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1. INTRODUCTION

Terrain following systems evolved in the late 1950s, after very
cffective defenscs apainst high-altitude aircra“t had developed.
lLow-altitude high-speed flight became the best means.for an aircraft
to evade detection and destruction by enemy defenses. Many modein
military aircraft (fighters, bombers, and transports) now have

terain following systems, The F-111, B-52, and the (C-5A are examples
of these. future aircraft, such as the B-1, missiles, and possibly
remotely piloted vechicles (RPVs) will have terrain following systems.
It is also possible that commercial aircraft may use similar techniques
for landing approaches in the future. Thus, the terrain following
problam has become important for many types of aircraft.

1.1 The Basic Terrain Following Problem

The basic terrain following problem is to detemmine the proper
commands 1 the control system in order to achieve a flight path
that minimizes the probability of destruction of the aircraft. The
destruction can result either frem enemy defenses or from impact on
the terrain. This definition presents a very complex problem that
depends directly on the cnemy defenses and on liow well a particular
terrain following scheme is actually implemented. The problem is
{further complicated by acceleration and flight-path angle constraints
that may be imposed upon the aircraft, Additionglly, some terrain
following systems can be operated either in an automatic mode or
in a manual mode. During the manual mode, the pilot provides
command inputs to the control system after viewing a display gener-
ated by the terrain following system. The immense complexity of the

1
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basic problem prevents its direct overall solutim; the problem
requires division into subproblems that can be solved with the avail-
able mathematical tools and technology. Accordingly, only a major sub-
problem of the basic problem is treated here and will be defined
precisely after some general background information is discussed.

1.2 Previous Terrain Following Systems

In the literature, a wide variety of major topics concerming
terrain following has been covered. These topics include performance
measures, probability of kill, probability of impact on the terrain,
cisplays, lnman factors, terrain classification, flight fest data, sim-
ulation data, turbulence effects, and radar characteristics. The
reader may consult Reference 4 for a more detailed summary and a
bibliography that cover these diverse topics.

The first-generation terrain following systems are basically
aircraft flight-path-angle controllers (3, 4, 16]. These angle con-
trollers compute a desired flight-path angle based on the relative
locations of critical terrain features. Deviations from the desired
flight-path angle crecate pitch commands to the aircraft flight-
control system.

The second-generation terrain followers control the path of the
vechicle more directly [2, 4, 11, 23}; the pitch commands are generated
to produce specific types of paths. In order to obtain lower paths,
some systems use segments of terrain data, rather than only critical
terrain points. Path control results in a natural division of the
problem into the path-detemmination and the tracking subproblems.

‘tuch of the early development was devoted merely to obtaining
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systems that performed in a reasonable fashion. Later, attempts were

mkle to improve pertormance of the various subsystems. One example
ol subsystem improvement is the optimal tracker developed by General
Electric Company {23, 24, 25]. In another, Greaves [11] optimized
both the tracker and the path-determination scheme, but as two
separate subproblems. To date, the latter hzs come closest to
optimizing the overall system. There are two major similarities
between the work by Greaves and that reported here: both schemes
are intended as feasible real-time controllers, and both formulate
the path optimization as a yuadratic programming problem with linear
incquality constraints. The primary differences are in the approach
to optimality, the path data processing method, and the implementation
of the tracking system. The various types of systems are discussed
in more detail in Chapter 2, where appropriate terms are defined.

As indicated previously, the basic problem is too complex for
overall optimization with present theory and techniques. The dynamics
of the aircraft are nonlinear and the addition of the many constraints
makes the mathematical problem untractable. The two major contribu-
tions oi this dissertation are the precise definition of a mathematical
optimization problem that encompasses a major portion of the terrain
following problem, and the parametric studv of the solutions of that
problem with all of its constraints. Each solution of the problem is
a smooth reference path that follows the terrain as closely as possible
and is 2 path that un aircraft can follow very well, The simplifying
assumptions required to make the problem tractable arc deemed to be

more consistent with practical limitations than those of previous




approaches. For example, there is no assumption of constant horizontal
velocity; neither is there an attempt to make the aircraft follow a
path that it cammot reasonably be expected to follow. The set of
allowable controls does not permit discontinuous accelerations that
chy implementation, but provides both acceleration and acceleration-
rate limits.

1.3 The Information Processing Problem

The method of subdivision of the basic problem into subproblems
affects the performance of the resulting terrain following system, as
will be indicated in the following discussion. The scope of the prob-
lem will be first narrowed to a much ore manageable extent by four
basic assumptions:

1) A reliable set of discrete terrain data points is available,

2) The motion of the aircraft is restricted to a vertical plane

so that only longitudinal motion is considered,

3) A priori knowledge of enemy defense systems is not available,

and

4) The automatic mode, with no pilot in the control loop, is to

be used. '
These assumptions, which will be dj.scussed in more detail below, limit
the problem to the following "information processing problem': given
i set of terrain data points, determine the input commands to the longi-
tudinal control syﬁtcm of the aircraft such that the resulting aircraft
path is as low as possible, within the following constraints:

1) The flight path is not lower than a specified minimum-

clearance distance above the terrain points,



2} Specified nommal acceleration limits are not exceeded by the

aircraft, and

3) Flight-path angle, or slope, limits (if specified) are not

exceeded.

The usual source of terrain information in a system is a forward-
looking radar. Conceivably, other sources, such as satellites and
accurate terrain maps, can be used also. The effects of radar
"shadowing'’, which occurs because the radar cannot see the back sides
of hills, are not considered directly in ihis study. Any terrain-
following system that uses a forward-looking radar suffers from this
same handicap -- in any case, whatever data are available should be
processed in the best manner.

The term "terrain avoidance" has been applied consistently to
systems that involve lateral motion of the aircraft, to enable the
vchicle to fly around high peaks rather than over them. The tem
"terrain following'' has usually been restricted to longitudinal-
motion systems Only terrain following is studied here, although
most of the concepts could certainly be extenc;ed to terrain-avoidance
systems.

Tor peneral usage, it is reasonable to assume that a terrain-
following system should be able to operate effectively without any
knowledge of the cnemy defenses. This requires a choice of performance
measure that is insensitive to the defensive configuration. The
natural choice for such a performance measure is to require the
vehicle to fly as low as possible as often as possible -- or in other

words, each clearance height sample should be weighted equally,

- Ve e e e —-
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Modifications to this procedure are easily possible, especially if

good rationale for weighting some regions more heavily than others is
known. If sowe a priori knowledge of the defense structure is known,

.certainly the heavily defended regions could be given higher per-

formance weighting coefficients. However, these ideas will not be
pursued further in this thesis.

The uniform glohal approach to closeness (treating sample points
cqually) is at variance with the assumptions made by Greaves {11].

Hie assames that the highest point of the terrain segment being optimized
is the most critical. Furthermore, he does not impose a non-zero
minimm-clearance distance constraint, although he might easily do so
with his method; apparently, pure vertical translation of his optimal
path would be required to provide a safety clearance.

The automatic mode is considered more important for low-altitude
high-speed flight because pilot reaction times can adversely affect
the system performance. This does not imply that the automatic mode
would be used only for high-speed flight, but high-speed does provide
the most severe test of a terrain-following system.

1.4 The Specific Approach

Within the framework of the information processing problem, the
further subdivision of problems for the proposed system can now be
stated:
1) Construct a terrain representation curve,
2) Determine a minimm-clearance curve, .
3) Optimize a path subject to
a) the constraint that the path is above the minimum-

clearance curve,

+
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b} acceleration constraints, and

c) flight-path slope constraints, and
4) Determine command signals to the aircraft control system based

on the optimal flight path.
The major subproblem is the determination of a path for the aircraft
that satisfies all of the constraints and lies as ''close' as possible
to the terrain. Since the nonlinear aircraft equations of motion are
too cumbersame for efficient computation, a very simple path model is
chosen into which the specified constraints can be directly incorpor-
ated. The sclution of the problem with the simplified model is a
reference flight path that thc aircraft can essentially follow. There-
fore, the tracking problem becomes relatively simple.

The minimum-clcarance constraint is obviously a safety considera-
tion. A terrain curve is desired, rather than just discrete points,
so that the effects of minimum clearance distance can be investigated
in detail. Most systems merely translate the terrain curve upward by
the specified reference-clearance distance to obtain a clearance path.
But, if the slopes of the terrain are large, some points of the
resulting curve will be closer to the nearest terrain curve points than
the reference-clearance distance, as illustrated in Figure 2-1 where
the reference-clearance distance is Cnin’ The terms used in the
figure arc defined in Section 2.1.3, while the clearance effects are
investigated in Chapter 5, along with the fitting of cubic splines
through data points.

The acceleration and flight-path-slope constraints are frequentlvy
tmposed for pilot comfort and performance, although they could also be

due to aircraft structural or performance limitatioms.

e b atoe e



1.5 Mathematical Complexities of the Optimization Problem

The inclusion of the clearance, slope, and acceleration con-
straints in the mathematical optimization problem creates a very diffi-
cult problem. Due to the clearance and slope constraints, the resulting
optimal control problem becomes one with state variable inequality con-
straints (SVICs). There has been limited success with general optimi-
zation algoritims that handle SVICs. Methods that handle these
constraints directly require a priori assumptions of when and how many
times the constraints are "active" (satisfied by an equality). The
method of Denham and Bryson [10] and that of ‘Hemig {13] are examples
of these. For the terrain-following problem in which many contacts
with the constraint boundaries are likely, the mmber and locations
of the contacts are extremely difficult to predict in advance. It
very nearly requires guessing the caomplete solution in advance.

Jacobson and Lele [15] have attempted to circumvent these
difficulties bf converting from state inequality constraints to slack
variables. For the same reason, Martensson [20] converts the state
inequality constraints into control variable constraints, which can be
treated more easily. The slack variable approach has inherent computa-
tional problems, while Martensson's conversion, for this particular
problem, leads to incompatible control constraint cquations (there is
no feasible control at times). Other special techniques, such as
decomposition into subarcs [7], have been attempted by other authors,
but they are limited to special types of problems.

The grcatest success with SVICs has been in treating them indirectly

with penalty function methods [S, 19]. This was the first approach
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considered. It was successful, but it required very large computing
times. The details are reviewed in Section 6.1. The second approach

was much more effective. In it the optimization problem is formulated
first as an optimal control problem with differential state equations,
continuous controls, and an integral performance measure. A cubic-
spline trajectory model reduces the problem to a finite dimensional
optimization, without sacrificing any of the essential character of
the aircraft flight path. Then, the state equations are written as
linear difference equations, and the control is a set of discrete
values. These results simplify the cmtatims; however, a still
greater simplification is produced by replacing the integral perfor-
mance measure by a discrete performance measure which is evaluated

by sampling the path at intervals. These procedures which discretize

with respect to range result in either a quadratic or linear programming

problem. Both linear and quadratic programming algorithms treat the

inequality constraints directly and offer large savings in computational

time. Furthermore, good linear and quadratic programming algorithms
are readily available {14, 27, 28].
1.6 Overview

The second chapter defines some terrain-following terminology and
sumrarizes the basis of existing types of terrain-following systems.
Chapter 3 contains the formulation of the optimization problem that ic
the essence of the optimal-path following séheme. The usual terrain-
following systcem does not have all of the terrain dawa available at
one time; new data is received periodically as the aircraft proceeds

along the terrain. This process leads to a sequence cf data frames
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and successive optimizations. The framing process and the parameters
involved are described and analyzed in Chapter 4. Chapter S contains

an analysis of fitting cubic spline functions through the terrain data
points to obtain a continuous curve. The continuous curve is used

to analyze construction of a minimm-clearance reference path, and

this path is then compared to a translated terrain curve., In Chapter 6,
the solutions of the optimization problems are given in parametric

studies of various framing structures. Analysis of the tracking problem--
that of determining commands to the aircraft flight-control system such
that it will closely follow the optimal path -- is in Chapter 7.

" Chapter 8 addresses some of the considerations for real-time onboard

implcmentation of the optimal-path following scheme. Finally, con-

clusions arc drawn and recommendations are made in Chapter 9.

ot e P B e e < e oMb o
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2. TERRAIN FOLLOWING CONCEPTS

In the past many attempts have been made to evaluate terrairi-
following system rerformance and to establish criteria that are
meaningful for more thun one particular system. The determination
of criteria is a very difficult problem considering the differences
that can occur in terrains, in aircraft, in defense systems, and in
the implementation of the various systems. The intent here is not
to discuss past evaluations in great detail, but to give sufficient
background in some of the more general criteria so that the effec-
tiveness of the system proposed here may be judged more readily.
Following some definitions of temminology used in terrain-following
analysis and a brief discussion of performance criteria, same of
the concepts of previous terrain following systems are discussed.
2.1 Definitions

Tne following are definitions of terms that will be used fre-
quently throughout this thesis.

2.1.1 Acceleration Limits. The acceleration limits for terrain

following usually are specified in incremental G's (1G = 32.17
l't/secz). Positive G's are measured upward and level flight has a
zero G reference value. The incremental G's should not be confused
with the normal load factor, which has a one G reference value

for level flight.

2.1.2 Clearance Curve. The temms clearance curve and clearance

altitude refer to a curve and its points that are a specified

"minimm-clearance' distance, € from the terrain points. The

min’
curve represents a lower bound for the aircraft flight path. The

1
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clearance curve is distinct from the desired reference curve or
reference path specified in other terrain following systems. That
reference curve does not represent a lower bound on the aircraft
flight path, but is at a desired clearance distance, € rof? above the
terrain.  Some excursions of the aircraft flight path below the
reference curve can be expected. Typically, points on the reference
cuves have been measured vertically above the terrain points. If
the clearance curve is measured in this manner, it is simply a
vertical translation of the terrain. Such a curve will be referred
to as the vertical-clearance curve. Obviously, if the terrain slope
is large, the clearance distance to the nearest point on the terrain

curve will be less than c

min® 35 indicated in Figure 2-1. The

\ slant-clearance

curve

Figure 2-1 Clearance Curves
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Clearance to the nearest point on the terrain curve will be termed

the "'slant" clearance distance, , and is measured perpendicular

Cslant
to the terrain curve at any point. For the sake of analysis, con-
tinuous curves will be fitted through terrain and clearance path
points. This fitting process, as well as the computation of a slant-

clearance path with ¢ min’ is described in detail in

slant ~
Chapter 5. Also, the differences in the two types of clearance

paths are analyzed there. The general term ''clearance curve' will

be used to refer to the curve regardless of how the clearance dis-
tance is measured.

2.1.3 Ideal Path. A path that is frequently used as an evaluation
tool in tcrrain following is the ideal path. Unfortunately, this path
does not have a unique definition in the literature. It has been
determined in differcent ways by different authors, buf the common
requirement for this path is that the performance constraints are
satisfied. The constraints are on either vertical or normal
acceleration, on flight-path slopes, and on minimm-clearance dis-

tance. Figure 2-2 shows a typical ideal path.

pull- p::ll’l- ideal path
up push- push-over .
arc| over arc arc nesg]aotpleve pull-
clearance arc arc a rg: clearanc

arc arc

terrain clearance
curve curve

Figure 2-2 Ideal Path
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2.1.4 Terrain Roughness. Various measures of terrain roughness

have been proposed. One simple measure [4, page 37] has been the mean
of the terrain point heights, where each sample point height, T , is
measurcd from the zero reference level -- that of the lowest terrain

point in the sct.
N

1
T » I T (2-1)
MEAN N =1 M

This measure conveys very limited information about the terrain; a
more descriptive measure of roughness is the standard deviation of the
terrain seguent based on N sample points from the terrain.

1 ¥ 2
VA B Ty “Tvean (2-2)
n=

Although the decision is somewhat arbitrary the following ranges are

adopted here to define roughness as a function of o

Smooth -- 0 to 200 ft.
Moderate -- 200 to 500 ft.
Rough -- over SN0 ft,

These ranges are in general agreement with current terrain analyses.
2.1.5 Path CQurvature and Kink. The temm '‘curvature"”, in this

thesis, is defined as the second derivative of the path height
with respect to horizontal range. This definition differs from
that for the usual mathematic curvature, which is identically equal
to the last term of term of Eq. (2-3). Here the curvature

of a flight path is related to the aircraft speed along the path
and to the accelcration normal to the path, by the approximation

2 .

d"h N 3 N

—~ k= = -
a FSCCY F (23)
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where the flight-path angle is y. The derivation of this equation and
the following one are in Appendix C. The approximation is exact only
when the flight path is horizontal, but it is fairly accurate for
small flight-path angles. The curvature is also related to the
instantaneous radius of curvature, Tes and the flight-path angle by

the equation

T, = 1 sec’y (2-8)

The derivative of curvature with respect to range is defined as
the "kink", p. Kink is analagous to jerk, j (the rate of change of
acceleration in the time domain). Kink is proportional to the jerk

and inversely proportional to the cube of the velocity.
)A%'%ﬂz (2-5)

2.1.6 Ride Hardness. The hardness of the ride is related to the
acceleration limits imposed upon the aircraft. The tem is usually
qualitative rather than quantitative. The larger the span of
acceleration allowed by the limits, the "harder” is the ride. To be
more specific, in this thesis, precise values for the acceleration
limits are assigned for the various rides. The first set of
incremental-G limits is that given for the F-111, Mark I System [3],

while the second set is for a hypothetical missile:

Set 1 Set 2

Hard Ride -1.0 to +2.0 G's  -5.0 to +15.0 G's
Medium Ride -0.5 to +2.0
Soft Ride -0.25 to +2.0 -1.0 to + 3.0

e ,._...-.......N-.MMM-M,.J
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The negative limits are generally more restrictive because of the
pilot or because of some vehicle configuration. The pilot is
physioiogially much more adaptable to positive G's than to negative
G's, while some jet engine inlet configurations are unsuited to the
airflow patterns resulting from negative G's.
2.2 Performance Criteria and Parameters

Some of the criteria frequently used for improving and evaluating
terrain following perfommance, as indicated in the Terrain Following
Criteria Handbook {4] and by Brostrom [6] have been

1) Minimization of RMS clearance altitude deviation from a

reference clearance altit\;de.
2) Attaimment of level flight over dominant peaks,
3) Minimization of ”MS normal acceleration,
4) Reduction of the maximm clearance altitude deviation
from the reference clearance curve,
5) Reduction of the minimm and maximm vertical accelera-
tions and vertical velocities, and
6) Subjective evaluations of flight path time histories.
Most of these are concerned with keeping the flight path as low as
possible, but items 3) and S) are concerned with reduction of ride
hardness and maximization of flight range. Jeffrie [16]} recommends
the comparison of the flight path with the ideal path rather than
the clearance curve, as in item 4), above. He shows statistical
comparisons that indicate clearance deviations become much less
sensitive to the particular terrain when the ideal path is used as a

reference rather than the clearance curve. This is not surprising,

e
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for the ideal path acts as a low-pass filter in filtering out the high
terrain frequency components, as shov.. by Weir [31].
The parameters that affect the performance of all terrain follow-

ing systems are

a) Aircraft fomrdA velocity,

b) Aircraft normal acceleration limits,

c¢) Flight-path angle,

d) Minimum-clearance distance,

e) Terrain roughness and frequency content, and

f) Defdisive threat situation.
A good terrain following system should allow for some adjustment in
all of the above parameters, or it will be too specialized.
2.3 Terrain-Following Command Generation

There has been no standard for classifying the various systems
that have been developed, but one approach is to classify them
either as flight-path-angle controllers or as path controllers.
Farly systems were path-angle controllers, where the path itself was
only indirectly affected by the direct control of the aircraft
attitude. Later efforts developed controllers that analyzed paths
directly before determining the proper attitude the vehicle should
have to produce a good approximation of the desired path.

2.3.1 Flight-Path-Angle Controllers. The flight-pati-angle control-
lers have been systems that generate commands based on critical
features of the terrain. The commands are based either on the
relative range or the relative angular position of the critical
feature [3, 4, 16}, and the general configuration is indicated in

block diagram of Figure 2-3.
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commanded commanded
flight control-surface
psth deflection
s le e
terrain flight path ang+ Ay an?l Fn aircraft
data angle . limiter [——wjflight-control
computer | e _ Syt
P Y __flight-path navigation
» angle systea

aircraft position § attitude

Figure 2-3 Flight-Path-Angle Controller Schematic

The first type of controller to be discussed below is the sim-
plest since it does not require a formrd-lodking radar. This type
uses only a radar altimeter terrain sensor. The two remaining
types of angle-controllers are designed for forward-looking radar
systems.
2.3.1.1 Relativ~ Altitude/Altitude-Rate Sjstans. Typical missile

terrain-following systems use terrain data which consist only of the
vehicle altitude relative to the terrain, hc’ and the time rate of
change of that relative altitude, ﬁc. This type of system has very
little predictive capability, since the only terrain data used is
for the terrain immediately below the aircraft. A block diagram of
this system is shown in Figure 2-4. The difference between the
trelative altitude, hc’ and the desired reference value represents
an error in current position. The altitude rate data provide a

measure of the relative angular difference between the vehicle

flight path and the local terrain slope. There are a wide variety

b i e bt e o
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Yeo Sc| control aircraft
h-h ‘ systen [ dynamics
controller Y
=
radar
altimeter

terrain ——-—f

Figure 2-4 Relative Altitude/Altitude-Rate System

of ways of combining these two signals in the controller to produce
a commanded flight path angle. Typically an equation such as
Fq. (2-6) is used.

Y=o hes (h, = Cpef) (2-6)

Frequently, the negative a and 8 gains are fixed and limiters bound
both the flight-path angle and surface deflection commands. This
type of system has found application in missiles where space and
weight limitations are severe and vehicle maneuverability is high.

2.3.1.2 Scamed-Range and Template Systems. In the range-type

systems, the response to a terrain feature deperds upon its relative
range from the aircraft. Computational devices, such as the
"template' illustrated in Figure 2-5, are used to compute command
signals., The template is not a physical device, but is used only
for mathematical computation. The template is fixed with respect
to the aircraft axes and is contained entirely within a specified

angular sector (81 + 8,) ahead of the aircraft. The template is




Figure 2-5 Template System

terminated at a specified maximm range, R;, and is truncated by a
ramp at the far lower comer. The actual dimensions of the template
must be tailored for the particular radar and aircraft systems, The
shape of the template is designed to separate terrain points into
two groups: those that require pull-up commands to provide adequate
clearance, and those that still can be cleared when push-over
commands are given, First, the set of ranges, Ri’ corresponding to
terrain points inside the template is considered for the pull-up
computation.

T = max (op(Ry-R)) * ay(he - Cpep) @

where op and ay are negative constant coefficients, hc is the
current clearance height above the terrain, and c . is the specified
reference clearance height. The maximization in Eq. (2-7) indicates
that the critical point is the terrain point in the template nearest
to the aircraft. The first term of the equation provides for
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Clearance over the critical point, while the second tem canpéasates
for current altitude deviations from the reference clearance height.
When no terrain points lie inside the template, but there are good
radar returns from points outside the template, a pitch-down command
is created from an equation similar to Eq. {2-7). However, the

-selection of the most critical point ocutside the template is more

complex and may differ for different systems.

Both the template system and the relative-angle system, described
below, use a '""beck-up" computation for times when good radar returns
are not available from the forward-looking radar, such as when cresting
a peak or when flying over water. The back-up system is usually an h-h
controller that uses a command of the form in Eq. (2-6).

2.3.1.3 Relative-Angle Systems. The relative-angle systems have

had greater usage than the relative-range systems. The F-111, C-5,
F-4, and B-52 terrain-following systems are all relative-angle systems.
These systems react to terrain points that lie in the range interval

[R,. ,R ], as illustrated in Figure 2-6.

o sl
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The most critical terrain point in the interval is determined from
ho (2‘3). :

By ™ u:x {8;} . (2-8)

wherc the index i refers to points in thefange interval [Ph:ln’

l‘m‘]. The critical point, at (Ph' ’n)’ determines the commanded
flight-path angle: ' '

Sref

e"e (o + By * T -Ps) (2-9)
where o is a constant coefficient, 8 is the aircraft pitch angle, and
the F, shaping function is a function of the range Ry, the aircraft
velocity, and the aircraft acceleratioh limits. The combination of
a and F_ is chosen to provide the proper "amount" of prediction for
a particular system. The amount of prediction required varies
inversely with the range and thc maneuverability of the aircraft.
2.3.Z Path Controllers. Three types of path controllers are dis-

cussed below. The first was developed by Cornell Laboratories
{Calspan) [2,4], and is called the ADLAT system. The second is an
"optimal"” tracker system developed by General Electric Company for
the Air Force Flight Dynamics Laboratory [23, 24, 25]. The last is
one proposed by Greaves [11], which uses both an "optimm'' path
determination and an "optimm' tracker system.

2.3.2.1 ADLAT System. The Advanced Low Altitude Techniques (ADLAT)
system [2] is one of the earliest path controllers. It utilizes

two parabolic path segments as shown in Figure 2-7.
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Figure 2-7 ADLAT System Path

The segments are pieced together so that they are tangent at the
transition point. The first segment is tangent to the aircraft
flight path and the second is horizontal at the ""dominant" terrain
obstacle. Each parabola represents a constant acceleration arc.
The ratio of the accelerations on the two arcs is the same as the
ratio of the two acceleration limits. It is possible for the two
arc geometry to degenerate into a geometry which involves only a
single push-over arc. If the aircraft were fairly high with respect
to the obstacle, the order of the arcs might be reversed from that
shown in the figure. However, if the system is operating proﬁerly,
it should never allow the aircraft to get into a position where the
limit areas that are cross-hatched in Figure 2-7 overlap.

Figure 2-8 illustrates the controller which is similar to an
angle controller except the commanded angle is extracted fram a
stored set of sampled flight-path angles computed from the ADLAT
parabolic path segments. The sampled set is updated periodically.
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Figure 2-8 ADLAT Path Controller

Compensation is also added to the command signal to account for lags
in the overall aircraft control system.

2.3.2.2 Optimal Tracker System. The system developed by General

Electric [23, 24, 25] uses a stored segment of terrain data. Some
preliminary processing of the terrain data is done to produce a

clearance amrve as indicated in Figure 2-9. The result is a path
lying somewhere between a vertical-clearance curve and an ideal

path. The path is translated upward fram the terrain curve by the
distance min’
maximsn pushover arcs, are inserted in front of the peaks by a

but in addition, parabolic segments, representing

backward sweep of the data in a special processor. In theory one
would like to have the actual ideal path produced, (as will be
described next in the Greaves approach), but this involves a

much more complex piecing of arcs, as indicated in Figure 2-2.

The processed clearance path is used in the General Flectric system

as a desired tracking signal for an optimal tracker. The tracker
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parabolic

precessed clearance path
vertical-clearance curve

Figure 2-9 Preprocessed Clearance Path

is really only optimal in a limited sense, The aircraft motion is
modeled as a simple third-order lii.ear system. Optimal feedback
gains for the usual quadratic cost tracking problem are found by
the methods cf optimal control using the Riccati equation. Appro-
priate correlation between the boundary conditions and cost coef-
ficients produce constant gains for the third order model. The
prediction signal required for the solution of the optimal tracking
problem is obtained by a fast-time backward integration of the
adjoint equations. This signal and the constant-gain feedback
signals provide the input signal to the aircraft flight-control
system, as indicated in the biock diagram of Fiqure 2-10. The
overall system, however, 1s only optimal to the extent that the
preprocessed clearance path coincides with the ideal path, and
insofar as the linear third-order system closely approximates the

non’ inear aircraft system.
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The system developed by

GCreaves [11] has both a path-detemination optimizer and an optimal

tracker. The path processor is a nonlinear digital filter that

performs a series of operations on sets of discrete-range path

points,

The filter starts with the set of terrain points and pro-

duces a set of path points that satisfy specified clearance and

acceleration constraints while remaining "close" to the terrain

points.

A series of iterations is involved; for each iteration, an

operator '"'optimally" enforces a particular type of constraint at

each point of violation in the current path point set. After all

violations of onetype of constraint are eliminated, the next type

of constraint is considered. The sequence of constraints is ordered

so that no new violation of previously satisfied constraints occur.

The input set of path points for each operator, Oj, is designated

(hi}, and the output set is {yi}, where i is the horizontal range

index.
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{Yi) = 0)- {hi} (2-11)
If v, indicates the set of points at which violation of the §*
type of constraint occur, then the 0j operator solves a "local"
optimization problem at the highest point, hn' in the set 'j' The

optimization probhlem is to minimize

n+1 12
Jp* I Oy -h+3yD) (2-10)
im-1

subject to the jth type of constraint and a clearance constraint.
Thus, the 0j operator eliminates a type j constraint violation at a
specific range point by moving path points upward to maintain the
clearance constraint. The operator is used repetitively on the
path point set, but it only changes points in the three-point
"neighborhood' of the violation at any one step. The details for
the 01 operator are described below.

The input set used to begin the procedure is the terrain

heights, Ti' plus any specified minimumm clearance, Cmin *

thydg = Ty + Gy ) (2-12)

Greaves works with zero minimum clearance, but it is trivial to
extend the procedure to non-zerc values. The clearance constraint

that the final set of points must satisfy is

YTy oy (2-13)
and is maintained during each iteration step by the "non-lowering"
requirement:

y; 2 by (2-14)
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The first operator, 01, enforces the minimm-acceleration
constraint:

* ayin < Myey 2y ¢ By g (2-15)
where t is the time interval required to traverse the horizontal
interval between terrain points (with the horizontal speed assumed
to be constant). This constraint essentially considers the
acceleration at the central point '"n'" to be equal to the constant
acceleration on a parabolic path through three points.

88 T2 (g - Py + Ty ) (2-16)

The 01 operator solves a local optimization problem at the highest
point, hn’ in ' The optimization prublem is to minimize Jn of
Eq. (2-10) subject to the constraints of Eqs. (2-14) and (2-15).
This operation is repeated on the path set until 2} is empty. Then
the maximm-acceleration constrain* operator is used to minimize Jn
subject to Fq. (2-14) and a maximm-acceleration 1imit. Slop: and
jerk constraint operators are also considered by Greaves, but for
simplicity they are not discussed here.

The mathematical results of the optimization problem for opera-
tor 0; can be interpreted geometrically, as illustrated in Figure
2-11. A parabola that has a curvature corresponding to the minimm-
acceleration limit is used as a violation indicator. The original
points are the hi and the processed points are the Y;- InCasel,
both adjacent points lie below (or on) the constraint parabola
when the vertex of the parabola is located at the point of violation.

The minimum Jn of Fq. (2-16) occurs when the two adjacent points are

i
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Figure 2-11 Minimm-Acceleration Constraint Enforcement

raised to equal levels on the parabola. If one of the adjacent
points lies above the initial parabola location, as in Case 2, the
parabola is repositioned to pass through the highest adjacent point,
as well as the violation point. The solution is then obtained when
the remaining point is raised to the parabola.

The camplete iterative process is illustrated in Figure 2-12.
The original terrain data points are shown, followed by the sets of
path points that result from the enforcement of each type of acceler-
ation constraint. The points are indicated by mmbers, with the
letter subscripts indicating the order of the step which resulted in
its final placement. For example, step "a'" is the first step and
results in the adjustment of points 6 and 8, while step '"d"
repositions only point 5. The curves shown are orientation refer-
ences only; the filtering process works only with the discrete points.

Greaves admits that it is difficult to determine the overall
sense of optimality in his path processor, since a lengthly series

of local optimization problems are performed. The sequence of

e ———— i 1 e e e
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Figure 2-12 Digital Filtering Process

optimizations is equivalent to minimizing a ''global" performance
measure of the form |
N 1 Z
- & fg (r; - hy) + 7 Oy - hy)7) (2-17)
Unfortunately the weighting coefficients, wj, are not known prior
to the optimization, and they depend upon the particular terrain
data used.
Although Greaves' procedure is closer than any predecessors
to the overall objective of creating the best path for the vehicle

to follow, it still suffers conceptually from two disadvantages:

P,
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1) ﬁn sense of overall optimality is obscure, and 2) because of the
simplified (three point) treatment of the acceleration constraints,

a smooth path through the final data points may not satisfy the normal
acceleration constraints between sample points. This latter assertion

is illustrated in Figure 2-13, where acceleration can be related
directly to the path curvature, The data points shown are a subset

transition maximm acceleration

constraint at
point 10
~x 12
SN X
'}\S\ minimm acceleration
J constraint at
point 11

Figure 2-13 Digitally Filtered Data

of those from the final result in Figure 2-12. The points satisfy
the acceleration constraints when considered thre;e at a time; however,
if a smooth curve is fitted through all four points, there must be
same transition from maximam curvature to minimum curvature. But
that type of transition path must violate the corresponding curvature
limits somewhere between points 10 and 11 in the figure.

The optimal tracker system for the digitally filtered path is
similar to the General Electric tracking systém, even though the

path processors are considerably different in the two systems. The

- system diagram is basically the same as that shown in Figure 2-10

for the General Flectric system. Greaves' system does use a

e e e e 1 e e e e, T
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fourth-order linear system model for the trackar; rather than a
third-order model. The fourth-order model is a better approximation
for a nonlinear aircraft system, but nevertheless, the corresponding
optimal tracker system is still only optimal in an approximate
sense, because it uses a linear model.

The optimal-spline-path following system described in the follow-
ing chapters attempts a simpler, more practical coupling of the path
determination and tracking problems. The computed paths will be
smoother than the processed paths of the system described above

and have a more practical curvature profile.
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5. MODEL AND OPTIMIZATION PROBLEM FORMULATIONS

This chapter formulates an optimization problem that incorporates ‘
all of the essential ingredients for terrain follbwing in a very simple
way. The first step is to construct a simple trajectory model for the
aircraft motion. This model will be used in an optimal control problem
that strives to keep the aircraft as ''close’ to the terrain as possible
without violating clearance, acceleration and slope constraints. Ini-
tially, the problem is considered in the most natural space, the space
of continuous functions. Then, to provide computational simplicity,
the problem is discretized. The discretization is accomplished using
splines, which retain the essential characteristics of continuous
functions even though they are defined by discrete values. This proce-

dure maintains a close relationship between the mathematical problem

.and the problem of controlling aircraft motion. After the discrete

cquations of motion are developed, the performance measure is dis-
cretize.d also, by sampling. The resulting optimal control problem

is either a quadratic or linear programming problem. The quadratic
programming problem can be solved by algorithms that treat it directly,
or it can be converted into the linear 'Camplementary Problem' prior
to the application of an algorithm. Any of the programming problems
can be solved much more rapidly than the original optimal control
problem.

3.1 The Trajectory lModel

The trajectory model that is used here is a triple integrator
system defined in the range domain, rather than in the time domain.
The range domain is ideal for terrain following because that is the

33
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natural domain of the terrain. In the range domain, one does not
need to consider the fluctuations in the time-rate of motion over the

terrain due to aircraft velocity changes. The trajectory equations

are
ht A % =g (3"1)
] s! ° %SK = k ‘ (3'2)
5 b ey )

_ for each range R in the interval r = [RO,RN], where h is the height
on the path, s is the slope, k is the curvature, and p is the "kink".

The variables h, s, and k are continuous, while p is piecewise con-
tinuous. The curvature is analgous to acceleration and the kink is
| analagous to jerk (the derivative of acceleration with respect to

J time). To make the model paths correspond well to aircraft trajec-
‘ tories, limits on both the curvature and the kink are considered in
the following problems.

3.2 The Optimal Control Problem

The trajectory model will be incorporated into the optimal
control problem. To solve the dilema c¢f how to define closeness to
the terrain, a general performance measure is studied. It is con-

structed in terms of the excess clearance variable
e=h-c (3-4)

where ¢ is the height of the minimum-clearance curve. The pei'fomnce

function is defined over the range interval T.

Ry

R

J = { N(ge? + Le)dR + Mmax (e} (3-5)
r

0

ad hin




mance measure is ‘quadratic M=0), linea;' (Q = M=0), min-max (Q = L=0),

or a combination of these.

The optimal control problem is to determine the curvature function

“The choice of coefficients Q, L, and M determine whether this perfor-

k that minimizes J subject to the differential constraints of Egs.

(3-1) to (3-3) with specified initial conditions hO’ Sgs ko, and subject

to the following inequality constraints, for ail Rerl
e>0

. < <
smm—s-smax

K <6 Ky

Prin £ P Z Prax

(2-6)
-7
(3-8)

(3-9)

The limits on the curvature arg determined from the normal accel-

eration limits and aircraft speed by the approximation of Eq. (2-3)

lim 2

“nom

(3-10)

This approximation is accurate only as long as the path slope is

small. However, the approximation is good because the limits tend

to be encountered at the tops of peaks and the bottoms of valleys

where the flight path is nearly horizontal. The kink limits are

related to jerk limits, which usually are not specified for an air-

craft. However, jerk affects the ride comfort for a pilot and the

performance of the tracking system that attempts to follow the

reference path. Therefore, bounds on the jerk, or kink, are desirable

and are discussed further in Chapter 4.
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3.3 Discrete Equations ot Motion

The integration of differential equations on a digital computer
is a time consuming process. Also, the search of function space for *
an optimal control can be very slow compared to discrete parameter
optimization. Therefore, the use of discrete range equatiomns of motion
and a discrete range control set greatly simplifies the optimal ,
computations for this problem. : - ‘
Spline curves are very useful in fitting smooth curves through ;
data points [1]. The cubic spline is composed of cubic polynomial
segments pieced together to provide contimwus first and second deriva-
tives at the junctions. The path model is to be represented by a
cubic spline, Thus, the path slope is a quadratic spline, the curva-
ture is a lipnear spline, and the kink is a piecewise constant function.
The curvature is to be considered the control variable and is illus-
trated in Figure 3-1. A set of range values, Ri' is arbitrarily chosen
for the spline "knots" (segment junctions). The interval between knots
need not be equal, although it is often convenient to use uniform
spacing.

J k

K| — — —

/

3

N S AN
\t &/ & \VA"
kK

Kmax

k .
min
1 2

Ro

Figure 3-1 Curvature Spline




— .

e ]

37

The ki curvature values at the knots, along with the Ri’ completely
specify the curvature function on the interval r, Purthermore, the
kink can also be specified in terms of the knot values and the interval

lengths, 8, = Ri - Ri-l’

k.,. - k.
e _i*l i -

Obviously, the kink is equal to the slope of each straight line seg-
ment in Figure 3-1. With the addition of initial values ho and Sg»
the path height and slope can be written as difference equations that

incorporate the spline continuity requirements.
= 1 -
sy = si * 780G k) (3-12)

- 1,2 .
hy =hjy * 55018 * g8 (kg * 2Ky y) (3-13)

The corresponding discrete kink equation is
ki ki1

p; = -
i 8 (3-14)

Note that each of these last threce equations defines an affine
function of the set of ki curvature values. If the equations are a

applied recursively, each of the values hi’ s;, and Py can be written

i’
in terms of the initial conditions and the ki values, for i=1, 2, ...,

N. The vector-matrix fomm is

h = Ek + f (3-15)
s =8k +b (3-16)
p=Pk+d (3-17)

bem
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where h, s, k, p, f, b, and d are N-dimensional vectors and E, S, and
P are NxN matrices that have a triangular form. The elements of E,

S, P, f, b, and d are computed recursively from the interval lengths
4 and the initial conditions hO' Sg» and kn. The equations for these
clements are developed in Appendix A. It is possible to sample the
'variables at points other than the knots, but this complication will
not be considered here. The excess-clearance sample vector can be

written

e = h-c = Ek+f-¢ (3-18)
where ¢ is an N-vector of the clearance curve sample values. The
inequality constraints of Eqs. (3-8), (3-6), (3-7), and (3-9) can be

written in a single inequality

) r‘ .
I ’ t.lkmax
-1 i'u}(min
E i f-c
, S (k< ‘ us D
?-S b-usmin
! i
P i upmax-d
-r _J Ld—upmin | (3-19)

where I is the NxN identity matrix and u is an N-vector of umit
elements. [q. (3-19) enforces the constraints only at the N knots,
but this still implies satisfaction of the limits on curvature and
kink over the entire interval T, as can be observed from Figure 3-1.
However, the clearance and slope constraints are not necessarily

satisfied over the intervals between knots. Definite bounds on the

[
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amount of constraint violation can be computed; equations for these
bounds are developed in Appendix H. The violations will normally
be quite small.

3.4 Discreve Performance Measure

Invariably, in evaluating terrain following performance, inves-
tigators resort to sampling the trajectories to evaluate the system,
Thus, it is not unnatural to use a discrete range performance measure,
especially when using discrete range equations of motion. The use of
the discrete measure also reduces the computation required. The dis-

crete performance measure is a sampled version of Eq. (3-5):

N
J = 2 2 onenzﬂ.nen] + M max &) (3-20)
n= n

An equivalent vector-matrix measure is obtained using Eq. (3-18)
for e
J=L'k+5k' Gk +M max {EK} (3-21)
“ component

where L is an N-vector computed from the Qn' Ln’ E, f and hc; Qis
a symmetric NxN matrix computed from the Qn and E.

In the early stages of this study, penalty function approaches
were tried to enforce the clearance constraint. This involved the

2 , which was

addition to Eq. (3-20) of a term of the form Pnen
added only for e <0, This approach resulted in a "soft" constraint
that allow some violations of the clearance constraint. Although the
violations were reasonably small, it was not possible to determine

a priori a bound on the violations. When it became apparent that the

e %,
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discrete formulation resulted in a quadratic programming problem, the
clearance constraints could be treated directly and the penalty
function approach was abaruloned.
3.5 Quadratic Programming Problem

The quadratic programming problem follows directly from the
discretized equations (3-19) and (3-21), with a scalar variable 'm"
introduced to treat the min-max term. The problem is to determine
the (N+1) dimensional K vector

N
K = (3-22)
m

that minimizes

J=L'k+ 1K'k + Mn

1 Qo
- [L'MK - L X0 E ;] K (3-23)

subject to

| C' K<D (3-24)
where the C and D are formed from the matrices of Eq. (3-19), plus
appropriate coefficients for m if the min-max term of Eq. (3-23) is
used (M#0). The additional constraint set that is added to Eq.
(3-19) to produce Eq. (3-24) is an upper bound on the excess

clearance at each of the knots:

e<unm (3-25)
or

Fk - um < f-c {3-26)

where u is an N-vector of unit elements. Any of the constraints

LN UV Peo
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that are not needed for a particular aircraft or mission can be elimin-
ated from the matrices to reduce the problem dimension.

It should be noted that the above problem will be a linear program-
ming problem when the quadratic performance coefficients, Qn. are set
to zero. Many algorithms are available to solve the linear programming
problem [14]. The above form of the quadratic programming problem can
be solved by two different approaches: there are algorithms that trea£
the above form directly [29], or the Lemke approach [26] is to convert
the quadratic problem into a higher-dimensional linear programming
problem, called the "Complementary Problem." If the min-max temm is
not used, so that the quadratic coefficient matrix Q is positive
definite, Shankland's algorithm [29] can be used to solve the quad-
ratic problem directly. The Complementary Problem has special
structure that is handled readily by special linear programming algori-
thms, such as Ravindran's [26]. The algorithms are discussed in more
detail in Chapter 6.

3.5 The Complementary Problem

The basic formulation from which the Lemke development starts
is a slightly different form of the quadratic programming problem.
It is converted into a linear programming problem by the use of
slazk variables and the Kuhn-Tucker conditions of optimality [8].

The particular quadratic problem is to minimize

T=Lx o+ (3-27)
subject to
Gx > H ‘ (3-28)

and
x>0 (3-29)
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Eq. (3-28) is converted from an inequality constraint to an equality
by the introduction of a "t;" slack variable vector, which is also .
constrained to have non-negative components.

u=Gx-H (3-30)
u>0 ' (3-31)
When the Xuhn-Tucker conditions [8, pp 54-56] are applied, the result
is a system of linear equations with some undetermined multipliers
v and y (these are frequently called the dual variables). plus non-

negativity constraints on all the variables, and an aklitional ortho-
gonality requirement:

(1-E 206 - O s

u, v, x, y>0 (3-33)
v x + &' y=0 (3-34)
<
Fq. (3-32) can be written in a more concise form by grouping the %
variables into two vectors:

v :
2 4 "‘] (3-36) .
LY.
My [Q C]
4 ¢ o (3-37)
ag [L] (3-38)
H

Now we consider the final formulation.

.
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The Complementary Problem is to determine the unique w and 2
vectors that satisfy Eqs. (3-39), (3-40), and (3-41).

w=Mz+q (3-39)
w,2>=0 (3-40)
Wz =0 ' " (3-41)
Eq. (3-39) can also be written in the linear programming form:

En EI [:] -q G

The constraints of Eqs. (3-40) and (3-41) make it a special linear

programming problem in which eitixer each component of z or the
corresponding component of w must be zero. Ravindran used this special
property for a modified '"Revised-Simplex' algorithm to solve this com-
plementary problem. The non-negativity requirements involve a

biasing of cach of the curvaturc values for the terrain following

problem.
x; = ki - ]\nin for i=1, 2, ..., N (3-43)

When the min-max variable is used, it does not require a bias, as
it is already positive.

The Ravidran algorithm can solve either the linear or quadratic
programming problem. This flexibility makes it useful for testing
the different performance criteria; thus, it is the primary algoritim

used in the parametric studies of Chapter 6.




4, TFRAMING FOR DATA PROCESSING

It is impractical to solve a single optimization problem for the
entire flight of an aircraft. The great mmber of samples that would

be required would produce an optimization problem of extremely high
dimension. Furthermore, all of the required terrain data may not be
available at the beginning of the flight. The method for handling

these problems is a framing procedure. Frames of terrain data are

P .

|
considered serially as the aircraft advances over the terrain, and l
an ideal path is produced for each frame by solving an optimiza- ‘
tion problem of the type considered in Chapter 3. The details of H
the framing procedure are described in the following sections. To ,
reduce computational requirements, it is desirable to use the minimm

amount of data that will still produce good performance. To estimate

the required amount of data and other framing parameters, the idea
of a "characteristic maneuver'' is introduced.

4.1 The Characteristic Maneuver

The unpredictability of many terrains makes the detemmination
of an adequate frame length difficult. The characteristic maneuver is
developed here for estimating this frame length in a fairly simple
manner. A 'maximum-expected-obstacle height", H, is specified, and
then the minimumm range interval required to clear the obstacle and
rceturn to level flight is computed. Any curvature and slope constraints
imposed on the flight path must be considered in the computation. For
simplicity, only the curvature limits will be considered here because

slope constraints are frequently not imposed. The geometry of the .

characteristic maneuver is illustrated in Figure 4-1, where the

symmetric path and curvature profiles are shown.

44
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(6+nc) AC > lﬁnin

Figure 4-1 Characteristic Maneuver

The parameters of the maneuver are Ac, Fc’ n., I, Iﬁna.x’ and lﬁnin‘

The curvature limits, )Snax and kmin’ are computed from normal
acceleration limits and aircraft speed. Since negative acceleration
is usually limited to a smaller magnitude than the positive accelera-
tion, the length of the pushover arc, n.A., is longer than the pullup
arc length, L while the tramsition arcs also have a length, A.-
Note that the positive and negative areas under the curvature profile
in the figure must be equal for the aircraft to return to level
flight. In the ccmputations, the value of n. will be considered a
real mumber rather than an integer. The equations for n., 4., and

F. are developed by piecewise integration in Appendix B.
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Knax

FC - AC -4 Tm) (4-2)

e @)
in

(4-1)

The parameter Bes called the characteristic interval, represents
the maximm size control interval that can be used while performing
the maneuver in the minimum frame length, Fc. If a A is selected
that is greater than a, the pullup maneuver will cause the path to
rise higher than H befare level flight can be attained, or level flight
can be achieved only at a range greater than Fc/z. Values of 4 smaller
than 4. can be used to perform a similar maneuver, but intermediate
control values between lﬁnin and ’Sna:x may be required at some points.
To be certain that the characteristic maneuver can be performed within
a frame length that is an integral multiple of the control interval 4,

one can use the following equations:

F = A (6+n) (4-4)

where the integer 'n'' satisfies

n>n (4-5)

c
The characteristic maneuver analysis yields a good, simple estimate
of frame length. However, it is based on the clearance of a single
obstacle, and there may be times when multiple obstacles of real

terrains may degrade the performance. There are other framing
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aspects which also affect the performance, These will be discussed
in the following sections.
4.2 Frame Advance

The frame advance process is illustrated in Figure 4-2. At one

Frame | 3rd Frame
Advance | Interval

Frame 2nd Frame |
Advance Interval 'I
1st Frame |
Interval |
.
Ro Range R

Figure 4-2 Data Frame Overlap

extreme, there is no overlap of frames; the second frame begins where
the first ended, and the frame advance is equal to the frame length.
This reduces the mumber of optimizations to a minimm, but it is
largely an open loop system as far as terrain and clearance curve
information is concerned. There is no adjustment to the data during
the full frame interval. 1If the terrain data were perfect, non-over-
lapping frames would work well, but the present state of the art in
terrain-following radars is such that good returns are not always
available. Returns are also subject to the phenomenon called ''radar
shadowing", in which part of the terrain blocks the radar energy from
reaching portions of the terrain at greater ranges. Fram a practical
viewpoint, it is desirable to update portions of the terrain data

as new data become available, before a full data frame is completely




traversed by the aircraft. To allow maximm feedback of terrain
information the frame advance distance should approach zero, but the
frames must advance at a rate which is at least as great as the air-
craft speed. This establishes a minimm frame advance rate: however,
the frame computational time must also be known to compute the frame
advance distance. It is possible to advance the frames more rapidly
than the aircraft speed to allow some idle time between successive
ffame computations. Since the computation time for different frames
will usually vary, some idle time should nominally be allowed.
4.3 Fram Length

Although the required frame length can be estimated from the
characteristic maneuver described previously, there are a few other
frame-length aspects that should he mentioned. The characteristic
frame length, Fc’ is the estimate of minimm frame length, but there
is also an upper bound on the frame length that is dictated by the
source of terrain data. The amount of data to be optimized in a single
frame must lie somewhere between these two extremes. To reduce the
coputation required, the frame length should be chosen near the
characteristic value. Furthermore, the data at the far end of the frame
may be less accurate thén that near the aircraft, which is another
reason that processing time should not be devoted to any 'excess"
information.

There can be an interaction between frame length and frame advance
that affects the predictive capability of the system. The objective
is to keep the frame length long enough, and the frame advance short
enough that the predictive capability of the process is sufficient
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for the particular terrain that is encountered. This capability is
affected by the following factors:

a) Aircraft speed,

b) Acceleration limits,

¢) Slope limits,

d) Kink limits, and

e) Terrain roughness and frequency content.

The characteristic frame length computation requires an estima-
tion of the maximm expected obstacle height, H. If the specific
terrain segment to be traversed is known, an appropriate height
can be readily determined from the terrain data. However, in many
cases the exact terrain information may not be available in advance.
A possible method of estimating an H, in this case, is to select
- 3"'1" where 9y is the best estimate of the terrain standard
deviation (the roughness) in the general area of the flight.

4.4 Frame Junctions

Since one of the objectives of the terrain-following control
system considered here is to provide a fairly smooth command signal
to the aircraft flight-control system, care must be taken to minimize
discontinuities at frame junctions. Some of the possible ways of
joining frames can be visualized by referring to Figure 4-3. The paths
in the frame advance interval are of primary interest, Ideally the
computation of the optimal path for Frame 2 would start from point A,
the actual position of the aircraft at range Rl' Unfortunately, the
computation of the optimal path for Frame 2 must begin when the aircraft

is at range Ro’ and must be complete by the time the aircraft reaches Ry,
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Figure 4-3 Frame Junction

so that the commands are available for the path imeadiately following
that position. Therefore, computations for any frame must be based
on a predicted position at the begimming of that frame.

One possible way of beginning the Frame 2 computation is to pre-
dict the aircraft's position by some set of prediction equations,
based on the aircraft's position at R0 and the commands generated
by the optimal path of Frame 1. This is indicated as the point B in
Figure 4-3. The disadvantage of doing thatr, even though it may
more accurately represent the true aircraft position, is that the
optimal paths of Frame 1 and Frame 2 would be disjoint.

A more reasonable and simplier approach is to use point C on
the Frame 1 optimal path as the starting point for the optimal path
of Frame 2. In this way the optimal path will be continucus from
frame to frame, rather than disjoint. Furthermore, the slope and
curvature of the optimal path can be made continuous by matching the
Frame 2 values with those of Frame 1. Then the initial control point
is fixed rather than varied in determining the optimal path for
each frame, This is the procedure that is used in the parametric
studies of Chapter 6.
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If the comnand signals to the aircraft flight-control system are
based on a feedback controller, i.e., a signal proportional to the
difference in the optimal path and the actual aircraft path, theu
these are continuous also because the aircraft values would be con-
tinuous. A possible difficulty would result for a terrain data
update in which the new terrain is significantly higher than the old.
This is illustrated in Figure 4-4, where the initial point C for
Frame 2 lies below the minimm clearance path. This creates
difficulties for the programming algorithms, as it is likely that

there will be no feasible solution that satisfies all of the clearance .4 v

3 !
constraints. Quasi-solutions that "approximately' satisfy the con- 1 \,
straints are required in this case and will be discussed in Section 3
6. 20
Frame 2 -
. Frame 1 | clearance
Height optimal f’ path 2 :
- - 1
’,’\‘\_4’ :'—‘nl/ .
- S~a_o” LY clearance -
ﬁhl—/
%ﬂi terrain
curve 1 curve 2

Range
Figure 4-4 Infeasible Solution at Frame Junction

4.5 Control Point Spacing

The mumber of control points used per frame should be large
enough to allow adequate control flexibility. Fine spacing of the
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control points allows the greater flexibility, but it also places
stronger demards on the flight-control system, as the rate of cosmand
signal change will be greater. FRurtherwore, the mmber of control
points and constraint points needed to span the frame is also greater,
which in turn requires greater amount of computation to Solvo the
optimization problem. While it is convenient to use uniform control

point spacing, it may not be necessary, or even possible for long

- data frames, if all computation is to be done in real time. The

spacing can be graduated so that it is finely spaced in the near
frame (close to the aircraft) and coarsely spaced in the far frame,
as shown in Figure 4-5, The rationale for this is that only gross
positional changes need to be considered in the far frame where
updated data will be available for refinement in subsequent frames.
The main reason for the far frame data is to predict far enough
ahead that the aircraft will not fly into an untemmable position,
from which it cannot recover. If the spacing is too coarse, however,
a loss of control flexibility will raise the mean clearance level

for tac flight,

4 Frame Frame
Advance Overlap

k i !
ALLAL AN |
WXL Lo

f— Frame Length points T

Figure 4-5 (Graduated-Control-Point Spacing
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The limits on kink are inherently related to the control interval
and the curvature limits, as indicated previously in Eq. (3-14), and
in a slightly different fom in the following ejuations.

. '&mA‘sm

Plim (4-6)
Prax " Plim (47
Pnin * “Plim (4-8)

" Two approaches to treating the kink limits are available. The limits

may be enforced directly in the optimization problem by including
them in the constraint set. Alternatively, it may be possille to
choose the control interval such that the inherent kink limits are
acceptable for the specified curvature limits., Either of the two
alternatives must be investigated in terms of the optimization
problem dimensions, which depend upon toth the mmber of sample
points and which types of constraints are enforced.

All of the various parameters that affect the framing process
are listed in the following section, while the parametric studies
are discussed in Chapters 6 and 7. The studies include frame length,
control point spacing, computational times, and frame advance
rates.

4.6 Specification of Framing Structure

The solution of the optimization problem requires the speci-
fication of many parameters and their mmerical values. To
completely specify a framing structure the following parameters are
required:




£ o

1) Frame length,

2) Freme alvance distance,

3) Limits on path curvature,

4) Minimum-clearance distance and type of clearance,

5) Number and spacing of control points,

6) Performance measure sample points,

7) Terrain sample points,

8) Clearance constraint sample points,

9) Performance measure coefficients,

~10) Limits on path slope (optional),

11) Limits on kink (optional), and

12) Slope constraint sample points.
Note that the acceleration constraints need not be specified directly,
if the path curvature is the primary consideration. For a specified
frame structure, different nominal flight speeds can be used if the
corresponding inherent acceleration limits are acceptable, as
dctermined by

2
N im klim vnom (4-9)

"The most convenient method of sampling is to use the same sample
interval for each of the variables mentioned above. The mmerical
equations used are simplified by this procedure. However, there may
be some tradeoffs between the complexity of the equations and the
number of samples required, if some of the variables can be sampled
at slower rates. These tradeoffs are heavily dependent upon the
particular framing structures being considered and ére beyond the

scope o« this study.

LA,




: 5. TERRAIN AND CLEARANCES CURVES

Although the performance is measured and the constraints are
enforced only at discrete points, the investigation of the clearance
distance to the nearest terrain point requires a contimuous curve
representation for the terrain. Many possible representations can
be chosen; however the one selected here is a cubic spline function.
Onc of the reasons fof choosing a cubic spline, with continuous
first and second derivatives, is that this closely corresponds in
smoothness to the optimal path that will be subsequently determined
from the terrain curve. Also, the techniques for fitting cubic

: splines through data points are well developed and have been very
successful in a wide variety of applications [1].
5.1 Cubic Splines

A cubic spline function is a sequence of cubic polynamial seg-
ments joined to form a continuous function that has contimuous first
and second derivatives. The general function form is given in

I'q. (5-1) and is illustrated in Figure 5-1.

=Y

X1 X2 X3 X
Figure 5-1 Cubic Spline Function
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X'xi\

2
4C1(

4 ‘*1
y(x) = 71“1( )+B; ()

where

The junction points, (xi’yi)’ are called "knots". Many different
approaches to fitting the cubic spline fimction to discrete data
have been used [1,22,28,30}. No single approach is followed here;
the best features of routines by various authors are used.

One fitting method varies the positions of the knots and fits
the curve close to the data points in a weighted-least-square sense
[22]. However, assuming the terrain data points are the best
estimates for the actual terrain, the curve should pass through the
data points. To guarantee this, the data points are selected as
the knots. Then the fitting process is merely the determination of
the set of coefficients for each segment of the curve. For n data
points, there is a set of three coefficients (Ai, By, Ci) for each
of the n-1 segments. Note that there is no requirement that the
intervals between data points, ay, are equal, even though this is
ofteni convenient. The continuous derivatives of the spline function

are
x X- I

)'CX)’-—[A*ZB( )+3C(——)] (5-3)
1

1 XX
y'"'(x) = =5 [2 B; + 6 C ()] (5-4)
i

3
To determine the coefficients, continuity conditions on y,y' and

y'' are applied at each of the n-2Z interior knot positions, using

fOl' i-l ,2, oo -l\'l (5-1)
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the relationships: at X=X, (x-xi)/ai = 0, and at X*Xj410

(x-xi]/ai =1,

. For i=1,2,...,n-2
Ai + Bi + ci = yi*l-yi bd Yi (s's)
Ai + ZBi + 3Ci - aiy' = HiAi’l (5'6)
i+l ‘
2
2B, + 6C, = aly't mlznm (5-7)
where

Y 8 Yins (5-8)

a; )
H (5-9
ié 3i41

This set of equations can be placed in a more convenient computational
form by replacing Eq. (5-6) with Eq. (5-10), which is obtained by
subtracting Eq. (5-5) from Eq. (5-6). Also, if Eq. (5-7) is divided
by two and [q. (5-10) is subtracted from that result, Eq. (5-11) is

obtained. The resulting set of recursive equations is

Ai + Bi + Ci = Yi for i = 1,2,...,n-1 (5-5)

B + ZC 1 1+1 = -Yi for i = 1,2,...,n-2 (5-10)
2 .

C; *+ H, iPAe1 T H, Bi+1 = Yi fori=1,2,...,n-2 (5-11)

Eq. (5-5) is also applicd for the last segment (i = n-1) so that the
curve passes through Y- The total mumber of unknown coefficients
is 3(n-1), but only 3(n-2)+1 conditions have been specified. There-

fore, two additional conditions must be given to uniquely determine

a cubic spline function through the n points.

e o e i
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If both conditions are specified at one end point, the fitting

precess is simpler, but the curve can exhibit instabilities; i.e., it

may oscillate wildly between data points as illustrated in Figure 5-2.

This conditioa can be easily avoided by selecting one condition at
each end point of the curve. The digital computer algorithm used in
the following cubic spline studies was taken from the UNIVAC 1108
Math-Stat Library [30]. It allows the user the option of using
either the first or second derivatives at each end point. It is
usually more convenient to use the first derivative conditicns

shown in Igs. (5-12) and (5-13).

A= ag vy | (5-12)

Bn—l * ch—l T a

f\/\v/\\jﬂ\ |

V;

Figurc 5-2 Unstablzs Spline Function

n-1 y'n ) Yn-l (5-13)
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5.2 UNIVAC Spline Fitting Procedure

The INIVAC cubic spline ritting prmaﬁxre uses Eqs. (5-5),
(5-10), (5-11), (5-12) and (5-13) to form a set of 3(n-1) equations
that can be written using a "tri-diagonal' matrix fomm:

1000 ... A&7 Ay, 7]
1110 ... B, Y,
012-H 0 ... ¢ Yy
001[-11-H120 A, Y,
...01 1 10 ... B, Y,
(5-14)
'-no 1 2 'HzOo.c CZ = ’YZ
. 01 110 ... : :
a0 1 2K ,0 0 : Y,
e 0 1H H:Z:-z Of [Ay-1 Yh-2
.01 1 B, Y,
.01 2le. a__y' Y
L N h_n__l_l _nl n n_y

"Bi-diagonalization", or 'upper-triangularization', of this matrix
is possible by the following procedure, which will also be mathe-
matically summarized after the description:
a) First designate the second row of the matrix as the ith
TOW,
b) Subtract the equation immediately above the ith row from it,
¢) Replace the ith row equation by the resulting equation of

step b) after it is divided by the value of the first non-

zero cloment, P and

-
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eoes

LRA/< NS

d) Now designate the row jmmadiately below as the new ith

and repeat the prccess, starting at step b) above.

" The matrix then has the form

P

where the 3(n-1)-dimensional 2 vector comsists of Ai' Bi’ and Ci

1 < 0 T
0 1 <y 0
0 0 1 Csg 0 .
. C' )| C4 0
.o 0 1 .CSn—-’i
g 1
hurwpms p—

o0

“3n-4

5n3

hi u‘ Nt

w3n-4

Win-3
b o

Tow

(5-15)

coefficients that zre to be determined and the w vector consists of

appropriate linear combinations of the elements of the left-hand-

side vectoy of Fq. (5-14).

The hi-diagonalization process is easily summarized by the

following recursive cquations:

CJ_:O

¢!

fori=1,2, ..., n-1

1
Cos -
3i-17 17
i-17%3i-2
M1 T TG,
1 3i-2
tor i =1, 2, , N-2
-H.
c_. = B
3i 7_—-L3j_1

Ly IR

5 ARy 1 et e g

(5-16)

(5-18)

(5-19)

(5-20)
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I
Wy: & (5-21)
37 TTeg
-2
Coirn = — (5-22)
3i+] Hi T3
W _ Y. - Wy
3i+1 ;§;<77;-l (5-23)
i k31
Cnce the above set of ¢, and w, values is computed by ''forward"
recursion, the final coefficient, Cn-l’ is known:
Y .-w +a_ .y'
, . n-1 "3n-4 “n-1" n
Co 1 d 27 2 = Wg o = == — (5-24)
n-1 3n-3 3n-3 2= €0y
Then the "backward" recursion can be performed to evaluate the
remaining polynomial coefficients, 2y
for k= 3n 4, In-5, ZIn-6, ..., 1
S S S 5 | (5-25)

5.3 Direct Slope-Determination Spline Fits

The above process for spline representation required the
storage of five values for each data peint: the data point coor-
dinates Xis Y3 plu- the Ai’ Bi’ and ¢y coefficients. Poirier [22]
indicates that some of this information is redundant. It is possible
to completely reconstruct the spline (and its derivatives) from only
X{r Y5 and y'i, a total of %n rather than 5n values.

2

3 .,
y(x) = (1 - 30+ 20%)y, + (B - 207y,

s (o - 207+ )yt (00 - oDyt Ay (5-20)
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The corresponding set of equations for the determination of the
derivatives, y'., that satisfy cubic spline continuity requirements ’
can also be put into a bi-diagonal form, as shown in Appendix D.

1 <, 0o ...
0 1 3 0o ...
'.l. o 1 C‘ 0 L N ]

g ves ses

<

Y'z
Y'3

Y4

=
g
~N

d
[ Land

*h-2

_"n-l'cn-ly'ﬂ

The corresponding forward recursion equations are

40
W BT
fori=1 2,3, ..., n-2:

H,

i
Cisa1 ® 0N/ - c.
i+l . c;

1
385 +H; Biaq)wy

W, bd
i+l 2 (1+ Hi)-ci

. AE Yisl " Vi
s T U W

The backward recursion equation is
for i = n-1. n-2, ..., 2:

= - v
Y'i TNt Y

(5-28)

(5-29)

(5-30)

o i s

(5-31)

(5-32)

(5-33)

(5-34)



While this direct-slope determination method uses the same general
procedures as the UNIVAC routine, it has the advantages of both
requiring less spline coefficient storage and requiring the compu-
tation of fewer coefficients. The UNIVAC method requires camputation
of 9(n-1) values: the Cir Wi» and 25 3(n-1) of each. The latter
method requires only 3(n-2) values: the Cir Wy and y'i, (n-2) of
each.
5.4 End-Point Slope Estimates

The two fitting methods require end point slopes to uniquely

define the fit. For terrain systems, only the data points themselves
usually are available, but the slopes can easily be estimated from
these by using two, three, or four data points at each end of the
terrain segment. This corresponds to first, second, and third order

slope estimates, respectively, as follows:

2™
a = xz-xl
. 1 (x5-x,) (x2-%1)
Y'p ® (ﬁ) [(rs-yy) W) (yy-vy) ﬁ-;:x—l)'] (5-36)
(x4-%3) (x47x5) (x57x,)
(r2-yy) (xz-xl)z * Osyy) (x_q,-xl)2 * Oy (x4-x1)2
y.c - X,-X X,4-X X=X
47%3 4%z 37%2
—. + =
(XZ'XI) (xs-xl) * (x4-x1)

The indices are ordered starting with 1 at either end point and
counting toward the interior of the data interval.
Terrain data from a typical test terrain located in Pemnsyl-

vania (designated 6201) [4] is used in the studies that follow. It

(5-34)

{5-37)

e m~'§('g:--4‘evv e
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is classified as modcrately rough, op = 367 feet. The splines are
relatively insensitive to the order of the slope estimate for the '
typical terrain profile, as shown in Figure 5-3. Therefore, an

" extreme test profile ("’l‘ = 963 ft) was constructed in an attempt to

differentiate between the three types of estimates. The plots for
this case are shown in Figure 5-4 and do show same differences at
the right end. However, there is no clear choice of a best fit, so
the final choice for actual implementation could be made based on
the ease of implementation, which would be the simplest one,

Fq. (5-35).

5.5 Clearance Curve Determination

In the deteﬁnination of the clearanﬁe curve, the effect of
different types of clearance measurements is of interest. The
measurement considered most accurate is the slant clearance {clearance
to the nearest terrain point), but the easiest one to use and the
one most frequently used in terrain following is the vertical
clesrance. The two types will be compared in this section.

It is fairly simple to cumfe the locus of points that have a
specific normal offset distance from a cubic spline terrain curve.
Such a locus is generated by continuously moving a line segment of
the specified clearance length along the terrain curve so that it
is always normal to the terrain. A 3000-foot-offset curve is shown
in Figure 5-5 for the extreme-test segment constructed earlier. As
indicated in the figure- there arc problems when the instantaneous
radius of curvature of the terrain curve becomes smaller than the
specified offset distance. Loops with cusps are produced on the

offset curve. The obvious method for obtaining a clearance curve
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Figure 5-4 FExtreme Test Terrain with Differeat End Slope Estimates

from the offset curve would be to reject those points on the offset
curve that are on thc loops or near the crossover point. The cusp
at the crossover point is undesirable for a smooth clearance curve,
Proper selection of points from the offset curve for cubic splining
was the approach finally considered in this study. The elimination
of "improper" points on the offset curve is not a simple procedure,
but a method for doing this is presented in Appendix E. The slant
clearance curve shown in Figure 5-5 was obtained by this method,
which is considered a minor part of the study, since the presence of
loops would be very unlikely for practical data point spacings and

real terrains.

»
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_3-K ft-offset
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vertical \
- clearance
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terrain curve
R T T T ~
0 2 4 6 8 10

RANGE (K ft)
Figure 5-5 Fxtreme Test Terrain Clearance Curves

Also shown in Figurc 5-5 is the vertical clearance curve which
is just an upward translation of the tervain curve. The differences
are pronounced for the extreme casc shown; they would not be as
different for typical terrains, as indicated in Figurc 5-0.

An alternate approach to using the offset curve to construct a
slant clearance curve is to use a '"local" estimate of the vertical
difference betwecen the slant clearance and the vertical clearance
curves, The term local refers to the fact that the slope and
curvaturce at a single point on the terrain curve would be used {or

the estimate, while the true Jdifferences are determined by many
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points. The estimates are ilJustrated in Figure 5-7, and are based
cn the assumption that the incstantaneous radius of curvature is
 constant over the interval AR. This is not true for a typical

1 terrain curve, but it ié necessary iu order to obtain a simple

estimote. The constant radius of curvature does not imply constant
5 ,

. "curvature" (k = g—%), as secn by the relationship . ' :
1 dR -
T = %»Secjv ’ (5-38)

where y is the path angle, which varies with range. Note that the
radius of curvature is also nepative when the curvature is negative. ‘
The estimate can be obtained from the CST triangle in Figure 5-7

by the cosine law,; as showr in Appendix F,

T8 . //re 2 . -
<= + 8§ % A= - v/ (= -mMY*" - 21 - al {5-39)
C. =D = = st (1) /(= - n) 2r(n - ) (5-39)

where n is the normal {(slant) clearance distance and

¢ 4N Cos y {5-40)

terrain
curve

C

a. positive curvature b. negative curvature

Figure 5-7 local Lstimutes of Clearance Dicdferences
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There is a simpler approximation if the magnitude of x, as defined

by Eq. (5-41), is very small compared to unity.

x 4 2Zrm"(n-8) an(n-el (5-41)
(re-n“) (0-nw)“ ’
where
3
woll=K (5-42)
: Then
' 2
. m(n-6) _ n"(1-w)
c =1 + = (5-43)
15 (Tﬂ"n?'; —(e-wn)

The total vertical clearance distance for the estimated curve is Ca
A comparison of the three types of cleurance curves is made

in Table 5-1. The slant-clearance curve is used as a standard of

reference; the differences betweer each of the other two clearance

curves and it are listed, 'The da*ta in the table are given for two

. AhE eairvenc test scgment and the typical terrain

L7H]

tercein profile
seginent, which were shown in Figures 5-5 and 5-6, respectively.
Because of its local nature, the estimated clearance frequentiy

corresponds to the clearance distance for the lower portion of a

|
|
i
3
|
?
sﬁ
|
é
;
%
a

loop when loops are present on the offset curve, This is an

undesirablc feature, as can be seen from the extreme-test terrain é

| A
: ; ciearance daiu, buil ihe typical terrain clearance data shews that j
the estimated clearance is an excellent approximation of the slant é

2

¢learance when loops are not present in the oifset curve. Since ]

! i A

‘ the estimated clearance requires significantly less computation,

it would be a good selection for the reference clearance path in "

rough terrain.  Fstimated clcarance is used for the clearance curves

in the paramctric studies in Chapters 6 and 7,
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Table 5-1 Comparison of the Differences in (Clearance Curve Heights "
VC - Vertical-Clearance Cuxve . ‘
R
SC - Slanc.-Clearance Curve q
IC - Istimated-Clearance Curve g?
Typical Terrain Extreme Test Terrain KE
=z R
Range VC-SC EC-SC vC-SC EC-SC RE
(A1l Values in Feet)
2000 - .20 - .10 - 089.3 - 52.5
4000 - .28 .00 - 50.8 + 1.6
6000 - .00 .00 - 215.5 4+ 25.3
8000 - .80 .00 -1400.3 -1159.5
10000 - .26 .00 -1722.5 -1716.8
12000 - .86 .00 - 395.5 - 102.7
14000 -2.34 + .02 - 102.8 + 124.6
16000 -5.74 + .02 - 118.4 - 104.9 R
18000 -3.02 .00 - 927.8 - 883.3 4
20000 -7.06 ~ .06 - 424.6 0.0 3
22000 -4.08 - .02 :
24000 -6.52 ~ .02
26090 -8.72 + .08 .
28000 -1.14 .00 3
30000 - .86 .00 ]
32000 -4,066 + ,04
34000 -7.20 - .02
36060 - .18 .00
38050 -4.00 + .02 ]
40000 - .36 ]
1
1
42000 - .36 .00
44001 - .08 .00
46000 ~0.44 .00
48040 -6.32 + .02
50000 -3.10 + .02
. “‘“‘"‘“‘1




0. REFERENCE PATH DETERMINATION
AND PARAMLTRIC STUDIES

The previous chapters developed the optimization problem for the
determination of a reference path and discussed the parameters

Co affecting that proolem. In this chapter various solutions of the

optimization problem are considered, as well as some of the charac-

teristics of the algorithms that are used to compute those solutions.

Two basic approaches to solving the problem are discussed: the

{first is a penalty function method of treating clearance constraints,
the second and preferred approach is to treat the constraints

; directly by the mathematicil programming method. The discussion

: j/ of the penalty function approach is brief and is included only

7 because it is one that is frequently used with state variablie
inequality constraints, and some interesting charactristics are
SR observed when usig it.

5 ) 6.1 Penalty Funciion Approach

; The first approach is an exterior penalty-function method

utilizing a general parameter-search optimization algorithm, The

penalty function limits the clearance constraint violations and

scarch-direction limits enforce the curvature constraints. A
Davidon rank-onc search algorithm [9] is used. The rank-ore algor-

ithm is not as commonly usced as the Davidon rank-two algoriiim,

) which 1equires a one-dimensional optimization along the search
divection in paramcter space. The rank-one algorithm was selected

because it has a self-adjusting step size that docs not require a

J
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onz-dinensional optimization along cach search direccion and it
was felt that fewer itcrations would be required. Both algorithms

use estimates of the variance (the inverse of the Hessian matrix) to

establish seavch directions in the parameter space. The rank-one

method updates the variance estimate with a matrix of rank-one, based
on the gradient vector. Details of the methed are found in
Reference 9,

The penaity function creates convergence problems near the
final solutions, becavse of thz artvificially steep cost surfaces
introduced by the penalty term. This is a problem discussed by
Beltrami 5| and otheors [17]. To further complicate convergence,
the paramcter limits on curvature also interrupt the nommal search
procedure, The Davidon roatine was modified to reduce the effective
dimension of the scarch wheuever a parameter space boundary was
cencountered.  This was done by reducing the rank of the variance
cstimate appropriately. lHowever, once the rank was reduced, the
search remained on the corresponding bourdary. To allow for flex-
ibility so that the search couid leave the boundary, special tests
and procedures to incrcusce the rank of the variance had to be in-
corporated. The technique 1s 11 ustrated in Figure 6-1, for a
search in a two-dimensional space. The level curves of the cost
function are sketched and the nepative gradient diractions are
indicated by arrows along a possible search patn. It one of the
boundarics is encountered dvring the search, the rethod searches

the boundary surface by reducing the variance in rank 7to a rank of

o ne sl o et ok
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Figure 6-1 Bounded Parameter Search

ol . one, in the example). Any time the negative cost gradient points
out of the allowable parameter space the search contimnues on the

boundary, but if the negative gradient points inward the variance

rank is increased again to allow the search to leave the boundary.

The precedure works f{airly well, but when coupled with the penalty

function ill-conditioning there are regions where the method

tends to jump on and off the boundary as it jumps back and forth
across the penalty function valley. This difficulty could probably

be eliminated by an acceleration scheme such as those discussed by

Beltrami {5], and Kelley and Denham [17]. Sequential increases

in the penalty function coeificient improve the convergence for

some problems, but stepping the cocfficient does not help signifi-

cantliy for this problem. This is due to the ndature of the parameter

rust 1elationship. Trajectorics which lie very close to one

!
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another in position space may Jdiffer in all the curvature parameters
-- not just in one or two. Small changes in the near frame parameters
causc larger changes in the far frame trajectory because of the double
intcgration of the control function. So it is not casy to go from
the solution for one penalty coefficient to that of another, because
of the complicated interaction of sensitivities and constraints.

The moderately rough terrain segment shown previously in
Figure 5-3 is used to test all of the optimization approaches con-
siderced in this chaptef. A typical penalty function solution is
shown in Figure 6-2. The framing structure for this solution is
Structure 1 in 'l‘at;le 6-3 on page 86, which gives the structures for
all of the cases considered in this chapter. The mumber of iterations
requirced for the solution to converge is very large for some frames
when the pcnalty function approach is used. However, the rate of
convergence is rather rapid at first and then slows considerably
as the nunber of iterations increases. This fact is confirmed by
Figure 6-3, which dcpicts solutions with various limits imposed
upon the number of iterations in cach optimization frame, Very
little improvement is observed in the path when more than 80
iterations per frame are allowed. The case with a 150 limit has
slightly greater clearance violation, but the path also goes slightly
lower into the vallcys than that for the 80-1limit case. There is
cssentially no differencc betwecn the 500-1imit path and the p~th

without limits shown in Tigure 6-2. Therefore, the large

e i A S et e ek e e e
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number of iterations are not really needed for reasonable
performance.  The final path refinement is not significant, while -
the computation time reguived for it is large. The solution times
corresponding to the various limits are given in Table 6-1 for
framing Structure 1 (Table 6-3). These times are compared to the
solution times for the quadratic programming rcutines which will

be discussed below.

Table 6-1 Central Processor Solution Times

Iteration Limit Average Time
Approach Per Frame Per TFrame (Sec)
Penalty Function 80 2
150
500
none ) 11
Quadratic Progranming
Shankland none 1
Lemke-Ravindran none )

The penalty function approach requires more computer time and does
not have well Jdefined lower clearance bounds; therefore, the pro-
gramming solutions are 4 much better approach.

6.2 Quadratic Programming Problem Approuch

Two quadratic programming alporithms are used to obtain solutions
to the optimization problem, Shanklond's algorithm {29] uses the
direct quadratic programming formulation described in Section 3.4,
while the Lemke-Ravindron alporithm [20] is based on the complementary

problem of Scction 3.5,




b0 i,

Shankland's method seeks to find a solution by iteratively en-
forcing varicus sets of the inequality constraints as equality con-
straints. The proper set of constraints is fournu by considering the
control vector that maximizes the performance index subject to the
enforced equality constraints. The maximizing control vector at
any particular iteration step may violaie some of the inequality
constraints that are not imposed at that particular step. The
iterative procedure selects some of the violated constraints for
aldition to the imposed set by minimizing the Euclidean norm of the
constraint violation vector., If a solution exists the violation is
driven to zero. If a solution does not exist, the violation vector
is minimized. This is a Jdefinite advantage when numerical errors
make the problem "slightly infcasible."

The Shankland algorithm does require a positive-definite
yuadratic performance matrix, so it is not as flexible for performance
criteria investigations as the Lemke methc.., in which the quadratic
matrix can be set to zero for a linear performance criteria. However,
the Shankland method requires considerably less storage space than
the Lemke algorithm uses, since it does not store the complete
complementary problem matrix. If Q and C are designated as the
quadratic cost matrix and the complete constraint set matrix,
respectively, their dimensions are indicative of the storage space
required for Shankland's method, but the Lemke routine, as used,
combines these matrices into the much larger M matrix with a large

number of zeroes in the lower right corner.

X
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" (6-1)
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(Typically the zero matrix may be 40 x 40 or larger). It is possible
to reprogram the Lelnke.algorithn to take advantage of the zero
matrix, but the optimization of the computer programming is beyond
the scope of this study. |

The solution of each data frame is essentially the same for
both algorithms. The Lemke routine is chosen for further analysis
because of its {lexibility, but it is not necessarily recommended
for use in an operational system. The Lemke algorithm used in this
study is one revised by Ravindran to use a special Reviséd Simplex
scarch. This algorithm worked extremely well, except for very large
M matrices of dimension near 100. (Ravindran's routine was originally
limited to a dimension of 50). For the large dimensional cases, a
large mmber of iterations caused a build-up of round off errors in
the recursively calculated matrices, until reasonable solution
accuracy was lost on some particular data frames. The more
reasonable 60-dimensional problems produced solution accuracies of
approximately seven sign‘ificant digits. This accuracy is determined
by comparison of the two sides of the complementary problem vector
equation (Eq. 3-39). Similar mmmerical difficulties are éxperienced
during a matrix decomposition routine used in the Shankland method
when large dimensional optimizations are attempted.

A comparison of the successive frame solutions using the penalty

function and the quadratic programming approaches is shown in
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Figure 6-4 for framing Structure 1. Although it is more natural to
think of the control variable in terms of. acceleration, the curvature
is plotted throughout these studies. The curvature is nore closcly
related to the path and it includes the effects of both acceleration
and velocity. For example, the curvature limits in Figure 6-4 of
0.0000875 and -0.0000175 £l correspond to +3.4 and -0.58 G's at

Mach 1 (V=1117 fps), or to +0.85 and -0.17 G's at Mach 0.5 (V=558 fps).
To give the-reader a fecling for the control magnitude, tie acceler-
ation limit corresponding to each curvature limit is shown in the
figures and is based on a nominal velocity of 894 fps (Mach 0.8),
unless otherwise specified. This is the velocity used in the air-
craft simulations discussed in Chapter 7.

The framing process is illustrated also in Figure 6-4. Three
frames are shown with a {rame advance distance of 4000 feet. This
same advance is used for most of the studied framing structures. |
It is chosen to be small compared to the frame lengths used, and
it is held constant to minimize any interactions between other
framing parameters. Only the portions of the optimal paths in
each of the advance intervals is used for guidance in real time
application.

The penalty function trajcctory lies lower than the quadratic
programming trajectory, but it also violates the clearance constraints,
If the lower clearance values are. acceptable, it is preferable to
intentionally set the clearance level lower than to allow violations
of the clearance lavel. This would provide more reliable control of

the minimum clearance distance.
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6.3 Performance Criteria Study

An important concern in terrain following is the criterion for
"closeness.” uadratic, linear, and min-max criteria, based on the
clearance distance above the reference clearance curve, are
considered here. The effect of the squared term in the quadratic
cost function is to emphasize large clearance errors more than
small errors. The min-max criteria goes even further in this

direction.

6.3.1 Quadratic and Linear Performance Measures. The linear
performance measure can be cohsidered as a special case of the
quadratic measure where the squared term coefficient, Qn’ of Eq.(3-2)
is set to zero. Before the study of the coefficient values of Qn
and L, was conducted, it was assumed that a change in the ratio of
these coefficients could make a significant change in the solution.
The values of Q, and L, are the same for each sample point, but

to "normalize' the performance measure, these values were based

on the number of sample points. That is, values of cQ and c, were
specified and the Q and L, were computed from these and the

number of performance measure sample points, Np‘

C
Q= (6-2)
p
L
ﬁ; (6-3)

Four sets of coefficient values are shown in Table 6-2, and the

corresponding trajectories are essentially the same, even though
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there are some slight differences in the curvature controls, as
 shown in Figure 6-5. The data in Table 6-2 are for seven frames
based on Structures 2 through 5 of Table 6-3. The framing

structures are identical except for the performance coefficients.

Table 6-2 Cost Coefficient Comparison

Framing c c Total Nr Cqmutation
Structure Nr. Q L of Iterations Time (Sec)
2 .1 .0 210 9.0
3 .1 .001 206 8.9
4 .1 .1 291 9.8

5 .0 .1 ' 329 10.7 .

Contrary to what was initially expected, the trajectories are

yuite insensitive to the values of the cost coefficients. After a
little reflection this is not too surprising': the trajectories for
the terrain following problem tend to be very constraint bound.
The major portions of them are on some form of constraint boundary:
a maximm pull up, a maximm push over, or a clearance curve
boundary. The optimization problem, then, consists primarily of
piecing these different types of trajectory arcs together at the
proper points with suitable transition arcs. This is just the type
of procedure that terrain-following investigators have attempted to
do for some time now in the construction of ideal paths, but the
schomes have not been applicuble to real time implementation
(except for that of Creaves).

Although the linear performance measuv:e (last one in Table

6-2)requires slightly more computation time with the Lemke algorithm,
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it is worth noting that it does have significant advantages. The
Lemke routine was used for this linear case because of its flexi-
bility, but other linear programming algorithms could be used. Some
would require less computer storage and would probably he faster,
since the dimension of the overall programming problem would be
reduced from that of the complementary problem.
6.3.2 Min-Max Criterion. Although minimizing the maximm vertical
distance above the reference clearance path seems to be a reasonable
criterion, it does stress one critical clearance distance on the
data frame interval. Figure 6-6 shows the composite solutions from
three successive data frames using the min-max criterion, with Q, -
I, =0, compared to the solutions for the quadratic criterion.
‘These correspond to framing Structures 6 and 8, respectively, of
Table 6-3. Notice that the optimal path for the min-max criterion
does not follow the smoother portions of the clearance path as
closely as does that of the other criterion, where the optimal path
coincides with the clearance path unless the curvatures are too
great. Another disadvantage of the min-max measure is that the upper-
limit constraints on the clearance values increases the dimension
of the programming problem (a linear one) with additional constraint
equations. Since the difference in clearance maxima for the two
paths inkFigure 6-6 is less than two feet, the disadvantages outweigh
the advantages for this performance measure.
6.4 Frame Length Study

The characteristic frame length was developed in Section 4.1

to estimate the minimum frame length required for good terrain
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Figure 6-6 Min-Max vs. Quadratic Cost Solutiomns

following performance. This portion of the study tests the validity

of that estimate. The computational details of the characteristic

frame lengths and control intervals for the "“hard' and ''soft" rides

are tabulated in Appendix B. The frame length values of 18,800

and 30,800 feet are based on a maximum-expected-obstacle height

of 1000 feet and on the framing Structures 7 and 10 of Table 6-3.
To study the effects cf frame length on the framing process,

three different frame lengths are compared for each of the charac-

teristic lengths. One length is approximately equal to the

characteristic length, one is shorter, and one is longer. The
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lengths used in the study are gi\;en in Table 6-4, along with a
sumary of other pertinent framing parameters. The complete sets

of fréming parameters are those for Structures 7 through 12 in

Table 6-3. Table 6-4 also gives the characteristic control intervals

and the actual intervals used for the optimization solutions.

Table 6-4 Frame Length Study Data

Characteristic Clnggt . Time

Control ' Frame Frame Complem. Nr. of Avg,
Type of Interval Interval Length Length Problem Frames Frame Total
Ride (ft) (ft) (K-ft) (K-ft) Dim. in Rm (Sec) (Sec)
Hard 1000 1440 18.8 12 36 10 0.9 8.9
(-1,+2 G's) 20 60 8 2.4 21.5
V=894 fps) 28 84 6 6.2 37.1
Sof't 2000 340 30.8 20 40 8 0.8 6.6
(-.25,+2 G's 32 64 S 1.6 8.2
V=894 fps) 44 88 2 3.1 6.2

The large contrnl interval is used for the soft ride to reduce
the number of sample points and, hence, the dimension of the
nptimization problem. The acceleration values shown in the figure
are for two sets ol curvature values at Mach 0.8. The same control
interval is used for cach case in a particular ride set; thus, the
frame lenpth is the only {raming parameter varied in each set.

The hard ride optimal paths and controls are shown in
Figure 6-7. The two longest {rame lengths (20 and 28 K-ft) produce
essentially the same paths. This indicates that any frame length

greater than 20,000 fcet is not needed. The shortest frame length
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represents a 40% range reduction from the mid-length case. The
corresponding reduction in predictive capability produces small
degradations in performance after the terrain pesks. The charac-
teristic estimate of 18,800 feet agrees well with the length of
20,000 feet that provides good performance over the test terrain
segment.

For the soft ride, the two paths corresponding to the two
longest frame lengths are also essentially the same, even though
there are minor variations in their curvature profiles, as shown in
Figure 6-8. The shortest frame length is a reduction of 60% in
range from the mid-length case. This large reduction causes a
corresponding significant decrease in performance after the peaks.
The use of a control interval significantly larger than the charac-
teristic control interval may also be a factor contrituting to the
performance degradation. Once again, the characteristic frame
length of 30,800 feet appears to be a good estimate of what is
required for good performance in Figure 6-8 (approximately 32,000
fcet).

The total time comparison for the soft ride in Table 6-4 is
misleading due to the disproportionate length of the longest frame
compared to the total runge of the run (48,000 ft). Table 6-5 shows
a more detailed comparison of the run times for the soft ride with
the two longest frame lengths. (The shortest frame length run was
not considered in this comparison since its performance was

significantly worsc). The average frame times are used to predict
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computation times for two longer runs. Since the range covered by

successive {rame-advance intervals is the portion used for guidance,

those corresponding portions must be comparahle for two different
frame lengths if the run time comparison is to be meaningful. As
the total range of the run increases, the advance coverage for the
cases shown in the table becomes more nearly equal. As expected,
the longer frame length requirgs longer run times, just as it did

for the hard ride comparison.

Table 6-5 Soft-Ride Computational Run Time Predictions

Avg, Frame Total
Run Frame Frame Number Advance Time
Length Length  Time of Coverage (*Predicted)
(K-ft) (K-ft) (Sec) Frames (K-ft) (Sec)
48 32 1.6 5 16 8.2
44 3.1 2 4 6.2
72 32 1.6 11 40 18.0*
44 3.1 8 28 24.8*
96 32 1.6 17 64 27.8*
44 3.1 15 52 46.5*

Comparison of Figures 6-7 and 6-8 indicates that as the maneuver-
ability of the vehicle decreases the predictive capability of the
control system nust increase; i.e., the system must "look' further
ahead. Turthermore, narrowing the acceleration span increases the
vchicle's‘ flight range, but it also increases the mean clearance
of the path. The increase in possible flight range of the vehicle
can be verified by considering the curvature profiles. The

magnitudes of the curvature values are an indication of the induced



drag on the vehicle at any time. As the induced drag increases the

flight range decreascs for a given fuel supply. If total range
is critical, a compromisc must be made between the acceleration-

limit span and the mean clearance altitude for the flight,

6.5 Control-Point Spacing

The spacing of the control points certainly affects the
resulting trajectories in regions where the control is not on a
curvature-constraint boundary for an extensive distance. This
is illustrated in Figure 6-9 by three cases with different control
intervals. All other framing parameters are held constant, as
indicated in Table 6-3 by Structures 13 through 15. To prevent the
problem dimension from becoming too large for the finest control-
point spacing (500 fcet), the last half of the frame uses a 1000-ft
spacing.

On the fourth frame of the run with 500-ft spacing, computational
difficulties were encountered. Because of solution inaccuracies ‘due
to round-off error accumilation from the third frame, the fourth
frame had an infeasible solution--the path was slightly below the
minimsn clearance curve at the begiming of the frame. Therefore,
this run only covered a total range of 28,000 feet, while only
14,000 fcet of that range was covercd by the 500-ft interval spacing
of the control points. The majority of the remaining range is
composed of pushover arcs. These portions are very predictable in
nature. Therefore, the portion shown in the figure is fairly

representative of the behavior with the fine control-interval spacing.
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The behavior more closely resembles a bang-bang control than does

either of the other two spacings. The finely spaced control has
the largest kink values and the largest excursions in curvature.
This places a mich heavier stress on the tracking and flight-control
systéns, as well as the structural components of the vehicle.
Vibration and fatigue may become serious problems for prolonged
flights in this regime.

A comparison of the run times for the control interval study
is shown in Table 6-6. The fine-spacing runs not only require much
greater computation time and taxes the control system more heavily,
but it decreases the total flight range, while lowering the trajec-
tory only slightly in some regions. For these reasons, the mumerical
problems with this framing structure are not pursued further,
although programming refinements could probably overcome the
difficulties.

Table 6-6 Control-Point Spacing Parametric Data

Camputation Time (Sec)
Control Nr. of Complementary Number Average

Interval Control Problem of Per
(ft) Points Dimension Frames Frame Total
500 30 80 3%- 6.7 26.9
1000 20 00 8 2.4 21.5
2000 10 40 8 1.0 7.8

There must be a compromise between small control intervals to
allow the path to follow the terrain more closely and large control

intervals which reduce the computational and control rate
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requirements. The particular vehicle and mission must be considered
in making this decision.

6.6 Slope Constraints

Slope constraints on the flight path have usually been applied
in previous designs to prevent the aircraft from descending too
deeply into valleys, from which steep recoveries are required,
followed by excessive overshoot of the terrain peaks. For this
reason, slope constraints have not been applied in this study prior
to this point. For some applications, definite requirements do
exist for slope constraints, such as for transport aircraft or for a
"let-down'' from high altitude. The effect of a dive constraint (-0.1
minimm slope limit) on the optimal path is shown in Figure 6-10.

No positive slope limit was imposed in this case, The slope-
constrained path is compared to one without slope constraints; these
two cases use framing Structures 16 and 17 of Table 6-3. The paths
appear very much as one would expect, with flattened let-down
segments in the regions where the negative slope constraints are
active. However, the curvature profiles show that there is not
sufficient time for the path to reach an equilibrium condition of
zero curvature over any appreciable interval in these regions.

The addition of the dive constraint increased the complementary
problem dimension from 60 to 80. The maximm desirable dimension
for the Lemke-Ravindran routine appears to be approximately eighty,
but other algorithms could probably handle higher dimensional

problems, particularly the linear programming algorithms.



$33933T IULBIISUDD AATQ 0T1-9 I3y

O 1

I- um _0TXp-=

.|||.:H=MWNWV%&%\Y¢YAYAv¢YAYAM _ﬂ/zq m

(s,92)
1-33¢.01%8=

(ur) JONVY
& 9 § v ¢ 4 T 0
r e 1 1 [ |
re1193 —
\h SAIND IDUBLEITD S,
. \.w JUTBIISUOD
S 9ATP INOYITM |
[ 4 4_
-~
JUTRIISUOD SATP YITM
=3
. . e e o

008
(23} oI

0091

(7_01x1_13) TINLYAUMD

il M (ML \ 25 AT RS, - P

Ce i ey ——o—

J— ER Ry

et s v
|




s ———— - e e e eer e e

TRETY WIS P RO
[ 4

99
i
. The choice of various {raming parameter: should be bascd on
! ‘ overall system considerations, including tracker performance, which

is discussed in the following chapter. It should be emphasized

that most of the changes in framing parameters that may be desired

for various trade-offs do not involve computer program changes;
the oniy required changes are numerical data values. Therefor~,

the optimization scheme 1is very flexible.
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7. SIMULATIONS OF THE TRACKER SYSTEM

A varicty of tracker systems can be used to make the aircraft
follow the optimal paths presented in the previous chapter. However,
one of the goals of the optimization problem is to obtain a path that
can be easily followed, and the solution of the optimization problem
provides much more information than is available in other types of
path processors. All derivatives of the optimal path are available
to provide the tracker with same predictive capability. The block
diagram for the general tracker system is shown in Figure 7-1.

- optimal path pitch
optimal § derivatives commands aircraft
path o tracker § control
1] (1] ey
computer ho,h o,h o’h o system 5c system
1 navigation
system
h, h', b

Figure 7-1 General Tracker System Diagram

The derivatives shown are with respect tc range, rather than time,
so the coordinate transformations of Eqs. (7-1) and (7-2) are required

either in the navigation or tracker system.

=9 - % (7-1)
x'=t'x (7-2)
This conversion is considered more appropriate than the use of the
time domain, since terrain is {ixed in the range domain and control of

the path with respect to the terrain is the ultimate aim of the control

100




71
!
1
-~ i

7

.- e e kmmeme e e T e L T S S AN St v - - p——— R s s gy

e R At e

| _ 101

system. To test the optimal paths that have been generated for

tracking fecasibility, a simple tracker system is combined with a sim-

. - ulation of an aircraft. The specific tracker system studied is

diagriammed in Figure 7-2.

"o {61 | limiter  pitch
| . . g pi aircraft
optimal th o . s & flight
path ‘—'_‘? 2 5 control
] computer | * G system
N - : h
° T navigation
h' system

Figure 7-2 3-Channel Optimal-Path Tracker System

To determine pitch commands, three error signals are used: the
altitwde error and its first and second derivatives with respect to
range. Each error is based on a comparison of the optimal-path value

with the aircraft's actual value as determined by the navigation

system. Since the optimal path is computed with continuous first and
second derivatives, and the aircraft values are continuous, the
error sigrals are also continuous. Since a range interval of optimal-
path data is available prior to its use by the tracker system, a
pure advence in range of the optimal curvature signal is feasible to
compensate for lags in the overall aircraft system. However, the

. cffects of lag are minor for the aircraft in this simulation, so
this possibility is not pursued further.

The tracker system does not require "full state variable feedback",

but it does require a coordinate transformation to convert the aircraft
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motion from time dependency to range dependency. The nonlinear air-
craft model has eight state variables, but only three variables are
fed back for the tracker system employed here: h, h', and h'".

The simplifying assumptions made in the simulation are as
follows:

1) The atmospheric density, p, and the speed of sound are
constant,

2) The center-of-gravity of the aircraft does not change during
the flight segment, and

3) Perfect navigation data on the aircraft state are available.

The particular aircraft data used for the similation are for the F-4C,
and the model is made as accurate as possible for the data available
[12). The sim:lation model incorporates a stability augmentation ‘
system (SAS) and a linear model of the control-surface actuator. A
limiter is included to prevent the commands from driving the control
surface past its physical stops, which allow a total stabilator
rotation of 28°. The aerodynamic moment and forces are computed as
linear combinations of the state variables, with the stability
derivatives as coe{ficients; however, the nonlinear dynamic equations
for aircraft motion are used, This provides a more accurate aircraft
model than the completely linearized onme frequently used to investigate
aircraft control systems. The aircraft equations of motion and data
are given in Appendix G. The nominal flight speed for all runs is
Mach 0.8 at sea level (894 fps).



T e

103

The spatial frequency content of the input signals to the tracker
are determined strictly by the character of the optimal path. The
curvature and kink limits, the control point spacing, and the terrain
data affect the frequency content of the optimal path. Therefore, the
set of tracker gains that minimizes the tracking errors is dependent
upon the framing structure as well as the terrain. It is possible
to change the gains in the tracker based upon the particular framing
structure selected and upon the anticipated terrain roughness;
however, a set of fixed gains worked well for all of the framing
structures tested in this simulation.

The gain values used in the tracking simulation are approximately

those obtained by a simple gradient parameter search [27] to minimize
the sum of the squares of the tracking errors in each channel.
Various test curvature control-profile fumctions were used as input
signals to the tracker system in the process of adjusting the gains.
The resulting gains are only appropriate for the particular aircraft
system that is simulated here.

lor two sets of gains, Table 7-1 lists the performance data for
tracking an optimal path with a fairly oscillatory control curvature.
The path is the one shown in Figure 6-9 with the 1000-ft control
interval (l’ramfmg Structure 14 of Table 6-3). The first set of
gains was chésén after a few trials based on the estimates of what
would be appropriatc if the aircraft behaved as a third order linear
system. The second set is the result of the gradient search optimiza-

tion that started from Set 1 values. Although the improvement in
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Table 7-1 Tracker Gains § Performance

(Based on 241 Sample Points at 200 ft Intervals)

GAINS Set 1 . Set 2
Gy 5.0 5.0
Gy 1.0 2.0
G, 0.4 0.8
TRATKING ERRORS:
max +18.34 ft +11.46 ft
sh { min -19.08 -11.70
RMS 9.21 6.50
max +,02649 (+1.5°) +.01268 (+0.77)
as {min -.02828 (-1.6°) -.01151 (-0.6°)
(RS .01143 { 0.6%) .00535 { 0.3%)
max +,9782x10 et 1(2.45 6)| +.2053x107%£2 73 (0.51 &)
sk {min -.6932 (-1.73 G)| -.2409 (-0.60 G)
RS .1877 (0.46 G)| .0s00 (0.20 G)
Optiral
ACCELERATIGNS: | Path Values
{mm; +2.00 G's +2.11 G's +1.94 G's
min | -1.00 -1.49 -1.08
aN:‘llof- LS 1.0 0.53 B
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‘performance obtained by the tracking optimization is not large, it

is significant enough to add confidence in the use of the improved
gain set.

The perfommuuce using Gain Set 2 for a variety of optimal-
trajectory inputs is illustrated by the remaining figures in this
chapter and the data are summarized in Table 7-2. Shown in each figure
are four plots: first, the altitude or height error, then three com-
parisons of the optimal and aircraft path data--the heights, slopes,
and curvatures. These plots indicate the error behavicr in each of
the three tracking channels. A soft-ride trajectory is shown in
Figure 7-3, while Figures 7-4, 7-5 and 7-6 show hard-ride runs with
basic control intervals of 2000, 1000 and 500 feet, respectively.
These runs use framing Structures 11, 13, 14 and 15 (Table 6-3).

In Table 7-2, the minimum height error appears insensitive to
variations in the jerk limits. However, the maximm and RMS height
errors show a trend toward increasing errors with increasing jerk.
The run with the finest control-point spacing appears to be an excep-
tion to this trend, but it is based on fewer sample points over a
portion of the terrain that appears to cause smaller tricking errors,
as can be observed from Figures 7-3 through 7-6. All other tracking
errors follow the same trend. Furthermore, vehicle fuel economy
and pilot ride comfort vary inversely with jerk and RMS acceleration.
Therefore, it is desirable to kecp the jerk and accelcr.ation as low
as possible, but restriction of this maneuvering capability also

increases the RMS excess clearance for the flight, as indicated by
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the values listed for the reference path in the table. Some compromise
between the two effects is required.

The accelerations given in Table 7-2 are those measured at the
pilots station. Since the pitch rates are small, there is little
difference between those and the normal accelerations at the aircraft
center-of-gravity. The objectives for this controller are to coatrol
very closely the extremes of the normal acceleration and the terrain
clearance. The sim:lation results presented here indicate that this

is done extremely well.




8. REAL TIME AIRBORNE APPLICATIONS

s

The overlapping frame process described in Chapter 4 was
designed for real time airborne application, as illustrated in
Figure 8-1. Three successive overlapping frames of terrain data

S

terrain data frame 1
N guidance frame Vl

{rame terrain data frame 2
advance optimization frame
| terrain data frame 3

f
advance | terrain input frame

Figure 8-1 Real Time Framing

are depicted in the figure for a particular time, t. The time inter-
val allowed for the optimization processing of one frame is at.

Frame 1 contains information that is based on terrain data that was
input to the system two time intervals earlier, at t-2at. The path
optimizer began processing this terrain information one time interval
carlier, at t-At. The optimal path solution that was computed is
currently being used in the tracker system for guidance of the air-
craft. Also, at time t, the Frame-2 terrain data is being processed
by the optimization routine; it was input to the system one time

interval earlier, at t-At. The terrain data in Frame 3 is currently

being input and stored in the processing system. The terrain data can

112



3

ey ——— e T

e — NiatitetnetRib R

B S

113

be provided by a forward-looking radar, or it can be obtained from
stored terrain map data if the aircraft position relative to the
map is lnown.

During the time corresponding to each of the frame advance inter-
vals, a complete optimization problem is solved, and a new set of
terrain data is stored. These two distinct information processes can
be done simultaneously, or on a time-shared basis, depending upon
the processor structure available. The assumption that separate
processors are available for the two tasks is made here. The process
with the longer duration {probably the optimization) determines the
maximum frame advance distance that can be used in real time,

If computation time were not a factor, computational errors
could be maintained at a negligible level compared to the errors
introduced into the system by the terrain and navigafional sensors.
However, in real time applications, the computational time is severely
restricted, and the particular framing structure is the key to com-
putational time and computational accuracy. There generally must be
a trade off between computational time and accuracy. The framing
structure described in Section 4.6 allows a great variety of combina-
tions and trade offs. As previous results indicate, the computational
time increases cxtremely rapidly with the increase in the dimension of
the optimization problem. Since the performance is measured and the
constraints are enforced at various sample points, the dimension of
the problem is determined by the number of sample points, which

depends upon both the frame length and various sample intervals., It
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is desirable to reduce the mmber of sample points as much as'possible,
to minimize both the computational time and storage. ThLe factors
involved in this reduction are discussed below.
8.1 Total Number of Sample Points

From the various purametric studies discussed in previous chapters,

the following conclusions can be drawn with respect to reducing the
total mmber of sample points:

1) Slope constraints should not be applied unless there is a
strong reason for limiting the flight path angle. Many flat and
moderate terrains will not require slope limits, because the limits
would not be normally encountered. If required, they can be sampled
more coarsely than the clearance constraints, since the slope changes
are more gradual.

2) The min-max criterion requires more constraints, in the form
of upper bounds on the clearance distance, and should not generally be
applied.

3) The linear programming problem may not require as large an
optimization problem as the quadratic programming problem, so the
linear performance criteria is recommended. 'I'hebretically, the
solution may not he unique for this problem--there may be more than
one set of control points that give the same optimal performance
measure, hut any of these would be acceptable, or equally "close' to
the terrain. Therefore, no effort is made to study non-uniqueness
here.

4) The spacing of the clearance constraint points must be as

fine'as the finest control point spacing to prevent constraint
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violations between constraint points from becoming significant. A

_similar argument can be given in regard to clearance constraint point

spacing vs. terrain point spacing. The terrain and clearance curve
intervals are assumed to be equal, and if the clearance-constraint
interval is not at least as fine as the sample interval of the
clearance curve, more extreme curvatures of the clearance curve can
create significant violations between constraint points. The maximm
cohstraint violation that can occur between sample points is
approximately

c, * %—Ak (aR)% (8-1)

where Ak is the difference in curvature between the two curves being
considered, and AR is the constraint range interval. (The approxima-
tion is derived in Appendix [i, based on constant curvature for each
curve over the interval of violation).

S} Trade offs between ride-softness and specified minimum-
clearance distance may be required to keep the problem dimension down.
The more restrictive curvature limits of the softer ride require a
longer frame length to predict clearance of the same height obstacle.
Longer {rames generally require more sample points of all kinds--
unless the sample intervals are increased. But increasing the
interval length increases the likelihood of constraint violations

between sample points. A small percentage of violation will be much

-more acceptable for a high clearance trajectory than for a low

clearance trajectory.
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6) The feasibility of a real time scheme is dependent upon the
aircraft performance: the speed, acceleration and slope limits. For
example, a missile flying at Mach 2.5 at sea level (2792 fps) with
acceleration limits of -1 and +3 G's would require curvature limits
of +.000012 and -.000004 £t'1. This would correspond to a charac-
teristic framg length estimate of‘ 54,900 feet (for the 1000 ft
obstacle used previously). This loné frame length would require a
high dimensional optimization problem for realistic sample point
intervals (probably about 500 ft for the terrain and clearance data).
However, if the acceleration limits are changed to -5 and +15 G's,
with all other data the same,‘the new estimate for frame length would
be only 24,600 feet since the vehicle would be mich more maneuverable.
8.2 Computational Requirements

Some conclusions can be drawn from the computational requirements
of the test programs run on the CDC 6600 computer, but it is extremely
difficult to compare these results directly with airborne computer
requirements for the following reasons:

1) The test program has many optional features used in the para-
metric studies that would probably not be included in an operational
program. Also, precomputation of many of the matrices used prior to
flight could reduce significantly the inflight computation.

2) A direct linear programming algorithm would probably be used
rather than the complementary problem, which requires more storage

"and probably more time.

3) The word length and processor structure of the airborne

computer would be different, so equivalent programs might run at

B L TR
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different speeds on the two computers.

4) Input and output devices would be significantly different
for the two computer systems. This would have a significant effect
on the computaticnal times. However, the use of central processor
times tends to minimize this effect.

With the first two items above tending to offset any increases
in the requirements due to the second two, the CDC 6600 execution
times are some indication of the feasibility of this optimal-path-
spline terrain-following scheme.

8.3 Evaluation of the Framing Structure for an Example Missile

It is difficult to draw any conclusions about the real time
feasibility of the optimal-path scheme unless a particular frame
structure is specified. The most rigorous test of the scheme is an
extremely high speed vehicle, since the system must process the
terrain data most rapidly. Therefore, the case of a very high-
speed missile is considered, with a few variations in the framing
structure. If the real time scheme is feasible for this missile it
should certainly be feasible for slower vehicles. The test missile
is the example mentioned in Section 8.1 and travels at Mach 2.5, The
most difficult framing structure for processing corresponds to véry
restricted maneuverability of the missile, such as, soft-ride acceler-
ation limits of -1 and +3 G's. Since the optimization problem must
be limited, a frame length slightly shorter than the characteristic
length of 54,900 feet is selected. A 2000-ft control interval is

used, which is considerably longer than the characteristic interval
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of 324 feet. Even with the longer control interval, the 50,000-ft frame

" length, with 25 equally spaced control points and 50-point clearance

constraints, produces a complementary problem of dimension 100. The
complete set of framing parameters is listed in Table 8-1 as

Structure 18. The corresponding optimal path and curvature are shown
in Figure 8-2. The performance appears to be good despite the
restrictions placed on the framing structure and maneuverability. The
computational times and performance data for the run are listed in
Table 8-2, The "allowable" frame time is that which is required for
the optimization processing to handle the terrain data as rapidly as
the vehicle traverses the terrain. It is computed by dividing the
frame advance distance by the nominal vehicle speed.

The RMS and maximum excess clearance values in the table for
Structure 18 are rather high because of the acceleration limits.
Therefore, the more maneuverable cases of Structures 19 and 20 are
considered. The framing structures are listed in Table 8-1, while
the performance data is in Table 8-2. The RMS and maximsn excess
clearance values are reduced substantially for both of the more
maneuverable cases. The slightly longer frame length of Structure 19
shows an improvement in excess clearance over that for Structure 20;
this can also be seen in the plot of the paths shown in Figure 8-3.
Hiowever, the shorter advance distance for Structure 19 is borderline
for real time application. The first frame takes slightly more com-
putational time than the allowable frame time. The first frame
always requires more time than the others during a run, because of

1
1
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Table 8-1 Framing Structures for Missile Paths

Structure Number Dim. 18 19 20 21
s Moderatel Smooth
Type of Terrain 0p" 36{ I;gugh 0*137 ft
Type of Ride Soft Hard
Expected Obstacle lit. ft 1000 500
Charact. Frame Length|] K-ft 54.9 24.6 24.6 17.4
Frame Length K-ft S0 26 24 24
Frame Advance K-ft 24 14 16 12
LIMITS:
Curvature -1...-4 +.12 +.6 +.6 +.6
ft "x10 04| -2 -2 -2
Acceleration® G's +3 +15 +15 +15
-1 -5 -5 -5
Kink#* et 2x1070 | +.80 | 8.0 | £8.0 | £4.0
Jerk* G's/sec +5.4 | £54.1 +54.1 +27.0
Nr. of Control Pts. 25 26 24 12
Complem. Prob. Dim. 100 78 72 36
SAMPLE INTERVALS:
Characteristic .324 1.444 1.444 1.022
Curvature 2 1 1 2
Performance Meas. K-ft i1 1 1 2
Clearance Const. ! 1 1 1 2
Terrain Data r 2 2 2 2
PERFORMANCE COEFTS:
<L 0 0 0 0
<:Q 1 .1 .1 .1
CM 0 0 0 0
Figure Number 8-2 8-3 8-3 8-4
* For V = 2792 fps
#**  Ipherent limits from 4, kmin and lﬁnax

et aa
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Table 8-2 Missile Reference Path Performance § Computational Times

Structure Number 18 19 20 21 a
Type of Terrain Moderately Rough Smooth
Type of Ride Soft Hard
Frame Length (K-ft) 50 26 24 24
Frame Advance (K-ft) 24 14 16 12
Complem. Problem Dim. 100 78 72 36
Allowable Frame Time (sec) 8.6 5.0 5.7 4.3
COMPUTATIONAL TIMES:
(Per Frame)
Max 6.3 5.5 4,5 0.69
Min (sec) 1.3 3.4 .4 2.46
Average 3.8 4.3 3.2 0.53
Number of Frames 2 4 4 27
EXCESS CLEARANCE (For 321 Sample Points at (226 Pts.)
HEIGHTS: A = 200 ft) A=1200 ft.
Craax 664 313 384 52
Omin (ft) ‘7 '8 '8 '6
rvs 292 105 121 9
Figure Number 8-2 8-3 8-3 8-4

the initialization of some of the matrices in the computer routine

used. There is no reason that the matrices could not be initialized

in flight prior to real time operation, to overcome this problem,

The short time for the second frame of Structure 18 appears to

be just very fortuitous, as can bec seen by comparison with the

minimm times of the smaller dimensional problems.

Ead

One more framing
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structurc is considered for a flight over a different terrain segment.
This second terrain is classified as smooth terrain, since it has a
standard deviation of op = 137 feet (compared to the o, = 364 feet
of the previous terrain). Structure 21 of Table 8-1 is used in an
cffort to reduce the problem dimension without sacrificing performance.
Both the frame length and the control interval selected are considerably
greater than the corresponding characteristic values. The net result
is a reduction by a factor of one-half in the complementary problem
dimension, while the computational time reduction is considerably more
than one-half, as indicated in Table 8-2. The performance over the
snooth terrain is excellent, as illustrated in Figure 8-4, where the
optimal path does not differ essentially from the minimm-clearance
curve except in a few short regions. The expected obstacle heights
are based on a;)proxmtc peak heights of the terrain segments, but
Il values of 3°T would be fairly good estimates, as can be observed
from the values in Table 8-1,

Although some sacrifice in following the terrain closely may be
required in some missions, the path optimization scheme appears to be

yuite feasible and flexible for real time applications.
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"9. CONCLUSIONS AND RECOMMENDATIONS

The concept of including an optimal path determination scheme
into a terrain follower appears to be quite feasible in a modern,
computer-equipped aircraft. It also offers a good deal of flexi-
bility as a programmable control system. These conclusions are
based on the following discussions of the various facets of the
problem.

9.1 Splines and Clearance Paths -

Although it is possible to treat both the terrain data and
reference clearance path data as sets of discrete points, computa-
tional flexibility and more realistic path representations can be
obtained through the use of cubic splines. The computation sample
interval need not be restricted to the terrain data intervals if
splines are used for interpolation between data points. The
amount of computa’ion required to interpolate between data points
is a very small pa-t of the overall computational requirements.
Interpolation between data points also provides a basis for calcula-
tion ol slant-clearance-distance paths, for which the nearest
distance between the clearance and terrain curves is equal to the
specified clearance value. This calculation gives a more accurate
clearance than measuring a clearance path with the vertical
distance equal to the specified clearance value; however, the slant
procedure is more precise than usually needed. It was found that
for typical tef‘rain segments a simple estimate of points on the

slant clearance path provided a good reference clearance path.

125




The estimate at any point is based on the local height, slope, and
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curvature of the ter-ain-spline curve.

9.2 Qptimal Path Computations

The computation of the optimal path by either quadratic or
linear programming algorithms is far superior to general optimiza-
tion algorithms using penalty functions, primarily on the basis of
computational time. The solution trajectories themselves agree
fairly well, but the penalty function solutions have clearance
constraint violations near terrain peaks. Although three types of
perfornince criteria were analyzed: linear, quadratic, and min-max;
the trajectories tend to be very constraint bound and rather insen-
sitive to the particular performance measure. Piecing various
constrained arcs together with appropriate transition arcs is the
nrimary task of the optimization routine. If the programming
problems were always feasible, the simplest performance criterion
would be the most appropriate; the linear criterion and its
resulting linear programming problem might have smaller computational
requirements than the other performance measures. A revised
simplex algorithm [14} would be @ candidate for solving the linear
problem, but Shanhland's algorithm [29} which handles infeasibilities

in the quadratic progranming problem appears to be the most promis-

ing algorithm considered.

The data {rame length must be chosen to give adeguate predictive
capubility to the scheme:. The frame length derived from the T
Characteristic Mancuver, which is pased on a specified-obstacle-
height and the aircraft acceleration limits, is a good estimate of

"ideal" frame lciyth for all of the cases considered here.
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A great flexibility is possible in the selection of comtrol
point spacings and the various sample intervals used for performance
measure and constraint satisfaction. Larger intervals yield smaller
caﬁputational requirements, both in time and memory storage, but this
is at the cost of theoretical optimal performance and accuracy. The
control function suffers from lack of flexibility if the control
point spacing is large, and the corresponding trajectory will have
a higher RMS clearance value than would one with finer control-point
spacing. However, if the control points are too closely spaced,
ride comfort for the pilot will decrease, while tracking errors and
fuel consumption will increase as the aircraft attempts to follow
the computed optimal path. Also, greater overshoots of the desired
acceleration limits will occur, along with the path overshoots.

The number of control points and, hence, the computational require-
nents, can be reduced through a graduated control point spacing,
where the near-frame (close to the aircraft) spacing is fine for
control flexibility and the far frame spacing is coarse to predict
gross positional changes that may be required. The final deter-
mination would depend upon the particular mission considered.

9.3 Tracker System Performance

The validation of the optimal path scheme required a realistic
aircraft simulation and a candidate tracker system model. Since
the optimal path was designed to provide a '"trackable' path, an
optimal tracker system was not considered necessary, rather, a

simple feedback tracker system was tested. The tracker used inertial
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path information plus two derivatives that were available fram. the
optimal path solutions of data frames with appropriate framing

structure. The tracker performed extremely well, with appraximately a

6-ft RMS tracking error and a maximm tracking error of 12 feet,
over a moderately rough terrain under hard-ride conditions

(-1, +2 G's). This corresponded to errors of less than 12% of
the specified minimum-clearance of 100 feet.

9.4 Overall System Performance

The overall performance of the system depends primarily upon
how accurately the terrain data and the aircraft's position relative
to the terrain can be determined. The choice of framing structure
affects the sense of optimality in determining the optimal reference
trajectory. A variety of possible trade offs are possible in an
operational system--trade offs between closeness to the terrain and
computational requirements. Performance can be adjusted, depending
upon the particuiar aircraft and mission, by changing parameter
values in the digital computer. Thus, the system is very flexible.

The overall system was compared to that of Greaves [11],
since that system is the most advanced to date. All of the
approaches discussed by Greaves compute slopes and accelerations of
the "ideal" paths using difference equations. These correspond to
parabolic path segments that will not necessarily be joined in a
desirable way; i.e., they will not form a quadratic spline and they
may be disjoint.. (Whereas, the cubic spline approach produces

slopes and accelerations for a smooth contimuous path). Therefore,

i‘ .:K< f,-’ '7“““‘ " )
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the Greaves path may not be one that the aircraft can fly, and the

system would require a very good (optimal) tracking system. Further-

more, the acceleration profiles of the optimal paths with the
Greaves' method tend to be more bang-gang in character, since there
are no transition arcs between maximm pullup and pushover arcs.
This also makes his 'ideal" path more difficult to track. The
additional structure of the optimal spline paths provides sufficient
predictive information for a very simple feedback tracker system,
which can be optimized by gain selection for a truly nonlinear air-
craft system, rather than through the use of linear approximationms.

The sense of optimality of the two systems differs somewhat:
the sense of Greaves system is rather obscure although it emphasizes
the clearances near high terrain areas, while the spline-path
system minimizes a weighted average clearance measure, where the
weights can be directly adjusted in the computer program. Both
systems have a tendency to make paths nearly horizontal at the
peaks, but no strong reason for requiring it was observed. Con-
ceptually, it is possible to add that constraint to either system,
if necessary.

Although the system proposed by Greaves appears to be samewhat
simpler in path processing, it is more complex in the tracking
system. The approach of the optimal-spline-path system is a more
unified approach for the overall system.

9.5 Recommendations

1) Further studies of the optimal-spline-path terrain following

system should be made to select the best programming algorithm.
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These stulies might also include the effects of radar shadowing,

in which the terrain data that is input to the optimization processor
is limited to that available on a direct line of sight. The
optinization algorithm does not change, but the data that it must
usc is modified from the true terrain values. Thus, the probability
of infeasible programming problems increases. _

2) The optimal path gemerator can be used as a design aid to
provide rapid generation of standard reference trajectories for any
desired terrain segment. These standards can be used to evaluate
proposed controllers and modifications to those controllers.

3) The optimal reference trajectories can be used for frequency
analysis to determine what frequency épectra the flight control
system must be capable of handling during terrain following. The
path optimization processor acts as a low-pass filter to attenuate
the amplitudes of any high frequency terrain components. The
frequency spectrum of the processed path is what the flight control
system must be capable of handling. The framing structure used in
determining the reference path will affect the frequency content of
the path. The characteristics of an existing flight-control system
can be used to determine a compatible frame structure for the
terrain following controller, or from desired flight profiles, the

framing structure and corresponding flight-control system require-

ments can be developed.

4) The concepts of the optimal-path follower can be extended

to terrain avoidance. If only lateral motion is involved in the
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terrain avoidance mode (with an altitude hold), the extension
merely involves a transfer of the problem from the vertical plane
to a hbrizontal plane. The performance measure would be referenced
to a navigation path, valley, or ridge line that the vehicle is
attempting to follow. If a combination of terrain-avoidance and
terrain-following is desired, the optimization problem will, at
least, double in size, Furthermore, linearization of the coupling
effects between lateral and vertical motion relative to the
terrain must be onployed.

S) The spline-tracker concept discussed in Chapter 7 has
broader applications than merely to that of an optimal-path follower.
A reference spline path can be generated in a great variety of
ways. For example, the spline path could be a navigation track pass-
ing through specified ''way points."” In that case, the lateral flight
control system would track the navigation path, which would be
defined by a fairly small set of discrete values, and yet represent
a very smooth path. A great variety of maneuvers coull be accom-
plished in a similar manner by merely specifying certain points
on a threc-dimensional path as guidance parameters. The control
system would then track a bi-variant spline fit through the points.
Techniques of this typc would be quite useful in digital command-

guidance systems.
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APPENBIX A

OFTIMiZATION PROPLIM EQUATION DERIVATIONS

The first part of this Appendix contains a derivation of the
equations for the path state variables as affine functions of the
curvature-control-point values. Then, the cost gradients with res-
pect to the control-point values are derived. (The gradients are
used only in the general optimization routine.) From the path state
relationships, the equations for the quadratic programming problem
and the corresponding complementary problem are derived,

A.1 Path State Equations

The path state varjavles, as described by differential equations,
are the path height h and the slope s, while the independent
variable is range R, and the control function is the curvature k.
The h, s, and k variables for the cubic spline path are functiors of

the set of discrete control values kn'

hr(Rik ) = g (RiK ) = sRyK) (A-1)

stRik ) T 3 (Rik) = K(R3K)) (a-2)

KRk ) = (1-a)K; * ok, g = k; * ok, - K;

) (A-3)

for Re [Ri’ Ri+l]’ where the "normalized" range increment is
R-Ri
S (A-4)
Rin ™y

over the control interval

8; = RyqRy (A-5)
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The kink, p, can also be considered as a state variable, but it is

defined directly as a tunction of the control set kn.

~

1 ! .
P = a7 (hjyphy) (A-6)

1
i
One can convert the twe Jdifferential cquation relationships into

simple functions of the k]1 by integration. Note that on the hori-

zontal range interval 45>

do

]
l>l'-—‘

dr (A-7)
i

When lg. (A-3) is substituted into lg. (A-2) and the resulting
equation is inteprated over the normalized interval {0,¢], in terms

ot the dumny variable z, the result is

S(R) = s(Ry) + Ay jg (K + z(k;,q7k;)]) dz

= s(R;) By [Li”+'7 Akjo ]
wherc
Bk; = ki (4-9)
At the end of the contrel interval, where o=1,
Ai
SRy ,q) = s(Ry) + 5=k +k, .2 (A-10)
Kecursive use of this equation for 1=0, 1, 2, ..., n yields
1 n-1
s(R) = s(Ry) + 7 ii.” hy (Ri*kyyg) (A-11)
Thus for e [Rn’RnH]
n-1

1 . 1 2
s(B) = s(R) + 3 ;.0 by (hy*hy,)) + Aglkiod 5 Ako”] (A-12)
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Similarly, the height equation can be integrated using Eq. (A-8)

1
h(R) = h(®;) + o, [J [SRy) + 2, (k;z+ 7 sk;2?)]dz
e 2,2
"':h(R)*Aa(R)O ——ko +-3-ﬂkd (A-13)

and for the full interval (o=1)
A
hRy,;) = h(R;) + &;5(R;) + ——(2k;+k; 1) : (A-14)

When igs. (A-14) and (A-10) are used recursively, for i=0, 1,

R (I
n-1 1 m-1
= \ = .
h(Rn) h(RO’ * "_EnAlrl[S(RO)+ 2 iEOAiO\iﬂ(id)]
n-1
1 2
t & z A [2k; +k1+1]
i-o t
n-1 10 1 m-1
= h(RO) + (m}:GA ) s(RO) M ZO 1}:OAmAl(k k1+l)
1 n-1 2

The equation for RE[%’%"‘IJ is determined from Egs. (A-13),
(A-11) and (A-15)

n-1 1 n-1 m-1
h(R) = h(R,) + (£ A )s(R) + 5 & I s A (k.+k. 4)
0 n=0 " 0 Z o0 jeq M1 i %
1 n-1 2 1 n-1 1
R IC e TR L 7 Lt (itRa)e !

1,2 2
N [(3-0)ki+ki+ln]o (A-16)
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Finally, the excess clearance distance at R is also a function of
the set of ki

e = e(Riky) = h(R;ki) - c¢(R) (A-17)

Where ¢ is the minimm-clearance curve height.

A.2 Cost Gradients

The cost function is

N
» M 2
7 il(Qnen +Le +TPe Jm {A-18)
where
_ J1ife <0 -
T= {Oife:_a_o (A-19)

and Np is the total mumber of points in the performance sample set.

The partial derivative of n with respect to the ith control point

value, ki , is

Je ahn
n -
'ﬂi'i' * ?k; (A-20)

The cost gradient is

N
3 . LA n . ’:p _ hy (a-21)
HE; n=1 %, 31(_{ n=1 a"n 'ﬂq
where
3J -
5o * 2(Q¢TP )e +y (A-22)

n
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' Wher he partial derivatives of Lg. (A-13) are taken with respect to

the ki

.
0 for R C[RO, i- 1)

.6 o ,for Phe[Rl 1'% R.)

i ien, o Aim o 2,
“5—[(_13.' o) (_Zi 6)+(1-0)a"},
ahn sh®R,k;) 1

%T; aE: | JFor Roe[Ry Ry, ;)

2

. by ‘Rn i
S [( i1y (3 + 2+ =]

' : : s 1 & b4

| sfor RuelRy Ry, (A-23)

where m > 1+1,

A.% Ouadratic Programming Prohlem Fauations

In the following develcpment, two distinct types of indices
will be used: sample point superscripts znd control poin* subscripts.
- : The sample points can be used for constraint enforcement as well as
| performarce measurement. The control points are the specific
; . points where curvatnre control values are selected, The state variable
I | values at the control points can be generated recursively by Egs,
(A-10) aud (n-19), whil: the sample point values are deternmined

from the appropriate control point values by Egs. 7A-12) and (A-13).

Jhese eguations lead to equations of the following forms,

1 M '
; B = o a Moty (A-24)
1= 1
N
i bn - .ZO {’,i’l]\] ' r}"t (A..ZS)
1=
>

)
)
i
i
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Ny
LI (A-20)
i=0
. N,
1.8
Sm = iO emiki + Pm {A-27)

By comparing the above four equations with Eqs. (A-8) and (A-13),

one can obtain recursive relations for the coefficierits that are

functions only of incremental range from the last control point at &
;
- N n n ‘
R to the sample point at R, ¢ = (R -Rm)/Am.
L +4 o8 . +A 2 Lqr—11-2[(?—0“)&3 ot ]
i %miTme mi G mi © % (m+1)d (A-28)
i n _ R PPN
¥ Yo T A% Py (A-2f
n,2 n, 2 i
n n -— 3 A r ..n_ __(_0__) T 1 (G ) r ] _ey {
By = g ¥4y 10 5 Monit 7 °(m+1)i! A=)
n = = -
P Py = Sg (A-31)
il where & is the Kronecker delta: ?
_Sﬂ,form#i ‘A_TA
i~ Ll, form= i (A-32)

| Now the incquality constraint equutions can be developed, where

the zcro indices indicate specified initial condition valuves.

N :
: M= Rt - c“ = 3 a DV a T+ Yn_Cn>0 (A-33)
: AP Se | 00 -
1 J_l

or
le
. : n n n -
"5 A R A: (A-34)
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Also, curvature constraints must be included:

ki < kmax >0 , for ieqy (A-35)
Ky 2 Ky < 0 , for ety (A-36)
i is the index set of the control points; similarly s Tgs Bgs

1

e and 11p are the index sets of the sample points for constraints

on minimum-clearance, climb slope, dive, and maximum-clearance (for
min-max), and for the performance measure, respectively.
In terms of the control points, the climb constraints are

N

k
n _ n., . . - . ,
s = izl g ]‘i * Py }\0 t 8y S > 0 , for nef, (A-37)
and the dive constraints are
n ) .
R 0 , fo1 mﬂd (A-38)

When the min-max criterion is used, the fellowing additional con-
straints are imposed, where m is a paramecter value to be determined
by the optimization.
.-1" -
e, <m , for nefl (A-39)

1f direct kink constraints are imposed, they are

Prin = ' = Ppax ’ , for rwnk (A-40)
The cquations for ¢, s and p can be written in the following

vector-matrix form, with k an Nk-dimensional vector,

e =1k +1 (A-41)

5= Sk o+ W (A-42)

p =TIk (A-43)
»
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where, for net., (1=p,c or m); Rcﬂj, (j=s or d); and r, Qefy
R ! e )
E; = [aq ] » an N; x N matrix (A-44)
- L . i -
Si = [Rq ] » an Nj X Nk matrix (A-45)
I~'i = "()n]"o + Yn-Cn , an Ni vector (A-46)
. 9,
h]. = £ ko , an Nj vector (A-47)
y r ; -
I [r.q ] , an Nk X NL matrix (A-48) b
{
The elements of P are j
1
r_ 1 . ~ ;
H(l = ‘A'T (S(I"'])(] qu) (A 49) 1i
The following combined construint cquation (A-50) can be expanded )
to include the possibility of min-max upper-bound-clearance
constraints, :
]
C'K=<D (A-S0) ;
¢ is an (N]: + lm) X C\c + l\m + 4Nk + Ns + Nd) matrix if ZNk kink |
constraints arc enforced and I} is an (Nc + Nm + 4Nk + NS + Nd) ‘;
vector, In partitioned rom the equation is k
ko1 [ i
m m i m
-1 0 I
C C
Iy U I v I kmax
- ' . (A-51)
Uy 0 i l = lk k'min
S ] {m -
S(] U ; -1~d Smin * “d
5. 0 1.8 - W,
5 =5 max 5
r ¢ | K Pinax
-p 0
L . L34\pmin B




140

- where 1 = 1if N # 0, otherwise 1 = 0; and 1, is an N; vector with

unit elements, whiie Ii is an indentity matrix of dimension Ni‘
Similarly the performance function can be written in matrix

form, where Q is a diagonal matrix with the Qn values as the diagonal

elements. (If all the Qn are equal Q can be considered a scalar).

The e and L are vectors with ¢, and L as elements, for neﬁp.

J = %— e'Qe +L'e +m (A-52)

The form of Eq. (A-41) can be substituted for e into Eq. (A-52).
J= 2 KETK+ [T DI 4w+ % F'QF + I'F (A-53)

‘The last two terms arc invariant with respect to the parameters K

and m, s0 the set of K and m values that minimize J also maximize Y.

P=-7 KEQK- [FOUIEK-m
= % K'BK + A' - m (A-54)
where
. (A-55)
A= [F]+T] (A-56)

A.4 Complementary Problem bBquations

The non-negativity constraints on the variables in the Lemke
formulation of the complementary problem require a ''biased" control
parameter sct of the form in liq. (A-57)

x; = ki - kmin >0 iefiy (A-57)

Thus, the excess clearance vector for the performance measure sample

set, 1 is N_ dimensional:
? I)l p

i

C

D lip}( +TF =15 (x+1;. k . ) +F

P p7 =k “min p

ljpx + I)])

(A-58)
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where

D zE 1, k

p X b (A-59)

min P
The constraint set of Eq. (A-35) can be expressed in terms of

X, but the non-negativity of x replaces the lower-bound constraint

D e T N

on k.
B ln ~Ehdnin + Ty ]
k0 Elkuin * T
l
L, 0 Al (Kpax ~ ¥mind L
x . (A-60)
54 0 o J - (Sd—l-kkm]n Wy L4 nin
S, 0 “sliknin * ) LeSmax
I8
' 0 & Phiax ~ P-l—k min
0] | LPnin ¥ PLinin
which can be written in the form of lg. (A-61)
G IT. IERL (A-61)
This incquality is converted to an equality with a (I’\Im+Nc+3[\1k
+Nd+N:)— dimensional slack variable vecter, u.
Ly X
u=G| " ] -H=0 (A-62)
The performance measure can also he expressed in terms of the x
variable vector, For the augmented variable vector x' = [x m],
_ Z=1%+ L XK (A-63)
Compare this with Yq. (A-52), after substituting from lig. (A-58)
- = 1 [RSLEEY 1y 0y 711
J 7 * l.})()].px * ‘kn.inl-kl'p( * IpQ +L ]l.])x tm
'
1 z AR ] i"e 1:' " -
+ > kminl-k}‘p(*]‘pl«l; 4 [IPQ + 1, ]I'plkkmjnﬂfl pQ+'E )1p {A-04)
»
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The following matrices are required

_El i L

PP 0] 1

Q= (A-65) .

— 0 0__ -

‘Ep @, 3

L= (A-66) :

L 1m 1 1

where ‘,E
Dy = Bl ks * EL (A-67)

Now upon application of the Kuhn-Tucker conditions, the

Lemke complementary problem arises, with non-negative multipiiers

v and y (dual variables).

H - 'rQ -01 H + _L-l (A-68)
Ll & of b

The large matrix and vector are

o nd Rl e ] St s 2 Bl i 5

e

n el . ;
Mzl. (A-69) 3
i
4 ! _i (A-70)
]

The partitioned forms of these matrices are shown in Egs. 1

(A-71) and {A-72), with the dimensions of each partition indicated 1

adjacent to the matrix.

L]

Y TN

B R R

P

R L e S T |




M

m c
3) - _1:t
LiQE, 0 L -E
I L
Ty Ly 00
I-'.C 0 0 0
—Ik 0 0 0
Sd 0 0 0]
-SS 0 0 0
-1 0 0 0
I 0 0 0
P E Q.+ T F
p @M
1
m
_(liml-kkmin i I;m)
(licl—kkmin ! I:c)
t
i
% “‘mux'kmin)lk
!
o Calinin™) Latnin
) (bsl—kkm in+ws) +}-s max
j l]-'\pma_)( —Plkkmin
_lkpmin +])-l—};}‘min
i -~
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k d
L |
0 ]
0 0
0 0
00
0 0
0 0
0 0
0 0
Ny
loro
N
m
NC
Ny
Nd
N,

S
\

N
Nk

(A-71)

(A-72)
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APPENDIX R

CHARACTERISTIC MANEUVER FRAME LENGTH ESTIMATE

The characteristic maneuver was defined in Section 4.2, and is

shown in Figure B-1.

maximum

expected
obstacle
4/4/1 4 L i | R
RO Rl RZ R3 FC -

A% max ~—\
k !*Ac:'\\, VAR

k .
min
l— nCAC _—_4

Figure B-1 Characteristic Maneuver

Specified for the mancuver arc

k .
min

- minimum curvature
kmax - maximum curvaturc
Il - maximum cxpected obstacle height.
The characteristic frame length, FC, is the total range distance

rcquired by tne mancuver and is determined after computing the
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characteristic range interval, Ac‘ The slope and height differential

equations arc integrated piece-wise to the mid range, R.. The total

frame length is twice the value of R..
ARC1 Ry =0and Py = a
k

_ max R
For Re [RO,Rl], kR) = i
' ' 2
R R lﬂn kmza.x r2 R kmaxR
S(R) = [, k(r)dr = [ rdr = [ —
fRO R(] AC AC 270 AC
2 3
R R k r k R
h(R) = [, s(Rydr = [, —Zox.dr = Snax (R - max
R Ry 7B 6a 0 “6a.
C c c
k A
. - _Mmax ¢
SRy) = —
and L2
. J\maxuc
h(Rl) * =%
ARC 2
Rl = A(‘ and RZ = Z/\C
For Re [Rl’RZ] y ko= kmax
R kmaxAc
5 = g = M-
S(R) = S(Ry) + fklkmaxdr > * ko (R-80)
R b max g kmznc c+2.R
= - = r - .
h(R) }1(R1)+Inlkmax(r 5 )dr e * [(x 2) ]A
_ 3
S(RZ) - kmax'ZAc
~ 7.2
L
ARC 3
1{2 = 2/\C and l<3 = BI\C
U“_ZAC)

For RelRy,Rg), ROk o+ 5 Kpin Knax)

(B-1)

(B-2)

(8-3)

(B-4)

(B-5)

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)

e b b etk 1

bt tdibs s Aaeta b R Ll e i
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R (r 24 )
S®)* I, P * 7 By g 7

S(R)

Knaxhe * K [£-20 ]ZA “T_M Tnad [(x-28.) ]ZA

- )
lﬂnax[%“c + (R-28)] + —IS—“—;%—E‘—”— [(R-28)%) (B-12)

R i Knax)
h®) = h(R,) + IRZ{kmax[%Ac + (r-28)] + _&;Xg_‘&g_[(r_z%)z]}dr

L, 7,2 3. o 1 o 00 12
N ]maxgac * ka5t (R ZAC) t 5 (R-23.)7]

k . -k
LC mlrﬁlA\nax) [(R-ZAC)s] (R-13)

c
S(R) = (e * § Kysne (314)
h(RS) - (S}Sn.m 6 m“ 2 . (B-15)

n
- - c : :
R3 = SAC and RC (3+ 3 )Ac, where n. is to be determined.

For Re[Ry,R_T, KR) = ko ;o (B-16)
R
SR) = S(RS) " J‘RB‘\nindr - Uk THAX Z'kmm c mln(R ~34 ) (B-17)
R
h(R) = h(Rg) + jR {(21\m i) ¢ Kin (T-38.) Hx
= 3k +lk et e 2k el Ja (R-35.)
“"max 6 min’ ¢ max 2 mm
1
! 2 min (R-3a ) (B-18)
>
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. . 1. . -
. SR = (2R f(ncﬂ)l‘min][\c (B-19)
hR.) = [Gen )k + & (4+6n +3n DK . 1a (B-20)
C TG max 2 I il 4 )
Now the boundary conditions can be applied to determine
e and n..
SR.) =0 (B-21)
h(Rc) =1l (B-22)
From Fgs. (B-19) and (B-21)
KIX
n. = -4 K“_“ +1) (B-23)
Lin
since k < 0,n_ will be a positive mumber when k ‘-—}il—ip-
Since k.o M. Wi )¢ a positive number nko0 7]
The central range value 1s
n F
= < = .5 -
R. = (3+)b, = 5 (B-24)
Thus, from (B-23) and (B-24)
= (5 - m__a}(_ -
FC [JC LS 4]\ - ) (B 25)
min
All that Temains is to determine A from Eqs. (B-20), (B-22) and
(1:-23)
2 1
be T 1 T
: +
( ."oﬂlc)}.“ml( 4-(4+(mc 3n. )kmin
- 7-41(‘ (5-26)
48knmx(l— mx)+km.m
min
L = \/— s (B-27)
A8k ax (1 -r___'mux) *hin
min
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EXAMPLES:

3 1 . = - -5 -1 = =
1. AMsrcraftr Soft Ride: kmin 10~ £t ,kmax -00008, H = 1000 ft

& = 834 ft

)

F = 37AC 30,800 ft

nc = 3]

2. Aircraft llard Ride: kmin = -,00004, & = .00008, H = 1000 ft

AC = 1440 ft

F. =13 = 18,800 ft

C C

n, =7 é
3. Missile Soft Ride: = -.0000¢04 = ,000012, H = 1000 f ]
K issile t Ride: kmln = -, > K = | , H= T f

AC = 324 tt 1

FC = 17Ac = 54,900 ft

n =11

1

4. Missile llard Ride: kmin -. 00002, kﬁmm~= 00006, H = 1000 ft

AC = 1444 ft

FC = 17AC = 24,600 ft

L. = 11 %

(o2

Missile uggg_ggggtgygi_Smooth Terrain:

Lmin = -.00002, kmax = .00006, H = 500 Tt 5
AC = 1022 ft %
¥
LC = 17AC = 17,400 ft
n_ =11
C

;o
- o . R T e W U s S
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APPENDTX ¢

CHRVATHRE RETATTONSHIPS

To determine the relationship between the path curvature wud
the normal acccleration (normal to the path), consider height to be

a function of range, which is in turn a {function of time,
h = h(R(t)) (C-1)

The curvature 1s

td™h _ d dh
@ @ -

Bt by the chuin rule

| It . ' .-
SRR e )
) . R
So
}\ = d~ ( I_\ -) l‘ = ‘hR“hR (C_4)

Jt Rt R.’%

Figure U-1 Velocities and Accelerations
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¥rom Figure C-1 it ci~ be seen that

R = v cosy
and
! i _ - - . R _ hﬁ R}.\
ay = n cnsY - R siny v v
“Therefore
k = hﬁ‘m.] = aN
23 "I 73
vieosTY vocosTY
or
' a -
k= —-I; sec”y
v

The instantaneous radius of curvature, Tos is equal
to the cadius of a circle that coincides with an infinitesimal

segment of the path.,

he

7]1-,11]

-

///,*"

5.5 g
n

Figure C-2 Radius of Curvature

The coordinates of the path point, rfor fixed center (Rc’hc)

and fixed radial icngth, r., are

(€-5)

(C-6)

€-7)

(C-8)
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E R=R.+r. siny (€-9)
' h = hC - 1. Cosy (C-10)
- for
v = tan’t (@ (C-11)
! The slope is
g}ﬁ = rary (C-12)
while its der’vative is
i2
% = SECZY d\{_ {(C-13)
dR
! The difrerential of lg. (C-9)cunbe solved for
, 1 :
I %f% = }1— SeCy (C-14) !
: e ;
j Thus, the relationship botween the curvature and radius of :
curvature is {.
‘ ] 5
I k = ri— SCC:SY (C-]S) 'il
“ |
e | 1
i | ¥
| ;
- |
5 .
. |
| : |
[
[
;

— ——
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APPENDIX D

DIRECT-SLOPE SPLINE FITTING METHOD
The non-dimensional range variable is
o(x) § (x-x;)/a4 (@-1)
where the dimensional range increment is
4 8 %51 X ®-2)

The ratio of successive increments is

a.
H, o —2 (D-3)
1744

and the change in dependent variable over an increment is
Yi 8 Y501 Yy (D-4)

The cubic spline and its first two derivatives can then be written

2 3 .

y(xj = y; * Aja * Bio” + Cio ®-5)
_ 1 2 -
y'(x) = a-i— {Ai + ZBio + 3Cio ] (D-6)
nix) = - -
Y (X) - a.z [ZBi + 6(—'10] (D 7)
i

Continuity at the knot where 034170 and o; =1 requires

Yien T Y A TRl (b-8)
A.
- 141 _ 1 - -
Yiia T @, Tay Wt B 3G (P-9)
28,
Y'sap = gt = b [2B; + 6C] (D-10)
TS U

lgs. (D-8) and (D-9) can be rewritten as a system of two simul-

tancous cquations:
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[ 1

Ly ) S

Y Y, oA AR O

i 3} "1t A 20"y @D
When this system is

! - oy _ '

P LR AL RO A BT 0-12)

(.
l.]
the expressions for B, , Ci and B, can vz substituted irto Eq.
(h-10)

HiAj41 744 Vv ' i)

2 ) .t = . :
2 TLAY, g (BT Yy ) IR208Y a2y eyt L)

—6Yi+3ai(‘y‘i+y§_+l)] (D'ls)
or

Y Y

K [} P = i i+]
iyt g 1Y g 7 3G T

) (D-14)
4+

Then the complete set of equiations for all the upknow:: y; can be
written

24 1 0 . o Fy'z _1
1 201411,) 1, 0 ... ; Iy, l

0 1 2(34115) 1lg 0 j ’yﬂi ?

i i 2141 1, 0 ! i

|

0 ] 2008 ) N i g

B 0 1 20101, ) _f'n-zj

is equal to

e L
Y S U - § e

e

i'
1
1
;
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[ R . —-1‘
(2,4 0y Y |
3(2,4,24) !
‘
3(23+U324) !
;
1
i
i
S(Xn-2+“n~2£n-l_l§1-2y;1) (0-13)
[ _
where
£ 84 (D-16}
4

Now if a procedurc similar to that given in Section 7.2 is followed
to bi-diagonalize the above matrix, simple recursive equations can

be derived: 1) Divide the first equation by the first cvefficieat.
2) Subtract it from the second equution, then divide the resulting

cquation by the first non-zero coeff{icient. 3) Repeat the process

of step 2 for each successive pair of equations, until the result

is in the form

1 ¢, o ... T b T,
l L l c L { L
H 0 1 C3 v} . ; y'3 é le
!... 0 1 ¢, 0 | Y4 o W4
i 1
; | ] ‘ .
: i P
| A0
) 0 1 .30 R (i
) il
i 0 1 4 ii : l W-2
! _ ' (D-17)
L 0 1 i Ly'n-l_] wn-l Cn-lyrﬂ
>
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where

and

1=

W,

-~

Il
1

for i=1, 2, ..., n-2 the forward recursion equations are

H.
i
C:q = e
i+1 ~ Z(T+ 17C5
y N 3(2i+lli>;j+])~wi
541 ORI

I'inally, the bachward recursion equations vield,
for i=n-1, n-2, ..., 2
1 = - 1
Y. T W.sC. :
i i1 i1
All data necessary to commute the spline or its derivatives a

any point, ce¢[C,1], are now available:

2
y(e) = y; *+ 07(3-20) [yl
2.3, 3. 24,0
+{ (9-20"+0")y i+ {o7-0%)y i+1]3i

' _ 6o g 2t e 2 s '
y'(a) = 3‘(]'“)[yi+]'yi] + [(1-4o+30%)y"  + (30" ~20)y 4+1]
L i+l 71 b i+l

" 6(1-2¢ 2
y'(o) = = —il4yj+1—yi]+5;1(3a~L)y'j+(3o-1)y'i+1]
i -
9 -12 . 6 ’ s
yrE s gl e ;l?'[y gytiot)
(i i

(D-18)

(b-19)

(D-20)

(D-21)

{D-22)

(0-23)

(D-24)

L-25)

(D-24)

T (%3
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Equal Intervals

It is interesting to note the special form of Eq. (D-15) when

the spline intervals are all equal (Hi = 1),

[ 1 0 ' 32 ) -y ]
Y2 1742/
1 4 1 0 Y's 3(z,t24)
01 4 1 0 'y 3(£5+5,)
0 1 4 1 : =
|
; .
1 :
: 0 1 4 1 : 3(,.5%2, ;)
. \ ]
] - e 001 4_ L..),’ n-1j _:_”(zn-2+£n-1) y'rL (D-27)

The corresponding recursion equations (D-20) and (D-21) become,

for i=1, 2, ..., n-2:

1

Ci41 7 ey (D-28)
i 3L 4T, )W,
- 1 “i+1 i

i Wi~ I, (D-29)

; Ahlberg [1, pg 16} shows that a second order difference

cquation can be used as an alternate method of generating the

4 and Wi coefficients for the ¢qual interval case.

di = 4d;_y-dg for i=2, 3, ..., n-2 (D-30)
| , d =1 (D-31)
d; = 4 (D-32) ﬂ

!
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TN - - P

For i=1, 2, ..., n-2

- 4 | (0-33)
i+1 T4

-~ i

g]

and
‘ _ 30t (0-34)

W,
N i+l ai

PP R T S U S

with w1 = y’l.

ok Lt R D ¢ s

S o m

i
i i
1
i
4
1 :
i i
; 2
. 1
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! 7
A
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AFPENDIX E
OFFSET- LOOP-POINT REJECITON METHOD

When the instantaneous radius of curvature is less than the
offset distance, the offset curve will have a loop as shown in

Figure E-1.
offset
curve,

(z,y)
(2p1Yp1)

(z.»y )
\ crossover point

T e
terrain curve

S
"——rej ection range -——m

Figure E-1 Offset Loop

/
/Gy

cusp points

R,T)

Fach point on the terrain curve, (R,T), corresponds to a

point on the offset curve, (z,y). Since a smooth clearance curve

is desired, the portions of the offset curve ne

o
v AL L

N ot e €

the crossover point should not be used for points on the clearance

(RT3 IUIPRUTR P I

curve. One possible metnod for selecting clearance curve points

ncar a loop is to establish a rejection range, as indicated in the

Py T )

figure by points (Zr-’yr ) and (zr Yy ). These points could be
1 71 Z 2
located such that they are some prescribed percentage of the inter- i

vals [zz,zc] and [zc,zl]. The clearance curve could then be fit

158




‘where n is the

159

through (Zrl’yrl)’ (zrz,yrz) and other points outside the rejection

range. The proposed rejection procedure is outlined below.

Rejection Procedure

1. Determine if an offset loop is present either by

when Ri+1 > Ri’ or

(E-1)

for

|+

(E-2)

and

s = tany (E-3)
offset distance, s is the terrain slope, k is the
curvature, and y is the path angle.
2, Compute the cusp points using a binary chop method,
3. Compute the crossover point, lying between the two cusps,
by a Newton-Raphson two-dimensional search, by moving two points
together, starting {rom the cusp points.
4, Select the appropriate distances between fhe cusp peints and
the crossover point as the rejection interval limits (30% of the

distance from crossover tu cusp worked reasonably well).
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APPENDIX F

]
SLANT CLEAKANCE ESTIMATE !
3
The clearance estimate derived here is a ''local" one, in that ﬁl
1
|
only the properties of the terrain curve at a single point, T, are i
: . . 1
used. The radius of curvature, r, is assumed to be constant in the j
immediate vicinity of the point. Two cases are considered: those 1
of positive and negative terrain curvature. %
F.1 Positive Curvature 'i
j
Figure F-1 Positive Curvature Clearance Estimate
The point C is the instantaneous center of curvature for the

arc, and S represents the estimated point that has a2 slant clearance
distance of n from the terrain curve (as measured along the normal). _
;
The vertical clearance distance of the point S is CV=(r1+6). From :

the cosine law for the triangle CST
2 _ 2 2
(r-n)“ = Cv +T1° - ZI'CV cosy (F-1)
160
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This expression can be solved for CV by the quadratic formula.

e
C, = T cosy £\/ (r cosy)? - n(2r-n) (F-2)

6 4n cosy (F-3)

Cy = %?ri\/ (%?)Z-n(Zr—n) (F-4)

This estimate should ouly be used if r > n, otherwise th: nommal

S0

offset curve has a loop, and estimates about point T are unreliable.
Therefore
-n(2r-n) < 0 (F-5)

and

T =t /’re‘z_ P2renl
n V4 knz n('-" n)

vhen the radical is real. So there arce two positive roots, with
the larger one corresponding to point ¥ shown in Figure F-1. The

desired root is

¢, =% —\ﬂl}?-)z -n(2r-n) (5-6)

il

1©.2 Negative Curvature

When the path curvature is negative the radius of curvature

also has a negative sign

I
T = - secy (F-7)




162

Thus, with r < 0, arnd Cv = N+

Figure F-2 Negative Curvature Clearance Estimate

Once again, the cosine law for triangle CST yields

2

1]
(@]
(3]
+
~
)

(1) 2C, (~¥)cos (n-Y) (F-8)

or

H
]
+
~

1

2 . .
(r-n) v ZLVrccsw (F-9)
This equation is exactly tie same as Eq. (F-1) so the solutions

are again

=20 o/ E% n(ern) (F-4)

v n)

lowever, by convention, this time r is negative; for the desired

positive root, now the positive sign must be chosen.

Since now
-n(2r-n) > 0 (F-10)
|-§TO- <\/(%‘-3-)2 -n(2r-n) (F-11)

while the negative root corresponds to ¥ in Figure F-2.
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Finally, we can solve for the clearance difference, 6, in a

general expression

6= (2 - m) - sen()\V/ED n(ern)

B ) - s/ € - P zraeo)

i

In general, the total vertical clearance is

Cv = %? - sgn(r)\//?gg-— n)z -2r(n-6)

(F-12)

(F-13)
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APPENDIX G

AIRCRAFT SIMULATION

This Appendi:. contains th2 equations used in the aircraft

simulation,

Most of the symbols used in this Appendix are not used

clsewhere in the thesis. therefore the symbols are defined helow.

%

‘%

=

OO
=t

=

Total drag coefficient

Trim drag coefficient

Partial derivative of the drag coefficient with respect to
various "'x'' variables

Total 1lift coefficient

Trim 1lift coetficient

Partial derivative of the iift coefficient with respect
to various 'X'' variables

Total moment cocf{icient

Trim moment coefficient

Partial derivative of the moment coefficient with respect

tn various "X'" variables

Lift

Moment, in pitvch, avout the aircraft center of gravity
Mach ramber

liovizontal range

Sur tace reference area

Tutal velocity magnitude

164
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Speed of sound

Distance srom aircraft center of gravity to thrust line
Aircrait reference chord length

Center of gruvity of the aircraft

Specific drag force

Specific thrust force

Specific gravitational force

Altitude

Path curvature

Specific lift force

Mass of aircraft

fitching rate with respect to time (positive-nose up)
P'ath slope

Component of velociry'along the longirudinal (x)
stability axis

Compoient of velocity along the normal (z) stability axis
(positive downward)

lLongitudinal stability coordinate

State variable voctor

Normal stability coordinate (positive downwardj
Ind’cates a change from the reference condition
Angle of attuck

Trim angle of attack

Flight-path agle

Mngle of x stability axis from the horizontal

Conmand signal to longitudinal {light :coniroller

. it et s
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$ Stabilator (pitch control surface) deflection angle

(positive, truiling edge down)

bcas Stabilator input signal from stability augmentation system

(8AS)
P Atmospheric density
8 Pitch angle

£ Thrust alignment angle

G.1 General Aircraft Equations of Motion

The seven-dimensional state variable vector is
x' = [u, w, 8, q, h, 6gq, 6]
The stability axis system is fixed with respect to the aircraft

as shown in Figure G-1. It ccincides with the trim, or steady-

state, wind axis systew.

longitudinal

L f”,,r;‘axis

Figure G-1 Stability Axis System

(G-1)




Nommal1y Yo = 0 for the

with respect to time

R

4 .
SAS

where CﬁAS and CS are

h>

fX

£ b
Z

ard the acrodynamjc cocfficients are

167
reference condition, The equations of motion
are

= u cos YO + w sin Yo (G-Z}
= fX + gX -d -qQw (‘G_s) ,“
= fz "8 "t+qu (G-4) %

-2 o

= LV Gyt M (G-6)
i

= Uu sin Yo = W Cos s (G-7)

T Coas 47 bgpe (G-8)
= ¢ 3 . ] p
" b Bgpgmeg + 80 (G-9) ]
constants and E
I . i
m 0% ¢ (G-10) 3
7 sin G-11) ]
l_ﬁ 1 (‘ - ?
}1'—3“ (G-12)
' i
£, 8in Yo (G-13) j
o <15 (G-14)
o2 | ;
CAV7G, (G-15) ~;
C Ve (G-16) ;
A h 3 5
005 ;
K (G-17) 1
;655' ?
1 (G-18) ;

y

= - - e 52 TS ELIL ]
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€ 2C +C da+C oM+ adg

L o a lﬁ [\
C, + C, Aa + AM + AS
% D" D (ikz s

n

- o C .
C =C+C_ ara+tC_ aM + C_ a6 _+ (C_ q+C_ a)
m mom CmM Mg S ZVO mq me

These additional relationships also appiy:

=l s W
-1 w
Aa=ta.n1_—,
a = a_ + Ao
Y, =09

For this problem the atmospheric density, Po? and Mach number
are assumed constant for the flight. Note also, that o« is

constant, but Yo is time varying. Furthermore,

G- W Wi
Vv

The time differential equations can be converted to range

dependence by multiplication by the factor

"é—£=l
dR R
Thus
X't x
The path slope is
>=d'h=.‘=}:l_.
5 aR' ht =

R

and the curvature of the peth is

2 e ..

d*h _ » 2 hR - TR

k =S5 =R ()" + hit" = 2™
dR R

(G-19)

(G-20)

(G-21)

(G-22)
(G-23)
(G-24)

(G-25)

(G-26)

(G-27)

(G-28)

(G-29)

(G-30)
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G.Z Normalization
) The variables were ncrmalized for computation according to the
following system:
.
1 VU = 1117.1 fps (Mach 1 at Sea Level)
. 1 DU = 2000 ft
Z 1 Do -
1Tu-= VU 1.79035 sec
1 W . 2
= = £23. s7 = 19,
1 AU 0 23.9562096 fp 19.3955924 Gs
G.3 F-4C Aircraft Data (from Reference 12)
| ' ‘Mach .8 at Sea Level (V = 894 fps)
i
0 G
a = .3 6o = .3
‘ 0 bo
= .06 Cy = 018
! - »
i Lo DO
! " = 3 N P > =
| | LLa 3.3, (,Da 08 > G 28
| c = o. 5 =0 , C =~ .08
I - g ™
c = .34 ¢, = WOt = - .49
| Lé ’ D‘S given) m
1 S S 5 ‘.
- C = 1.0
! me ",.;-.~
G, = 2.3 if <
q
‘ £ = 5.25°
| . 2
i 5 = 530 {t~ ,
W = 38,025 1b = 1209.978 slug ‘
pilot = 16.2 {t g
&
¢ = 10.04 {t -
' e 2 %
1y = 122,192 slug ot ~
\-:"-Sl
#
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APPENDTX H
CONSTRAINT VIOLATIONS BETWEEN SAMPLE POINTS

~ There 1re no curvature violations between sampie points, twcause
the curvature is a linear spline. Neither ave there any kink viola-
tions, since the kink is always constant over each sample interval.
However, there can be clearance and slcpe constraint violations.
The maxinmum clearance-constraint violation is illqstrated in

Figure H-1.

* refevence

Y \ o oo A el ASpath h

clearance

\\écurvec
S

3 Ko

Figure H-1 Maximm Clearance-Constraist Violation

The maximu violation cccurs for a maximas pull-up path directly
above a minumen curvature terrain peak. When the clearance curve
has the same curvaturc as the terrain curve, the equations for the

ath and clearance curve over the interval of violation, re{0,4],
1

are
L(r) = h; +s.v + %kmaxrz (H-1)
1. 2
c{1) = uy + doy + 5 Ky T H-2)
L T
i79

I
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since the excess clearance is

e(r) = h(zx) - c(r) (H-3)
] and
hi = ¢y (H-4)
hyyp = Ci4 (H-5)
Thus
1_2
e(r) = (s; - d)r + o= (kg ) (H-6)
min
f But at r=4a, Iqs. (H-1) and (11-2) become
_ 1 2 -
Ripg =By v osps oty kgl (H-7)
; = 1 2 -
i hi+1 = hi + diA + kl‘ oA (1-8)
| min
! The difference between these two cquations is divided L, 4
to yield
A
s. -d. = - 5[k - ] (H-9)
1 1 2 “"max kTmin
Then from Egs. (H-6) and (H-9)
elr) =5 (- r8) (kK ) (H-10)
' min
The extreme value o1 e occurs when
0=2%-2 (r- 8,k ) H-11)
T ‘min
or 1
r* = 7.‘ A (“‘12)
A? -
e(r*y = - k. -k, )< (11-33)
. B Ymax Loin
‘(he maximum vielation is
¢ AZ
x = - 7 = -l -
e, c(r?) (knux l\,:. _ } (t1-14)
min
et ot o o i .
¢ RGO L SMEM AL i iy oo A SR -!‘J,én-'fm.n.v;' LT LT L RN 1B} BILNGISOR: Si n'mv"f::':t-'\. [T I L N SRt B AR B
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If there are slope constraints active on the interval of violation,

the violation will huave an even smaller bound than that of Eq. (H-14).

In this case, the curvature of the path canmot remain at a maximum

value over the entire interval without violating the slope constraint

at one end of the interval.

A pound on the maximm slope-constraint violation can be

determined from the geometry of Figure H-2.

slope of s curve

all _—

¥
Ri i+l

Figure H-2 Maximum Slope-Constraint Violation

Over the interval of viclation, the curvature goss from a

maximam to a minimm as v goes from zero to A,

- P R T T
k(r) = kmax 5 U‘max l‘min’ T

The path slope is the integral of this equation.

o ] 1 1 2
s(r) = Smax * kma.xr T8 (km:wr. }‘min) b

The viclation is

N oe oeprree = . i, 2
Sv(") = 5(r) “max l%naxr 2A_C ax 1ﬂnin) r

T i - max
- _xi.l Sv slope of s curve
e 5 s curve
r
R.

=y

{H-15)

(H-16)

(iH-17)
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The extreme value occurs for

= V= -1 - X
0= 55~ Kpax ~ 3 (kma.x lﬁnin) r (H-18)
S -
o kmax a
T* = — (H-19)
1(_max min

; ; Thus, the bound on the maximum-slope violation is

; kmaxz A
i 3 s U (H-20)
Vrr.ax 2rkma.x min)_

Similarly, a bound on the minimum-slcpe violation magnitude can

' be computed 2

- minA

Vmin Z (‘Ewax"];ninj (-21)
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