variance is

10

Pz — T T T e

RENTEE. -
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i _—
Cioy Py (8D 0py () d-p, (0]
- ¥y P (e py(e) 1 (6)

The prcperties of

autoregressive model, detlined

pectation of the obeerved vector

function of the immediately p

gutcoovariances of can b

anal ooous Yo that of the autoregressive model.

the vta*i nary S0 17) ho

1
replacet vy g‘Zt_l llt-A —83&
I = v, - .. ., b, : and
3 7Py T s By Py W

representation of the Markov

grocess in that the covarianc

iar anl depends nn Yin in the conditional dis' ributicn; while L
is uncorrelated with {t—i’ it is not statistical.y irdependent =of
Ve We also note that the characteriztic reots of E are leso
than 1 in absolute value, but ~ne root of § {(when I; is irre-
jucible) is exactly i, correspending ve ~haricteristic vecters ot P
~1n the lel™ aud £ o the rishitg & i n charucteristic vecter oF
f eorrvesponding to o roct T . I tre fellowing vures the parnllels
between tlie two proce: are a4 surgest neth ds and derivations
for one model from the other.
i
. imal ) . L » - NN

a Markov

s nd the uncenditicnal covariance is

3
chain are similar %, thoese of an “
%

by (2.14), in that the ~onditional ex-

Y Zziven the past iz 12 lineuwr
receding cltservel vector v, g oo The
e obtained from {2.77) ir a rmanner §
P
In particular, iu ‘
- . . o . -
“de with B rerlaced by F and F
5_ ' = 5‘1 ' ", ther
-1 @y Jeor Ypp “EE
£, = - T . P:. E. i #k . The
ik =1 By Pyg By s 17 ‘

chain differs frrm the autcregressive

o
i

U

~t

e matrix of the reszidual is sinfFu-
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3. Estimation of Parameters.

3.1. Estimation of Transition Probgbilities. An observation on an

individual consists of the sequence of states for T successive time
points. For example, the T = 6 successive monthly party preferences
of a voter might constitute such a sequence. Let X0 be the state
of the n~th individual at the t-th time, a=1, ..., N, t=1, ..., T

The observed sequence Xps oo §Ta is considered an observation

from the Markov chain specified by the set of probabilities

3
i

[p. (1)1, [pij(Q)], cees [pij(T)] . The probability of a given se-

auence of states x(1), ..., x(T) is

(3.1) Pe(1) M) Py(1),x(2) @) e Py(riiyx(r) (T
The parameters to be estimated from a sample are the marginal prob-
abilities [pi(l)] and the transition probabilities
(p. . (2)], «.., [p..(T)] . The observed sequences are considered as
independent observations from the model defined by (3.1).

Let nij(t) be the number of observed individuals in state i

at time t -1 and j at time t , and let

m m
(3.2 ng(t-1) = Zni.(t) = ani(t-l) , i=1l,...,m, t=2,...,T .
j=1 k=1
The set nij(t)’ i,j=1, ..., m, for each t constitutes the fre~

quencies of individuals in state 1 at time t - 1 and state J at
time t  and would usually be recorded in a two-way table; the row

totals are ni(t-l), i=1, ..., m, and the column totals are

L (t,), J=_I,...,m-

G et e 1

2
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A sufficient set of statistics ror the model (3.1) is
nij(t)’ ij=1, ...y, m, t=2, ..., T ; statistical inference nced

only use this information. The maximum likelihood estimates of the

parameters are

ni(l)
(3.3) ﬁi(l> = N . i=1, , m
. n, (%)
(3.)4) pij(t)=ﬁ7’ i,J=1, ..., m, £ =2, ...,T

[1r ni(t—l) = 0, then nij(t) = 0 and (3.4) is undefined.] The
estimates are in effect estimates of multinomial probabilities. The
estimates satisfy B,(1) 20, Il (1) =1, §;,(t) 20, and
p =1 .
j=1 Byle) =1

Now consider the case of homcgeneous transition probabilities,

but with the initial probabilities pi(l) arbitrary. Then a suffi-

cient set of statistics is ni(l), i=1, ..., m, and

(3.5) n,, =y n, (t), i, =1, ..., m .
o= M

The two-way table of frequencies (3.5) is the sum of the T - 1
two-way tables with entries n_j(t) . [However, n.{1) 1is not a
i i

marginal total of thig table.] The maximum likelihood estimates are

(3.3) and
(3.6) B, = = 1,021, cueym

where n? = Zm n, .,
i J=1 "ij3

i
—

In an alternative model the ctatec at the initial time 1t

are considered as given; that is, x]a, o =1, ..., N, are treated

asz nonstochastic. Then ni(l), i=1, ..., m , are considered as

T
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given, that is, are parameters, not stalistics. The sulliclent cet

Y
; 2f statistics is the set nij(t)’ t=2, ..., T, or
®

£,,, 1,3 =1, ..., m as the case may bte.

In the case of homogeneous transition probabilities, it may ve

R A Ao . 1 2

desired to treat the process as slatisnary; the rarginal probabi ity

ey

] ag the scluticon fo (7 4},

distribution [pi] is determined by [pi’
J

in particular, the initial distribution [pj(l)] must be [pj] .

A A sufficient set of statistics is ni(l), i=1, ..., u , am

nij’ i,3=1, ..., m . While the parameter set car be reduced <.

) [pij] , the maximum likelihood estimates are not (3.6) .1 this csse
i. because the likelihcod function depends on ni(]) and

;_ p. (1) = Py i=1, ..., my *%the latter being runcticns of [pij] .

;4 The estinates are too complicated to give explicitly.

1

To acsess sampling variability and to evaluate confidence i~

inferences it is desirable to know the distributions of the estima'es.
B Since the exact distributicns for given sample cizez ars too aon~
nlicated to be useful we consider "large-sample theory"”. Anderscon

and Goodman (1957) dereloped asymptotic theory for the number of

“hbuervations N getting large; this larre-sawple the ry is appr 1r-iate
Yo panel stulies where the number =7 time poirntz is omail (scuwetines

I = 2) and the number of respondents 15 larse. When the transiti oo

{ ; rrobabilities are homoreneous, the parameters di not depend on the

time t except the initial probabilities [pi(l)] 3 Lhen it 3=
meaningtul te consicer asympt-tiec 4igtributions as T » . Thiv

theary is appropriate when the data consist .U cne {or revera.) oy
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series; the measurements are not necessarily repeated. bartlett (1951)
gave scme of this thecry. In general, wher a limiting distribution
hcld for T - « it will hold for arbitrary N ; in fact, with
proper normalization the same limiting distribution holde for N » «
and fixed T . In such a case we will say the limit holds as N
and/or T =+ « . [In mathematical terms the error is arbitrarily
small if N is sufficiently large vr T 1is sufficiently large, or
both.]

The asymptotic theory for N + © 1is the usual multinomial
theory, for the N observations on the chain are independent. Then
by the usual multinomial theory /ﬁ[ﬁi(l)-pi(l)], i=1, ..., m,
have a limiting normal distribution with means 0 and covariance
matrix {pi(l) aij_ pi(l) pj(l)] , Where Gii= 1 and 6i3= 0, i#3 .
If p,(t-1) >0, the set /H;TE:T7[ﬁij(t)-pij(t)] N D
have a limiting normal distribution with means 0 and covariance

tip.. . (t)] ; the sets for different values

matrix [pij(t)6 ik

w1y
of i and/or different values of t are independent in the limiting
distribution. The limiting distritution of the estimates of the
rows of the transition probability matrices is the same as that of
estimates of independent multinomial distritrutions.

If the transiticon probabilities are homorsenecus and the chain

is irreducible, then for each i the set Vn¥id Y, §=1, ..., m ,

i Pi37Pqy
has a limiting normal distribution with means C, variances Pij(l_pij)

and covariances -p,

13Fix” J #k , and the sets for ditferent values

of 1 are independent in the limiting distributicn. The limits in

el R i, s i 5




the homogeneous case are vgiid as N -+ = and/cr
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3.2, Estimation of Autoregressive Coefficients.

p-component vector o!f measurements of the o-th indiviaual at tre t-th

L AT AW s MR

time point, a =1, ..., N, t =1, ..., T . The nodel! is a firs:-

order autoregressive mcdel (2.14) with ut having the normal dis-

tribution N(O,Zt) ard y, having the normal distrivuticon e

The probability density of the seguence Yig®

a is

1

(3.7) T

=Tp
(2m)® " |F

1
I 2
~1

B>

|
g=2 "¢

1
~lozzl

oy
1 -
X exp —E[y 1 B(t)

v, + ) ly, - y
“la £ ~ta  ~ “t-1,0

Then a sufficient set of statisties for Fl,b(i),..

is ZN ' t
=1 Xta Zta’

~

= cees T d L ; i
1, [} s Aar =1 :Z.t,—l L0 T

The maximum likelihood estimates ol the varameter matrices are

(3.8)

(3.9) 3 )
a= o=

N2
. ]Zt—l s T t=1,

~

(3.10) = o . Yig™ g(t)}\’,f—l ,rt)

o oo A a7 2 AN - £ e NS
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The components of ﬁ(t) are leust sguares ertimates. [See Anderson

(1958), Chapter 8, and Anderscn (1671}, Chapter S5, for example. | ;
The assumption thatl the autoregression natrices are homogenenus

and the disturbances identically distributed leads tu considerable

simplification. The sufficieni set of statiziics tor Fl’ B, and

o ' ZT FN ; ! d st 7 X '
$OF et Yia Yia 0 ft=r Fumd Lea Yeg o PP oo Ty Yoo Vi) g
The maximum likelihood estimate of F] is (3.£) ant the meximum
likelihood ectimates of the other matrices are ;
R T N , T N ' -
3‘11 B = . D) v 4
( ) z tz"e m; Yto Y1-1,a tzg u=21 Tt=1,0 Lte1,0 ’
. 1 T X R X \
R T o= - B R 3
(3.12) 2 N(T-1 tze uzl(l'ta > ¥t_1,a)(¥tu Tt-1,0’
1 v ' .
= i3 o J Yy - K Z Y ] ¥ 1 B N
8(T-1 tE g re Tro L 2 Zteelha 2t-lho

An alternative nccel is t: consider Y., =1, .00y N, as

nenstochastic or fixed and treat o= Ty a =1, .o, N,

i‘*‘")’

conditionally. Then the maximum Tirelihood estimates of B  and

(B!

are {5.11) and (3.1,

When Yay is considered to have the merginal normal distribution
determined by the statiorary process, the covarisnce malriz F is

~1

a function ¢f B and L as given by (5,16). Then the maximum ]ike~

lihcod estimates are wuch moure compliceted. (&s T =+ ~, (3.11) and

(3.12) are asymptoticully equivalent to the maxirum likelihood esti-

mates, but not as N > = )

CPEEr
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We now consider the asymptotic properties of the ectimates as
N+« and/or T +o . As N > o Fl, B{t) , and ZL are consis-

tent estimates of F,, g(t), and L,t=2,..., T, respectively.

The elements of fﬁ[@(t) - B(t)] have a limiting ncrmal distribution

-~

with means O and covariances constituting the Kronecker product

-1
§ €9Ft_1 st =2, «v., T . The matrix Ft-l is estimated consis-~

tently by (l/N)Zg=

1
1 Yt-1,a Yt-1,a °
In the case of homogeneous autocregressive coefficients, regard-~

»

less of the distribution of yla’ a=1, ..., N, and of the value

~

of N, as T+ bk and ! are consistent estimates of B and

L , respectively, and ff[ﬁ - B] has a limiting normal distribution

with means O and covariances constituting (1/N) T@F " . The

matrix F 1is consistent! estimated by;

<N T N )
[1/8(T-1)] Zt=2 za=1 Yt-1,a Yt-1,a °

If T is fixed and N » « | ﬁi(% - @) has a limiting normal

distribution with means 0 and covariances constituting

(3.13) @

3.3. Correspondence «f Sufficient Statistics and Fstimates in Markov

Chains and Autcregressive Processes, Tn Section 2.3 a Markov chain
g

was represented as a vector process with Yy = with conditional

)

prcbability P, (t) given Yi_q = €; - From this definition we can

J

write the second-order moment matrices for the Markov chain as

'

m
(3.1k4) y; = ) n(the, €,
~ 0L : 1 ~1 .1

i=1




which is a diagonal matrix with ni(t) as the i-th diagoral element,

and
N

(3.15) aéj Yt_l,a yt&

m
= Z n..(t)g

1]
€, )
I,j=1 -

which is an m*m malrix with nij(t) as the 1,j-th element. lote
that the elements of (3.14) can be derived from Lhe elements of (3.15).
Here (3.1%) for t = &, ..., T constitute a suliicient set of siLa-
tistics for the nonhomogeneous Markov chain. The estimates (3.4)
constitute elements of the matrix cstimates (2.9) under this corre-

spondence.

If the transition probabilities are homogencous with arbitrary

initial probabilities, a sufficient set of statistiecs is (3.1h) for

t =1 and

T N
(3.16) o1y
t=2 a=1 "~

y' = % n €. €.
- Jta 13 712
t-1,a <ta i,g= i <1 33

s

The estimates (3.6) are elements of (3.11).

L, Tests of Hypctheses.

L.1. Tests tor Markov Chains. The tests for Markcv chains presented

in this section were developed by Anderson and Goodman (1957); they
can be applied for any value of T (> 2) and for large N . Bart-
lett (1951 developed some of the tests as valid e one observed
sequence nf states trom a homogenecus chain when T + « . For con-
venience, we shall assume pij(t) > 0 and P > ) as the case
riay be. Some of the procedures were illustrated in Anderson (195L).

In Section 4.2 test criteria for the corresprnding hypotheses for

19
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autoregressive models are given (in the same gequence) wnd in See-

tion 4.3 the correspondences are discussed.

Specified Probabilities. In the homogeneous chain to test the

; _ .0 - . o]
null hypothesis that pij = pij’ J 1, ..., m, where the set pij
are specified, for a given 1 one can use the criterion
A O
m (., - p%,)2
(5.1) SO i F LT L
i j=1 o)

which under the null hypothesis has a limiting xg—distribution with

m ~ 1 degrees of freedom as N » © and/or as T » ® . The criteria
for different 1 are asymptotically independent. To test the null
hypothesis Pyy = pgj, i, J=1, ..., my the sum of {(L.1) over i can
be used; it has a limiting xe—distribution with m{m-1) degrees of
freedom when the null hypothesis is true. If the transition probabi-
lities are not necessarily homogeneous one can test the null hypothesis

pij(t) = Pij(t)’ J=1, «..,my, for given i and t by use of the

criterion
m [P. (t)-—p?.(t)]2
(4.2) n, (¢-1) | 1*Lo = ,
J=1 pij(t)

o]
which under the null hypothesis has a limiting Y“-distribution as

N » o ., The criteria for different i and t are asymptotically

]
independent; they can be summed over i and/or t to form XL—
criteria for combined hypotheses. These criteria are analogs of the
x2 goodness~of-fit criterion for multinomisl distributions. The

test procedures can be inverted in the usuasl fashion to cobtain con-

fidence regions for the transition probabilities.




Homogeneity. 1In treatin: varsl Ja the [nvestigal r may ques-

tion whether conditi ns change enoug vrer tne time of observation
te require the use of an intorogenc.as chain. To test the null hy-
pothesis that p, (t) =, ., t = ., ..., 7T, for some ..,

1 i 1

i,J=1, ..., mn, on- may uze the critericon

T 6,00 = £, 07
(L.3) Z Z w‘/*-l} - = —d .
t=2 i,i=1 Fis

2
Under the null hypothesis this criterion has a iimiting x“-distribution
with m{m-1)(T~2) degrees of freedom as N - = ., If one thinks of

the set of probabilities pij(t) and the set of frequencies nij(t)

[3

in (three-way) mxmx(T-1) arrays, the criterion (h.3) is the usual

]
<

X ~-criterion for testing the indeperndence of the categorization

(i,3) and the classification t .

independence. If pii = pj, i=1, ..., m, Tor some pj .

=1, ..., m, the random veriable X is independent of X, _q
in a homogeneous Markcv chain. Tc test the null hypothesis of in-

dependence one may use the criterion

o (5., - 5,)°
Loy © * ij i
(,L_).) L ni f) N
i,3=1 3
where
£ o,
= i

~ i=1 .
(.2} pj‘:-m . J= 1, «ovym .
Under the null hypothesis the criterion has g limiting xc—distribution

2
with (m-1)" degrees of freedom as N ~ o andfor T + « . The

. 2 : . . : .
criterion is the y -critericn for independence in the two-way table

{l'l. } .
iJ
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Given Order. An investigator may consider a more =liaborate
model in which the probability of a state observed at time t depends
on the state observed in the last r time points. He may question
whether it would be appropriate to use a model of lower order., In-
dependence is order r =0 ; 1in uhe previous section this hypothesis
was tested against the alternative thal r = 1 . As another czample,
we consider testing the null hypothecsis that a homogenecus seccnd-
order chain is first-order, that is, that pijk = pjk for some
suitable pjk(pjk > 0, Z$=1 pjk = 1)

In a second-order homogeneous chain with ni(l) and niJ(Q)

as given [or p,(1) and pij(Q) as arbitrary] the maximum like-

i
lihood estimates of piJk are
"1k
(4.6) pijk=?ﬂ—, i,dk = 1,y vuu, m
iJ
_ T * _om .
where ng gy = Zt=3 nijk(t) L D nijk , and nijk(t) is

the number of observations of state i at t -2, j atv t -1,

and k at t . Then a criterion for testirg that an assumed

Al

second-order chain is actually a first-order chai. is

A ~ 2
m (p,,. - p*
(h.7) Tt Bi i = Py
. . .
ik
Jk
where
m
(1.8) o Bim My
3. pjk Ym *
=1 74

ho
When the null hypothesis is true, (4.7) has a limiting ¥ -distribution

with m(m-l)2 degrees of freedom as N - o and/or T > o .
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Severa. Chains iuentical., A populalion may bLe stratified into

several subpopulations and Lhe transition probabilities may be 3if-

ferent. Suppose we have samples from s Markcv chains with tran- ]
4

s o (r) ) . . b
sition probabilities Py W=1, ..., s, and ve wish to test the 3
X

null hypothesis that the chains are identical, that is, that

() \ . .(h) ]
p.." = p.., =1, ..., 8, for scme ., . Let 7©p.. be the max-
1g 13 1 1d

imum likelihood estimate of the transition probability from the

h-th sample, and lew ﬁf,) be the oslimate baced on all s samples
)

under the assumption of the null hypothesis. The criterion is

[A(h) _ A()]Q

3] m

o S %(h) P P

(4.9) 5 ) ni(n, i © i ,
h=1 1i,j=1 ﬁij

which has the y“-distribution with {s-1)m(m~1) degrees of freedom

under the null hypothesis as N » » and/or T - o .

Independence of Two Sets of States. Suppose the state of a

Markov chain is determined by a pair of responses (that is, answers

to two gquestions). Denote the state as (a,R), =1, ..., A, and
3 =1, ..., B, where o denotes the first answer or class and &
the zecond, and the transition probabilities as p . Is the

o BV

sequence ¢f changes in one classification independent of that in the

second?  1he null hypnthesis is

b0 r =1, ... : =1, ..., B

( l ) ?(13,“\) q(lU B\) ’ Q’U 1 » 1] A9 3 9\) L] L) L)

where qqu is a transition probability for the first classification

and r is for the second. Let n (t) be the nmumber of indi-
By al,uv

vidurds in state {r,3) &t t -1 ant (u,v) at t , and let




Nt RIS R B ) -

T
= vl I naxirurn Likxelihco Lima £
Ty 3. v Lo naB,pv(t) The maxirur likelihcod estimate o Paa v
is
“ag Ny
(h.ll) pU.B,U\)= g~A B ’ a GLU=E 1,004, BaYzla"',B’

2L ) It
y=1 “§=1 “aB,y¢

when the null hypothesis is not assumed and is § £, , where

ap BV .
ZB n JA n 5
(h.12)  § = o=l Gl PSR 1S s -1 1Y ;
QU A B ? By A +B :
y=1 YR, v=1 nuB,yv la,u=l 3 =1 nua,uﬁ

e
when the null hypothesis is assumed. The Y -critericn for testing

the null hypothesis of independence is E
.. A ~ 2 «

A ) - ;

(4.13) y § o* (Iaﬁ,gv Yoy er) -
o,u=l 8,v=1 o3 quu Tgv :

where n* = ZA ZB n When the null hypothesis 1s true 4
: B vy=1 “8=1 “aB,ys ’ » :

the criterion has a limiting xg-distribution with
AB(AB-1) - A(A-1) - B{B-1) = (A-1)(B-1) (AB+A+B) degrees of freedom

ag N - o and/or T »> =

.2, Tests for Autoregressive Processes, The development and appli-~

cation of procedures is based on asymptotic theory as N -+ © and or

T+ @ ., In this section we study methods of testing hypctheses

aLout the matrices of autoregressive coefficients and, in scme caves,

TR G TR TN
e e e M e e e L

hypotheses about covariance matrices. The hypctheses correspend to

these concerning Mark v chains precented in Cection .1, The proce-

DR e A At Y SN L gt

dures are analogs of procedures in multivari .te regression, {lee g

: Anderson (1958), Chapter B, for example.] For many hypotheses *he e
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W v @ oyhen tne nul!l hypethesis is true.

i
1
4
4

Independence. [n the Tirst- rder autcregressive mndel indepen-
dernce at 41ir“erent time points iz identica. to B(Z) = ... = B(7) =0 ,
civen L. = ... 0= Eq , ©or i the hemrngeneous case B = 0 ., In Lthe

Latter case the rull hypothesis of inderendence i that the autcre-

crecsion mutrix is the rero ratrix and the criterion is (4,14) with

PRIP VSN

= J , that is,

, . T N ’ S )
(k,16) e B Y Y oy Ly B ST 3
Y p2p gm] ST “t-l,a ~ X ,
3
Given Order, The second-corder homogenecus process ic defined by : é
(2,19). It iz a first-order process if B, = 0 . To test this null
rypothesis we need eztimates of @1 and @2 ;
. ﬂz? N ' T X , 3
(L.17) (8, 8] = Doy v Dol oy, v j
) U .~ ~ Lt~ . <t Lth-
1 £23 a=1 to 1,u 123 o= o 2,0
[T & coT T ‘
) by ) ) P
Ly gl Tl Yoot 0 2s qﬁ; Yo, Yio2,a .
T Ty
DR T NS R T
_f;Q g Tt=2,0 wthel,a 6;3 01 L2, Rl-d,0

These ace maximur Lirelilood estimates if y. .,y 0 = 1, ..., 0,
L Lo

e considercd as Pixed.,  The covariance matrix ¥ is estimated Ly

LA

It i

TRy
—~
—
oo
i
~3
Gl
[
| t~1
hY
[
2
]
I®;
|
=B
rea
-
|
N
-
[
-

. \ - F
‘ - ! - ,[!'u ~1 -
} L=4 =)
3 ¥ - oy - oy, ‘ .
] {{ta DoTiel g L2 =00

g

A eriterion for terting the null hypothesis ia

T




Under the null hypertnesiz the ceriterion nas a [imitingy v -distritu

)

with p~  degrees of treedom as 0 2 o

Severai rrocesses Identlical. Consider tec'ing the rull hypothesis

[
o
jo]
r el st ke akad L maam e

*hat the mgirices of autoregressive ~oefficients <0 Mirst-order :
i

nomogenenus autorcegressive processes witn idertical onvariarce malrices -
« 3

L are equal on the basis of N obrorved time sories of length 1

(r

~

e )

rrem the h-th procest, h = 1, ..., 8 . 1T is ©ne estinate

i’ ATl WX M

~

of the matrix for the h-th vrocessy, b is the peoled cotimate »f the

5

hyrothetlcally equal nmatrices, and ¥ 15 the pooled eatimate of 3,

a critericon for testing the null hvprihiesis iz

1
L)y

(L.20) tr
’ t-1,a Xr,—L,q : v

i ~n
—
[Jev]
i

b

-
=
It

)

3 T h !

T G m ) arfen
b 4 L 2 ¥t~l o Xt—) o ? ? '
3 n=l =2 a=1 ’ ’

: . . co 2 . . ; . 2
Unider the null hypothesis this has a Y -distribution with (s - 1)p

depgrees of freedom.
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Independence of Two Subprocesses. Suppose Yy = (gé ) Zé ) )

and we ask the question whether the first-order autoregressive process

is such that the two subprocesses {yél)} and {yég)} are indeper-
dent. Let

?ll §12 gll §12
(L.21) B = sy L = .

By B oy I

The two subprocesses (in the Gaussian case) are independent if and

only if

1 - —
(v.22) B1o =0, By =0,
(4.23) .= %, 0.

12 T o1 T

The estimates (3.11) and (3.12) are partitioned similarly. A test of

the nypothesis (4.23) can be based on the criterion

. /\_l ~ /-;_l ~
(L.2k) MT-1) tr 27 I, I55 Ly

which has a limiting xz-distribution with 129 N degrees of freedom,

(as MM =+ oo and/or T » ») , where p, 1s the numoer of coordinates

(1) (2)

in ¥y, and p, is the number in y,

When 212 = ;21 = 0, a criterion to test the null hypothesis

L S GV S

22 Bk Tnadich il
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(L,») tr B ke
; i =
T N

; )

4
v limitine Yictribaticr oas Lo andfar U e g adis i ribus

; vitaowitl pop. decvecs of freed oo A ericarion foorard the nutl
noncthesis L= 00 s (bL2wy o owiobh L oanid 2 irfercranged; lis Poniting

ek ~

9]
P distribution is alsc a yx =distribrtion witr .y, degrees cf Irecdom.

The three criteria are asymptotically indey-rddert,

i 1. . - ot - 7 o v/v ~ .
4.3, Correspondence ot Tests. The matrix Pohos man-1 ) elements

7‘ to upecify because the swn of elencnts in ewch row v L, while fhe

/
| ] »l
- [ . . t a3 . 4
! matrix B has . In mest cases, if a v -*est Tor oa hypothesis
X . L . ~ - —
k. about, T oor Flt) hasz as “he mumber of deprees of Tresocn o mul-

5 vipla of m{m=1) tle corresponiding test Sne Foor D{]) hao tue

G came muitiple o0 p° as Lhie mumber of cegrees of Irector, LAecording

1
& ! . C - . Lo * . .
g i Lo tne correspondence setourn v Uectiorn S0X3y0 0 Poothe el llag-
9 : il
< g o t
;! cnal element of the diagcnsr malrix oo 00 oL 0 T 500

4 the diagonal matrix with Hagera, cooments Pr, 0 T3 groperalised
Yoo . IR [ T rrea vt esriven g s Do I O N '
{ inverse o the Tlmiting covarlance mtocix 0 [ A R N
i ‘

% . o1 . ,
V¥ b, - . ) . Then the sum ¢ (L1 ey 1 an (Ji.1u) correspond
i in Tinm

as criteria 'or specified matrices.

Since n. (t = 1) is the i-th {im-nal oooment of
i
B '

y

ol the representaticn 91 the Markov ohain,
To-1,2

= Ye-1,0

k (b.3) and (k.15) corrcopond as tests « ¢ homogeieity.
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-3
Fer independence (4.L) and (L.16) correspond; in the discre te ;
‘ 3
b 2q0e the covariance matrix of 6i* loes not depend on L. The :
J §
c.rrespondence between degrees of freedom, however, is (m - 1)°  and 2
1 I recasuse independence in the discrete case is not de.lined by ;
.#3 setring T =0 . (Independence iz PP =¢p .)
i ;
: For testing whether a second-order model is actuelly firci-. rder R
. AN 2 I
ceiteria (L.7) and (L.19) correspond. In the latter & could Ye
4 revlaced by (3.12), which is a consistent estimate of ¥ when the
.1 . . ,
g v 111 hypothesis is true, or I coculd be renlaced by the matrix in ‘
- ~ Q
“ . 3
. Yrucrets divided by N(T - 2) . Note the degrees of freedom are s
| 32 2
oo L) and pt , respectively.
' Te test equality of matrices criteria (4.9) and (4.20) corres- .
Z;
i, The tests of independence, however, do not have similar struc-
?w AoAowiedements.,  The author is indebted to Persi Diaconis, Weil ienry, ~
5& s:0t Paul Shaman for reading earlier versions of this paper and rmaking
4 ) 3
1 unetul sugpestions.
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