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Pk.FACE

Because U.S. Air Force systems be they idr;ile, space, tactical,

aeronaut.'al, oL other systems inevitably are tcr be utilized in ceetitive

(differential game) situatxons and because a comprehensive theory of

mathematical games has yet to be developed the results presented in this

report were evulve4 with this goal in .=nd. Numerous basic results are

contained herein with the ultimate goal of a comprehensive theory of

differentcial games in mind, and the utility and significance of the results

developed herein are illustrated by a,plication to numerous illustrative

examples.

This research report was prepared under research projects supported by

the U.S. Air Force Office of Scientific Research under AFOSR Grant 72-2166,

Design of Aerospace Systems, and by the U.S. Air Force Space and !1issile

Systems Organization under Contract No. F0,1701-72-C-0273, Advanced Space

Guidance, and this report constitutes part n " the final report on the.e -

contracts.

The research described in this report "Mixed Strategies for Dynamic

Games," UCLA-ENG-7280, by LouiL Ca.rl Westphal III, w, s carried out under

the direction of C.T. Leondes and E.B. Stear, Co-Princii-al Inx' itigators

in the Schools of Engineering in the University of Californn a at Los Angeles

and Santa Barbara, r'.spectively.
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ABSTRACT

Development of a comprehensive theory of i-zhemr tical

games has been hampered by phiozophical, conceptual, :nd prac-

tical difficulties. For dynamic games in particular, solution . -'thods

t are elusive, and algorithms are rare. Thih- is especially appare:-

for games which require that the competitors rendomize, or mix,

their tactics even though sach randomization is a common property

of actual competitive situations. This dissertation is therefore con-

cerned with the development of a technique for the synthesis of mixed

strategy solutions of gaines.

A special class of dynamic games is studied: two-person

zero-sum noise-free multistage games of fixed duration for which

the payoff and dynamic functions are multivariable polynomials and

the control vectors are elements of compact hypercubes. The

problem is formulated' such that known results concerning existence

of saddlepoint solutions are applicable; emphasis is on the deter-

mination of the value and of the optimal mixed strategies and on the

properties of the solution functions. This is achieved by extending

and applying the method of dual cones such that the game becomes
)

a maximization problem and the optimal strategies are derived

from the interaction of two special convex sets. It is shown that

this maximization problem can be approximated in a straightforward

and intuitively satisfying manner by a linear programming problem.

In the approach used, the state vector of the game is a

parameter. For this reason the continuity properties of the

functional dcpcndence of the value and the strategies upon this
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parameter are investigated. One result is that for a ga:iie with

quadratic payoff and linear dynamics the value function -s piece-

wise quadratic.

Computational aspects of the solution technique are -x-

tensively discussed, and several illustrative examples are given

to demoxstrate various points, including the fact that the principle

of optimality cannot always be used with the method of dual cones

to find exact solutions to multistage polynomial games. A brief

formal discussion of the extension of the method to differential

games is also presented.
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CHAPTER I

INTRODUCTION

The mathematical theory of games is still a relatively

Uimmature discipline with a multitude of theoretical and practical

problems. Solution of those problems will bring about increased

understanding of cooperation and compettion in such diverse fields

as anthropology, economics, military defense, diplomacy, sports,

and behaviora! psychology. It is even possible that game theory

will become a major branch of applied mathematics, for it encom-

passes optimization theory as a special case while introducing new

questions due to its concern with the interactions of multip1p. intelli-

gent part-cipants.

C One objecive in the theory of games is to determine, fcr

any given situation, the best tactics for each participant to use

and the payoff to each when all use theiz best tactics. In practice

the theory is applied to a mathematical representation, or model,

of the actual situation, and the adequacy of a particular analysib

depends upon both the sensibility of the model and the intuitive

Cacceptability of the results. This need for realism leads to a

requirement that the theory be applicable, for example, to dynamic

situations with multiple competitors whose knowledge of the true

situation may at tLnes be incomplete, and indeed researchers are

attempting to resolve the mathematical difficulties presented by

such cases.



It is well known, however, that in many types of competition

the participants diversify their tactics so that under similar circum-

stances their actions vary and are unpredictable to their opponents.

Such mixing, or randomization, of tactics is common in many

sports and parlor games and in guerrilla warfare. It also underlies

such maneuvers as bluffing and feinting. Thus one would expect

the theory to produce randomized tactics as solutions of its models.

Surprisingly, although solutions of games based upon static

situations are often randomized, this is not presently the case for

most dynamic games. Therefore, this paper is concerned with

developing a theory which produces randomized tactics as needed in

the soLution of a particular class of dynamic games. The class

studied is that of perfectly competitive situations with only t.':o

participants, the so-called two-person zero-sum games. The

dynamics of the game are modeled by multistage equations,

and each player knows all pertinent information concerning the game

except the future tactics of his opponent. The dynamics and payoff

functions which define the game are multivariable polynomials.

Finally, each play of the game lasts a fixed number of stages, and

the players choose their control actions as elements from compact

hypercubes.

Such apecialized games should prove to have wide application.

The two-person zero-sum model is; often used, and multistage'

dynamics may be more accurate fo: representing applications stu( i

as business decisions than continuous dynamics. Furthermore,

polynomials are frequently employed in models of real situations.

2



Particular applications which may be foreseen include pursuit-

evasion and weapon allocation problems for defense purposes,

optimal pricing and advertising determination for direct business

competitions, resource allocation for political campaigns, and

perhaps even game plan determination for some sports and parlor

games. The theoretical results of this paper will allow approximate

solutions of these ai.d other problems for which suitable models

C. of the requisite type are derivable.

The existence of saddlepoint solutions using mixed strategies

has been estahliched f, this class of* problems, the concern in Uhis

report is with developing a theory for actual synthesis of those

solutions, a task accomplished by extending the theory of dual cones

orignally developed by S. Karlin, M. Dresher, and L. Shapley

C for a restricted class of static games. Suitable background material

and relevant definitions are in Chapter 2. The theoretical develop-

ment begins in Chapter 3 with a precise definition of the problem

of interest.

The principal the,.,retical results and discussions concerning

approximate solutions are in Chapters 4 and 5. In the first of thee,

the problem is attacked by solving a special static game. The

solution is obtained by reducing the problem of finding the optimal

mixed strategies to a problem of determining the generalized

moments of such strategies. Next the sets of admissible monment3

and certain convex cones which they generate are described. The

value of the game and the optimal moments are then obtain-d by

exploiting features of the dual convex cones. The chapter is

3



concluded with discussions of compuLational aspects of the solution

method, including an approximate formulation as a linear pro-

gramming problem.

In Chapter 5 the effects of introducing the dynamic aspects

of the game are examined. The essence of the approach is that the

dynamic game is reduced to a sequence of static games in which the

system state is a parameter. The applicability of the method of

dual cones to finding open-loop and closed-loop optimal strategies

is discussed. Then continuity properties of the value and of the

optimal strategies as functions of the state vector are evaluated

in detail. Finally, the dual cone approach is utilized to prove that

the value of games with linear dynamics and quadratic payoff is

piecewise quadratic.

Chapter 6 is devoted to four examples which illustrate various

aspects of the theory developed in Chapters 4 and 5. Chapter 7 con-

tains a brief, formal discussion of the extension of the methods

developed in this report to aifferential games. A summary of

results and a look to the future comprise the concluding chapter,

Chapter 8.

The original contributions of this work arc embodied in the

extension of the method of dual cones to include vector control

elements, the creation of a solution technique based upon that

method, the manner of formulating the approximate problem so that

linear programming may be applied, and certain aspects of the use

of the method for multistage games. Among the last of these,

4
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the proof that certain linear-quadratic games have piecewise-

quadratic value functions is original, as are portions of the argu-

ments concerning continuity of the optimal mized strategies. The

discussion of the extension to differential gr.nes also contains

original elements.

i:i
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CHAPTER 2

BACKGROUND

Hundreds of research works concerning various aspects of

game theory have been published since the field was founded by

,on Neumann and Morgenstern in 1944 El]. In this chapter we

review the history and the commonly-used definitions for the con-ol

L. systems-oriented branch of mathematical game theory to which the

present study belongs. Section 2. 3 contains a survey of the literature

which is particularly relevant to the synthesis of mixed strategies

for dynamic games.

2.1 TERMINOLOGY

Useful insight into a situation can often be obtained simply by

[reviewing its terminology. This is definitely the case with game

theory. Thus it is fruitful to consider definitions and concepts at this

point. This terminology is relatively standard for the field, and we

f shall neither probe its nuaaces nor attempt to compile a dictionary.

A ame is the complete set of rules, definitions, constraints,

goals. etc., which describe a multi-participant interaction, whether

E it be competitive or cooperative. The participants are called

players, and :U 0 -.re are n such participants, the game is called an

n-player or n-person game. A single contest or realization of the

SC game is called a pjl or 22,e

In a iion-trivial game, the players are able to affect its course

and outcome. Mathematically it is said that the J th player does this

I $by choosing a control or control vector u i, or by choosing a sequence

Preceding page blank
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u. = Lu or a time history u. = u j(t) of such vectors. Ordinarily the

control vectorf are chosen from some set U., called the set of
i

admissible controls.

To further his own best interests during a partie, a player

does not usually behave haphazardly. Instead he uses a strategy, or

set of rules which govern his choice of controls depending upon his

observations of the course of the partie. Thus a strategy might be

thought of as a mapping 0 from the set of all possible observed situa-

tions into the set of admissible controls. If the control implied by a

strategy is always a unique function of the aituation, then the strategy

is called a pure strategy. On the other hand, if the rule assigns

control vectors to a situation in a manner which involves randomness,

then it is called a mixed or randomized strategy. The essence of a

mixed strategy is the relative freqjuency of utilization of various

control vectors rather than the randomization mechanism, and it is

therefore common to refer to probability rnesures defined on the

sets of admissible controls as mixed strategi.s. Controls with

nonzero probability measure in a given situation are the ones which

are candidates for utilization, and these are said to belong to the

spectrum of the mixed strategy. Note that control vectors chosen

using mixed strategies are random variables.

Scme games operate within a framework or system which

evolves over time (or some other pa-ameter) in a manner which is

important to the structure of the gz.me. We call such games yrnamic

gamea, and their complement we call static gayne?. The dynamic

system is usually described mathematically using a state or state



I

vector z which is a function of the controls and of other parameters.

The progression of the state during a partie is described by aI

dynamics equation, which may be a differential equation,

=f (z, u ' Un; t) (2.1)

or a difference equation

z(i+l) = f(z(i), u (i),..., Un(i); i) (2.2)

In the former case the game is called a differential game, and in the

latter it is referred to as a difference game, a discrete differential

game, or a multistage game. A dynamic game whose rules prescribe

that a partie proceeds for exactly T time units or N stages is called

a game of fixed duration.

Along with the direct complications which dynamic games

introduce come several conceptual problems. An important one

of these is that the nature of strategies must be further refined to

account f(.r whether the players are allowed to expect to have know-

ledge of the state whenever they choose control vectors. If not,

then they must consider the possibility of making open-loop control

choices when they design their strategies, and the resulting

strat.?.ies are called °pen -loostrate ies. If the rules allow them

to expect that they may always have up-to-date observations on which

to base their control choices, then they may design closed-loop

strategies which depend upon those observations. For example, in

th
one simple differential game the i player may be required to gen-

erate an open-loop mixed strategy function represented by a

9



conditional cumulative distribution functlon F.(u.(t) I -(T), u.(s); T sCt),

whereas in -.nother such game he may design a closed-loop mixed

strategy with c ,, f. F (u (t)I z(t)). Clearly these concepts are gen-

eralizations of the ideas of open-loop zad closed-loop controls. Note

that the strategy type i0 eetermined by the rules of the game rather

than by tht conditions obtained during a partie of that game.

Ultimaly, each play% !n a game strives to achieve some

;oal. For math.,matical games OIts fact is represented by associ-

ating with each player j a payoff functional, which for each partie

assigns to that p1rkyr a real numbe.7 J. that depends upon the struc-

ture of the game and the course of the partie. In particular, if

U , j=l, 2,..., n, denotes control histori q and z denotes state

histories, then we write

J. J( j=l 2..., n (2.3)

to represent the payoffs. A game for which J = 0 is called a
j=l

zero-mum came; any other game is nonzero-sum. Depending upon

the nature of the game, the payoffs may belong to finite or infinite

setti and may be bounded or unbounded.

Each player in a game chooses his control history during a

partie, and thus designs his strategyto best serve his own interests.

The exact nature of "best" is dependent upon the rules of the gama;

for example, a player may in some games submerge his direct

interests to those of a group and in other games may strive for

maximum security of payoff rather than to maximum payoff. Fur-

thermore, frequently a function of the payoff such as its mean is

extremized rather than the raw payoff. In any case, if it is possible

10



for each player to design a strategy which in the game sense best

serves his interests in terms of a function . of the payoffs, then
(J

his payoff when all players use such optimal strategies is called

the value of the game 'n him. We write this as

( w =val ff (Jl J2'"" J)) j=l,2,.... n (2.4)

Because the exact nature of the maximization is so intimately related

to the particular structure of a game, it is generally difficult to be

more definitive than this except for one particular class of prob-

lems, the class of two-person zero-sum games.

(Two-person zero-sum games are the subject of intense

research interest and accordingly are the source of considerable

specialized terminology. In such games, it is possible to define

( a single payoff function J which has the property that

J = - J2 (2.5)

Such games are often called perfectly competitive, since by their

nature one player's gain is the other's loss. In these games a

rational player attempts to maximize his minimum possible expected

payoff; i. e., Player I attempts to maximize the minimum possible

.J) and Player II tries to minimize the maximum of 'f(J). If we call

4. the strategy sets for the players, i=l, 2, then we write

-max min

11



A =min max
=z -

as the goals of the two players. If J1 =J , then this common number

is by definition the value of the game. It is clear that

w 1=j2 = :~ 0 a Jf12

has the property

2,J~ W (2.6)

where the notation indicates that the payoff function is to be evaluatf. -i

using the optimal strategy 00C and any admissible strategy

S(lk., j~i. Condition (2. 6) -a called a saddlepoint condition, and a

3trategy 00 which yields this condition is called an optimal strategy,

a saddlepoint strategy, or a mini-max ctrategy. These notions are

also used in some other classes of games.

If at leait one player in a game lacks some essential piece

of information, auch as exact knowledge of the state vector, the

nature of the dynamics, or the payoff for some player, then the game

is caLed a game of imperfect information, or a stochastic game;

otherwise, the game is one of perfect information. Common

dynamic gares of imperfect information are those for which at

least one player has knowledge of a vector function of the state,

=YiY4(Z W) (2.7)

12



where w is a random vector, ra t her than of the state vector z, or

where the dynamics functions depend on a random vector _ as well

as on the state and the controls. Many games do not fall naturally

into either category, and their precise classification must be by

convention. We shall use the following convention: if the controls

and state are random variables due solely to the use of mixed

strategies and the participants have equivalent knowledge of the

game, then we shall call it a game of perfect information.

With the above concepts in mind, we are able to characterize

a great variety of mathematical games. In this report are described

the optimal mixed strategies for two-person zero-sur, multistage

games with fixed duration and perfect information and with payoff

and dynamics functions characterized by polynomials. Both open-

loop and closed-loop strategies are examined.

2. Z THE HISTORY OF GAME THEORY

A great amount of research concerning mathematical game

theory has been published: A bibliography compiled in 1959 [2J has

more than one thousand entries, and a recent bibliography of

differential games [3) contains over two hundred references and is

still incomplete. Therefore, any overview of the field is useful but

necessarily cursory. This section reviews the history of the branch

of game theory which is most closely related to this report.

Although there are earlier relevant publicaticns, it is gen-

erally conceded that game theory had its birth with the publication

of the classic work of von Neumann and Morgenstern D1]. Besides

creating the field, these researchers contributed some standard

13



results, the most important being a theorem proving that for static

two-person zero-sum games for which the controls must be chosen

from finite sets, optimal strategies and a value would exist provided

that mixed strategies were allowed. This was later proven in

alternative ways, among them the dual theory of linear programming,

and it was shown that the mixed strategies could be computed using

linear programming (See, for example, GassL4)).

Following the publication of that book, game theory was the

subject of intensive research interest for several years. Interest in

static games was particularly high, and among the results are

algorithms for solving general two-person zero-sum games with

finite control sets and theorems showing that a value and optima!

mixed strategies exist for certain two-person zero-sum games with

infinite control sets. The former fact was alluded to ir. the preceding

paragraph, and initial versions of the latter are attributed by Kuhn

and Tucker E 5), among others, to J. Ville and to A. Wald. Black-

well and Girshick [6) supply a fairly comprehensive discussion of

the mini-max theorem.

Along with these general results, many special two-person

zero-sum games were examined, including u particular the

so-called games over the unit square, in which the players choose

controls as real numbers from he unit interval [O, 1] and the payoff

functions are of special forms, such as polynomials or convex

functions. An excellent source for this period, with interesting and

enlightening commentary by the editors, is the series Contributions

to the Theory of Ganes 51, [7), [8, [9).

14



A new dimension was added to game problems in the middle

1950's by Isaacs when he created dynamic games, particularly two-

person zero-sum differential games [10j, [11), £12), (13]. Efis

highly original work is available as a book [14) which is best read

along with a book revXi.w by Ho [15). In brief, Isaacs is concerned

with examples of problems with dynamics

=f(z' U, v; t) z(0) = z 0

and payoff function
c

J(z 0 , u(t), v(t) = gf(z, t c) +]g(z(t), uN), vt), t) dt (Z. 8)

0

where t C is the time at which a given terminal manifold is reached

and z is the final position on that manifold. He assumes that the-c
payoff has a saddlepoint when pure strategies are used and argues

that if the value function J*(z, t) exists, it satisfies his Main Equation

One, or ME I,

aJ* min max )Tl+ v u 1(7J*)f(z, u, v, t)+g(z, u, v, t 0 (2.9)

where7 is the gradient operator. To find this, he applies what he

calls the Tenet of Transition, a game theory analog ox Bellman's

Principle of Optimality which he apparently found independently. In

principle, (2. 9) may be solved far u0 = u(z, V J*, t) and

v 0=(v zJ*, t), which are then inserted to give the Main

Equation Two, or ME 2,

I
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1J)Iiz a 0t.V(, )- 3) " (z. .

O %I*, t) t)0 10

This equation is of Hasailon-Jacobi type, ,nd is commonly referrcd

to as such- Equation (Z. 9) is often called a Hlamilton-Jacobi-Bellman

equation or a pre-Hamiltrian eq.titon.

Using his main eqAlions. Isaacs also contrii-utes sufficiency

theorem. In essence, he finds that if j*(z. t) is a unique continuous

fmctic satisfying the ME's and the boundary condition J*(zc , t) =
gi t , then 3 -is the value w(z., ) of the game and any pure

strategies which furnish the min-max in (Z. 9) and cause the desired

end point to be reacbed are optimal. This is t-ue in a limiting sense,

that it, as the limit of a convergent series of discrete approxi-

mat!ons to the differential game.

Interest in differential games built up gradually for several

years and culminated in a major work by Berkovitz C163. who

extatided results of the c!assical calcuolus of -ariations to zero-sum

two-person dxferential games. His principal results are that under

some fairly reizrictive conditions, tue Haznultonian-ike function

H(Z, u. V. P) = PT f(z, u. V)+ g(z, v) . )

satiRie , for optimal controls u
0 and v ,

z= V H(z, u v , p)

2. =  (2. 12)
0 0R -7 __z __, v ,£

(Cont'd)
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TI (2. 12)

S • = 0 +i " J0--

g ii o 0 o

where K andK are vector constraint functions on u and v,

respectively, andis andj! are associated multipliers. He also

establishes a form of HanMilton-Jacobi equation (Z. 10) and sufficiency

conditions using field concepts. The results apply to problems which

have solutions in pure strategies.

Once these basic results were established, a great many

£ researchers applied them to special cases and interpretations, and

to extensions of the same class of problems. Among these, a very

influential work was contributed by Ho, Bryson, and Baron [17], who

studied a particular game with linear dynamics and quadratic payoff

which has pure strategy solutions. Oth. r contributions in the same

general area of two-person zero-surn differential games include

those of Wozy [18), Meier [19), Meschler L203, and Wu and Li [21).

Interesting geometric work in an augmented state space is found in

works by Leitmann and others. Blaquiere. Gerard, and Leitmann

[22) is representative of this approach.

A variation of the above differential game has received

attention from several researchers, including some of the prominent

Russians. If the payoff for a two-.rson zero-sun game is the time

T of attaining a terminal mranifold, a problem is created which may

not end; i.e., it may be that T = . Pontryagin L23) Whows that if an

optimal payoff exiists, his maximum principle may be applied to such
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games provided that the Hamiltonian can be written

H(z, U, V. p + T u, V)
(Z. 13)

=H l ~z , !, 2)+ H,(z, X, p)

Other results for related problems appear in such works as Chat-

topadhyay [24) and Varaiya [25).

Research interest is now shifting to games other than two-

person zero-sum differential games of perfect information which

have pure strategy optimal solutions. In particular, dynamic games

with n players, with in.perfect information, or with mixed strategy

solutions are being investigated. These areas overlap, of course,

but it is enlightening to consider them separately. The third area

is surveyed in the next section.

The fundamental philosophical problem of n-person games

and. the closely related nonzero-sum games is the definition of what

is meant by a solution. There are at least three basic solution types:

rain-max for each playcr, equilibrium solutions in which no player can

improve his payoff unilaterally, and bargaining solutions in which

no player can change his strategy without adversely affecting at least

one other player. Therefore, the rules of the game, and particularly

questions of agreements and side payments among players, dominate

the theory. References Ell, [7), 8, and 1 contain some of the

relevant publicationf for static games. Case L26) and Starr and Ho

[27), [28), who also have published similar works elsewhere, are

leaders in studies of the n-person differential game problem. In

particular, they have found that v;when equilibrium solutions are sought,
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individual Hamilton-Jacobi equations apply for each player along the

optimuni state trajectory and that a method of characteristics is

sometimes applicable. Min-max solutions may be found for each

player by applying two-person game theory, and bargaining solutions

are related to optimal control problems with vector payoff functions.

Studies of games with imperfect information have generally

been concentrated on two-person zero-sum dynamic games with noisy

state transition and noisy observations of the state by the players.

The fundamental problem is that a player must base his controls on

hi i available information, which tends to be incomplete and inexact,

and must guess not only the state, but what his opponent thinks the

state is, what his opponent thinks he thinks the state is, ad infinitum.

The payoff is usually taken as the mean of the given payoff function.

Behn and Ho L291 circumvent some of the computational prob-

lems by assuming a control form and then determining its parameters

based upon the statistics of the noise processes. Rhodes and Luen-

berger [30), [31] show that a type of stochastic Hamilton-Jacobi-

Bellmann approach is applicable when the contenders are able to

determine their opponent's strategy, and it is noteworthy that their

R results do not require pure strategies. An interesting approach is

suggested by Sugino [32], who postulates bounded noise and thus is

able to find mini-max strategies by using regions of attainability.

Other important research includes that of Kushner and Chamberlain,

who in several works, among them L33], study the Markov process

characteristics of stochastic games, and Bley and Stear [34], who

use a Bayeaian analysis of multistage games to find conditions

.9



for pure strategies.

In closing this section, we remark that there is much to be done

even in the fields so far considered. It is notewvorthy that much of the

work on dynamic games since Isaacs has been so highly control system

oriented that it has lead to what has only recently been recognized as

a distortion of the approach and a lack of recognition of somrt of the

peculiar, fascinating properties which mathematical games possess.

This fact has been noted by Isaacs C 35) and Ho C 36), for instance.

2.3 THE SYNTHESIS OF RANDOMIZED STRATEGIES FOR
DYNAMIC GAMES

Early researchers actively sought mixed strategy solutions to

their static problems. We have already noted that linear program-

ming yields mixed strategies for two-person zero-sum static games

with finite control sets. Other games, such as games over the unit

square, that is, games for which the controls are scalars chosen

from the unit interval [ 0, I], were examined, and solutions were

discussed for two-player zero-sum games for which the payoffs

are convex functions (Bohnenblust, Karlin, and Shapley [37)), poly-

nomial functions (Dresher, Karlin, and Shapley £38)), and bell-shaped

functicns (Karlin [39]), among others. Many of the results from this

era may be found in Karlin's book £40].

The research of Karlin, et al, [38), [40], and £41), on

polynomial and separable games is particularly relevant to our prob-

lem. They, however, are concerned solely with static games with

scalar controls. They show that for games with separable payoff

functions the problem of finding optimal mixed strategies can be

reduced to finding moments of those strategies. The latter problem

20



is thenexamined for games of known value using the method of dual

convex cones. Their concern is with characterizing the relevant

sets, and they consider neither synthesis of solutions using the dual

cones, problems with vector controls, nor the effects of introducing

F. dynamics to the game.

Few other researchers have considered extending the theory

of static games to dynamic games. Bley [4Z) suggests the appli-

cation of the theory of convex games and works a scalar multistage

example in his study of linear-quadratic games. Cliff [43), who is

generally discouraging about the utility of mixed strategies in

realistic dynamic games, suggests analyzing the pre-Hamiltonian

using static game theory and examines a simpLe differential game

example using the theory of bell-shaped games. P.hodes [44) employs

arguments rela.ed to the theories of convex and poiy1. nial static

games in examples of linear-quadratic dynamic games. None of

these researchers is primarily concerned with synthesizing mixed

strategies, and their efforts in this regard are confined to examples.

Techniques oiher than extensions of static game theory have

been suggested. In a series of publications Berkovitz and Dresher

[45], [46), [47) evaluate tactical air-war problems which have

linear payoff and multistage limited-linear dynamics. Their

solutions are obtained by ad hoc methods which do not appear to be

* |of general interest.

An interesting approach suggested by Ho [48) and extended

by Speyer [49J is to force the controls to be random variables by

introducing a dependence of the controls on random vectors. Speyer
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does this by choosing controls of the form

u (. 14)

where _ is a state variable estimator and is a white noise vector

with zero mean and controllable covariance Q. His problem, a

particular linear-quadratic game, is such that only the statistics

of the random variables, rather than their instantaneous values, are

of importance, and the problem becomes one of finding the gain K

and covariance matrix Q. Thus the problem is considerably dif-

ferent in means, if naot ends, from that of synthesizing the ran-

domness by generating probability distributions for the controls.

In an interesting and provocative paper, Chattopadhyay [ 50)

points out that since in the game surface approach the normals to the

surface are intimately related to the optimal strategies, finite

mixed strategies might be related to "mixed normals. " Thus one

can in principle seek an optimal normal and then relate it to pure

normals and to mixtures of pure strategies. As with much of the

game surface technique, this appears to be more useful for supplying

insight than for construction of solutions.

Another suggestion is made by Sarma, Ragade, and Mandke

L 51 ]. Arguing purely fo-rnally, they state that the value must

satisfy a stochastic Hamilton-Jacobi-Bellman partial differential

equation with simultaneous extrerna in the probability density

functions of the mixed strategies of the two contestants in a zero-sum

differential game. Existence or unijlueness of solutions is neither

proved nor claimed. Since the concept of probability densities does

22



not appear to be useful (because they cannot represent pure strategy

regions as degenerate cumulate probability distributions can), it

is likely that the particular result of Sarma, et al., will have limited

application.

Smoliakov [ 52) formulates the problem slightly differently tc

find mixed strategies for a two-person zero-sum differential game.

By requiring that the dynamics equation hold in a mean sense

E(u v) " f(z, u, v, t) = 0 (2. 15)

rather than in the absolute sense, he is able to put the problem of

mini-maxing the mean of the -,ayoff over the mixed strategies into a

form which can be attacked by variational methods. The physical

significance of (2.15) is debatable, however.

Little other work concerning actual synthesis of mixed strate-

gies has been performed. Some researchers have been unconcerned

with synthesis and neither found nor ruled out mixed strategies. The

publications of Rhodes and Luenberger [30], [31] and Rhodes [42)

are examples of this.

We have already mentioned that much of Chapter 4 represents

extensions of the work of Karlin and others. Another portion of the

foundation of our research is the fact that a saddlepoint solution

indeed exists for the static and the open-loop problems formulated,

for proof of which Blackwell and Girshick L63 is one of many possible

references. For the closed-loop dynamic problem, the dynamic

programming approach is used. This has been used by a number of

authors; its validity for the problems of concern here has been stated

as a theorem, for example, by Fleming [ 53].
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CHAPTER 3

PROBLEM STATEMENT

This research was motivated by the desire to synthisize solu-

tions for a particular class of mathematical games, although many of

the results have a more general domain of applicability than this. The 4

goal may be stated as follows: we seek to find the value and the

cumulative probability distributions representing thi optimal mixed

atrategies, both open-loop and closed-loop, for the class of fixed-

duration two-person zero-sum multistage games characterized byI
polynomial dynamics and payoff functions and by noise-free infor-

mation. This statement is clarified and the importance of such

problems is discussed in the following sections.

3.1 SYSTEM SCENARIO

The systems of interest to us are ciynamic systems which pro-

ceed in a step-wise manner under the influence of simultaneous inputs

from two controllers. Thus we are concerned with sequences of real

A-vectors [z()J, in-vectors (u(i)], and n-vectors (v(i)) (where i is

an indexing variable which traverses the real integers) which are

interrelated according to the dynamics equation

&(~)=f(0_). UMi) x(i); i) (3.1t)

The functions f are presumed known to the players and by assumption

are polynomial functions of their arguments z(i), u(i), and v(i) and

are indexed by the stage index i. The v,'ctors have the following

additional properties for each i:

Preceding page blank
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z_(i) - Belongs to euclidean I-space E . Called the

state or state vector of the system.

u(i) - Chosen from at unit hypercube U in Em,

U = (ulu i EO, 1 , i=1,2,.., mI,

(3.2)
by a rational controller catied Pla~yer I or the

maximizer.

v(i) - Chosen from a unit hypercube V in En,

V = [vlv i CEO, 1], i=l,Z, ... , n), by a rational

controller called Player II or the minimizer.

A game may be described for this system by introducing

rules and a payoff function. We are concerned with games such that

a particular play, or partie, proceeds from a given initial state z,

which is identified with stage 1, i.e., z(l) =z, for a fixed number

N stages. Two variations on the basic rules are of interest.

In the first game, called the game of closed-loop strategies,

each controller, cognizant of the state z(i), of the history of play

(i. e. , of z(1), z.(2) . ... , z(i -1), uM1, u- ),.., u(i -1), vO), V(2), ...

v(i-1)), of the dynamics f and the payoff function J, and of the number

N-i of remaining stages, but ignorant of the other controller's future

control vector choices, chooses a control vector from his set of

admissible controls U (or V). This happens for each i, i=l, 2, ...

N; each participant fully expects it to do so and hence designs

closed-loop strategies.
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In the second game, called the game of open-loop strazie.

the controllers cannot be certain of ever receiving updated data.

For this reason they design open-loop controls to use for the re-

mainder of the game, and recompute these if any new data become

available. Data are assumed available to both players or to neither;

they have equivalent knowledge of the state.

For either of these variations, at the end of the partie a

scalar amount J determined by

J = J(z; u(l), u(2), . . ., u(N), v(l), v(2),..., v(N))

(3. j)
N(zNI)+ gi .Ji), uMi' AMi
i=l1

is paid by Player II to Player I. The functions gi i=l, 2, ... , N+l,

are assumed to be polynomial functions of their arguments.

By describing the dynamics, rules, and payoff function, we

have defined a game. The concepts of solutions to this game are

pursued in the next section, and the particulars of solutions are

treated in Chapters 4 and 5.

3.2 THE CONCEPT OF SOLUTION: VALUE FUNCTIONS AND
STRATEGIES

The two players in the game of Section 3. 1 are presumed to be

both intelligent and rational in that each will attempt to optimize the

payoff J according to his own best interests. To ensure his success,

each player employs a strategy, which we may think of ds a rule or

mapping which implies an admissible control vector for each con-

tingency in the game, that is, for each possible position z and stage i.
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If a unique control vector is implied by this function for each con-

tingency, then the function is called a pure strategy. If the mapping

also depends on a random variable, so that the selected control

depends upon the realized value of this random variable in addition to

z and i, then the function is called a randomized or mixed strate.y.

it is clear that a pure strategy is a special case of mixed strategies.

Since finding good strategies for the competitors is funda-

mental to solving games, we must refine the notion of mixed strate-

gies. The key concept is that at each stage each player chooses his

control vector in a (possibly) random manner. The exact means of

introducing the randomness is incidental; the crucial factor is the

relative frequency of utilization of the elements of the admissible

control set. In other words, the important aspect of mixed strategies

is that they are related to probability measures defined over the set

of admissible controls. Thus part of our objective is to find for each

player a best mixed strategy, where by mixed strategy is meant a

cumulative distribution function, or c. d.f., defined over the set of

admissible controls and parameterized as necessary by the state z

and stage index i.

Since randomness was introduced via mixed strategies,

the payoff function is a random variable and the state is a Markov

sequence. Hence, it is reasonable that the contenders should wish to

optimize a statistical function of the payoff J, in our case the mean.

Therefore, in the games considered here, Player 1 is to use a

strategy such that the minimum achievable mathematical expectation

of J is maximized, and Player II will adopt a stratcgy which
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minimizes the maximum achievable expectation of J. The mean of J j
for a given initial condition z when both players uce their best

strategies is known (See, e.g., Blackwell and Girshick [6) and

Fleming [ 53)) to satisfy the saddlepoint condition (Z. 6) for games of

the type considered here and therefore is called the value w(z) of the

game.

Let us make the above paragraphs more precise for the two

variations of our basic game. To do this, we first introduce the

notion of the truncated game i, which is the game which starts at

stage i and position z(i) and continues for N-i stages. The payoff for

this game is

Ji = Ji(z; u(i), u(i+l), .... , u(N), v(i), v(i+ 1), . . ., v(N))

(3.4)N

= gNIl(z (N+l)) + E gk(z(k), u(k), v(k))
k=i

For the game of closed loop strategies, we seek optimal

cumulative distribution functions (c. d. f.'s) F(u(i)i z(i), i) and

G0 (v(i)i z(i), i) defined for the maxiftizer on U and for the minimizer

on V, respectively, euch that for each j=l, 2, . .. , N, and for each

i=j, j+l,..., N, the value of the truncated game j is given by
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w Wj) =ff.. jf J z(i); u(j),..., u(N),v(j), .... , v(N))

VU VU

dF 0(u(N)I z(N), N) dG 0 (v(NjI z(N), N)...

... dF0 lu(j)I z(j), j! do(v(j) z.(), j)

min f f~~~,

=G.r. .IuJ(z(j); u~j),..., u(N). v(j),...., v(N))

VU V U

dF (u(N)I z(N), N) dGN(v(N)I z(N), N)...

... dF 0 (u(j)Iz(j), j) dG.(v(j)1 Ij), j)

maxF F i FO 0 i  f .-H (-ji; u(j),.., u(N), v{j),..... v(N))

i=j,..., N V U v u

dFN (u(N)I z(N), N) dG(v(N)I z(N). N)...

... dFj(u_(j)I z(j), j) dGo(v(j)I z(j), j)

Here r and 4"i are the sets of all admissible conditional c. d. f.'s

defined on V and U, respectively. That such a w.(z) indeed exists

is known from Fleming [ 532; this function is discussed further in

Chapter 5 when dynamic programming is considered.

For the game of open loop strategies, the players of the

truncated game j must develop their strategies under the assumption

that z(i), i- j, ady never be known to them. Hence, in this case thr

30



hL d.. sonu ca= be condized On1v *zt and on the Fyer, sw

cmciols. Wc ti.ceeore meed C-&CL Vs ff(u1 yj zj.- Elin D(ji). --

ali-!) __d j; p~) f -l .... vf,-EJIDor wide th

(3.6

I4()~~f - jf -- _ _ -- 3

e. d 0 (u--jfl Z. 210(j)I )~

ff. ff.7 z (; u Wj... 2(NL fi'). -. - _

Max

=A ff - jIL~)j .... (N), v(j), v(N))

i=...NVU VU

di N v(N) j) j; v(j).., (N-)).

0.. dF, (u(j)I.E(j), j) dG O(v(j) 1z (j), J)
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A~a~ I-aJ __ are ab. iej ofa6 ~i~brca:ifiamed C.. a-. t"s' b=

they are rjo feteztiicaI t !hose of the closed-Lop s~razlegy cait

wh~c?- has a diifere= strct. U~ is d-_mc~s~azed in Chazter 5 za

zldis caze redzces to a aamezerized statiz case, so that ztamdazxd

m-=i-ax tbearezrs ame applizabt!* (a. g. . see Blackwell and

Girs-:tck EQb-

33 7li IMPORTANCE OF POLYNOWLA1 N-STAGE GA3&=S-

The clasjr V_ games considered Nere is a 3pecial one; renoaval

eg. ?ie zer- - aszxmnjtioi or incdci~of stcchastic obser-

vations or dynaniics *vrdud create =temely difficalt probzems bozbh

of cotacept and of compoazion.. Nevertbeless, our gamies are mot

triviaL. Two-person~ zero-s= games are good models of Farlor

games and saisactory appro.xzmatiozis rA man;' otber siftmtatins-

Multistage dynamics are suitable for describing the maner in which~

many real sitmations effectiv'ely evolve. That the control vectors

must be finite is eminently reasonable.

The polynomial approximation must be juxtified more sub-

jectively. Polynomifals are widely used in engineering work as thr.

next step beyond simple linear models for many f-unctions of interefft

can be approximated arbitrarily well by polynomials. Particularly

when elaborate, aesthetically satisfying models prove insoluble, the

solutions to polynomial models may be important for themtelves

ar-d for the insight which they provide. It can be expected that

solutions of polynomial games will have similar utility.
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C HAU= a 4

THE LUSC OF SEPARABLE STATIC GAUM7

In this chapter we consider the solatio= of games for which,

Player I seleets a poi= a c UCE7=. Player U simultaneously selects

V f VC ei . and tben Player H Mays to Pl.yer 1 an amyoa= defined by

a functi= cf the for=

0 V z4

s-jy
j=0 i=O

£ By making the coeficients a-. furtins of a state vector z, we will
S1

in Chapter 5 relate this =roblima to the multistage game problen

W~e remarak that the gaine uwizh payoff (4. 1) is known to have

C €a val and optimum strategies provided that J(u, Y) is zontinuout,

U and V are closed and bounded, and -ed strategie defined on an

infnite number of points are allowed. ;See. for example, BL-'well

Sand Girshick [61, Chapter 2). The results ef this chapter will hav.

the effect of proving this independently since they essentially demon-

strate the v lue and strategies for the clase of games considered.

Er4.1 SEPARABLE FAYOFF FUNCTIONS AND THE ?AO?-ENT

Single-stage games with payoff functions defined by poly-

nomials,

J(u, v) = aiu v, (4-2)

i=O j=O

where u and v are -calars. are among tl,e sim.plest examples of a
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Zeneral class of games with separable payoffs, i. e. payoffs of the

form

J(u, v) = aij ri(u) j(v) (4.1)

i=O j=O

where- ri(u) and s.(v) are contirmous functions, and where u C U,

vie V, for U and V defined as unit hypercubes of dimension zn and n,

respectively.

u = tuJ .C Q., i:l , ... , M; € C ]EMI (4. 3)

V = Ut vi L. I, i=,,z,..., n; v CEn4.

For general polynomial payofft', in which our ultimate interest lies,

the functions ri(u) have the form

k. k. k.ri~J  1 u2 ... M , (4.4)
ini

where the exponents k. are non-negative integers; the si(v) have

analogous forms. The importanc6 of separable payoffs is, as we

shall develop below, the fact that the problom of determining optimal

mixed strategies may be reduced to a problem of finding optimal

vectors in certain convex oets.

To find solutions to the game with payoff (4. 1), we will

search among the classes of mixed strategies for the contestants.

keeping in mind that pure strategies are specipl cases of mixed

strategies. Thus let admissible s'rategies for Player 1, the maxi-

mizer, consist of all cumulative distribution fufctione ,c. d. f. 's)

defined over the set U, Thia might also be pictured as the class of
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joint distribution functions for the variables u, . u . Let

F(u) denote an adnissible c. d. f. Similarly, let admissible strategies

for Player UI, the minimizer, consist of all c. d. f. 's defined on V

and let G(v) be an element of this class. Then we may compute the

expected value for J(u, v) as

J(F, G) J(u, v) drLu) dG(v) (4. 5)

.U

At this point we use the separability characteristic cf J(u, v) to

rewrite (4. 5) as

JjF, G!  aijifs(v) dG(vfri(u) dF(u) (4.6)

i=O j=O vu"= =0 V U

' " l!If we define

ri(F) fri(u) dF-u)

U
(4. 7)

8 (G) 9Ss(v) dG(v)

U V
then (4.6) can be rewritten as

J(F, G) = 'ij ti(F) ( (G) (4.8)

i=O P-O

We may c',mpress the notation somewhat by defining -,ectors

T T
r(F) = (r0(F), r(F), . ., r (F)) and s(G)= ( 0 ... V
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and a matrix A t aVJ- i-O, 1, ... JM, j=O 1,...,, so that (4. 8) be-

comes

1"
JJF, G) = r -F) A 3(G) (4.9)

It is often convenient to remove the explicit dependence on the *

c. d. f. Is F(u) and G(v) by rewriting (4. 9) as

S6) = rT A (4.10)

Let R denote the set qf all vectors rF) obt.ined as F ranges

over all admissible cumulative distribution functions on U, and let

S imilarly denote the set of all 1 (G). Since r(F) and s(G) are

moments of their respective c. d. f. Is when the functions ri(u) ard

a (v) }are terms of polynomials, foz the more general separable

games it is useful to think of the functions as generalized moments

and we shall often refer to them as such. By extension, R and S

are called the generalized moment sets for Players I and 11,

respectively. ()

The importance of these transformations is that choosing a

c. d. f. turns out to be equivalent to choosing generalized moments

for a competitor. Thus our eventual problem, finding F 0 (u) and

G°(v) such that

J(F, GO) f J(F ° , O ° ) <- J(F ° , G) (4.11)

where F and G arc arbitrary admissible c.d. f. s is equivalent

to finding r ° .nd s 0 such that
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J(r, sO) J(-, so) I J(r 0 , s) (4. 12)

for all r C R and s C S, and then finding distributions corresponding

to the optimal r0 and t0, provided, of course, that the saddlepoints

(4. 11) and (4. 12) exist. This transformation of the problem is a key

step on the path to solution cf our separable games even though 'At is

little more than a change of variable.

4.2 ADMISSIBLE MOMENTS-THE SETS R AND S

The search for the saddlepoint implied by (4. 12) requires that

the sets R and S of admissible generalized moments be carefully

characterized. They are by definition the sets of all moments gen-

erated by the classes of all cumulative probability distributions

Idefined on the hypercubes U and V. respectively. The theorem of this

section allows a simpler and more meaningful characterization of

the sets, and ir a generalization of a theorem of Dresher, Karlin,

and Shapley [38). We consider the set R and note that analogous

results may be obtained for S.

The following well-known lemma is necessary for the proof

of the tlorem and is also used repeatedly in later sections. A

f proof is given by Karlin [40).

Lemma A: If LX] is the convex hull of an arbitrary set X

in n-space, then every point of [XI may be

represented as a convex combination of a most

n+l points of X. Furthermore, if X is con-

nected, then at most n points are needed.
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In nany applications of this lemma we are particularly inter-

ested in the fact that a finite convex representation of a point of the r.

convex hull of a set is possible with the dimension of the repre-

sentation being of secondary importance.

We return to our development of a characterization of the set

R by defining the set C R as the surface represented parametrically

as a transformation via the functions ri(u) of all points in U, that

is, :

C R -I- IX PI 31- rtU)c t.) (4.13)

With this; set defined, we may proceed to the following theorem U

for which the proof is nearly identical to that for a lees compre-

hensive theorem given by Karlin C40J.

Theorem 4. 1. The set R is the convex hull of the set CR

defined by equation (4. 13).

Proof: Let D be the convex hull of C Then we must

prove that R = D.

(i) We prove first that R C D. Assume the

contrary. Then there exists r0 ( R such that

r°i D. Now D is the convex hull of the con-

tinucus mapping of the closed convex set U,

and therefore D is itself closed and convex.

But then there must be a hype rplane with normal

vector h, which strictly separates r0 from D,

i. e.,
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hTr0 - hTr(u) Z 6 > 0 for all uc U (4.14)

Since ro c R, there exists a c. d. f ° )-'(u) such that

f f(u) dF°(u) = (4.15)

U

itIf we average (4. 14) using this distribution, we

| find

hTo 0h T  o
h r F°(u) hdF(u)

K- r- -- hTr° k 6f dF ° (u ) = 6 > 0

U

which is clearly contradictory. Therefore, RC D.

(ii) To prove D C R,, we choose an arbitrary

r." 0 D and demonstrate a c. d. f. for which the

generalized moments are r°  From Lemma A,

since D is by definitiun the convex hull of CR,, we

know that r0 can be represented as a finite convex

combination of points of CR I each of which is an

image of a point of U. Thus

r - ru), U i=l,...,J+I (4.17)

3I
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Now let I (u) represent the degenerate c. d. f. such
X'_

that,for xf U,

CU X(u) =0 UAX

(4.18)

fx(!) = I

U

and define

0°(--) -- IEl u ), (4. 19;

i=l -

where the G. and . are those determined in (4. 17). C)

Then it follows that

ErLu) d ° , = i u) = r .(4.20) (

U i=1U

Hence the c. d. f. F°(u) yields ro and D C R. Corn-

bining this with the result of part (i), we have

R = D as required.

An immediate corolla-y of this is the theorem of Dresher,

et al C38], which was concerned as was the rest of their work, with

scalar controls u and v for the competitors.

Corollary

4. 1-1: When the control space U is one -dimensional,

then R is the convex hull of the curve CR whose

parametric representation is r = (r(t)3 for tcC 0, 1).
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Under some circumstances the general formulation of CR

given by (4. 13) can be simplified. The set U can always be written

as the cartesian product of smaller hypercubes. Suppose

U = U U2  4. Zl)

where U1 is m -dimensional, U2 is m 2 -dimensionai, and m1 +m 2 =m:

and assume that the functions ri(u), i=O, I, ... .1A, are such that -f we

write

u= l Ul'!1 U2 ,  (4.22)

then

ri(u) =ri( )  i=0, I,... iP

(4.23)

ri(u) = ri(.?) Il+1,...,

Then if we define the surfaces

C1 = Eaf = X, t-j for some t U I
(4. 24)

C 2 - _ E lxi r 't) for some t C U2 )

and let R I , R2 be the sets of gener.alized moments corresponding to

the first and second of (4. 23), we have the following useful theorem:

Theorem 4. 2: If there exists a decomposition of U such that

(4.23) holds, then CR = C, x C2 and R R x R

for C, 02 defined by (4.24).
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Proof: The first statement follows directly from the

definitions of CR9 C, and C2. The second

statement is an immediate result of the fact that

R, R, and R2 are convex hulls of CRD CI, and

C2 , respectively, as is seen by using their

definitions along with Theorem 4. 1.

This simple theorem is particularly useful when the functions

ri(u) each depend upon only one component of u, which we refer to

as a situation with uncoupled controls and which is often useful as

an approximation in engineering applications. Under these circum-

stances we may order the functions so that

ri(u) = ri(ul) i=0, ,...,Jl

ri(u) r.(u) i=p1+1,.'. 4241- "Z 1
• • 14.25)

ri(u) ri(U i =.r.+ 1....

Then by defining

cx  ~lx_"'El+l
- ,xx x i =ri(t) , t fLO,. 111

(C. 26)

E J JJ
ci - __ -,xi=rj+i~t), t C 0, '

j=20 3, . .. I m

and letting Ri be the convex hull of Ci for i=1, 2, m.., m, we have

the following corollary:
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Corollazy
4. Z-1: If the controls ui are uncoupled, then the surface

Ro

C R is the cartesian product of the curves C,

and R is the cartesian product of the convex

hulld R i of Ci , il, 2,...,n, that is

= C 1 x C2 xC 3 x...x C

(4.27)

R= P , x R2 xR 3 x. . .x R

Proof: The corollary follows from repeated application

of Theorem 4. 2.

Note that theorem 4. 2 and its corollary are not trivially true;

a general parameterized surface cannot always be represented as a

product of parameterized subsurfaces.

4.3 SOLU'IONS-THE METHOD OF CONVEX CONES

At this point we are ready to proceed with the development

of solutions to our problem. We shall follow Dresher, et al, L 38]

for the early development and theorems 4. 3 and 4. 4. The key

result of this section is theorem 4. 5.

Let us briefly review our results so far. We have found that

the problem of finding a saddiepoint in mixed strategies for J(u, v)

as given by (4.1) can be transformed to the problem of finding a

saddlepoint in the generalized moments r and s for the function

T
r Aswhere rC R and sC S. Furthermore, we have found that R is

the convex hull of the set CR defined parametrically by r(u) as u

ranges over U and that S is the convex hull of an analogously defined
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set C . The definitions of R and S imply that they are compact

and convex.

Rather than augment the sets R and S, we shall make the

convenient assumption that the functions ri(u) and si(v) are such

that

r0 (u) = I

(4.28)

aSo(V)= I

so thatiV rcR, thenr 0 = I and if acSthen s, = . Also we define
0 V

the sets S c S and RC R as the projected sets S - I ^S C

i = sitl,,...,v for someseS and R= QJ Lr-, rit

i=l, 2,... ,/ for some re R). These notational conveniences are

useful when considering convex cones and support hyperplanes and

clearly lead to no loss of generality in our problem definition.

We begin the solution by defining the convex cones

PR rrcEP+l, r =,xfor somePOandxCR]

(4.29)

P S "sIEv + I, s=Xyfor some XO 0and yC S)

Geometrically, these are cones with vertices at the origin, and

with cross-sections R and S at r0 =, s0=1, respectively. Associated

with these cones are the dual cones defined by

Pf= (rL I 4+l rx 2: 0 for all X

(4.30)

= sc Ev+1, ET~ y-0for all yc P-1.]
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NCote that I-Iifa closed convex come. and that r c(0 is aypoia e A only if there exists _e R s hat rTx = 0.

Ar~lgousstatezns hold for PA.

Ike rIahp of the coines and 44al cones are wrth

ampifyng.Sirxe P,, in a convex: cone with vertex at the oigin.

if ra is an element of its bo tdary, then there will exist a hyperplane

0
of supor -t H to Pat r which contains the origin.- Hence,

H-~ 0. for an appropriate scsta

0T 0 0
h1 r0 0

(4. 311
C T

IS r >0, rc P

The representation h° of H thus belongs to FI, and in fact it can be

shown to be a bounda-y point of P'. Equations (4. 31) also hold if

0r C R and re R, provided that only support hyperplanes H to R which

pass through the origin are considered. in fact, a little reflection

reveals that H can be generated in e#- by using support hyperplanes

to R which are not constrained to pass through the origin, a fact

wiAch follows from the definition of R. Therefore, 5upport

hyperplanes to R are closely related to the support hyperplanas of

R and of PR' a useiul property which is exploited in later sections.

Furthermore, since (PA) = PR' as is easily shown, the support

hyperplanes of P correspond to boundary points of PR and,

ultimately, of R and of R. The situation for S and P is, of course,

analogous.
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Atsume that it is known that the valu© of the game under

consideration is zoro, that is

r As0 (4.32)

Define the set

SiA = R) _ [sjs fe', s . - fr *Ome re R). (4. 33)

which is the image under the linear transformation represented by

the matrix AT of the aet R.

The following two theorems were originally due to Dresher,

et al, L 38) and are fundamental to our theory. Brief proofs are

given because they help illustrate the interrelationships of the sets.

The proofs are basically due to Karlin £403.

Theorem 4. 3: For the game of value zero, if R denotes the set

of optimal strategies for the maximizing player,

then

S(A, R° ) = S(A, R) n P (4.34)

Furthermore, S(A, R) does not overlap P9 in its

interior.

Proof: Assume to the contrary that the two sets overlap.
T

Then there exists r 0 R such that r0 A s > 6> 0

for all s( S, implying that the game has a value

of at least 6, a contradiction. Thus the second
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s.ate is e¢tb isred

Since optimAl smacgles exis! e~ is =w

ezzpt~L.: a CR amd r43th op it

Th~azaS( R?)C%--SM R1
C:Versely, TG o

- *~rPe _ for sone r ER im-.nes

r0 A s z 0ilr all, t hch gives ro* B. There-

fare, S(A. P?) S(A. R) n Pg, and the Proof is

complete.

Theorem 4.4: The separating planes of ,(A, R) and Pg are in

one-to-one correspondence with the optimal strate-

gie3 for the n;-inimzing player.

Proof: Let S he the set of optimal strategies for the

0 0 T ominimizer. For any sc S , we have r A s ! 0

T oofor all r( R and h 0 for all he Pg. Thuss

represents a separating hyperplane.

Conversely, aince S(A, R) and P are in

contact, any separat'ng hyperplane must be a support

hyperplane to both. Let s* represent such a hyper-

plane, Th-n rTAs*9 0for all rcR, and h s* > 0

for all he Pg. The latter fact implies s*c PS so that

by suitable scaling we may t.ake j*iE S. But this

together with r A s* g 0 givea that s*C S° , and the

proof is finished.

In general, of course, a game will have a non-,ero value

47



Wz == z T (4.-L)

aw "atcac. = MandaZC-. u = 0. iI. .,

Ikdify the set (4- 33) by 4ii a new set

SW it, a) = lo€j a= ATv - afor sov rR

(4.36)

T"e f theorem is fin entla for our soluvon

methods.

Theorem 4. 5: For the Samle r As, 9..rc Ra s, the valze

w is determined by

vMaNi 13AjPn)S(A. R,a) i 0) (4.37)

where is the empty set.

Proof: We note that the parameter a has the effect of

translating the set S(A, R) paralel to the so-2S.

Becaute r0 = I for r c R. this same effect may be

had by modifying the a0 0 element of the matr.x A.

Let us do so, creating the matrix AC

acA

A, a aij - ( (4. 38)

I a i=j=o

i J 0 Otherwise
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If 'e cca'ider the g-Aj= 'elize by Ace R. ad S.

winS6 =Ifor afS. tS

min_=" T. (S_ ZM= =wa (4.40)scSrCR£ -sCSrCR- -I

From this equation. our proof follows rrtacly. Lf

Ii

is Degative, imInpym tha± there ex.sts _ ( S suchL

-I- Th- s 0, itmust be thatA rPAfor all r R.or

equivalently that P "I SIA. R. a) =-

On the other hand, Ot C w implies that the game
I

(4.40) ha a nou-negative value. Thus there will
T* e ,t o 0 Reu.ch tar Af ._ f0 or all ,_ s. Thi ,

implies r CP, so that PgnSA, P, a)$0.

Therefore, w is the largest value of a such that the

*° intersection is non-empty.

From (4.40) we see that as a result of our notation the game

with matrix A has value zero. Theorems (4. 3) and (4. 4) can be
w 0 0

used to determine the optimrum strategy sets R and S for this

game, and since w is a simple translation of the set S(Aw , R),

for the original game with matrix A. The three theorems form,

therefore, the foundation of a solution technique: translate
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SiA, R) t-uti it shares only botmay points with Pn. Thcn the

lpints of Dersect~on detrmine Ro, the amount of translation is

the value of the game, and the separating hyperplazes define S° .

4.4 GEOMETRIC AND ALGEBRAIC CONSIDERATIONS FG;.
SL.LE M=~ !NT -SPAME

We have now established the essence of a solution technique

for the problem of finding a saddiepoint in mixed strategies of the

mean of the payoff J(u, v) in equation (4. 1). In the remainder of

this chapter are discussed some of the important considerations

in applying the method, including algebraic and geometric descrip-

tions of aome of the sets, numerical approximations to solutions,

and actual generation of the required probability distribution

functions. Of necessity many of the results concern special cases

for. as we shall see, characterization of the general problem is

often difficult.

in this section we develop more detailed descriptions of the

sets R and P . As usual, analogous results hold for S and P .

Although we consider mostly special polynomial cases and, in

fact, show the difficulty of applying our methods to more general

problems, we must remember that Theorem 4. 1 is true in gen-

eral and can always be applied to generats R and that P can be

developed directly from its definition, equation (4. 30). We continue

to assume that r 0 = I.

Let us first consider the set R under the condition that u is

one-dimensional and

i
ri(u) = u i=O, 1, ... All (4.41)
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This corrzaponds to a scala- control for the maximizer, and was

considered by Karlin and Shapley 141 J, whose development we follow.

For convenience define vectors t

j 1, tj , ,

and note that CR is the set of all such vectors. Assume ro belongs

to the boundary of P. and let h represent a support hyperplane to

Rat ;0 . Then

h o o; _~~ _ o r

T (4.43)
" ° r > 0 for alre R

will hold for this h° . But by Lemma A,

r - 0% t .(4.44)

' for suitable t. CR ' where 01 1 and . 0, i=l, 2, . j+I.

Substituting (4. 44) into (4.43)

aiO ho = 0 (4.45)

which gives, for all i such that Ot. > 0,1

T
h t. = 0 (4.46)
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T
since tic CRC R implies 0 t > 0 for all j. Therefore, we may

state that all points.4 which appear nontrivially (Ci > 0) in the rep-

resntaionof r 0 also lie in the hyperplane represented by h_

Furthermore, all points r which belong to the boundary of R and

which are convex combinations of points t., i=1, 2, ... ,k, for some

k - 1l lie in the hyperplane defined by

T
h t. 0 j=l, 2,...,k (4.47)-- --

With the above basic facts established, we proceed to develop

a representation for ho. The requirement on ho represented by
(I

(4,43) implies that

T
h° t 0 (4.48)

for all tcL0, 1). This is a polynomial in t by definition of t, and

the inequality implies that any root of the polynomial on the open

interval (0, I) must be a double root. Thus there can be at most

! . ]zeros of (4.48) in (0, 1), where [x) is the largest integer less

than or equal to x. The roots corresponding to t=O and t=l, if any,

may be single roots.

We notice that we may confine our attention to hyperplanes

for which (4. 48) has exactly/I zeros in [ 0, 1]. This follows from

the observation that, for example, a boundary point r with repre-

sentation in terms of points t., i=l, 2,..., k< L-- can be repre-

sented in terms cf points, t i=l, 2,..., - -J when the additional

points are given weightings 0!=Or i=k+l,..., This is
T2
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equivalent to selecting a particular support hyperplane when there

is not a unique support hyperplane. Thus we come to two cases,

depending upon whether/Z is odd or even.

Case 1: 14 even. The hyperplanes of interest will have

either (a) distinct roots in (0, 1) or will have

(b) -- - I distinct roots in (0, 1) plus single roots

of t=0 and t=l. Therefore, the hyperplane will

have elements implied by

T 2
(a) hTt=a II (t -t.) a>

j=l

(4.49)

(b) hTt =o t(l - t) 2 (t - t. 0!> o

j=l

which result from simply writing out the polynomials

in different form.

Case 2: odd. The hyperplanes of interest have I

distinct roots of (4. 48) in (0, 1) plus either (a) a

single root at t=0 or (b) a single root at t=l. The

elements of h will be implied by

(a t t

(ahT at (t -t.>
j'l

- (4. 50)
T 2z

-I

S(b) h t =a(l -t) 1[ (t - tj ¢> 0

C..

53 '
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In either Case I or Case 2, the elements of h may be found in

terms of the roots tj by simply matching coefficients. Therefore,

h may be found explicitly in terms of a s;t of parameters. For a

giveng then we may find all support hyperplanes to R by con-

sidering both type (a) and type (b) hyperplanes and allowing the

roots tj to vary over (0, 1). We shall find occasion to refer to the

type (a) and (b) hyperplanes as lower and upper support hyperplanes,

respectively. As a memory aid, we note that upper supports always

have a single root at t=l.

To clarify the ideas developed so far, we present a simple

example. Suppose j=2, so that CR = tIt 0 = 1, t I = t, t 2  t

tf [0, 1J] and R is the convex hull of C Then for any h, either

hTt= c(t - tl)2  t1 ((0, 1)

or

hTt = t(1 - t)

These equations imply lower support planes of the form

rt1

and upper planes of the form

h= I a> 4
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We may now use our- knowledge of the support hyperplanes

to characterize R in i.io ways. First, since A is convex, it is

determined by the intersection of the half-space defined by its

support hyperplanes. Thus we may determine if a candidate point

r belongs to R by checking whether

h T (W 0; t1 , t2, t r 0 all ti(0 1)I

T(4.51)

2: 0 ~all t. C(0,l1); 0; 1; t1 , tz,...,tk4 ) 0,

whereh and are the explicit representations of the relevant

lower and upper support planes in terms of the parameters t i,

and k)= for p odd and k(1) = - 1 for g even. This inter-

pretation is exploited in the next section.

Second, and perhaps more important, the development of the

representation of h suggests what the boundary of R looks like.

Examination of the arguments indicAtes that R will have a lower

surface consisting of all convex combinations of all sets of exactly

£ .. points t, tE(O, 1) and, if A is odd, the point t for t=O. Also, R

will have an upper surface consisting of all convex combinations of

the point t=l, k(A) points generated by t in (0, 1), and, if p is even,

the point generated by t=0. Thus if 1=Z, R has lower boundary

defined by points t, tc(O, 1), and upper boundary defined by all

points on the line segment from (1 0 0) T to (1 1 1) T. If =3, R

has lower boundary defined by all pGints on the line segments from

(1 0 0 0) T to (1 t t 2 t3)T and upper boundary defined by line 4
n f)T to (1 t t 2  3) T .

segments fromn(1 1 1)to1 tt
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The above discussion is easily ext.ended to the case of

uncoupled controls, equation (4. 25), since by the use of Corollary C,

4.2-A it is known that R is a cartesian product of sets Ri. Thus if

each function r. has the form

k
r(u) = u.j i=lZ,...,M (4.52)

for some admissible integers j and k..> 0, and if we then order
23

these functions in increasing j and for each j order the functions

in increasing kij, then each R. will, except for the constant term

implied by r0=l, be like the set R for the scalar control considered

above. Explicitly we define

R i= Wx E x xi zt", i=l,, .... i , tc[0,11) (4.53)

so that we haive R = I1) x R xR x... xR and, by implication,

E /4. =/A. (This latter assumption is made without loss of
j--1
generality, since the payoff may be augmented to make it true.)

Then it is easy to show that hc EMA+l such that h supports R,

hTrz 0 allrcR

h~r° -0 some ^rc R

implies, for j=l, 2, ... , m and proper choice of ho.

J

h0 + h T r. 2 0 all r. C R.
0 -J -j -33

T o oh + hr.°= 0 r.c R.0 -j--j - 3

56



where

1

0
r 9

Hence, the hyperplane must support each of the sets R individually.

Thus the character of each of the sets R. is established, as is the
character and potential parameterization of the support hyperplanes.

A Of particular interest is the fact that each R. has in upper

and a lower surface, and therefore we may think of R as having 2 m

surfaces and of there being 2 m types of hyperplanes supporting R.

Each surface and each hyperplane type can be explicitly generated

by choosing an upper or lower surface and the corresponding hyper-

plane set for each R., j=l, 2, . .. , m, for each combination of "upper"

and "lower. "

The construction of R when the controls are coupled does not

appear to be amenable to analysis of the type used above. A pair

of simple examples will help illustrate the difficulties. For

example, let

1

u l

rlu) u.([O, 1], i=l, 2 (4.54)
u 2
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Then, as sketched in Figure 4-i for the cross-vection r0  1, we

find that R is the polygon with vertices

I

0 1 0 1

t.€[o, 1, i~l~z(4.55)-,

t0 0

where CR is the surface given parametrically by

ti2

tltz

For example 2, let

1

ul

r(u) = u.CEO, I], i=1, 2 (4.57)

I U 1

Then, as sketched in Figure 4-2, CR is given pararm-tric:ally by
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rj

rf

rj

Fig-- 4 .1. The sets CR (above) and R libelow) for Exam~ple 1.
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r3,

Figure 4-2. The sets CR (above) and R (below) for example 2.
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1

(4 58)

t t

[~izJ

and the surfaces of R are (a) the surface CR , and portions of the

planes(b) r 3 = O, (c) rI = 1, (d) r2 = 1, (e) r I + r 2 - r 3 .

In comparing examples I and 2, we see first that C is notR
necessarily a boundary surface of R, although it may be. Further-

more, the examples do not even have the same number of sets of

support planes, since Example I has four sets and Example 2 has

five sets.

Because of the apparent lack of common properties in the

two examples, it appears likely that construction of R must usually

be done on a case by case basis using Theorem 4. 1. Naturally,

other important special cases besides those of scalar and uncoupled

controls which we have discussed may be characterizable.

At tis point we turn from the set R to the dual cone P .

Since it is the boundary of the dual cone which is of importance

for problem solutions (Theorem 4. 3), we shall be particularly

concerned with generating that boundary. We establish the following

theorem as being particularly useful in this regard.I

Theorem 4. 6: The dual cone PA may be generated using

the surface CR9 that is,

p (x x xT Y O for all Y C ]  (4.59)
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Proof: Let R be the convex :su of CR and let PA be the

dual cone corresponding to the cone P R generated by

R. Let PS denote the set defined by 'e right hand
C

side of (4. 59). Then we must prove that PA = P*.
SiAcWe CRCPR it is clear that the definition of P*

c

is less restrictive than that of P so that PA C P .

Conversely, let hc P*. By Lemma A any
0C

point r0 e R may be represented by a finite convex

combination of points r. of CR, L e.,IL

k
I0

l :: Ui -i = 1 a. > 0Si=l i=l c7

for some integer k 9/;+l. Fu.rthermore, any point

Sx PpR may be represented as a non-negative scalar

multiple of some point roe R, x =Xr 0 . Thus for

arbitrary e PR we have for hE P*,

k
hTx = .hTr X hT (4.60)

i= 1

Since ) and O. are non-negative, and hT r. 0
1 - -

because he P* and r. C CR by definition, equation
C -- i

(A. 60) ie non-negative. Therefore P* C P and )c

our proof is complete.
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Use of this theorem leads to a general technique for p'.n-

crating P , one that will be used for the analogous set. P* in the

next section. For each point r CR, we may generate a half-space

RR

t

I H~r) =x: xf E+ ' , xT" r a 01 (4. 61)

The intersection of all1 sucb halif-spacer constitutes the set Pk. The

boundary of P* can consist ordy of points x for which xT r = 0 for

at least one r C although the existence of such an r does not

guarantee that x is a boundary point. The generation of Pk by

this approach can obviously be tedious.

For the special case of polynomialo and scalar cor.trols,

we are able to say slightly more about P . In this case, we

are working with polynomials

hT t a 0 (4.62)

where t =(I t t ... tA), since CR is defined by the vectors t,

and where he PA. To be on the boundary of 1, a vector h

.mut have a corresponding-h such that

h~ 0 (4.63)

However, since (4. 62) must hold for allt for a given h, it follows

that if t h(0, 1),
h

d hTtI =0 (4.64)
(a) "L "--6 th
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(b) -d 2 hT tI (4.64)

As we shall see in later cections, the relationships (4.63) and (4. 64a)

can be used to find h in terms of te (0, 1) for some regions of PA. The

usual extensions to include end points t = 0 and t = 1, and to consider

uncoupled controls using cartesian products may be made.

W e remark that since joints of the boundary of Pt correspond

to support hyperplanes, the discussion at the beginning of this section

concerning suppo;A hypzrplanes for R can in principle be used to find

PA. However, considerable additional work is needed because that

discussion did not use all support hyperplanes when a choice was pos-

sible. The unused planes were unneeded for defining R, but are

essential for defining PA. Therefore the method outlined here appears

preferable operationally. Theorems related to extending the hyper-

plane approach for scalar controls may be found in Shapley and Karlin

[41).

4.5 NUMERICAL SOLUTIONS AND AN APPROXIMATION
TECHNIQUE

Actual solution of problems of the type considered here is

difficudt at best. Dresher, Karlin, and Shapley L38) suggest a formu-

lation in which a set of nonlinear equations are to be solved, and

Dresher and Karlin [54] and Karlin [40) propose a type of fixed-point

napping. Both methods can be exceedingly tedious algebraically even

for modest problems, and numerical approximation does not appear to ,

be straightforward.

Any two-person zero-sum static game may be approximated

and solved numerically by restraining the playere' to finite control
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ets tu, ., ... , and [vi , y2''" "C computing the payoff

b.. resulting from the use of u. by the maximizer and v. by the
13 -4 -3minimizer, and then solving the matrix game B = (b ij} for mixtures

of the given controls. This brute-force approach tends to obscure

* any subtleties in the interactions of the players and to be difficult

to interpret relative to the given problem. Its sole advantage is

its generality.

An alternative solution method, amenable to both numerical

approximation and analytic interpretation, may be developed based

upon Theorem 4.5. In fact, that theorem implies that we may solve

* our game problem by solving the following mathematical program-

mning problem:

Problem: Find the maximum value of the parameter O

for which there exists a vector re R such that (4. 65)

TAr-E( P., where A., is defined by (4. 38),

* The resulting maximum value of a is the value w of the game by

Theorem 4.5, the set R C R of all vectors r° such that AT r0 CP

represents the optimal strategies for the maximizer by Theorem 4. 3,

and separating hyperplanes of P and S(A, R. w) (See Equation 4. 36)

yield the optimal strategy set S for the minimizer by Theorem 4.4.

For simple problems the constrained maximization problem

(4. 65) may be solved fairly directly, as is demonstrated in the ex-

amples of Chapter 6. For more complicated problems the maxi-

mization becomes difficult to visualize geometrirally and difficult

to manipulate algebraically. Approximation, however, is straight-
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forward, for since the sets R and P are convex, they may be

approximated by a convex polyhedron and a convex polyhedral cone,

respectively, to any desired accuracy; then the constraining sets are

polyhedral, and problem (4.65) may be solved as a linear program-

ming problem. This discrete approximation and use of linear pro-

gramming is the essence of the method which is discussed in some

detail in the remainder of this section. One of the examples in Chap-

ter 6 helps illustrate the concepts.

We begin by derm.nstrating the nature of the linear program-

ming approximation to our problem. Let K be a convex polyhedror

and let 9 be a convex polyhedral cone. Then the requirement rc I

can be expressed by the requirement that r satisfy the linear inequal- ""

ities.

T r 0 i=l9 2s...NR (4.66)

for some finite NR and suitable vectors .Ei; similarly sc k can

be expressed by

-T
a. s 0 i=l, ,...,Ns (4.67)

for a finite integer NS and suitable s. Note that we have used our

convention r 0 = 1, 1i = 1. Using these representations and the

definition of A., we may approximate problem (4. 65) by the linear

programming problem:

max Cz
0, r

subject to the constraints

-T (4.68)
r. r > 0 i=l,2,..., NR
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T

A s.- 0! 0 i=l,2,...,N (4.68)

This approximation applies to general separable games of

the form (4. 1), since no special D'operties of the sets R and P

have been utilized.

Creating suitable approximations to R and to P9 turns out

to be straightforward, as each can be handled in either of two ways.

. By Theorem 4. 1, R is the convex hull of the surface CR. If a finite

number of points r.f CR are chosen, then A may be formed as the
j

convex hull of those points, and the are then the representations

of the hyperplanes defining R. Under these circumstances R C R,

so that an r° which is a solution to (4. 68) is an admissible moment

vector for the maximizer. The value a 0 may, depending upon ,

*[ tend to underestimate the value w of the original game.

Forming a convex hull of a given set of points and then

finding the defining hyperplanes can be very tedious. If the support

hyperplanes of R are known parametrically, as discussed in

Section 4. 4, then the 7-. for equation (4. 68) may be taken as realiza-

tions of those hyperplanes for a finite number of parameter choices.

* By implication R will then be the intersection of the half-spaces

defined by those hyperplanes and thus R C . This approximation,

while easy to generate, tends to overestimate w, and it may also

produce an optimal strategy vector r R. This latter eventuality

requires an additional solution step in order to find r* r 0 , r*c R.

Note that the vectors r., i=l, 2,..,, NRA represent support hyper-

planes to F whether the approximation to R is internal or external.
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This will be useful in establishing optimal c. d. f. 's, as is shown

in Section 4. 6.

If the boundary points of P are known explicitly, then by

forming the convex cone of a finite set of those points and deter-

mining the support planes s., we may generate an approximation

C Pg. Because of the nature of the interaction of andand

w may be underestimated when problem (4. 68) is solved. Also,

although the support planes s of Pg belong to S, the support planes

s. of ?* may not have this property.-J0

An alternative method of creating Pg is both simpler and

occasionally more useful than the method above. For the purposes

of solvi- g the linear programming problem, we are interested only

in the support planes to t. From Theorem 4. 6, the boundary of

Pg may be obtained using only the set Cs. Therefore, we may

define a boundary of Ir" using a finite set of points of C5 ; i. e., pick

s.'C S, j=l, 2# P NS, for use in (4. 68). This yields P9C 79 and
___ja possibly overestimated value w. Since s.c S and s. supports

-J -j

1g, if it also supports S(A, R, w) it will be an approximate optimal

strategy for the minimizer.

Because approximations to R and P are reasonably gener-

ated and because the game problem may be reduced to a maximation

problem, linear programming is clearly a useful tool for approxi-

mating the value of a game .and the optimum moments for the

maximizing player. The strategies for the minimizer, which

cznnot in general be read off from the solution of (4. 68) because

they correspond to separat.ng hyperplanes rather than points, can
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be found simply by taking the negative of the original game, so that

the ninimizer becomes the maximizer. Errors due to approxi-

mation can of course be reduced using sophisticated computer

programming, fine granularity in the approximations, iterative

techniques, and special problem characteristics.

4.6 COMPUTING THE CUMULATIVE DISTRIBUTION FUNCTIONS

The method of dual cones can of course be used to find

saddlepoint solutions for given general problems with payoff r T A s,

where r and s belong to compact convex sets R and S, respectively,

but ordinarily such problems are intermediate steps to solving

problems with payoff J(u, v) of the form (4. 1), that is, with separable

payoff. For these problems it is ultimately desired that optimal

cumulative distribution functions (c. d. f. Is) F 0 (u) and G0 (v) be

found for the maximizer and minimizer. In this section we consider

the problem of finding the function F 0 (u) corresponding to a given

- .R, with the understanding that the situation for G0 (v) and se S is

analogous.

The fundamental relationship between r and F(u) is given by

equation (4. 7), which in vector form is

r(F) -fr~u) dF(u) (4.7)

U

where r(u) results from the defining cost function

J(u, v = r I(u) A s(v) (4.1)
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As in Section 4. 2, let I o(u) denote the degenerate distribution

(4.18) for which the entire protability mass is concentrated at u ,

so that

1 0o(u) (4.69) 7f uu
- 0 otherwise

where the vector inequality denotes element by element inequality.

This distribution has the property, if U is an open set in U,

0 uOUU) 0 (4. 70)

U - I i u&UcU

Then if F(u) is a pure strategy concentraled at u c U, i. e., if

F(u) = 1 o(u), we have from (4. 7) that
u

r(F)- r(u° ) (4.71)

Therefore, as can be seen by reviewing the definition (4.1 3) of the

set CR , a pure strategy generates a point of C Furthermore, a

point r 0( CR must have at least one inverse point uc U, implying

that there is a u such that the pure strategy I _(u) generates r° .

u

As stated by Lemma A and used in the proof of Theorem 4. 1,

any point roe R may be written

r01i L( . 1 (4.17)

u.7U
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and this r0 will correspond to a c. d. f.

F°u) i I U.(u) (4.19)

Therefore, any point r0 C R may be generated using a c. d.f. which

is a finite convex combination of pure strategies. This rather

surprising iact is the basis for finding c. d. f. 's, for a general

method, given r 0.f R as a result of the method of dual cones, is to

find a convex representation for r in terms of points r. c C

i=l, 2,..., k9 j+1, and then "invert" the functions r(u) to find the

corresponding pure strategies u, i=l, 2,... , k. The pure strategy

set u i=l, 2,..., k for a c. d. f. is then the spectrum of that c. d. f.

Finding a convex representation of r° and then inverting the

functions r(u) may be very difficult for some probiems, and it is

then necessary to try a more direct approach. For example, one

might attempt to find the spectrum t u. and weightings (Ct as the

solution of a pr'ogramming problem of the type

rain [Ir°  I )

U., a. i=l, 2,. • +l

subject to conJtraints (4.72)

i=1

ai 0 i=10 . 44+1 (Cont'd)
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4iC U i=l, Z,....,/a+l I 7z)

(i.e., ui. Co l,
j=l, 2, . 9. ,m)

wher the minimum distance is of course ;ero.

If the functions r(u) can be inverted, the general approach

may be appropriate. The critical part of that approach is to find

the spectrum iu a. or the equivalent points r c CR ' T h- weighta ot(

are relatively easy to generate since they appear linearly and must

be a solution of

I

or (4.73)

i=l

For the special case of scalar controls and polynomial payoffs,

Karlin and Shapley [41) show that when

ri(u) = u1  i=l,

and a point r °c R is given, the spectrum of r is given by the roots

of the polynomial functions generated by d ;terminants of the type

(for A even ando belonging to the lower surfa.ce of R)
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0 0

r1 r2  rm- 1

S0 r a r t

r. r3 m+ t (4,74)

0 0 0 tm

rna m+1 rzm-l

whire Zm = p. They also dcerive other cases. Their results are

easily z &ended to multidimensional ijncoupled controls.

Another way to comwate the spectrum can be used when the

support hyperplanas of R arc known. In our discussion we assume

t a r 0  o the boundary of R,. which is for our purposes

completely general because the compactness of R implies that any

Le R may be represented in terms of a convex sum of two boundary

points of R. For any r belongimg to the boundary of R, we know that

there is at le.st one euoport hyperplae to R which contains r °.

Let h represent such a hyperplane, so that, since ro = I by

=0

T
0  r~ 0~E

h°  2: 0 all rCR

As already cstablishcd an Section 4. 4 for a less general case, for

to belong te, the spectrum correbpondiD6  to r ° , it is necessary

that
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-h = o (4.

Therefore, we may seek the spectrum among the points r. c CR for
T

which b°  . 0 nd find u as the iuverse of r..

An imp rtant property of this hyperplane technique is that it

is a useful companion to the method of linear programming used to

solve the dual cone problem. The solution r0 of problem (4.68) of

uecessity lies on at least one face of I that is, at least one of the

inequaUties

-T or_.i r Z 0 i=l, 2,...,SN R

will in fact be an equality for some index j. But r. represents a-1

support hyperplane of I. A catalog of the points in CR which

gene-ate each hyperpiae will inmediately reveal which such points

generate r. and, by implication, which points belong to a spectrln

for r° .

4.7 SUMMARY

At t.is point we take atock of our accomplishme its jr this

chapter. For the static game problem with payoff

J(u, vi = r T(u) A s(v) (4.1)

where u and v belong to unit hypercubes, we have demonstrated,

using the method of dual cones, both a solution technique and an

iuieresting geometrical interpretation of the izuteractions of the

control spaces. Of particular importance are the facts that the

game problem was shown to be solvable as a constrained
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maximization problem and that approximate numerical solutions are

possible using linear progranuningfo.- which well-developed corn-

puter programs already exist. We also characteri.,d some of the

ets involved in special cases and indicated how the optimal c. d. f. 's

may be found.

Theve facts are the foundation for the consideration in

Chapter 5 of multistage games.

(.

t

I
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CHAPTER S

THE SOLUTIONS OF A CLASS OF MULTISTAGE GAMES

In this chapter the problem of finding a saddlepoint for the

expecte' value of the cost function J of two-person zz;-o-sum N-stage

games of petftct infbrmation is discussed. For the game6 of inter-

est, the cost function has the form

N

g.(z(i), u(i). v(i)), (3.3)

i=I

the dynamics have the form

z~i)l = Yz(f), u(i), v(i); i) Z (l = z. (3. i)

and the controls u(i) and t_) arc to be chosen at each stage from

m- and n-dimensional unit hyperc"bes U and VT, respectively. Ifne

functions g. and f are polynomia'll.
I

Two variations of this dynamic game, that of open loop

strategies and that of closed loop strategies, are analyzed using the

methods of Chapter 4. This is done by first showing that each of

those games can be reduced to certain static games i n which the

state vector z is a parameter. Then continuity properties of the

optimal solutions are established, and finally stronger resul-s for

the class of linear-qr:-dratic games are derived. As indicated in

Char',er 2, existence of the saddiepoin.t optimum was established

by earlier researchers, who will be cited as appropriate in the next

two sertions.

Preceding page blank

77



.1 CLOSED-LOOP STRATEGES AND THE PRINCPLE OF
O-PTIMAIT Y

In Chapter 3 the multistage game -wIth closed !oop strategies

was defined. The closed loop optimal mixed strategies F ° ii)I z(i). i)

aid G°(v(i~j~ z(i). i) and the value ffunction w.(z(i)) were defined via

equation (3. 5). By simple substitution in that equation it is clear

that the value satisfi-s the recursive equationQ

wN+ I() =9+I(

w(z(i)) - gi(z(i), u. v) Wi.l(fzi), u V;

vuJ

dF 0 ur z(i), i) dd°(v[ z(i). i) u5-;1

(U. , " i(z 'i)' U V) Z Wi+lfz~ i), U. V;

The fact that such a quantity exists and satisfies (5. 1) has been used

either explicitly or implicitly 'y many researchers. Fleming 53i

states the necessary facts in a theorem which is directly applicable to

the present problem.

Since U and V are hypercubes, -ht probier- of solving (5. 1)

for each i and for fixed z(i) can be approach.'4 by the methods of

Chapter 4 provided that the quantity to be optimized is separable in

u and v. Thit is true since by suitable grouping of terms we may

"-rite (5. 1) as
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15. Z)
Valval Twil} =(uF, rklU) akJ,(z ) sJ'} AV :auvrTl(a) A(z} slX})

- u A [±_ 3J . .
--- k=l j-I

In the special case of polynomials. for example, the functions rk, )

a A have the foikwiig forms:
kj'

4k U mk -1
rkLu) = U I k u 2 u.In k-l2...,

tik non-negati,.e integer

(m

si)=. J.Zj N (5.3)
.1- I -

£kj = non-negativt integer
k=l, ... n

Ci lij.-- z j i-l.

j= 1,Z,...,B

k -non-negative integer

This form is analyzed in detail in later sections. Nrce that it is a

parameterized version of the problem of Chapter t.

The constraint that the right hand side functions in (5. 1) be

separable is important. The functions gj{z, u, v) are separable by

definition, so it ic the term wi+i(f(z, u, v; i)) wL'ch is of concern.

Unfortunately, as demonstrated in an example in Chapter 6, this

term is not always separable. This is net surpricing, for even simple

optimization problems with parameters often have inflection points

which are not of the same form as the given problem. For example,

the equation of the maximum in t of the quadratic function
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f(z, t)= ao(z)+'a(z)t+ a2 (z)t a2(z)<

is

a (z)max f(z, t) = a(Z) -ao 4 a,(z)

Although the value function is not always? such that

Wi+l(f(z. u, v, i)) is separable, this term is separable for i=N and

for linear-quadratic problems; the latter fact is proven in Section3

5. 4 and 5. 5. In addition, it may be separable for other classes of

problems and for special regions of probiems for which general

separability does not hold; this requires further research and

det.iked analysis of the functione. Finally, for numerical purposes

it should be satisfactory to appy.oximate wi+l(f(z, u., v; i)) by a

suitable separable, function and to apply dv-amic programming and

the methods of Chapter 4 to the resalting problem.

5. Z OPEN-LOOP STRATEGIES AND BATCH PROCESSING
SOLUTIONS

In Chapter 3 the polynomial game with open-loop strategies

was described. In this section we reduce a stage i of that game for

which z(i) is known to an equvralent single-stage game in which z(i)

is a parameter and show that this truncated game may be solved .s

a batch process. The reduction is essentially algebraic, and the

fact that the resulting form is identical to that uoee in Chapter 4

guarantees a saddlepoint solution.

Without ioss of generality, but with a considerablc gain in

notational conveniencz, let us condider the problem for i=i. By
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repeatedly substituting (3. 1) into (3. 3). we may demonstrate ex-

plicitly the independent variables in the cost function

(5.4)

J = g1 (Z(i). u(I), v(l)) + gz(f(z(l). u(l), V(I); 1), u(Z), v(Z)) +
U!

g (f(i. . . f_{z { ), u i), v_ 1; ). . . , u _{N - 1) , v_.N - l); N - 1 ),

u(N), v(N))

* + 1N+(-f(f(...f(z(l), u'l), v(l)-; 1)...), u(N), _(N); N))

Because all of the functions gi.. ,.) and f(.,.; i) are polynonials

ha their z - gumeLrs for all applicable indices i, this may be rewritten
I

as

J = g(.{l), u(I),..., u(N). v(l), (), .... v(N)) !5. 5)

where g is a suitable polynomil function of the arguments. We may

define an mN-vector u and an nN-vector v

v(( I
e y.J z) y(Z)

u= v (5.6)

u(N) v(N)

noting that these are elements of an mN-dimensional unit hypercube

U and an nN-dimensional unit hypercube V, respectiveiy, and

rcwrite (5. 5) as

J g(z(), u, v) (5.7)
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where we have simply changed notation and g is still a polynomial

fcnction of the elements :f the various vectors. A typical term

of (5.7) has the form

C1 Cz C1 41 2 i Nm "1 7Z "Nn
C- 1 Z 2  L 1 2 'Nto v , ... VNn

j~h th
where c is a censtant, zj is the j element of z(l), u is the j

element of u, etc. and all exporients are non-negative finite

integers. Define

r0(u) a l

r) uZ .1 .Nm (5.8)
r.2) u, "Z ... u.

11 772 '7N n
s.(v)=v v ... v
I- I Z * Nn

C1 C C,
ai(z = c - z z .z

where it is imnpicit that t*.e constant c and exponents C depend upon

the indices i and j, that the exponents 4 depend upon i, and that the

exponents 17 depend upon j. Then we may for suitable finite integers

p and v rewrite (5. 7) as

a (z a ' rTu) s (v) = rT(u) Az) s(v) (5.9)

j=0 i=O

In the vector-matrix representation, r and a are the obvious ;1+l and

v+l dimensionl eactor functions and Ais a ()A+l) x (v+l) matrix

function. Fr a gwen initial condition z, (5.9) is precisely the
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problem which wae solved in Chapter 4. It is noteworthy that it is

not necessary that the payoff and dynamics functions be polynomials

for (5. 9) to result from the substitutions of (3. 1) into (3. 3). although

the class of volynarials is perhaps of widest interest to u*. Cer-

tainly if the functions are separable in z, u, and z and polynomial in

z, the payoff can be written in the separable form (5. 9) and solvee by

the method of dual cones. Many special problems may also have this

characteristic.

That (5. 9) is equivalent to (3. 3) and is solvable by the

methods of Chapter 4 is easily *hown. The solution of (5. 9) is a

value u and a pair of mixed strategies F 0 (ul z, 1) and G°(v1 z, 1).

These are equivalent to the value Cv,(z) and the set of strategies

%°ui)[ ._, 1; u(I),...ui-11)) and 6,°{v(i)j z 1; v(1) . .. vIi-llt

* as can be seen by substituting (5. 9) into 43. 6), changing the order

of integration, and grouping terms to get

U ... dF,(u(l)lz, 1)]

A (z)[ f... fig( , d G NjN,- _ 1; v,,,..... v(N-1))

V V... dG,(v(1)lz, 1)]

(u) dF°(u Iz A(z r dGO(v z

U V
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Here U = U x Ux.. . x 1 V-- Vx V x. .. x V. Integrability ,s no prob-

lem since we may restrict the c. d. f. 's used to those with finite

spectra if necessary. Hence, solving (0. 9 for mixed eirategies

on u and v is equivalent to solving the open-loop strategy problem.

and the frmer may be done using the method of dual cones.

The mixed strategies F°(u[.E. 1) and G°(vlz. l) havr spectra

consisting of control histories u and v. If it is necessary to find

the optimal mixtures of controls for stage i, the usual steps of

integrating over all admissible coatrols for the other itages must be

performed, a procedure which is reduced to summations because

the spectra are finite. During play of a game, when only a

realization of the control strategies is needed, this step may be

bypassed by choosing a control history u (or v) in a random manner

and then picking out the desired elements u(i) (or v(i)).

The discussion above applies in a natural manner if the game

is assumed to start at stage i with initial condition z() = z. There-

fore each player will, at any stage for which both obtain new state

information z. ute the methods of Chapter 4 and the initial condition

z to generate his remaining control histories and then select his

control for the present stage using a random choi(e among those

histories.

If both players have optima] pure strategies, then the batch

processing method may -dso be used for the game with closed-loop

strategies. This fa%:t is discussed in an enlightening manner bV

Ho C 36). It does not hold when mixed strategies are used, however,

as the roader may demonstrate using simple counterexamples.
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Example 6. 1 is a good one on which to base a counterexample.

5.3 CONTINUITY PROPERTIES OF THE SOLUTIONS OF
SEPARABLE GAMES

The exact nature of the dependence of the solutions of

multistage games on the initial conditions z varies with the structure

of the game and must be established on a case by case basis. One

particular property, namely continuity, can be sLown to hold in

fairly general circumstances. We shail discues continuity con-

ditions for the value function and for the strategies in the present

section before mov.ng on to establish sharper results in later

portions of this chapter.

Using our previous results and the notation established in

Sections 5. 1 and 5. 2, we know for some polynomial games with

closed loop strategies and all with open-loop strategies that the

value function w(z) satisfies, for given z

m nin max T max min T
-- seS reR r A(z) r R s S --

where R and S are convex huU of continuous mappings of compact

sets U and V or U and V, respectively. This representation will

prove useful in much of the discussion to folow.

The following well-known result is essential to understanding

the interactions of the dual cones when the matrix A is parameterized.

Theorem 5. 1: If the elements a.j(z) of the matrix A(z) are

continuous in z and if R and S are compact, then
w-) max mai T

W(Z ma mi r TS A(z).s is continuous n z.
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Proof: LetE- be an arbitrary element of EL and let D, (U)

denote the set auch that, for given c > 0

aij(z) a .i(z0)1 9 c, all i, j

for all z c D(0E Such a set exists since the

elements of A are continuous. Then if r0(z) and

s0 (z) are optimal mornent vectors at z,

T T
w(Z) - we 0)- r W(- A(a) s (z) - ro (10) A(¢O) a( 0 )

w=r( ¢Az) - -Eow) 1(5.12)

Z4 -_ sj -_.=o

i, j

and
TwWz) - Z(:) 0 o ¢ ACz - A¢E)] sz)

(5.13)

i0 

which, since R and S are compdct, imnli.

Iw(z) - w(,.)I I k c for some finite k.

Another well-known fact is that the limit of the optimal

strategies of a sequence of games is an optimal strategy for the

limit oi the ga-nes. This is useful when payoff functions must be

approximated, as we shall see in Chapter 6, and for proving results

about continuity of optimal strategies. For reference we formalize

this fact in the following lemma and indicate a brief proof.
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Lemma B: If r s are optimal strategies for the game

r o h m where A is element -by-element
n

within cn of the matrix A

laG a. 1 < En
C 3 n

and where r and s must be chosen from compact
-=-

sets R and S, respectively, then there exist limits
o

r and so of the sequences [rn and isn), cn 0,

which are optimal strategies for the game with

matrix A.

0:Proof: We indicate the proof for r°; analogous results

hold for s° . The existence of limits follows

immediately from the iact that [rnI is an infinite

sequence in a compact set R and must therefore have

a convergent subsequence with limit point in R.

Call this limit point r° . Then r 0 is an optimal.

strategy for Player I for the game with matrix A,

for if it were not, then

min ma; T io
w S E A s> r Asse S re R se -- S-

or

1w- min 0  AsI >> (5.14)

for some 6. But if we define
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minL max T TWA sr A s ( .SWn se S rt: R- -- A-- rnACsn
----- nn-n

then (5. 14) becornes
(5. 16)

T
!W rain o Imin TA sis f sS -- A_ W-n +w n - s4ES -n -

A si wn A s - r A s!+ 's S - sE S-

The first term on the right can be made less than L3

for large enough n > N1 by the arguments used in

Theorem 5. 1, which used only the closeness cn of

-nnthe terms of the matrices A(z) and A(z n). Similarly

the second term can be made less than L for n > N23

by arguments using closeness of the matrices and

boundedness of S, and the third term can be made

less thpn for n> N using the facts that r - r
-n

and that S is compact. Thvs

,w - min T A s! :r f (5.171

for arbitrary E > 0, contradicting (5. 14).

In discussing continuity of moment sets and c. d. f. ' s as

functions of z, the following version of the definition o1 upper

semicontinuous mappings is useful.

Definition 5-1: A point-to-set mapping O(x) is callec' upper semi-

continuous at 20 if corresponding to any open set 4'

containing 0(2S) there exists some 8 > 0 such that
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d(x, 0) < 8 implies 4) C 1P where d(., ) is u metric

deiined on the domain of b.

Using this definition, we adapt a theorem of Karlin [40] to

our interests.

Theorem 5. 2: The set R (z) of optimal strategies for the game

defined by rT A(z) s, rC R, s S, is an upper-

semicontinuouE fvaction of the parameter z.

Proof: Let z be an arbitrary point in E and let R0 (z)

be the optimal moments for the game with initial

condition-.E" Suppose H is an arbitrary open set

such that R 0 ) C H. Let DE (z) be as in the

proof of Theorem 5. 1 and let R be the set of all

moments rE R which are optimal for at least ine

zc DE(.0). We must show that for E -" 0 sufficiently

small, RC C H.

Suppose the contrary. Then there exists a

sequence (cnd, en" 0, such that R. k H for all n.
n

For each n, choose -Z E Dn(.1) with corresponding

optimal strategy r n such that r n H. Then we have

a sequence tr ) in a compact set R such that r ' H.
-n -n

Thus the sequence will have a convergent subse-

quence with sone limit point r0 cR, r° 9 H. But

by Lemma B, r 0 is an optimal moment vector for the
T o o

game r A(ao) s, and therefore r 0" R°(z0)C H, a

contradiction which completes the proof.
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At this point we go beyond previous work to establish a forin

of continuity for the optimal cumulative distribution functions

F0 (ul z) and G0 (vj z). Some of the pitfalls ar - recognizable in

advance and must be carefully circumvented. i particular, we

must remember that (I) the optimal c. d.f. 's are not necessarily

unique, and (2) the c. d. f. 's are discrete over the sets U and V,

and hence continuity in z is much like the continuity of the zeros of

a polynomial as functions of the coefL"ri -. its.

We shall develop our theory using the support hyperplanes to

R at its boundary points. We remember that by assumption r0 = I

for rE R, and without loss of generality we assume that bounded

normals of hyperplanes have length less than or equal to unity.

Theorem 5. 3: The set H(r) of the bounded representations -. e.,
Ao A

normals) of the support hyperplanes to R at r is an

upper semicontinuous function of the boundary

points of R.

Proof: Let r belong to the boundary of R, let H(r ) be the

set of allh such that hT r° = 0, hT r t 0 for all

rc R, and lwhere r0  o and let H be an

open set containing H(r ). We assume that the

contrary of the theorem holds and that D is the

open set of all r in the boundary oi R such that

Ir - roll < . Then if J Cn) is a real sequence,

(n > 0, n -# 0, we have thatr E D has limit point
o n

r . Furthermore, if Hn is the set of all h which
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support R at at least one point of D , we have
n

H : f as our contrary aseumption. The set of all

hyperplanes with normals of unity or less is neces-

sarily compact for the compact convex set R and in

fact is a portion of the dual cone PA. Choose from

tach Hn a vector h n j H. Then the sequence t3n)

has a limit point, call it h , s- ch that ho fl. But

h° supports R, and thus R. Thus we must have

T
h0  r ° 0 6 > O

Sinc,! hT r = 0for some r c for eachn, we
-n -n -n (havi

h r -hr 6>O0m -- -- n ---a1

But (5.18)
T T o

ho r i- hT r h= (ro - r)- (hn- ho) T r

I-hI. r l+1lh -hrll lirnI)

which can be made arbitrarily small because r - r0
|. -n -

and h h0 , a contradiction which completes our

proof.

Corollary

5. 3-1: Yhe set H'(z) of the bounded representations of the

support hyperplanes to R at the optimal strategies

R0 (z) of the game with initial condition z is an upper
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sernicontinuous function of z provided R° (z) con.-

sists of 1-oundary points of R.

Proof. This follows immediately from Theorem 5. 3 by

using Theorem 5. 2 and the definition of H ''(z,.

Our next theorem leads to a characterization of the con-

tinuity of the spectrum of F0 (ul z).

Theorem 5. 4: The set (p(h) cf all contact points of the support

hyperplane to R represented by h witl, the set C is

an upper semicontinuous function of h.

Proof: We remember that R s the convex hull of CR ' Al.so

we rem-rk that (p may or may not be connec.tcd. We

proceed much as in the proofs above, taking a

sequence h of normals to support hyperplanes to R

and looking at their setsp n oi contact points with

C,. If h ° is the limit of h but no On iU contained

in the open se' (p which contains p(h), then there

must be a sequence oi points r E CR' r n V (h°0

such that r r V p(h°). But p(h')) is the set

T
p(hr) CrRC h r= 0

and thus, since h0 supports k, we must have

h r 06>0

for some 6. This situation is similar to that of
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sernicorinuous function of z pvc -ided R (z) con-

sists of buundary points of R.

Proof: This follow immediately from Theorem 5. 3 by

using Theorer,; 5. 2 and ,he definition of H'(z).

Our next theorem leads 'Yo a characterization of the can-

tinuity of the spectrum of F 0 M(u z!

Thet.rem 5. 4: The set p(h) of all contact points of the s_,pport

hyperplane to R represented by h with the set C is

an upper semicontinuous function of h.

Proof: We remember that R is the convex hull of C . so

we remark that (p may or may not be connected. W c

proceed much as in the pruofs above, taking a

sequence h of normals to p.pport hyperplanes to R--.n

and looi.ing at their sets n of c, -.tact points with

C R ' If h( is the limit uf h but no 'o is contained

0in the open aet p which contains p(h ). then there

must be a sequence of pointsr e C r

such that r " r0  0 (h°j. But 9(h0 ) is the 'et

T
°h ) = (rlr CR, ' r = 0]

and thus, since h supports R, we must have

h b r 0  > 0

for sorne 6. his rituation is similar to that of

92



Theorem 5. 3 and is. p rticular to equation (5. IF).

and a sinilar contradiction arises, completing th(-

proof.

Corollary
5.4-1: The seto (r) of all contact poirts of all .- ;iupport

hyperplanes to A at r with the set C Is an upper

semicontinuc us function of r.

Corollary
5. 4-2: The set (p(z) of all contact points of all suppor.

hyperplanes to R at points rE RO(z) with the set CR

is an upper semicontinuous function of z, provided

that R°(z) consists only of boundary points of R.

We remark that Hurwitz's theorem gives a version of these

results for the special case of zeros of polynomials as functions of

their coefficients. For the game problem this is similar tc a case

with polynomial functions and scalar controls. Note that the

corollaries to Theorem 5. 4 requir. that all jupport hyperpl,nes of

the given class be considered.

Tbere is one more step before establishing our final result.

We rememb)er that Lemma A implies that for :.- R it is possible to

form a finite convex representation for r in terms of elements

r. CCRO where R is the convex hull of CR' We may write such a

representation as
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r Of i r , r CR  i=l, A+1
i=1 ol ~

i=l

We are interested in establishing continuity for the convex coeffi-

cients a i . Each coefficient is a function of the vector r being repre-

sented, of the spectrum rJ1 , .. ., r A+l used, and of the index i.

Thus when the represenitation of r is not unique or when a set of

vectors r is to be represented, one becomes concerned with an

infini'Le set of such functions ai . Fortunately, our purposes are

served by a more modest theorem than one concerning continuity

of this set.

Theorem 5. 5: If a sequence (r(n)] has limit r, if each r(n) has

convex representation a (n)r(i), then r has

00 0representation '° r ? where ri(n) - r. and

5i(n) - CIO for eacn i.1

Proof: Since each ai(n) C CO, 1) and each r i(n) c C , both

of which a.'e compact sets, each sequence has a

convergent subsequence. (We assume implicitly

that the elementp are kept ordered, oo that the limits

will be independent. ) Denote the limits by (.Y and r..

0 0 0We are to show that r 1 I r  Suppose the

contrary. Then
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-- > 0 (5.19

But

_1r - r? =rol r11 - r(n) + (ai(n) r.(n) - (YI
i=l =

1r r o r(n)ll ( (n)Il .(n) r:.l +
r. i-l

1: I II in " oiir );
11- 1 1 of

" s; C +f (01i(n) C 2 + I I. 3

for sufficiently large n and arbitrary positive CI,

(2' Since ofi(n) and are bounded, this

contradicts (5. 19) and completes our proof.

Using this theorem, we are able to develop a statement of a

form of continuity for the c. d. f. 's in terms of the initial condition

z of the state vector. To do this, we extend the concept of spectrum

of a c. d. f. slightly by defining generalized spectrum sets.

Let R°(z) be the set of optimal moments for the maximizer

for the game starting at z. Then an element u of U is said to belong

to the generalized spectrum at z if there exists a convex repre-

00sentation of some r°C R (z) in terms of boundary points of R such

that at least int support hyperplane to R at one of these boundary



points contains a point iC C which is the image of u under :he
R

transformations r(u). From the discussion of Section 4. 6 relating

c. d. f, Is to moment vectors, it follows that the spectrum of any

optimal c. d. f. for the maximizer at z is contained in the general-

ized spectrum. The generalized spectrum thus contains all vectors

u which might belong to a spectrum of an optimal c. d. f. at z. A

generalized spectru-, for the minimizer may be defined analogously.

Using the definition of generalized spectrum and the -results 0

of Corollary 5. 4-2 and Theorem 5. 5, it is little more than a

restatement of those results to obtain the following important

theorem.

Theorem 5. 6" The generalized spectrum for each player is an

upper semicontinuous function of z. For given

spectrum elements in this set, the crrresponding

weightings are also upper semicontinuou6 in z.

Loosely put, the implications of Theorem 5. 6 are that if

z "  , then in an upper semicontinuous sense

F OWEj) -'i'-, Iui) 1(u) - FO(UIa)
(5.20)

The upper semlcontinuity is required primarily because of

lack of wuiquenesc of solutions. The use of generalized spectra allows

for the case in which Oti(z) -. 0 as z - Eo, since our definition of
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spectrum would not then consider .(O as a spectrum point of

These concepts of continuity are important in understanding

the effects of parameterization of the solutions introduced by con-

sidering dynamic games. The continuity of the value function and

upper semicontinuity of the optimal moment sets are particularly

useful in visualizing those effects and in problem solving.

_ r 5.4 A LINEAR QUADRATIC GAME WITH SCALAR CONTROLS

In this section, it is demonstrated that the value function for

one special class of games is piecewise polynomial and therefore

thet the principle of optimality may be applied alcng with the

parameterized method of dual cones in order to find a solution. In

the course of the demonstration, the use of Theorem 4. 5 is shown,

the solution to the problem is generated, and the ideas to be used in

the more general problem of the next section are illustrated.

Let z(i) be an A-vector with stage index i which satisfies

.(i + 1) Ti .z(i) + (i) + V(i)+v. (5.21)

where T i is an A x £ matrix, a, and are A-vectors, u(i) and v(i)

are scalars to be chosen from the unit interval C0, 1), and - is an

4-vector. Player I is to choose rri.ced strategies F0(u z) to maxi-

mize the minimum expected value of the payoff function

T T
Jz (N + l) N+l z(N + 1) + -+i z(N + 1) +cN+1 + (5.22)

(Cont'd)
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(5. 22)
N

+F T(), ri)+ T  (i) + T +
4 ~ A~ (i) UOi) + '10 slvOi)

i-1

+Pi U?-( i } + Pi UMi + uP i UMVi) + Gi V Z l M +i Vill

where the £ x A ma'rices .; the £-vectors e., and the

scalars P., pi Qc I are known to both plyers.

Player II will choose mixed strategies G(vj z) to minimize the

maximum expected value. A special case of this problem is given

in great detail as the first example of Chapter 6, so the argutnent

below is somewhat abbreviated.

We proceed by induction on the indices i, taken in reverse

order. Define wi(z),

val [ETT 2 i)vi

T T 2+ -u(i) + z+EV(i) + Q v (i + ( i) (5.23)

+ wi+I(T 1 z+ % u(i) + #4 v(i) + Zj

i=l, 2, N.. ,N

in the usual manner, and note that

N+- .z = I a + SN+-I N+1 (5.24) y

We aesume that w i+l (z) is quadratic in z in some region of interest,

i. ..
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and attempt t., prove that wi(z) is-piecewise quadratic, that is, that

wi(z) is given by some quadratic form in z for any region of E

- Let us make the following definitions

D=T T

p= T2 + 1 + 9i
- IT T  Di+

-g T

qP2 D. 1 ot + P 5 6

' + 1T =4

T
P +TTd +P

T

+ iDi+ @4 + Q +

symmetric, (5.23) becomes, :der assuptin (5. 25)(26)

valq [ZT. D.+ dYj+ du 2  Q +  p4q~u

-i +6 +ATzu+jTzv)-- - 5 T

I I

994
A, + 2 T ml 01.mnmN

-- I I



We may write this in vector matrix form.
(5.28)

r5 T T T
D +4 X+6 j E+.q 0 1

(, v) O- +P v

p 0 0

Defining

T -T-- +_ -- 6 fE+ q

A(sx) AT.+P p0

L P 0 0

S: u dF(u) (5.29)

v dG(v)

let us write (S. 28) as

max min () 5

w rePR scS

As developed in 6 tctloq ' 1, for this problem CR is 'he set

Tr.lOs 1, r to r 2 , t 0,)1. Ris the convex hull of CR and

is the rezion enclosed by
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r0 =1; r2  r and r2  r2  (5.30)

or parametrically by the curve C and by C' o r =1,

r = r2 =t, tc r0,). S is analogous to R. The dual cone 19is
1 2r

|defined by the boundary curves

a. s = 0for s 0and s > -

t b. s0 + aI + s 2 =O for s0 O, s - 2s (5.31)

c. 4ss - s 1 = 0for s 2  0, 0 k s - 2s
0 2-12 1

The setaR, which is the projection of R on the (r 1, r 2 ) plane, and

P9 are sketched in Figures 5-1 and 5-2. The set Pg is the space in

the positive s0 -direction with boundary given by (5. 31).t0

At this point we introduce a parameter a, to be maximized

according to the dictates of Theorem 4. 5. The elements of the set

S(A, R, at) defined in equation (4. 36) are then given by vectors

s(E 3 such that

0  z T Dz +dTz+ 6 -0+(4Tz+)r + Pr 2

TS1l z+ q+p r (5.32)

'2:

Since A(z) is linear for any z, its boundaries correspond to those of

R. Trivial or special cases such as P 0 will not overly concern

us, since the mi thods below still apply.
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rri

Figure 5-1. The set R.

Figure 5-2. The set PS
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The implications of the continuity proofs of Section 5. 3 are

that S(A(z), R. wi(z)) moves smoothly over 1v as z is varied.

This essential fact may be verified here by substitution of numerical

values, and is used in the discussion below. Basically, if P9 and

S(A(z), R, wi(z)) are in contact at a point which is internal to one of

the identifiable boundary regions of each, then as z varies slightly,

jthese surfaces will remain in contact although the exact contac-

o poir. may move. Therefore, we may restrict our attention to

pairs of surfaces, one each from S(A(z), R, wi(z)) and Pg, in

generating wi(1). We will simply examiine the possibilities

exhaustively, using the -urves

a. r2 =r I

and (5.33)

b. r2  r1

of R and the surfaces and edge

C a. SolO

b. u0 + s I +s 00 0
0 1 2(5.34)

co a 0 = 0 ,  #1 +  62 = 0

d. 4sOa 2 = 0
0. 21

of P9. We shall find the value wi(E) and the optimal mixed

strategies F°(ul z) and G°(v-.) for each possibility. Where

strategies are not unique, we shall simply demonstrate at least

one optimal strategy.
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Case 1. The plane s0  0 of Pg, All support hyperplanes to

this surface except at the line s + s2 = 0 (Case 3) have repre-

sentations-(,, 0, O)T , X > 0. This implies the moments (1 0 0)T

for the minimize,: with corresponding pure strategy

GO(vis) = IO(v) (5. 35)

From (5. 32) we, immediately have, using (5.,33)

a. ~T D dT n8(T+ p)r +'Pr 2 C. of = (5.6 )

b. a-"sT Dz+dT -+6+IATZ+p p+P)r

(1?
where rI f 0, 1). Examination of coefficients and maximization of

C over r1 leads to the following results. (5. 37)

1. P 2 0, T_+ p + P t 0. Then ro = 0, F°(uj_) = 10(u),

T T10
d dwi(.)=ma= D, +dz + 6

ii. P 2. 0, ez + p + 2: 0.. Then ro - , F°0(uli) I x(u), '

and wi(E) x T (d+_T z+ + p+ P

iii. P<O, 0:6 T+p)IZP f. Thenro = T z+p)/Zl

and F°(uli) I 0o(u). Also, the value is
rI

w ST PA T Z+ "wi~t - (ID M E + (d.+W

(Cont'd)
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iv. P< 0, - (Z + p)/ZP' 0. Same result asi.

t(5.37)

v. P < 0, - (ATz + p)IZP a 1. Same result as ii.

Case 2. The plane so + 1 + s = 0 of PIn this case we find

find that s = (I 1 1) so that G°(viz) = I (v). Substituting (5. 32) in

(5. 34b) and using (5. 33) gives (5. 38)

a.~ T D~T T +'+2
a. 01=+ZDz+(d+ ) +6+q+Q+(A z+p p)r+ Pr I

b. =zT Dz +(d+ Tz--+6+q+Q+(ATz+p+P+P)r

Once again we maximize a over r C LO, 11 to get the following

results. (5.39)I i. Pao,_ 6 + +P P.o Thenr'= o, F(u-)=I 0 (u
T

w(Z) Z Dz +(d +) Q + 6+ q+ Q

ii. p a o,_'T_ + p + p + P a 0 Then ro = l, F (ulE I , I1 (.

wi(Z) =T DTZ+(d+!+_ATz+8+q+ Q p+ p+P

iii. P< O, 0 C. - (67z+p+p)/ZP 1. Then

r,° 0. ( P+ P) 1, F0uz.):l (u)and
- r0

2
+6+ q+Q

(Cont'd)
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(5. 39)
T

iv. P<O, , 0. Same result asi '9

v, P < 0, (A & P+A I I. La,.ne result as -.

Case 3. Theline s 0 = 0, s1 + s2 = 0 of il. We note that

this case applies only to s2 9 0. It is moze complicated than those

above because the -eparating hyperplanes of the two uets, which

Imply the str-tegy for Player II, no longer are in one-to-one

correspondence with the points of contact. Thus we must examine

the slope at the contact point of the boundary of S(A(z), R, wi(z)).

The ccndition s + s2 = 0 gives o

Ti . + +) qIP (5.40)

which must be substituted in the appropriate equation of

T, T T 2
a. of =z Dz + d z+ 8+(A p)r + Pr1  i(5.41)

b ,T T Tb. a = z Dz+ d z+6+ (A+ p+ P)r!

provided of course that rot [0, j, a necestrazy condition for Case 3
to hold all. The following cases may be found.

il P k 0. Then F0 ul) = (1 - r0) I (u) + roIi(u); that is,

the raaximizer uses a mixed strategy of points u = 0

and u = 1, a condition ;,,hich is clearer if Figure 5-1 0

is examined and the discussion of Section 4. 6 is

remembered. It can be seen that

1
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Tp+) . (q+Q); tp _ + -

f. + Pi)(q+ Q)
p

This reaults simply by substituting (5. 40) into (5.41b).

Using ('. 32) we find that, by eliminating r with = r 1

as 0  T'1+p+P
=8 (5.42)

Equation (5. 4Z) aLong with the condition s o 0, s0 + 82 0as5
can b t used to show that or -(1 0 0 Tas 0 =s 0 o
that G°(viE) = (1 + 1(v) - I, (v). If r Oor
r 1, this rewsult may not give a separating hyperplane;

one of the extremal strategies 10 (v) ox II (v) is then

optimum. although not necessaril.y uniquely so.

it. P 0 0. In this case F 0 (ulz) = I Q(u) where r0 is given

by (5. 40). Substituting into (5, 41a) yields

T
T P T

wVi~ 2--p (D -  +-. ,P it )Z (5.43)

p -.

P
+ q (q )p) 2

Since s2 = Q at the point of contact, s I = - Q. There-

~fore we haeve
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O 
-- aw

o (P -z l T  Pp -ZPQ - Pqz + ,(5.44)

0 p 0

and G lvl z) depends upon - as in part i of this case.

1

Cae 4. The surface 4s sz - s = 0 of Pg. In this region

we concern ourselves with tangency of S(A(z), R, C) and Pg. Note

that at a point of Pg in this region there can be only one support

hyperplane, namely, that corresponding to

s 0 (5.45)

/

where

b 0  +s 1
ii- .- (5.46)

Using (5. 32) we find that

o Tz + q + prl1
" " Q (5.47)

II
where r is the first moment of the maximi-er' a optimal strategy.

Substituting (5. 33) and (5. 32) into the equation (5. 34) for the surface, 0

we find
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b

a. z Dz+ dT_, + + (A t + p~r+ z  a

' (5. 48)

!I t Implicit in Case a. is that P < 0, while the contrary holds in Case b.

Cases a. and b. are so similar in analysis thiat we shall treat the~m

tI ~together, writing
(5.49)

( ~ T 2-T( 2 2Q --

floi)z+(d - )T + (6- )+xr+yr 1

where the definitions of x and y should be obviou.s. Then we have the

follwingsituations.

TI I + (P-P

P ~i. If y~ 0, x + y> 0 Then r? 1 , F°(ulz)=o()

G°(vjz) = I o(V)where 5:° = T +)Qand

S+°( ( - r + Q n

( Contt d)
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0

T

wi() (D -d . - Q + X+ y

"X 0 -X,

iMi. If y< 0, and0 IF 1. Thenr I  17y,
T°(uttl.) I ON) if P < 0 (i. e., Case a. ispure

pur

strategy) arQ F°(ul z) = (1- r' ) I(u) + ro I (u) if P O.10 1o

The minimizer uses the pure strategy G°(vi z) I o(V)
S

and the value is

= wi(Z)=zT(D - 4)z +(d)Tz+(6 
x2

iv. If y < 0 and 'X < 0, theD r0 0 (becaiue

r i E 0' 1)) and the optimal strategies and value of i.

occur.

v. If y < 0 md-"> 1, then r I land the results of ii.

apply.
'2

We have demonstrated by exhausting the possibilities that

wi(z) is piecewise quadratic if wi+(s) is quadratic, and by extension

we see that if w i+l(Z) is piecewise quadratic then wi(z) will
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necessarily be so also. This completes our induction step and shows

that for the linear quadratic game with scalar controls the principle

of optimality and the method of dual cones may be applied to arrive

* A trio of remarks may be made about the constructions above.

First, we have not been particularly concerned about the lack of

uniqueness of solutions, a fact that may seem to obscure the semi-

continuity of the solutions. NevertheAess, the semicontinuity holds.

Second, We note that the optimal first moments are either extremal

elements of L 0, 1] or are linearly related to z. Finally, it can be

observed in the solutions that for Player I to have optimal mixed

;ti itegies, it is necessary that

P=% D 1 i + P 1 20 (5.50)

For the minimizing player to have such strategies, the condition

P Q&~i+~+iT (5.51)
S:TDi+l I , P4+ , 0.1

must hold. These conditions are of course not sufficient.

5.5 A LINEAR QUADRATIC GAME WITH VECTOR CONTROLS

If the controls of Section 5. 4 are vectors rather than scalars,

then the value function is still piecewise quadratic. This is a fact

of fundamental importance, fcr it is a characterization of the

solution for a comnrLtn slass of games. It is proven in this section

by a technique whi,;h is in the spirit of Section 5. 4, but which is of

necessity not exhaustive in nature. The approach is to show that
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for an arbitrary pair of surfaces, one from P9 and the second from

S(A(z), R, a), the value function implied by use of Theorem 4. 5 is

quadratic in z. Piecewise quadraticity follows immedi.tely. Because

of the nature of this proof, it ia concerned only with the form of the

solution, although the techniques might be used to find the exact

solution if that were desired.

a' , problem of concern to us has dinamics given by

z(i+l) = Ti z(i) + a u(i) + piv(i) + Yji) (5. 5a)

and payoff function, for the truncated game starting at stage j,

= T( le Tj Z z(N+I) E (N+I) + SN z(N+I) + cN

: N

(zTi E(l)~ e. T(i) + zT(i,A.u)
j--j (5 53)

T T T
~i Xi) + (I) Pi1 (i) + g !(i) + v() MVi

+ T M'i) + u TM i) p1 (l

where z is an I-vector, u is an m-vector to be chosen froix. :_

m-dimensional unit hypercube U, v is an n-vector to be Jhosen

from an r-dimensional unit hypercube V, and T i , tit Pis 6' A 'gio

Pit Qi' pi are known matrices of suitable size, -, - 2i' _ are

known vectors, and cN+l is a scalar constant. We are concerned

with proving that the value w.(z) is piecewise quadratic in z, where
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W(z) val IJJ (5.54)

Note that WN+l(Z) ii indeed of the required form. For our induction

hypothesis, we assume that wi 1 (z) is piecewise quadratic, so that

wi1(z) z T +dT iT

W. (z) D+ + z i+ 1  (5.55)

for some Di+1 , d. i in a given region of interest, and prove
__ I+l I i+l1

that wi(z) is also of this form. Using the principle of optimality

val T T T Twi(--C) = u8 _ z + e.Tz + zT u + z T iV + P. u

(5. 56)

V Qix.%,X+ I i+(T].zat. u

C

which after substitutions and definitions in a manner similar to that

of the previous section gives the formno

wi(E)--lu vLZ D z+dTz+uTpu+vTQV+ T T

(5.57)

TT T

At this point we define functions rju) and .(v) and a matrix

A(z) so that (5. 57) may be put in standard form. For clarity of

presentation we utilize notation which is somewhat more appropriate

to matrices than to vectors in that double subscripting of vectors

is used. To be consistent with our previous work, however, we

Scontinue to work with vectors and matrices rather than create
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0

awkward def,.ntions for some of the sets involved. Thus we define

rj(u) ui Uj il, 2, Uoal

j=, i, i+1 .. m
(5. 58)

s.(v) =v. v. i 1,... n v N0
j=Oli+, .. n

and we define r and S as

rio s5lO

r20 s20

_m0 'nO

11 1

* 
o

1im 'in

r2 3  '23

r24 '24

r2m 2n
* 9

* 9r a

n4
1124



'RO

The ordering of the compenentii of r and s will not generally be of

significance to us. With these definitions, (5. 57) may be rewritten as
_ T t Q~c~ (5.60)

zTD+dTZ+6 zT+

~n- ~n n, n-

maxrmin rT ~T+
rCR e(S-

P 2 2

p +p

U13 31

In this equation, we have used as usual the definitions

E #f(!) dF(1),

R is the convex hull of CR S is the convex hull of CSO and so on.

The proof proceeds in three major steps. First it is argued

by using our knowledge of simple cases and of the nature of a solution



to the problem that the boundaries of R and Smust have a certain

form. Then we show that the boundaries of P9_ must have certain

properties. Finally, using this knowledge of R and P the form of

wi(z ) is discussed.

In developing a structure for the boundary of R, we shall U

exploit the fact that the competitive element of the game appears

only through the p matrix in the form of terms piju.v.. Thus only

the first momenta rio, i=., 2, ... , n must be chosen with the opponent

in mind. The terms r., jYO, may be chosen to optimize the payoff,

consistent only with the constraints imposed by the value of rio.

Since we know from the scalar control case (Figure 5-1) that
r. k ri and r -: r are required for any realizable distribution,

1. io ii io

and since ri must be chosen to have minimum or maximum value

depending upon the algebraic sign of Pi, it fo1ows that the boundary-

regions of R have ri related to rio by

a. min r r
(561)

b. max rii =rio

We may argue in a similar manner concerning the cross- C'

coupling moments rj, J, i O, j~i. Two separate possibilities arise

in this case. If either rio or r.0 is as3ociated with a pure strategy,

then rij = ri0 rj0 = E[,.iu.j. If both control elements are associated P

with mixed strategies, then using the argument about the possibility

of choosing rij independently of the competition yields that r i should

be either minimized or maximized within the limits of the chosen
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first moment& rio and rj0. Some thought and an examination of

Iii

max r.. = rin r o r. (5.6Z:

and the minimum by

min rIi =.max [0, rio + ri0 -13 (5.63)

This can also be shown by considering possible bivariate distributior,'i

on u. and u..

To find P , we exploit Theorem 4. 6, which says that the

boundaries of P may be generated using the pure strategies

represented by CS . A pure strategy for the minimizer will have nt

elements, say the firat 0 r ntS: n, chosen from (0, 1), no elements,

I 0: n0 " n, with Value zero, and n I elements, say the last

0 n I  n, nI =n - nt - no , with value one. Let the region of CS

with this characteristic be denoted CI, so that

C
v 2+V+Z

C=xx E , = (t), where

= i (0,1), i=1,2,.. nt

(5.,64)
t i = 0, =nt+l, .. .,nt+n0

Sti = 1, i=nt+n0 +l,. .,n)

and let P be the dual convex cone generated by C , I.e.,
s1
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v w+z

(5. 65)

The set P9 consists of the intersection of all halispaces defined by

hyperplanes with representatioL xc CS, and it is clear that PC C Pg.

For a given x(t)c C , this requires that

a. x(t)= 0

b. i.. xt)J =0 ii. 1,.. .nt
(5.66)

C. E ST ! _(t))j i0h+l, "'"nt+n°

d. i=nt+no 1 • n: t

by using (5. 66a) and (5. 66b) we may remove the dependence upon t

and thus find an equation for the surface of P9. as the relevant com-

ponents of t vary over (0, 1). To do this, we expand (5. 66b) to get,

using the notational conventions defined previously for a,

(5.67)
i-I n

si0 + 2tI si + Sji t+i j sj tj = 0 i-l, 2,... nt

When the known values tj = 0 and tk = 1 are substituted into (5. 67), V

there remain nt linear equations in the nt unknowns tI, i=l, n,...,nt.

These may be represented in the form
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-yI

(5.68)

12 22 21t '2

8 a 29-13 23 33 3n "

'o • nSsl t  sz nt ?-rz n t tni8 0 + E ey
-- . =t+no+l J

Suppose (5. 68) were solved for the components ti , i=l, 2,... t

and the results substituted in (5. 66a). In solving for the ti , any

denominator terms will contain only elements si which corresponded

to quadratic elemeuts t or tit in (5. 66a). Furthermore, num-
0 ,

erators will contain terms for which t. = 0 or t. = I or terms which
J .

correspond to linear functions of t i , that is, elements si0. Finally,

a does not appear in the solutions for the elements t.. Thus

inserting the expressions for t, in (5. 66a) and clearing of fractions

gives an equation of the form
(5.69)

600 h 0 (1 ) + (si 0 hi(±) + 80 hj0 (ijs ()) + H(s) 0

where the functions of s indicated are functions only of the higher

order terms sij, i, j O. Many of the ftnctions are in fact zero

and are retained only to keep the expression (5. 69) simple and

symmetrical, since their exact nature is unimportant for our

9 tpurposes.
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HavirI developed characteristics (5. 61), (5.62), and (5. 63)

of the boudary of R and characteristics (5. 69) of the boundary of

p~t, we proceed to examine the nature of wi(z). In the usual
manner we bias the (0, 0) term of the matrix of (5. 60) by subtratting

a parameter of and then forming S(A(z), R, a). From (5. 60) we see

that a particular element re R is mapped as follows into s-space.

"r10"

+ T dTz (TA Pr20 m i

S00 =z Dz+d ++( A+ + rii ,

.rmo.

InI

(Pij +  jA ii -2

i~1 ji+I(5.70)

910 rio

s20 ZO

8 n0 rm0.

sii Qii il, 2,.

si -= j + Q0 i 1, Z,...,n-1; ji+l i+Z,...n

0

These coordinates must lie, for the maximum a, on the

boundary of P9I, and thus must satisfy (5. 69). Substituting (5. 70)

into (5. 69), recognizing that si is a constant for i, j 0 and that
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i is linear in z and in riot and using the fact that h ()O by the
nature of V, we can write the a on ntehpdpaec

responding toofa, P ) in the forrm (for suitable

constant matrices and vectors)

o =c +T~ + T + TCA (5-71)

Here we define

r
rl20

f r (5. 7Z)

rm

It is noteworthy that a in (5. 71) depends only on the first moments

rio of the maximizer's strategy. Substituting (5. 71) into the first

equation of (5. 70) and solving for of yields the form, for suitable

matrices and vectors

11 = + z + b b, 1_ BS I.- .+
(5.73)

mM
+ Pii rii + (Pij + Pji) ri

i=1 i=l J= l

It is necessary that rc R be chosen to rmaL..mit e 0; the

maximum of a will 1e wi(z)

The structure of the boundary of R may now be exploited.

Parameterize (5. 73) by letting ri= ti, i=l, 2,.. , m, ti [0, 1.
ioi
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The boundary region of intersot is such that it generates some pure

st-ateties mnd some mixeds4rategies forcomponenti of u-. Without

'lows of generality, letthe firstm components, 0 m' : m, be

associated with pure strategies, and iet. the final m-r be mixed.

Then (5.61) implies

t. (5.74)

ri = ti i=m +1, .. ,m .
it

For the r,$ m: j> i> m' , for which mixed strategy cross-coupling

occurs, we may suppose that the coefficients (Pij + P i) in (5. 73) are

such that, using (5. 62) and (5. 63)

r r (i, j)f K1

rij =rj0 (i, j) K2
(5. '15)

ri = 0 (i,J) K3

r i= rio +r 0 - I (i, J) K4

where the Ki are sets of integer pairs, and K1 U K2UK3UK4 is the

set of all (i,j) pairs, mk j> i> m'. Then (5. 73) becomes

I

(5.76)

-,j)(K I (ij)cK2

(Cont'd)
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i' +E (Pij + ,j l)(.
._ (ij)CK 4

The maximization of a over tiC r0 , 1 , i= 2, .. .,m may now be

performed. Some ti appear linearly in (5.76) and take on values of

either 0 or 1 according to the signs of their coefficients. For these

t, which appear quadratically, we find the inflection point of (5. 76)

=0 (b J (B- T - T (5.77)
0 -4 ( +

+ is + P, (ti )

where the notation( i indicates i element or column and

- (Pij + Pji)  g in set of
applicable (i, j)

(5.78)

Pii m a i> m

P '(ti) =

ZPii ti I i g Mn

Equations (5. 78) are purposely left vague, since they depend upon

which sets Kk contain index i, and in what manner it is contained.

This is not important to our argument, since P is constant in any

0 ('case. The set of equations (5. 77) is linear in z and t, and the

7coefficients of t are known constants. The equation set may in

principle be solved so that ti E0, 1]), although in practice con-

straining the values to this bounded set may be a nuisance. A
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solution, perhaps not unique, must exist by the nature of the problem,

and after all the extremal values of ti have been found, there will

remain a set equations of the form (5. 77) in Which some number k of

the components oft are unknown and the same number k of equations

may be solved. It is clear that the unknown components must be

linear functions of z, a crucial point.

Therefore the elements t., i=l, 2,.. zri which maximize Ot

are either zero or one in value or are linear functions of z. Sub-

stituting theim into (5. 76) clearly gives the desired result, i. e.,

amax = wi(z) is a quadratic function of z.

Since both S(A(S), R, a) and P must by their nature have D

finite numbers of recognizable surfaces, i. e., boundary regions for

which a single equation set or parameterization rule may be used to

describe the region, the arguments above may be repeated for each

pair of surfaces. Therefore wi(z) is piecewise quadratic. We have

proven the following theorem.

Theorem 5. 7: The N-stage game starting at stage i with linear

dynamics, quadratic payoff function, and controls

chosen from unit hypercul -* a' each stage has

a piecewise quadratic value function.

This theorem holds whether open-loop or closed-loop strate-

gies are involved. It is particularly significant for the closed loop

case, for it implies that the principle of optimality may be applied

to give exact solutions. It is also significant for numerical solutions,
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since e:omputation of the value is then reduced to determination of

coefficients.

5.6 SUMMARY

In this chapter certain multistage games were shown to be

freducible to sequences of separable static games in which the state

vector is a simple parameter. The continuity characteristics of the

optimal solutions were then extensively investigated. Finally, the

method of dual cones was applied to linear-quadratic games and it

was demonstrated that the value function is not only continuous, but

piecewise quadratic.

eThe implications of these results are obvious: certain

dynamic games can be solved. This can be done, at least in

principle, for all games (of the class studied here) with open loop

strategies and for linear-quadratic games with closed loop strategies

it may also be possible for other games. Furthermore, the con-

tinuity properties and the nature of the method of dual cones

guarantee that numerical approximation is both straightforward

and appropriate. This latter point should prove to be particularly

important for applications.
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CHAPTER 6

EXAMPLESIiI
In this chapter are several examples which illustrate the

ideas involved in solving polynomial multistage games using the

method of dual cones. The examples are of low dimension so that

the geometric interrelationships may be visualized and are motivated

i( C by using a multistage formulation even when it is not the multistage

cha 'acter which is of primary interest. The demonstrative v-alue of

the models is emphasized rather tan the intrinsic value.

6.1 A LINEAR-QUADRATIC SCALAR PROBLEM

j The first example is an extremely simple one which we shall

examine in detail; its simplicity is such that we may concuntrate

on our techniques and not be distracted by algebrai, detil.

Let z be a scalar state variable ad let u" C - , T I

be scalar controls for a system with eynamics

z(i+1) = z(i) + u'(i) + v'(i) (6.1)

Suppose that an N-stage game with final value payoff

J zZ (N+l)

is to be played using this system, with player I choosing u' (i) and

maximizing and player II choosing v'(i) and minimizing, where

i=l, 2, ... , N. Let us agree, since the parameters are scalars,

to use subscripts to indicate the stage index, z z(i), etc., and

Preceding page blank
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let us transform the conftrols ik u4 1. U' (1) + uVi (i) + so

that the dynamics (6. 1).beOmez 0

il ,- I ,+V (6.3)

where u1 c 10, 1] Lvie EPJ ,;lapsrequaired byour.,paradigm.0

The solution to this problem. Appears intultiv*4, obvious except

near ,the origi z a 0: the mawdizis r-wil1 choose hiscontrol -to get

attempt- to- cause a-4+1 toeerterii Tu or, 0-for

example, ui ye Vf 7i *Z is bvious, so that *, z, an z,4+, = z

For si 0, however, intuition is not,*sqohelpful; e.g.# if = 0,

then

n -In X W~N+loI
VNUN

maa

and the noer for a uixed strategy for one or both players is apparent.

We shall find those mixed iiiategies'and also verify the intuitive pure

strategie s.

Let us first solve the single-stage, or one -stage -t*ogo.

problem. For ease of notation, define u auN, v v. V x a N 1,

so that

a s u+ U+ V (6.5)

and
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V3(Z+ U+v) 2=3(Z, U, v) (6.6)

We seek cumulative distribution functions F0 (ul z) and do(uI z)

such that

VU: (6.7)

Z, maf V) dGPL(li.dFu

Expifidinig 3 anid wrAiih it in mat form yield

Z, z 1  1
W)min max E, UI0 i (68w~)G(vj ,z )E F i JZz 0 I (.8

01 0 0- LvJ

By subtracting w(z) from both sides an. .iefuning

r, E~ui /~UdF(uj Z) =0, 1, 2

0
(6.9)

sj EE I i dG(vI x) J=0, 1, 2
- 0

we may write (6. 8) as
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2z -w(s1 1 I

0=-mn maxi r 3 2z 2 0 s (6.10)sCS reR I zI

where S and R are the sets of admissible moment vectors so, $1,

and LU0 . r 1 , r2 IT respectively, and, so = r0 = 1.

The set C R is given-parametrically by Ca r = r0 : 1, 0

r t, r 2 = t , t I0), and R is the convex hull ofthis set. The

significant cross-sections CR and R are shown in Figure 6-1. We

see that .:trlr 0 = 1, r r2 , r r CIO,lQ). The sets 0

and S are identical in form to qR and R.

The cone PS i easily constructed using the cross-section S,

i.e., P 5 (s s = _s' for some ) a 0 andAS). This set is drawn

in Figure 6-2.

The dual con3 P* ii slightly more difficult to visualize. By
S oil

definition

& 0. (6.11)

Let us use one Iluminating method of construction. Pick a par-

ticular point xo0 PS and consider the set Pg(2o )

Pg (!E) = (.El±aTco 01 (6.12) 0

This will be a half-space in E 3 with boundary points s0 such that

°Tx 0 (Figure 6-3). The region in the direction of positive s
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F igure 6-1. The *at Rand its convex hull R4
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2C

.00

S*3

Figure 6-2. The cone P so showing the cross-section 8.
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belongs to Pg () ) For two points 3. ond !4 in PS, we see that only
points a belonging to both MI spaces can belong to P; s~ea# s8

n PIe (Icy. In fact Cj iplies tha se
Pf(.)n... nPf(ji) n..-- for aLu =tcp. Therefore a boundary

point of Pg mustbelongto P (x) for all xP S and must be a boundary

point of PI(x) for at least one xeP..

From Theorem 4. 6. we know that boundary points of P9

other than the orgin can ozgy be geuerated by points s of P which 0

for someA > 0 have the pperty -' . Heceethe construction of

tLe boundary require. consideration oinly of points sfrom the set

S0T forfome kcC, 01 o a or ally._ (6.1-3)

In this example, these comments aLlow-usto reatrict-our attention

to points s which satisfy 0

5s0 + sit + szt2 :0 for some t+ 90'1 ,

(6.14)
'o + 0 for ail t' C10, .

If tc (0, I), then for suitable 8, t+ OCt I], and (6.14) is equivalent to

o+slt+ t 0 tC(0, 1)
and (6.15)

'0 + sl(t+8) + s2 (t+5)2 a 0 t+6CEO, I]

, This implies that

s0 +st+szt (6.16)

s8+ s2 (zt + Z) 0

134
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Since 6 may be either positive or negative

Ss0 +st+s t2 =0,

&0 W - (o, 1), (6.17)

sI + 2ts 0,

from which t may be elimnoited to give

"o 2-

so = 0 (6.18b)

s o + a I +- e2 ,= ,0 (6. 18c)

as other bo u ary sirfaces. Combifing (f.ISa)-(6.18c) yields the
boundaries of 1 (Figure 6-4). These are more easily visualized if

the pair of cross-sections in Figure 6-5 are considered.

I With R and pS known, we are ready to proceed with the

problem solution. -Let us use the matrix of (6&.10) to map R into

S-space; i.e., define

S(A(s), Ro f) C (s_3£ R *so "f + Zzr + r
(6.19)

s 2+Zr , -- 1)

For convenience, let us denote S(A(s), R, f) by S(z, f). Then if f w(z),

S(z, f) intersects PI only at boundary points. We see that for all

f and x, aC S(z, f) implies s = I, so that the intersection of the sets
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00
Pln-a

00

Figuro.6-4. Aoundaries of the dual con.Pm
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must occur for this value of s., and we need only consider the s2 = 1

cross-section of P&. This cro0ss-ction is given in Figure 6-5(b). 0

Let S' (z, f) be the projection of S(A(z), R. f) on the I plane.

Let us now consider sample values of z and f-and perform

the mapping of (6.19). 4)

S'(l . 0) is 0  1 + 2ri + r2 a I 2 + Zr!)

S'1.= 0 , s I rR 3- a -3,+ Zr + r2 , s 2 + Zrlj (6.20) 0.

S'(,z) s 0 , sI ~rcR's 0 = - +r + r., s Z + ZrI

These sets are shown in Figure 6-6. Performing the mapping is

aided considerably by the fact that, for given %, it is a linear mapping.

Thus the straight line segment rI = r 2 maps into a straight line seg-

32ment 80 =T 51 -f- 2, and the segment ofr 2  rlImapsintoa
12_

segment of so  s-f.

Examination of Figure 6-6 reveals forcefully the effect of f in

causing the translation of S(iz, f) parallel to the s 0 -axis. Further-

more, it is obvious that w(l) is the maximum value of f for which

S(l, f)C1Pg i , or alternatively the minimum, f for which a separating

plane for S(i, f) and P9 exists. Since f = 4 has the desired qualities,

w(l) = 4. This occurs for r1 = r2 = 1, so that the pure strategy

F (u) I (u) suffices for the maxiL-. er. The separating hyperplane

is 0 = 0, implying that the pure strategy G0 (v) = 10 (v) is used by the

minimizer. (As usual the function 3x(y) = 1 for y > x, I (y) = O,
x x

y < x, Is used.)

Before evaluating w(z) in general, let us examine two more
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sample values of z.

0

S'(-3,0)= [so, sl13 rcR3-s0 9- 6rI + r , s =-6+ 2r1

S (-3,4)= 8 1 rcR) 9 5 -6rI + r., s1 = -6 + 2r

S'(-3, 6) =t oo il 3 rcR .4-so  3 - 6r1 + r., si = -6+ Zrl

0 1 2!

iso'slla r R ),so =-;,ii + r. * -2 +r,

S'(-l, 2) =( 018 - r CR 3*s 9 =_1 - r1 + r. '1 -2 + Zr)

Taese sets are sketched in Figure 6-7. Looking first at the sets

S-3, f), we see that S(-3, 6) does not intersect P that S(-3, 0) lies

entirely within Pg and thus does not have a hyperplane separating it

from Pl, and that S(-3, 4) appears to both intersect and share the

separating hyperplane so + I = -1. Thus it appears that w(-3) 4, )

0
and G (v) = Ii(v). Furthermore, the intersection point s = 5,

= -6 correspcndstb r --'iz ='On R fd f- 4, 'and thus

S(u) = I0 (u).

For the sets S(-1,f), it appears graphically that w(-l) = 1

that the separating plane is 2so a I1 and that for the point of

contact S o =-1. the corresponding reR is r = r . O

0r G0 1v) an2~ u
Therefore optimal strategies are G I(v) = lv) and 10 (u) +

7 ii(u), where the latter indicates a 50-50 mix of u = 0 and u = I for

the maximizer. These values will be verified algebraically below. 4
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With the Insight gained from thie sppcial cases# wes may pro-

ceed to consid'er-more geneiral values -of x. Note. first that every

tangent to the cross-section of the bondry of P5 at s 3 =lcor.,

responds to a point of 9;hence the minimiser uses only pare

stitegies.', 'Oifi the i oteiad or each ~jcorrepa- z~ to at lea st 0

one reR the image poins 4S'(zf) hi"e tliasoeryta -o ie

ale the value of forr r2  iig~ti h"o-eu4to 46 for

r2  r, Therefore. al op4mnaLintersecfipni6fS r f with PF IeS

on-the line corresponding to r, rj in'RS'icej and thei iaxirinosr

always uses one -of his extreme points u, 0 or, = I.. or a mixture

of these two points. For this reaso*.We nsed only be concerned witho

the line segments in S A(z,f) givenby

t(eO,1J (6.22)

s= 2( + t)

In our analysis. Equations (6. 22) may be written with t elimiinated o

as

2 1so(Wf- z . Z) + (Z+ )s, (6.23)

In the proofs in Chapter 5, the properties of simple algebraic

* maximization were emphasized. For variety, let us utilize here

geometric properties of slope and support hyperplanea.

From FVure 6-5(b) it can be seen that the slope do /do1

of the boundary of P9 is between -1 and 0. Therefore if for given z the

slope of the boundary line of S(s, f) is either less than -1 or greater
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than zero. we may b. sure.thatithe maximizer-uses one of his pure

LiR end point- strategies u : 0 or u =J.- -Prom(6.23),.ds0 /dSI( 3 ,f)
Z +1 Henc3, u uses pure strategies for:> 4cor Z-< -. ForT
Z> ,6.22) shows that so L occurs for t I and that therefore

sI > 0 at the contact point-of S(*, w) and Pg. It immediately follow8

that a separating plane is s -0. Substituting t - I and a0 = 0 in

(6.22) gives w(z) zf + 2, 1 =(A + 1)2. Furthermore, t I

gives F(ill z) = 1,(u), ,and -, = 0 for the separating plane gives

z <- "Z-3 th6n- s< ;2, from (6. 22). In this region a supportk byperplane and contact set with Pg i s0 + 5 -1, implying

G (vl z) = It(v). -The maximum for s 0 ,is at t ,= 0. Since the contact

point occurson so+ s + I = 0, we have ,2 - + Zz + 1 =0. Hence,

*w(-) f (z + 1) and IF(ul Z) = 10(u).

3 1For the region z(- Z), the slope of (6.23) lies in (-1, 0).

and 9 c(-2, 0) for, some values of t1(See (6.22)). Therefore tangency

r of (6. 23) with the curve a - s = 0 must be considered in deter-

mining the optimum payoff. The slopes, of the two curves must be

equal for tangency (and thus a separating plane) to occur. This re-

g quire s

+ /2z =5+ (6.24)

or

= +2z + 1 (6.25)

at the point of contact. Using (6. 22), this implies

t T (6.26)
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Hence' F(ul) -u'L 10(u) +, i(i)i be"uii e w d -with th

r -z =.t bondyofR. .OnPI C

• o7- =5 +. (6.27)

so that since

si =z- -f+ S+~ (6.28)
0

on S(z, f) in this region,, eliminatngs 0 yieldsi W() -  The

minnlnarea's p3ure strategy is concentrated at =

i.e. 0 0( Z) = I j . 1 (v). 0

The cases x = - 7 ,and z I are easily evaluated; the sets

S'..w(-') ad S(-. w(,;-t)) are shown in Figure 6-8. For

S= - ,w(- G(vz)=I o(v) and F (uz) aI0(u) + (l-1  (u) D

where afOs, i. e, the maximizer has a choice of optimal strate-

3 3 1
gies. Similarly, for z=- , w(- 2 ")=-, G 0(v)- 1(v), and

F0 (ula) =& I0 (U) + (1 - o) 1,(u) where t 1. I

The reojults in terms of z are summarized in Table 6-i.

U
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Table 6-1. Results for One Stage Of Exazple 1

I____ 4 I N -".i' - N14

> 1? 01 0(u) (z.1, (N)

+T a1o(u) + (l1-a)(u) V1(v) T

- ll - ( v

aeLO4JI

> . l (u) lo(v) (ZN)

The results may also be written in terms of and v" by the

obvious transformations. Note that the payoff may b written

wN(N)--maxE. ., 1. (6.Z9)

This is a piecewise quadratic as expected from the theory. C)

To find WNI( -N.1), we repeat the basic processes above.

Now, however, it is necessary to allow for the piecewise quadraticity

of wN(z). Certainly for 3NI " or z. > 3 only the curve C

z2 is applicable, for the region z~ 2 I i unattainable for any

admissible controls uN. 1 cO',1, VN.1 O, 13. In this region, then,

the results of Table 6-I will apply with suitable changes in subscript.
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o. Wheiczi( ,L.K sa na~ bl- the;itu horeicorn-

cated,. There ar-eeveral ay, tO,, arguec,,concerxnithe establish-

techique 49 td use attainable-set arium'ntik. -,et o te d approxi-

mae hepolnml p(z), --,by teplnma

2" A0CEdit!1 (6.30)

Then'C az2 + .~As

I

W-(SN) ~ma)N ~~]. 1~ (6. 31)

has the same points of discontinuity of dwN/dzN. as dwN/dzN. Let

us evaluate thigame pEIf) given ai. f w(ZN..l) denotes the

value, then
(6. 32)

min 
0 

[u2w~l -l= +E lv) (u).[  z  l l

If we define z zN-1 -1, we see immediately that the portion of

(6. 32) of interest, i. e., the portion to be mini-maxed, is the same to

within a bias constant as the one-stage problem (6. 8). Therefore

the strategies for the game pE(zN-l) are idependent of E and are the

same as those for the game wN(zN). The value is

I w (z 1 2 11 1
W~zN.) =maxj+ E~a 1 z ) (6. 33)
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ks E.Oitlc~ea~a~~(s~ 1 ) Sitable strategie s for the

limit- game a-re, by cOndnUL-ya.4Mit vlmilar-to LAMma

limis oftb~straeg~s fo th gam ~~ 'i' wlch wealrIeady

noted ieIdedttoE

TheM e~~~ speieytesm sW( except C?

for subscripts, and has the same form of- strategy. ThusN-

modA-pe~sN-lJhave commien optiml strategies, which. may easily be

'read-from Table-I-. Efthepr,.byinserting these strategies into

(6.129) or-by-arguig concerning the contnuity-of-the payoff and-the

fact that each branch of the. game wN ~ j)ulower-b6unded y

we find that 0

WN(~l max[: 1 8  (6.

Noting that this is of the same form as (6.29) and that we have

already arguedthat the optimal strategies are of the form in

Table 6-1, we sse that the multistage game -is in fact solved, and in (

terms of the original definitions (6. 1) the results may be sum-

marized in Table 6-1.
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Table 6-. ke.uIs for kxample I

Pz <-h - 1-.. ,f--,,,"I w

a i j riu)j i:

- Y

+* 1

a( ot j]"

i >  I. (z1

6.2 COUNTER-EXAMPLE: A NON-POLYNOMIAL VALUE

As pointed- out in Chapter 5, a polynomial game cannot be

expected in general to have a value function which is a polynomial

in z. A simple example will demonstrate this.

Suppose that u, v, and z are scalars, that

J(Z, u) z (N+1) - u(N) (6. 35)

tg and that

I.I

uj *These are optimal strategies. For i < N it may be siown that
othr optimal strategies also exist,
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0

:z(N+) = z(N) + (z(N) + l)u(N) + '(N) t6. 36)

We are interested in finding wN(z(N)). Any other stages of the game

are not of interest in this example. We assume that u(N) c C 0, 1).

v(N)C o, ].

For ease of notation, certain subscripts may be dropped so

that z = z(N), u = u(N), andv-= v(N}. The usual steps of substituting

(6. 36). into (6. 35) and writing out The expression for WN(Z) give
max m rin 2 Z_ UZ

WN(Z) m au z)-, EEZz f Zz(z+I) u+ Zzv + [(z+l)Z - l u
FNz ( u Z(6.37)

Z(z+l) uv + v Z )

In matrix notation, this is

(6.38)

z -WN(Z) Zz I (

max rain

0 F(ulz) E lt1 u uZ Zz(z+1) 2(z+ 1) 0 v

(z+1)2-1 0 0 vz

Using the moment definitions from the first example, (6. 38) be-

comes (6.39)

Z -w(Z) Zz "
!"cw lES 12z 1: r)

0 max rin [I r rJ 2z(z+l) Z(z+l) 0 sIrf R s( S

(z+I) 2- 1 0 0 s;

Since the cont:ols appear quadraticaly, the sets R, S, and

P* are the same as those of Example 1. (Figures 6-1, 6-4, 6-5).
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As in that example, form the sets

S :,f) = [So, , R 1 1 R 0 : 2 f z  f + 2z(z+l) r (6.40)

+ (z+l)r

sI  Zz + (+l) r

and note that stS(A(z), R,f) implies s 1, so that only a cross-

section of P* need be considered (Figure 6-5(b)).
_S

Once again the minimizer will use pure strategies, whereas

(because of the varying ocoefficient-of r2 inthe equation for s the

maximizer may use either mixed or pure -strategies. In S'(z, f),

the line rI =-r. generates a segment of

2- 3zZ + .4.z -2).1-so = Xz  f +  Z(z+l) ({s U 6.1

Evaluating cases as before, we find that for scS" (z,f), a a 0 for

all rI if z k 0. Therefore in this range G(vi z) = 10 (v) and (because

I2 the contact line is s0 = 0) w(z) = 4z2 + 4z. Furthermore, since

rI = I = r2 is the best choice of moments for-the maximizer,

F0 (ul z 1 = I1 (u). The strategy is arbitrary for z = 0.

f z ; -I, then '1 -2 and the intersection of S'{zw(z)) with

P* lie s on the line a0+ sI + 1 = 0. Therefore
S0 1

f =z 2 + (2z 2 + 4z + 2) r + z(z+2) r 2 + 2z+ (6.42)

2If z -2, then clearly rI = r2  1 I is optimum, yielding w(z) =4z +

8z + 3, G°(vIz) =I (v), and F°(u z) Ii(u). If -2< z< -1, then
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the coefficients of r1 and re in (6.4Z). have opisite signs, suggesting

a pure strategy solution for the maximixing player. Maximizing

(6. 4) over r, = t, r2 z t requires

tz - z Zz~l
.. + . , (6.43) 0

which after imposiag the

t = I: ... ;zi:I (6.44)

Thus w(z) - 4z2 + 8: + 3, G0 (vjz) I (v), and F(ujz) = lllu) for
i . zZ . I ' For -1:. z- I---4_12 (6. 42) and (6. 44) imply

that

2 ,z+l -(z+l)
w(z)fz Z +-+2z+l - z(z+2) (6.45)

Also G°(vl z) = Il(v), and F°(uI z) = It(u), where 0

.I-(+l )2

t = z(z+Z)

For -I < z < 0, examination of (6. 40) reveals that the coef-

ficient of r2 is negative, irmy'7ng that the maximizer will use pure

strategies. Parameterizinig S'(z,w(z)) by r1  t, r2 = tZ and inserting 0i

in the equation (See Figure 6-5(b)) for the boundary of P*
(6.46)

s f + 2z(z+l)t + z(z+2)t 2  (. 2 + 2z(z+l)t + (z+l) 2 t2 ) (

0 P -,

; .-



i = Hence

! . H e=-t 2  (6.47)

V Here t = 0 is the obvious choice; ie., F(uIz) = ION,), in this region.

The intersection point with bas s 21s, implying the pure strategy

0(vIZ) =-I Msv) for the,minimizer. From (6. 47) it is clear that

w(z) _. Table 6-U! aummarises the solution and Figure 6-9 shows

representative S '(z, w(z)) sets. Of particular interest is that for

s&- (2 1 Lw kji4rrationa buzt not a polyom 1a. Therefore,

if a- further stage is to be solved, te ,method of dual cones is unlikely

to ba applicable.

Table 6-1. Solutions for Example 2

z F0(u L-) G0(vi-Z w(j

a - ---1 I(u) I(v) (2z+3)(2z+l)

> -# 
- WO 2)

Itlu) I (v) Z('+Z}

t = ra + ) 

0

> -1, < 0 Iolu) 1- (V)0

II

0 Arbitrary ONv)0
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6.3 A SIMPLE PROBLEM WITH VECTORS

PThe biggest obstacle to finding solutions of a non-numerical

nature is dimensionality for spaces larger than three -dimen6iouai

are almost impossible to visualize. The folkwing problem is of

small enough dimension to be pictured and still is an interesting

problem containing vectors.

Let z and u be two-dimensional and let v be a scalar for a

' Ssystem with dynamics

Zl(, l) = z(i) + uli) -- u2 (i) + -4 v(i),

, - "2 (i4) z2 (i) u2(i) + -r v(i),

and with v(i) f, 1, u1 (i)dO, II u(i)cE0, l. For the payoff

fimction choose

3 = z I(N+l) + Z2 (N+l) - u I(N) - At2 (N) (6.49)

C" As in the previous examples, drop the stage indices after sub-

stituting (6. 48) into (6. 49) and ume vector-matrix form for J to get

(6. 50)

2z I  r,2 0

rmin max

Wl(z 2l=G(v) Flu) E 1 u2 uu 2  r v
4i2(Z 2-z 1) 0 0

172
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0

Using the usual definitions, this ma, be rewritten

(6.51) C)

1l+2 -w(z) Vrz(,+,, )  I-

2z 1/ 0

0 =min max[ r r2 r 1 I

!- )0 o( c 12X4
0 0

0 0

The set S is the same as in example 1, as is Pg. We see that the j
mapping S(A(z),R,f) once again has s 1, so that Figure 6-5(b) is

again usable.

The set R may be constructed by forming the set

Ca = IR. rI 1  g t = t 2 , ix =tt ti E0 I] and then taking its

closure. The sets CR and A are shown in Figure 6-10, where CR

and it are projections for r0 = I of CR and R.

The interesting thing about R is that it is a tetrahedron and

has as its vertices the points (rl, r. r ) (0, 0, 0), (1, 0, 0), (0, 1, 0),

(1, 1, 1). These point, correspond to pure sti.ategies I (u) =

I00!(), 110 (I), 10 1 (u), l1 (u) respectively.

The set S'(z, f), which is the projection on a = I of the image

of R for a given parameter f and initial state z is defined by

(6.52)
o .0

(a f!') (got @I so = + z 2£ + 2Z r I + v'i(z 2  1 l r2  %( .

0 = l + zI) + v rl, -E R)
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(a) Cli

]Figure 6-10. The gets CR and R for Example 3.

Vr
'I (b) R
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We will consider the interactions of this bet with P9 for various values

of z. Note that the maximizer's moments r1 and r2 may be chosen

independently, provided that the coupling rx is accounted for.

Case 1: z I + z 0. In this region, s=%(z +z2)+ 62- r 0
for all admissible r I t implying the pure strategy G°(v z.) 10(v) for

o 0

the minimizer and

f z I+ z 2 +zr + iz z r 2 fr X(6.53)

as the expression to be maximized over reR.

For z < 0, r = 0 is obvious, as isr 2_= 0for z2 - l < 0. In

both cases rx = 0 follows from the choice of r I or r 2. If both

z1 )> 42 and (z2 - ZI)> 1, then clearly the penalty of taking rx = I is

worth the benefit from having both r I = 1 and r2 = 1. If, however, we

have z I > 0, z2 > z1 , but either zI< or z2< 1 + z I , then further

examination is necessary to determine the desired strategy.

Figu, e 6-. I shows the form of S'(z, f) for z in this region. The cor-

nfr mtrkings indicate the points of R which generate the corners.

From this it is clear that 101 or 110 will be preferred depending upon

which has the larger coefficient. Thus

2z > Vi(z2 - Zl )

or (6.54)
rz lzI > ZI)

leads to choice of 1 0, the opposite inequality leads to the opposite

choice, and equality implies an arbitrary mixture of the two

strategies. Resalts for Case I are summarized in Figure 6-12.
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Figure 6-11. Representative mapping of S'I, f)
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004, 0 ,,'t

F ° = 1 o,1i
0G = Io(v)

w = =4Z+44V.'(5z- 0

/ =

G0 ( v)
F° = Iou.

w 6+z +2x1

I z I

zI

i Zi

Figure 6-12. Strategies and values for Case 1.

9
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Case 2: If s 2I  + z-x F2) V - - 2, the minimizer uses

the pure strategy iVJ and the intersection of S'*z, w(z)) with

P lies on the'ine o + Sl 1 = 0. From this it follows that

(6.55)

1 + z21 (2z1 +v6) r I + r/(z3 2 z I)r 2  4r k+,12(r, + z+2)

Arguing, as in Case 1, wo find thr resuitswhich are summarized in

Figure 6-13.

Case 3: z 2 0, + z 2 > -I -. This final region is

more involved to evaluate because the curved nature of the boundary

of Pg (s0 = (--7-)- ) in part of this area makes possible non-trivial

mixed strategies for the maximizer and-fractional pure strategies

for the r

* Note that on S(f) for rI  0 we can relate so and aI by

2 2 Sl- I

8o 2 + 7,2f + Zz I "- " z) + z ) Vrr

(6. 56)

- 2~ - z2 -f+' /iz- -4 z2 +lZ 2 "f hZatlil +V 2  z 2)r2 - Vr

For r 10or r 1, s1 is constant.

Consider zI • 0, sothat z z . 0. Then the mapping

(6. 5i, of R is of the form shown in Figure 6-14.

Clearly I1 0 (u) is preferred by the maximizer, and contact with

Pg occurs on the curve s = I s for (z + z -)  - I and on so= 0

for zl + z2 > - 1. The strategy for the minimizer is I t(v), where

t = T = " (zl + z, + 1) in the former region and 10 in the

latter, with the payoff function evaluated accordingly as either
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W l Z+Z +2,Az +1 ,

1 2 2

0 001=

= s 4+z+fi(z +z2 )+1V 10!L

o=,I (v)0

+A Z2 +'fZ +1

Figure 6-13. Strategies and values for Case 2. (
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1011

110

'0

Figure 6-14. Mapping of R for s,> 01
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2 2 5 ~Z ~ (6.57)
-ZI Z i X z a + z

o2 2

w+z)+ s+z -+as-1  : 1 +z I

.z I X2+zl 1l +z > -1

If z < 0, more possibilities arise. Let us consider the case

z- < 0 in some, detail. A possible configur-tion of the mapping

of R is shown in Figure 6-15.

From (6. 56) we know that the slope of the line from I00 to

110 is T2/z I * Since the slope of the Pg boundary is greater than -I

and less than 0, z - -/* implies that I00 is the contact point,

with suitable interpretations as in the case zI > 0.

On the other hand z!  -Z - implies a contact point either

at 110 or on the line from 100 to I0. depending upon the exact values
1 2

involved. For the line to be tangent to the curve a 1 . 2 , the

slopes must be the same at the point of contact. This implies that

90

sI I

This equation along with the definition of al on the set S(z, f) gives

al I z9 I"= %2( -- + z 2 + V2 r

o r

rI = (- =2)  (6.58)

Since 0 1 r £ 1, the limits of the range of internal contact are clear.

Where it applies, the mixed strategy for player I is
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000

IFigure 6-15. Mapping of R for z2 z 0
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etF(zj -) (1 + z _ 1oo(u ) + (z, "z 1o(u) (6. 59)

and the m yer strategy is

G°(vls) ; I (v) (6.60)

The value is

w(z) ( (z - 2 (6.61)

If r I is limited, the results are obvious.

Similarly, if z2 > z and zI < 0, the mapping has the appear-

ance of Figure 6-16.

In this case, the line of interest is from I1 to I10 and has

equation

(6.62)
2 Z s I

so = al + z "f + (2z 1 + r - r z 2z)(.- I - "z- + r2 (Z " zl

In the region of interest, the slope of this line is less than -1

and therefore I01 is the preferred strategy. A region for which
tangency is possible requires z, > Z., which violates the hypothesis

for the region. The results for Case 3 are summarized in Figure

6-17.

A comment on the nature of the continuity of the results .s

perhaps in order. Within regions, of course, continuity is obvious.

At boundaries of regions, however, the continuity is not always so

clear. This is because only upper semi-continuity holds; that is,

if D is a sufficiently small open set containing the set of optimal
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Figure 6-16. Mapping of R. for s, < 0,z > z
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strategies e" at a point z, then for zj suffiiently close to z, the

optimal strategies at z' are contained in D. However, R may not be

contained in the set of optimal strategies of z". The meaning of this

for the boundary regions is that strategies there are typically not

unique. Thus solutions on opposite sides of the boundary may not

be near each other although both are near some optimal strategy

for the boundary point.

For example, consider the RegionAboundary zI = -

in Figure 6-17. The situation here is as sketched in Figure 6-18.

From this it can be seen that any strategy

F(u)= (I Ioo(u) Il) acco. z+ (6.63)A
will be optimal for the maximizer. Strategies on both sides of the

line z I  are continuous with this strategy for some a.

Figures 6-19 and 6-20 are sketches of the results given in

detail in Figures 6-12, 6-13, and 6-17.

6.4 LINEAR PROGRAMMING FOR APPROXIMATE SOLUTIONS

Chapter 4 discussed the use of linear programming to gen-

erate approximate solutions to game problems. We shall see some I

of the implications of the technique in an example. Only a simple

p'roblem evaluated at a single data point is needed to clarify the ideas.

C Consider the game of Example 1, Section 6. 1, with one stage

to go and with initial condition ZN= 0. From Equation (6. 8) we

have
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Figure 6-18. Case of non-unique strategies.
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S -2 1- 1

min m = E [I uu 2 J -2 2 0 v A41

G(v) F(u)

1-1 0 0 v

In Section 6. 1 the solution was found to be

w(-1)=I

F(u) = I + ' (6.65)

02
p G°(v) Ij

The set R is shown in Figure 6-1. Let us approximate it by

P the poiygon X shown in Figure 6-21.

To lie within this polygon, r must satisfy

r r1

1
r 2a r1

2 3 1. (6.66)

r .  r Ir-'13

The polygon is internal to R and thus our solution point r of the

approximate problem will be a viable strategy for the maximizer.
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Now create an approximation Is* to Pg by uaing the support

planes generated by points in (Theorem 4. 6). A plane will have

the general form (si s o + ts 1 + t s = 0, teEO, 1). Let us choose

t =0, Go To p g2 56 1. Aso note that we are interested only in

o = 1 because of the transformation matrix in (6. 64). Thus .:,e say
that if sc P", then 0 s I must satisfy

8 0o 0

S8 + le>" 6

+ S1 8 ' . 4-(6.67)

0 51
SS +Sla 25

+6 a 36

However, after using the usual biasing parameter f, we find

e from (6. 64) that so $ s 1 must also satisfy

s=I -f - Zr + r
0 ~ 1 2 1(6.68)

1 = - r2 + 2r(.8

Substituting this in (6. 67), rewriting (6. 66), and maximizing

f, we find th' t we have the following linear programming problem:
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maximize f
(r1 , r 2, f)

subject to U

1 -1 0 0

T 1 0 0

1 0 -1

L 0

7 3
7 1 0 3~

-2 1 -1 -1 ii
r2 2 (6.69)

3 f 9
1 -f

6 91-1 " - "

3 9

0 1 -1 0

0 o 3
For this problem, the solution is r1 = r_ and

0 21 21 0 41 39 () qaiyof= . Thus w = and F (u) = 1 0 (u) + 11 (u). Equality of

the constraints holds in the first, ninth, and tenth of (6. 69). The

latter two correspond to the hyperplanes generated by t = a;d5
t = 5. It should be noted that neither of the latter planes is a

separating hyperplane of 7' and the mapping of R (See Figure 6-22),
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Figure 6-22. Polyhedra at optimum payoff point.
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although each supports Pg. Either (or a combination of both) may

be used as an approximate strategy for the minimizer, since it is

known that pure strategies are sufficient for him.

If another iteration is used, with the R approximation being

the same but with Pg approximated using t 0, p , -, I (so that

a smaller granularity appears in the region of the possible solution

2 5 olt= t= froym the first iteration), it is found that w f =

S0 9 0 a0 11and that both rI X 7 a r yield this value

(as will r ao , 11,). Supportplanest=3, t=Z give(asI Zil "I' 61M 76

the latter r values andt = , t = 3 give the former. In this caieIA

t is a separating hyperplane and Ij(v) is a good strategy for the 0

minimizer. Either or both of the r-moments may be used by the

maximizer with justification; one suitable c. d. f. is F°(u)

" 10 (u) + 4M ll(u). Closer approximations achieved by smaller

granularity are of course possible.

I7
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CHAPTER 7

COMMENTS ON DUAL CONES FOR DIFFERENTIAL GAMES

* Two-person zero-sum differential games with closed-loop

strategies have beon the subject of considerable research interest,

and we would be remiss if we did not consider extending our results

* to such games. We shall find that this extension seems fraught with

peril, however, and therefore confine ourselves to comments and

to formal arguments. Open-loop strategies are somewhat simpler,

* but many of the same comments apply.

7.1 THE PROBLEM OF DIFFERENTIAL GAMES

The d;iferential game analog of our multistage games has

dynamics

(u_={~t' 1t), Xv(t), t)(71

and payoff function

T

J(z(r); u(t), v(t); T, r) gf(z(T)) +g(z(t), ut), v(t), t) dt (7. 2)

where z() is an initial condition given at time 1" for the dynamics

equation (7. 1), and u and v are control vectors. In the research

to date (See Chapter 2), the functions f. gf, g are usually such that

pure optimal st"ategy functions u0(t) and v.(t) exist, and the object

has been to determine these functions and the value function

w(z(T), T, T)
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w,(zO'). T. Tr) Val. ,7(S.-T); u~t). v(t); 'r ) P7. 3)

In some cases it has even been possible to find optimal closed-loop,

or feedback, strategies so that u0(t) :z u0z(t), t) and v0 (t) =

S0 ((t ). The ustial technique has been to apply either a method

of characteristics or a Hamilton-Jacobi-Bellman method. The latter

method requires the solution of

- - w(z(T), T, r).= val (g(z(,). u(r).- v(,), T)

+ e, w(z(). T, ,)) f(x(), u(r). v(?). r))

When pure strategy solutions do not -xist. the problem he-

comes more difficult. For differential games even the precise

definition of what is meant by a mixed strategy can be elusive,

although it will in some sense be a ctunulative probability distribution

F(u(t)) Lor G(vt))J over all admissible control functions u±t)

Lor v(t)J. We might think of a closed-loop mixed strategy for the

maximizer as a c. d. f. F(u z(7), "). with a similar functios

G(v z(r), ") ior the minimizer, and then chooses the control vectors

of each time instant 7" by making random draws from the proper

distribution.

Defining these concepts precisely and computing the optimal

strategies i's rife with philosophi-al and mathematiral difficulties.

The obvious step of applying the method of dual cones to theI

pre-Plxmiltoniaia on the right-'.nd-silli of '. 4) it not really obvious
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in implementation and, as we shall see, does not even seem to

necessarily lead to definitive results. An intuitively acceptable

approach is to discretize the differential game by taking a partition H

of the time interval Cr, T) and to agree to let the controls u and v

be constants within an interval (ti, ti) of the partition. The

resulting multistage game is solvable, at least in principle, and

its value wrz.#(), T, 7) and mixed strategies for each interval may

be found. We then accept the limit w*(z(T), T, 7) of wn(z(T), T, T)

as the size i Ut of the partition [1 goes to zero ao the value of the

differential game, provided that the limit e:ists, and similarly take

the optimal mixed strategy limits as suitable for the differential

game.

Fleming [55) shows that if f and g are continuous and satisfy

a Lipschitz condition in z and if g, satisfies a Lipschitz condition on

every bounded set, then the limit w* exists; he conjectures that w*

is indeed the value of the differential game. In a more restrictive

ftheorem, but one applicable for our problem, Fleming C 53) proves

that if a function w(z(T), T, r) satisfies (7. 4) and is continuously

differentiable in An open set containing the region o. interest, then

(a) w(Z(r), 1, r) =lmo wr ) T, r) uniformly

(7.5)
S( (b) w(z(T), T, r) is the value of the differential game

with initial condition z(r) at tine 'T and fixed

terminal tVme T.

The latter statement holds in the sense of (-effective
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closed-loop strategies, that is, strategies which are arbitrarily

close discrete approximations of continuous strategies. U

Given this exceedingly brief background, let us first solve

a simple example using limits of discrete approximations and then

consider the question of direct evaluation of (7.4) for that example.

7.2 A FORMAL EXAMPLE

A very simple example will help illustrate some of the points

to be made. Let the dynamics equation be

u + V z(0) =z 0  (7.6)

where z, uc C0, 1), vEtO, 11 are scalars, and let a payoff function 0

be given as

J(z(T), u, v. r) = (z(T))2  (7.7)

We seek the value and optimal closed-loop mixed- strategies for

this game.

If (7.6) is approximated by

zi+l = zi+f(ui+ vi) (7.8)

where c = (T - 7)/N, i [0, T), then we find that we have a game

which is of the type considered in previous chapters. In fact, since

w (Z)z 2
N+l (7.9)

z2 2 C zN J€"

val -I uN 2 rN 2CI2wNs N ) =uNO vN )  Nu

0 0 v "
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Letting WN(Z) "-- and x =z/C gives

w u, v)L

g0

which is precisely the same as the intermediate problem .f Example

6. 1. When we use the results of that example, w( find

tt

(x) =max [(x +i), I

1 ou)x - I~ CI x<-i-l

t 1- ( )
uX) = U Iou+ III u )  -i-Arxt-i +-

I (u) x> -i+

(7,11)

Il(v) x < i -

Gj X) I- i*-(v) - i.

vx>+ .- i
01

This may also be written in terms of w and z as
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WNilz max Lz2 + 2ic + i2 c2  c€

1
I O0(u) z <(--

(7. 1?Z)

I,(v) Z< 1

Z(viZ)c Iz f. - +zi+)E

Takng (ION() Z>( i+.)E

Taking c= (T - r)/N, holding T and T fixed, and letting N " gives

formally, for i = N

w(z, T, r) = (z + (T - T))2

II(u(-r)) z(r) < - T + r

.1 1(v(ur) z(r), 'r) T I(v('T)) + y I,(U(7)) z(r) - T + T

Io(v('r)) z('T) > - T + r
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This gives the value of the game starting at time 7 = 0 and position

Z 0 as w(z 0 , T, 0) = (z0 +T) , and yields optimal closed-loop strate-

gies for the players for each 7 c CO. T).

Substituting in (7. 4), we find that for each T

al
Z(z+T-7) val [2(z + T -r)(u+ vZlz+T l--u, v)

11 I (7. 14)

! ff2(z + T - r)(u + v) dF°(ul z) dG°(vj z)

'0

S 2(z + T - 7)

Therefore, by Fleming's results [53] we indeed have a solution to

the problern.

7.3 SOLUTIONS USING LIMITS OF DISCRETE APPRC'XIMATIONS

The example in Section 7. 2 is provocative in that it ltads us

to conjecture as to which differential game problems may be solved

( in that same manner. Solving the problems exactly appears to

require that the discrete approximations be analytically solvable

using the partition size as a parameter, which in turn seems to mean

( that the discrete problems must be such that the value for each stage

is a polynomial and the stage patterns are repetitive so that induction

on the stage index is possible. These are clearly restrictive assump-

( tions.

If only approximate solutions are sought or if the problem

is such that limit patterns are easily recognizable, then a much

broader spectrum of problems may be attacked. In principle,
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if f, gf, and g in (7. 1) and (7. 2) are polynomials, then the method

of dual cones may be applied to any discrete approximation to the f)

differential game and the results of Chapter 5 may be applied.

More particularly, this may be done for a sequence (11I, fz,... , rM

of partitions of the time interval E 0, TI, with Ii+lI<i in. This wi.l Z

yield sequences of value functions (wn (z 0 , T, 0)) and of corre-

sponding mixed strategies, and an approximate solution to the

differential game may be taken either as one of the discrete versions 0

or as a "guessed" limit of the sequence.

There are two important difficulties with the approximate

approach. First, the value function may not be a polynomial in the

region of interest, so that further approximations are necessary.

We remark that, as shown in Chapter 5, this is not a problem if

open-loop strategies are sought. The second difficult-, is one of Q

dimensionality, for if I11I is small, then a great many subintervals

will require processing. This may overburden a digital computer

regardless of whether open-loop or closed-loop strategies are

sought.

7.4 SOLUTIONS BY ANALYSIS OF THE PRE-HAMILTONIAN

It is tempting to try to solve (7. 4) directly, without resorting

to limiting operations. Unfortunately, it is necessary to be very

careful while doing this for it amounts to operating "at the limit"

in situations where the higher order terms may be essential.

To illustrate this, let us first return to our example. In

particular, suppose that the value is known to us but we are seeking

the optimal strategies. Then we seek distributions such that
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val [2(2 + T -'r)(u + v)](u, v)

1 1(7.15)

G xffi~z + T ,r)(u+ v)dF(uj z, -r dG(vt z, T)G F

00

The optimnal dist:ibutions are obviously those of (7. 13) provided that

(z+T-T)0 0. However, if (z+T- r) = 0, then (7.15) does not yield

information concerning the strategies. Thus there are both philo-

sophical and practical difficulties in attacking the pre-Hamiltonian.

The reason for the difficulty with the above example is easy

to find,fcr (7. 4) is a limit of the discrete form F
w(z, T, 'r)- w(z, T,"+() va + val r') [ w

(u, V) _ _g(_., u, 1,- f
(!z (7.16)

+T a2 w

Ordinarily the terms on the r. h. s. containing c are ignored, for it

is claimed that they are dominated by the first two terms. However,

in our example this is not the case.

More generally, in solving discrete approximations using the

principle of optimality we deal with equations of the form

val [C g(z, u, v, r)
: {wrn(E. T, 'r) =(U, V) -- -

w -- -- (7.17)

+ wl(z + c f(z, u, v, r), T, r + c))
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In applying the method of dual cones to (7.17), z and C are simply

parameters in the solution. We have already seen that as the D

parameter z varies, the set S(A(z), R, ot) moves relative to the

dual cone P9 and may possibly come to or cross a boundary from

one form of strategy to another. This is particularly likely if a

coefficient within A(z) passes through zero. Since c may well

appear in (7.17) in such a manner that a coefficient in A(z) will

be zeroed if c = 0, it is likely the problem for 1 = 0 will be different

in nature from the problem for c > 0. It seems, therefore, that

equation (7.4) is useful for sufficiency checks on candidate solutions

but is of limited value for synthesis purposes.
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CHAPTER 8

SUMMA. tY, CONCLUSIONS, AND FUTURE WORK

In this report a viable solution techniqu-., for a special class

of dynamic games has been cre.ated. The necessarily theoretical

flavor of the approach must not be allowed to obscure the following

. | fundamental result:

Two-person zero-sum noise-free multistage polynomial

gamneh of fixed duration may always be reduced to

* separable static games if open-loop mixed !jtrategies

are sought, and may often be reduced to sequ6nce of

such games when closed-loop mixed strategies are

tI desired. The separable ctati: gazes may then be

solved, s mathematical programmi')g problems.

Of particular sigrificance in applications is tht fact that the tech-

nique is amenable to straightforward intuitively- satisfying numerical

approximation; in fact, the well.-developed methods -.nd algorithms of

linear programming may be used. These results were obtained and

ii £ extensively discussed in Chapters 4 and 5, and they were .llustrateo

in the examples in Chapter 6.

The method of dual cones, thta, has been extended to the

, point that it may now be effectively applied to some real problems.
Nevertheless, much work remain3 to be . Numerical approxi-

mations should receive detailed attention in order that solutions

may be obtained efficiently and precisely, and nonlinear pro-

gramming formulations should be investigated. The 'ormri of the
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value function must be investigated further; both theoretical

questions of algebraic form and practical questions of numerical

approximation require answers. The convex sets .tvolved in vector

problems need analytical description, if possible. Tbh. a% and related

questions should be the subjects of immediate reaearch.

Broader extensions of the method of dual cones may also 1'e

possible. The need for furthe, investigation of its relationship to

differential games is obvious. For example, an interpretation in

which the sets S(A, R, w) and P9 move smoothly in relation to each

other as time varies, with the direction of motion depending on the

dynamics of the game, can be visualized. Some of the questions

raised in Chapter 7 also bear answering.

Research should also be performed on the extension of the

method to stochastic games. Several approaches appear possible

here. One of the most intriguing possibilities is to note that

imperfect knowledge of the state may mean that the set S(A, R, ot)

is "fuzzy." Using this picture, it may then be possible to find not

only a value but the distribution of the payoff.

Less obvious possible extensions undoubtedly exist, for

mathematical game theory is an extensive field with many

unsolved problems.
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