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Introduction

The purpose of the present analysis is to investigate the
effect of turret dynamics on the accuracy of gun orientation. In
this analysis the turret is represented by three rigid components
which can move relative to each other and are connected by elastic
transmissions. The first component of the turret is the stationary
ringywhich 1s rigidly attached to the helicopter hull. The second
component is the rotating ring; its rotatlon about the turret axis,
is controlled by a drive mechanism which is cnaracterized by effective
elastic stiffness and a frictional coefficient. The third part of the
turret consists of the saddie and the gun combination. This part
moves about the saddle pivot axis relative to the rotating ring. This
motion is also governed by an elastic transmission drive.

The vibrating motion of the turret is excited by the vibration
of the hull and by the torques due to the recoil force of the gun. The
effects of the hull vibration will be specified by the six acceleration
components at the turret attachment point. These accelerations will be
calculated numerically by an existing finite-element model of the total
helicopter structure. The recoil forces will be represented by
measured values.

When the turret is excited dvnamically the relative motion of
the various parts will cause the resolver signale to be generated which
will activate the servo controls. Consequently, the dynamic motion
will be governed by an interaction of the elastic properties of the
transmission, the inertial properties of the turret, and the response
characteristics of the servo systems. The turret vibration will be
specified by two components consisting of the azimuth and the elevation
angular displacements. In the present analysis these two motions will
be assumed to be uncoupled since they will respond to different fre-
quencies.

The general analysis which is developed will be valid for either
the azimuth or the elevation motion. However, the hull inertla effects
will be governed by different relations fcr the azimuth and the
elevation modes and therefore these relations will be developed
separately. The servo controls for both motions are similar except fo.

the ditferent gear ratios in the drive systems.
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Equations of the Turret Dynamics

The three main components of the twrret, shown in Figure 1,

are the stationary ring, the rotating ring, and the saddle and gun
combination. The steady state azimuth and elevation angles are
denoted by ¢ and a respectively, The dynamic compounents corresponcing
to these two directions are denoted by A¢ and Aa. The center of
gravity positions for moving parts are shown in Figure 1, The center
of gravity CG1 i3 denoted by the length psrameters al and bl defined
with reference to zero azimuth and elevation angles, The center of
gravity CG1 applies to the total mass involved in the azimuth vibra-
tion apd it includes the rotating ring and the saddle-gun combination.
The center of gravity C62 applies to the saddle-gun combination only
and it is defined by the lengths 8y 89 and b2. The parameter 8,
defines the pivot position, and a3 and b2 define the position of CGz.

Since the dynamic equations for the azimuth and tle elevation
motions will be similar it is possible, up to 1 point, to derive
equations which are valid for either of these motions. Consider a
schematic representation shown in Figure 2 which shows the three com-
ponents involved in the vibraticn. This schematic applies both to azi-
muth and elevation modes. The three components in Figure 2 are the
drive motor, the gear transmission system, and the turret mass. For
convenience the moments of inertia of the motor and the turret are re-
ferred to the turret coordinates. The moment of inertia of the gear
box and the drive can be included in the motor an< the turret inertias.
The torques transmitted through the total system are shown in Figurc 2.
The torque Tm is the torque applied electrically to the motor and Tt is
the torque transmitted to the turret. The effect of friction in the

system is represented by the torque 'I‘f

Tr represents the contribution of the recoil force. The rates of change

of the angular momentum for the motor and the turret gre denoted by ﬁm
and HL respectively. Using the torques shown in Figure 2 the dynamic
equations of equilibrium can be written as follows:

= o= T (1)
S
H lr Tt + T ()

t f

acting on the turret. The torque
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Figure 1. Turret Configuration and the Definition of
Azimuth and Elevation Angles.
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The transmitted torque Tt is related to the elastic de-
formation of the system. In order to express equations (1) and (2)
in terms of displacements the dynamic displacements A¢ and La are

divided into three parts:
Bp = 6, + 6, + b, (3)
Aa=ao+am+ae (4

where ¢o and a, are the dynamic couponents due to helicopiei vibra-
tion, ¢m and am are the dynamic motion for rigid gear system drives,
and b and a, are the contributions from the elastic effects in the
system. It is also convenient at this time to define the relative

displacements:

-
[}

o+ b, (5)

r m

ap = o oy (6)

The angles ¢r and o are relative angles between various parts of

the turret and these are the angles which will be read by the re-
solver in the servo control system. It is possible now to represent
the torque Tt in equations (1) and 7?) in terms of displacements. For

the azimuth motion:

T, = ~ké, (7
and for the elevation motion:

= -ko (8)

where k represents the elastic stiffness of the gezr box and the
transmission.

Consider now the torque Tf produced by the friction in the
system. Since this term represents a combination of all frictional
forces in the system,an exact analysis of this term is not possible
and an empirical relation has to be used. (n this analysis it will
be assumed that this torque acts to oppose relative motion of the
various parts of the turret but since it is a frictional force it will
be independent of the magnitude of the angular velocities. Con-

sequently ,for the azimuth motion this torque is represented by:

5




T, = -kg(9.)/]¢_| 9)

and for the elevation motion

T, = ~kg(a) /o] (10)

where g is the damping coefficient.

Consider now the rates of change of angular momentum ﬁm and Ht
in equations (1) and (2). These relations can be obtained from the
vector relation} however, for the present case in which the azimuth
and the elevation motions are uncoupled [jit is easy to obtain these in
scalar form. As the first step we introduce the hull accelerations

at the point of the turret attachment. These accelerations are denoted

bya,a,a, 0, 6 and é . The first three of these quantities are
X y X y z

the linear aicelerations and the remaining three are the angular
accelerations. All these acceleratiors are relative to the coordinate
system shown in Figure 1. Using fixed azimuth and elevation angles ¢
and 0 and the geometrical parameters shown in Figure 1, moments are
taken of the mass inertia force about the axis of rotationj adding
the angular rate change of momentum it can be shown that:

ﬁt = -ma,(asin ¢ +a cos ¢) + ItA$ (11)

where m is the turret mass at the CG1 point shown in Figure 1 and It
is the turret moment of inertia about the turret axis. Consider now
the terms containing angular acceleration in equation (11). By using

equations (3) and (5) we obtain:

Ap =0 + (12)
But éo can be related to the hull vibration

¢o = ey (3)
For the motor the predominant rotations will be the relative motor

speed and therefore to a good approximation

o
H ¥ (14)
where Im is the moment of inertia of the motor referred to the turret

coordinates.
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For the case of the elevation vibration the rotational
equilibrium equations are referred to the saddle pivot axis. The

rate of change of the angular momentum is:
L

Ht"z ((l2 + 8, cos a)ay - (‘x cos ¢ = & sin §)(<b, + 8, sin a)) + I, A s (15)

where m, is the mass of the saddle-gun cowbination and It is the
moment of inertia about the saddle pivot axis. For the elevation

motor it is again possible to neglect all except the motor rotational

effects and therefore:

B =1g (16)

Using equations (4) and (6) we can write
Ao = a, + a (17)
and from coordinate transformation we can relate &o to the hull
accelerations:
a = é_ siné + 6_ cos ¢ (18)
¢ X z
Consider now the azimuth vibration. By using equations (1)

and (2) aund substituting from (7), (9), (11), (13) and (14) we can

write equations of equilibrium in the form:

1o -ko =T (19)

It¢r + kd>e + kgd>rlll¢rl
= B 2
mlal(axsin¢-+ a_cos ) Itey + Tr (20)
By using equation (5) we can write equations (19) and (20) in terms

of two unknowns:

1o, - k(6 -6) =T (21)

16, + k(6 -¢) +keo /lo | =T + T (22)
where for convenience we have defined an effective hull inertia

torque:

By = mlal(ax sin ¢ + a,cos ¢) - Itey (23)




For the elevation motion vibration the cor:esponding equa-
tions will have the same form as (21) and (22) except we have to
replace ¢ by a. The inertial torque 'I‘I for this case will have the

form:

TI = -mz((a2+a3 cosa)ay - (axcos ¢-az sin ¢)(-b2+a3 sin a))

- It(stin ¢ + aycos ¢) (24)

Before discussing the solution to equations (21) and (22) it
is necessary to obtain an appropriate expression for the motor torque

Tm. This expression will be developad in the following section.
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Servo Control System

Both the azimuth and the elevation motions are governed by
the same type of servo system and the only difference is the gear
ratio used in each of these motions. A simplified block diagram for
the servo control is shown in Figure 3. In simplifying the actual
servo diagram certain very high frequency effects were neglected. There
are basically two feedback systems.

The first feedback senses the relative motion ¢r or ar using a
resolver signal and feeds this signal, without modification, to the
front of the system. This relative motion is then subtracted from the
desired control signal ¢C or o . The second feedback loop senses the
speed of the motor using a tachometer and modifies this signal by a
transfer function. The transfer function is defined in terms of the
motor angular displacements ¢m or o and the resulting signal is sub-
tracted from the difference of control and the resolver signals. Ac-
tually before the subtraction takes place a multiplication by a constant
535. 13 first performed as shown in Figure 3. The transfer function A,
defined in terms of the transformed variables, has the form:

[L 0.1s .0192s

&= T Ty e 08 7.5

(25)

where n is the gear ratio. For the azimuth motion n = 620 and for the
elevation n = 810. Consequently in terms of the transformed variable

the motor torque for the azimuth motion is given by:
Tm = 535 x 0.75n (¢C - ¢r - ¢s) (26)
where we have defined ¢s as
by = A/535 ¢ (27)

Writing the transfer function A over a common denominator and using
o = 620:

2
_ +0029667 s + .0062692 s ® (28)

¢s = 1+0.1s m

Equation (7J) is in terms of the transformed variable s and for our

purpose we need to obtain general time relation. This is done by

replacing the s parameter by a time cperator:



Control Relative

Signal T ft-1bs ¢m,am Motion
Radians m Radians

r l Inertia and V| Elastic
A= 535. .75 External y Trans-
c*e | ﬁ | Loads mission ¢1: Oy

Figure 3. Servo Control System Governing Azimuth

and Elevation Vibration Modes.
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dé, do_ d2¢m
¢g + .1 g = 0029667 -3= + 0062692 ——5 (29)

For the case of the elevation motion equatiou (29) is modified by
replacing ¢S and ¢m by o and a and multiplying the right hand side
by the factor of 810/620,

By having equations (26) and (29) the motor torque at any
given time is defined although it is in a form of a differential

equation.

Solution of the Governing Equations

The final form of the governing equations will be given here
in cerms of the azimuth deflection variable ¢; similar types of
equations will be valid for the elevation parameter a. Consider the

equation of motion (21) and substitute from equation (26):
I 6y = k(o - ¢,) = 401.25n (¢ =~ ¢~ ¢) (30)

Equation (30),together with equations (22) and (29) ,represents a
system of three governing equations in the variables ¢m, ¢r and ¢S.
For the case of the elevation motion the variable ¢ is changed to o and
the right hand side of equation (29) is altered by a multiplying con-
stant as indicated previously.

The solutior. to the three governing equations will be obtained
numerically on a computer. To do this the three second order equations
are reduced to five first order equations. This is done by defining

the following five variables:

¢1 = ¢r
dé_
% =3t
¢3 S ¢m
do_
: BT
§ -
£ b = 0, (31)

By using equations (31) in the governing equations (22). (29) and (30)

11




the following set of five first order equations follows:

dé
1.,
T - %
d, .
—Et—- = 'I—t- (-k(¢1 = ¢3) - kg¢2/|¢2| + T]’_ + Tr)
dd>3 6
a4
B
i (k(d; = ¢4) + 401.25n (9, = &5 = 6c))
dé

<o = 1065 + 0.029667 ¢,
|
+ 0.062692 (I—m (k(d; - ¢4) + 401.25n (¢, - &; - ¢5)) (32)

It may be noted that in the last of equations (32) the second deriva-
tive of ¢m was replaced by using equation (30). Equations (32) are

solved numerically.

The solution of equations (32) has been programmed on a digital
computer. The description of the input parameters is given in Ap-
pendix A. The program is set up so that either the azimuth or the
elevation vibrations can be a2nalyzed separately or both motions can be
handled simultaneously. The listing of the program is given in
Appendix B.

Numerical Examples

In order to check out the analysis and the computer program,
four numerical examples were executed. The first example consists of a
step input in the recoil torque I‘r of 660 1b-ft. The results are pre-
sented in Figure 4 for the response of the turret in the azimuth motion.
The result for the elevation motion is similar and only the numerical
values differ. The results in Figure 4 show the variation of the angle
¢r with time., It can be seen from these results that steady state

respcnse is reached in about 0.15 seconds. The steady state response is

12
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about 2.7 milliradians. This response compares closely with the equipment
specification of 2.5 millirsdians static deflections for 660 ft-1bs
torque. During the transient period the oscillations can be seen
to have a frequency of about 30 cps which agrees with the natural
frequency of the system.

In the next three examples the turret was subject to oscil-
lating torque given by:

T. = 300 (1 + sin wt) (33)

In the three examples the frequency w was taken to be 62.8, 188.5 and
282.7 radians per second. These values correspond to 10, 30 and U5
cycles per second. The results for these three examples are shown in
Figures 5 to T. Again, the results are given only for the azimuth
motion. In the calculations the control signal .c in the servo controls
was set at zero. Therefore the turret attempts to follow this value}
however, due to the dynamics of the system the turret deflection .r
does oscillate., The results in Figure 5 to 7 for the sinusoidal input
show a sinusoidal response superimposed on & step input. The mear value
of the response agrees with a step input of 300 ft-1lbs torque. As
expected the amplitude of the sinusoidal response reaches a maximum

value at the natural frequency of 30 @ps.
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Card 1:

Card 2:

Card 3

Card b

Card 5:

Card 6:

Card T1

APPENDIX A

Descrigtion of Input Cards and Input Parameters

This card contains the parameter DM; if I’ = 1 then azimuth
motion is to be analyzed before elevation, if IM = 2 then elevation
is first, FORMAT (I10)

This card contains the parameter NM which can either be 1 or 2;
and this parameter establishes whether 1 or 2 motions are to be
analyzed., FORMAT(I10)
Contains parameters 8y 85 85y bl' and b2 which define the
centers of gravity for azimuth and elevation motion, The
parameters 81 85 5.3. bl' and b2 are shown in Figure 1. The
units are feet, FORMAT(5F10,3)

All the remaining cards, starting with this one, are to be
repeated for each motion. For example if IM = 1 then these
cards are not repeated, if NM = 2 then these cards are re-
peated twice, The Card 4 contains AM, AIl, and AI2, The para-
meter AM is the mass in pounds of the vibreting part of the
turret, AIl and AI2 are the moments of inertia for the turret
load and the motor referred to their own coordinates, Tae inertias
are in slug=-ft? units, FORMAT(F10.5, 2E15.5)

This card contains TK and TG where TK is the torsional stiffness
of the gear system in lb-ft per :radian, and 7G is the non-
dimensional frictional damping coefficient FORMAT(E10,.3,F10.5)
This card contains the gear ratio. It should bve 620

for azimuth and 810 for elevation, FORAT(F10.5)

This inputs four parameters PRMT where PRMT(1) and PRMT(2)
represent the starting and She end points in time, PRIT(3)

is the initial integration interval, and PRAT(L) is the upper
error bound, FORMAT(LE15,5)

18




APPENDIX B

Computer Program Listing
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MAIN NATE = T4252 15/34/24

MATN

RS (&

COMMIN/STIFR/TK,LTG

COMMUN/MASS/AM, AT, 8702,A4,R,GF
COMMTN/MATION/ T M GN
CTMMTN/ANGLS / PHI, AL PHA

NTMENSTON PEMY(5),7-RY(D )y AUX{8,5),¥Y(5)
SXTARNAL FCT,00LTP

C SET MCTIOH 70 RE FIRST,IM=]1 AZIMUTH,IM=2 ELEVATICN
R=AD{5:1002) IM

C

C SET NUMBER (UF MTTIONS T RF ANALYLZED,1 2OF 2
C

REAN(S5,11772) NV

C

C

C OTAC AMGLES  PHTI AND ALPHA IM NDZGRTFES

C

AN (5,1001) PHI,ALPHA
WEITE(Gy 20054 ) PHI AL PHA
PT=3,1415526/180,
PHTI=PHI P1
ALPHA=L | OHA* P
[alh] qg h:l.k'.‘ﬁ
TE(INM.TNWN) 67 TP 12
WETTE(691600)
a5 TT 1S

12 WOTTE(6,1500)

13 CoMTINYT

¢
C FTAn FCPoNT ¥ VASS AND WOMENT JF INERTIA 9F LTAD &RL MOTAR
c 4IMFNTS NF INTRTIA ARE RELATIVE TO MOTIR CIORDINATES
FZAC(5,1000)1AM, 811,A12
T
c PEAD CENTER °F GFAVITY "FFSET FSET
>
FERF(5,17711 £y P
.
C RTAD (GF AP RBRTX PATIN
C
CIAD(S,1CL0)rTE
c e
c FTAD TRERSMTCSIZN STIFFNISS, FT-LAS, AND DAMPING CREFFICIENT

S AN{S,1U03) TKy 76
ARTTE(09200 M) ANHATL ALY
IFITT(6H,20C1) AR

¢opy U7l g TN dnas nol
Permit fuiiy logiLle 1gue.iuttion 0




MAIN DATE = 74252

WRTTE (62002) TKyTG
WRTT= (6, 20031 7R
AT1=AT1* (GR)4¥2
AT2=AT2% (GF )5 %2

C

C SET INITIAL DISFLACEMENTS
C

10 I=1,5
10 Y(1)=0.0

C

C TEY LRRPE W TGHTS

c

P11 1=1,5

Il "PRY(Ti=.2

READ(5,1904) (PRMT(I)yI=1,4)

WPITE(6,2C05)
CALL RVGS(PPMT, YyDERY,$5, IHLFHFCT,QUTP,AUX)

99 CAMTINUF

LOUT EIRMAT(FL10,5,2F15.5)

1001 FIRMAT{2¥%10.3)
1002 FIRMAT(110)
1073 FARMAT(L1Ca34F1CL5)

1004 €7FPMAT(4:15.6)
1530 FORMAT(S50X,"AZINUTH VIBRATIONY)
L6CC FARMAT (50X LEVATION VIRRATION?)

2000 FIRMAT{T7X,'"ASS TUPFEY INERTIA MOTIR IMEPTIA®/4X,3C18.6)
2001 SIRMAT(TX,y'CENTFR CF GRAVITY POSITINN'/4Xy2E18.6)
2002 FIRMAT(7X,*GFAR STIFFNESS DAMPING CCEFFICIENT*/4X,2518.6)

2003 FARMAT (4X,* GEAR RPATID '/4X,F10.0)
2004 FIPMAT(GX,"AZIVMLTH AND ELZVATION ANGLES'/4X,2F20.6)
2005 FOEMAT(GX,*TIME , ANGULAR DISPLACEMENT IN RADIANS')

Sl
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ouTP JATE = 14252 15/34/24

o] SURRJUTINMNE NUTP (X, Yy CERY,IHL FyNDIMyPRMT)
NYMENSTIN V(5) UE&?‘SJ,Dle(S)

. Y  DE

2 WPITE(6,1C00) XoY(1)

1090 FIRMAT{3X96515.6)
TETURN

INP
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6 LEVEL 21 FCT DATE s 74261

SURROUTINE FCT(XsYsDERY)
COMMON/STIFF/TKeTG
COMMON/MASS/AMeAILl9Al2¢A9B4GR
DIMENSTON PRMT(S)9OERY(S) 9 AUX(895) 9 Y (S)
P=0,0
CALL RFORCE (X¢TR)
CALL IFORCE (XeTH)
AF=ARS (Y (2))
IF(AF,FN.0,0) AF=1,0
C=4,01725E+02%GR

C EVALUATE RIGHT HAND SINDE OF GOVERNING EQUATIONS

DERY(1)=Y(2)

DERY (2)z=TK/AI1*(Y(13=Y(3)+Y(2)/AF*#TG) ¢+ (TR*TH) /A1l

DERY (3)=Y(4)

DERY (4)3TK/412#(Y(1)=Y(3)) +C/AI2* (P=Y(1)=Y(5))
DERY(5)2(4,78504TE=5#Y(4)¢]1,011186E~4%DERY (4) ) #GR=10,*Y(5)
RETURN '

END

23




LEVEL 21 IFORCE DATE = 74261

SURROUTIMNE TFORCE (XeTH)

COMMON /ANGI E/ PHIsALPHA9SASCAsSPsCP
COMMON/MASS/AMeATIL19AI29APH,4GR

COMMOMN/MOTTION/IMeN

COMMON /NUMB/ NITERsHDATIX0sRPLT (5) sCONFIG(I)

COMMON /ACCEL/ T1(2600),T2(2600),T73(2600) ¢UDD(2600)
$ VO(2600)4WDD(2600)

CALL PNAINT (X9NUMs XN)
THX==T] (NUM) * (T1 (NUM)=T1 (NUM*1) )& (X=XN) /HDAT
THY=T3 (MUM) ¢ (TI(NUMe1)=T3 (NUM) ) & (X=XN)/HDAT
THZ=T2 (NUM) + (T2 (NUM+1)=T2 (NUM)) #(X=XN)/HDAT
AX==Upn (NUM) ¢ (UDD (NUM) =UDD (NUM+]1) ) # (X=XN) /HDAT
AY=WOD (NUM) ¢ (WOD (NUMe 1) =WDN (NUM) ) & (X=XN) /HDAT
AZ=VOD (MUM) ¢ (VDD (NUMe 1) =VOD (NUM) ) # (X=XN) /HDAT
IF(IM,FA.N) GO TO 9

(o} FORCE FOR ELEVATION DIRFCTION
TH==AM3A® («AYRCA® (AXRCP=AZaSP)#SA) =AIL* (THX®SPeTHZ*CP)
60 TO 10

9 COMNTINUF

c FORCE FNR AZIMUTH DIRECTION
TH=AMB AR (AXSP*AZ*CP)wATL*THY

10 CONTINUFE
RETURN
END




SUBQDU’ENg RFQPCE(XtTR%
Lt ’

RFIORCE

DATE = 74252

15734/24

FEMACN/MATTON/ TN, N
TE(IMLEQ.N) 60 T] 9

- C

RO FOR cLEVATIUN PIRFCTIUN
W=232,7
TR=150.* {1l #SIN(WEX))

9
C

GO 7T 10
CINTINUE
FORCE FOR AZIMLYH ODIRECTICN

1c

W=282.71
TR=FI(CDe*(1la+tSINIWKRX) )
CONT INUF

Rz-THRN
epr

@mwmwmnwwmmmmmamym;

T C"l!cu R0
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1IN W Y e T T W - &V W VY eV

SURRQUTIME PKGS(PRMT ,Y,DERY,NOIM,IHLF,FCT,NUTP,AUX) R!

C R
c R
DIMINSITN Y(S5)yDERY(S5) gAUX(8¢5) 9Al4)4R(4),C(4)yPRMT(S)
T 1 I=1,NDNTM )
I AUX{By1)=sCE66666T%*DERY(]) R:
X=PEMT(1) RI
XEND=PBRAT (2] R
H=PRMT (3) RI
PRMT(5)=0. R
CALL FCT (X, Y T'EPY) R
C R!
C FPPIR TEST R:
TFIH*(XEND-X)Y38,37,2 Ri
C : RI
C PREPARATIMNS FGR RUNGE-KYTTA METHOD R
2 M1)=.5 7
A(2)=,2928632 |
A(3)=1.7C71C7 R!
ATa)=.166666T R}
R{l)=2. R!
2L2)=1. R
A(3)=1, Rl
3(4)=2. R
C(l)=.5 Rt
C(2)=.726G28932 R
Ci3)=1.7C7137 Ri
Cla)=.5 R
3 Ft
C PREPARATICMS QF FIRST RUMGS-KUTTA STEP R
N7 3 I=1yNDIM RI
AUx{l,!)=Y(]) RI
AUX(2,y1)=PERYL]) X
AUX{3,1)=C. R
3 LUXI6,1)=0. R
1REC=0 R\
H=H+H R
THLF=-1 RI
ISTTP =0 FI
JEND=P R
€ Fl
C R
C START NOF A RUNGE-KUTTA STED k!
4 TFLIX4H=XENT)?E)Ty645 RI
5 H=XFND=-X k!
6 I°NN=1 RI
r RI
C RECIAIFDIMNG CF INITIAL VALUES 7F THIS STEP RI

» s N AT W
e RS T
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FKGS DATE = 74252 15/734/24
CALE TUTP%an.CQPY!IPECgNDIM,PRMT) RK
1= Hob ' Rk
177ST=9 Rk
ISTIP=[ST P+ R¥
RN
RE
SYACT OF INMZPMCST RUNGZ-KUTTA LOOP Fk
J=1 i : -]
AJ=a () Rk
2 J=8{J) Rk
N Ll D) TF
N7 11 I=s1,ACIV R i
Rl=H*DEPY(T) RK
F SRR (FI=RIFACX(6, TTT 34
Y(T)=Y{I)+R? Rk
WZ2=R24P 2 +R2 R
A6, TY=ATIX(6, IV#+R2-CI*R1 Fk
TF{J=4)12+15,15 Rk
J=J+1 Rk
Ie(J-3)13,14,13 Py
X=X4e5%H R
CALL FLY(XyY,yNERY) R
37 10 R+
AN DR TMMNTEMAST AUNGE-KUTTA LDIP Rk
cp
QP
TIST a8 ACCURACY R
TE(ITEST )16,416,20 ke
R
IM CASE ITEST=C THERE IS NJ POSSIBILITY FOR TESTING OF ACCUPACY Rt
D) 17 T=1,NDIV Rb
AUXT4yT)=Y(T] R
tTICTo} Rt
ISTCP=ISTEFR+ISTEP=2 R
THLF=THL"+] Pt
X=X=H R}
L-:.S'!'H F;
N 16 I=l,hT 1M . R}
Y(Th=AUIX(Ll,!) Rt
NERY (I )=AUX{2,]) R}
AUXTE6,I)=AUX{3,1) R
~aTn q p'.
G R}
¢ TRCNSY TTTCT=] TESTINA F ACCURACY TS PLSSIRLE Rt
20 MW =107=Dp/p Rt
TE(ISTEP=IMIr=TM"D)21,23,21 Rt
2L TALL FC (X, Y.[EPY) - Rt
D22 =l WkT v R
e
o] ==
12rreduction
27
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DATE = 74252 15734/ 2

N I

22 PLT=C.
N 24 T=] NPV

24 NELT=LELT #MXI8,, 1) *ARS(AUX 4,10 -YIT))
IFIDILT-FPPMT (4))23,28,25

j TERF T T GREAY
25 IF(IFL7-10102€+36436
26 N2 27 l=1,N)IV
2T AUXT4, T1=20X (55 1)
[STEP=ISTZP4+ISTEP-4
X=X-H
TINA=g
AT 18

o

C=3ULYT VALULS AR: 679D

29 CALL FCT(XyY,NERY)
NN 29 Tzl NN IW
AMIX(Lo1)=Y(T)
ALX(2, T )=DERY(])
AJX(3, [)=AUX(6y 1)
Y(T)=8UX(S,7)

29 NERY(1)=AUX(T,1)
CALL THTP(X=Hy¥Y 4DIRYyIHLFyNDIM, PRMT)
[F(PRINT(5))43,3C040

20 F7 21 1=l ,N WV

' Y(I)=aUuX(1l,!)

31 DFRY(T)=ANX{2,1)
IREC=[kLF
[FIIEMD)32,32,36

—

C INCFEMErT G778 NDMRLER
32 THLF=1HLF=-]
TeTep=ISTEP/?
HzH+H
TE(IHLF)4,433,33
33 TMANSTSTEDYD
TE(ISTEP-IN"T=[VN_Y )4y 34,04
34 1501 T=N2-PFV¥T{4))35435,4
1 TR FaTHLF=-1
ISTED=ISTEZR/?
i ~=H¢H
| AT Y 4

L}
i
Al
!
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