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Ph.FACE

Because U.5. Air Force systems be they mi-sile, space, tactical,
aeronauti~zl, ot other systems inevitably are t¢ be utilizad in competitive
(diffcrential game) situations and beczuse a comprehensive theory of
mathematical games has yet to be developed the results presented in this
report were evolved with this goal in aind. Numerous basic results are
contained herein with the ultimate goal of a comprehensive theory of
differencial games in mind, and the utility and significance of the results
developed herein are illustrated by application to numerous illustrative
examples.

This research report was prepared under research projects supported by
the U.S. Air Force Cffice of Scientific Research under AFOSR Grant 72-2166,
Design of Aerospace Systems, and by the Y.S. Air Force Space and 'lissile
Systems Organization under Contract No. FU4701-72-C-0273, Advanced Space
Guidance, and this report constitutes part ot the final report on these
contracts.

The research described in this report '"Mixed Strategies for Dynamic
Games,'" UCLA-ENG-7280, by Louic Carl Westphal III, w-s carried out under
the direction of C.T. Leondes and E.B. Stear, Co-Principal Inv: stigators
in the Schools of Engineering in the University of Califora:za at Los Angeles

and Sante Barbara, respectively.
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ABSTRACT

Development of a comprehensive theory of mz’hem-tical
games has been hampered by philcsophical, conceptual, :nd prac-
tical difficulties. For dynamic games in particular, solutior =~.thods
are elusive, and algorithms are rare. This is especially apparesn*
for games which require that the competitors vzndomize, or mix,
their tactics even though such randomization is a commen property
of actual competitive asituations. This dissertation is therefore con-
cerned with the development of a technique for the synthesis of mixed
strategy solutions of games.

A special class of dynamic games is studied: two-person
zero-sum noise-free multistage games of fixed duration for which
the paycff and dynamic functions are multivariable polynomials and
the control vectors are elements of compact hypercubes. The
problem is formulated such that khown results concerning existence

of saddlepuint solutions are applicable; emphasis is on the deter-
mination of the value and of the optimal mixed strategies and on the
properties of the solution functions. This is achieved by extending
and applying the method of dual cones such that the game becomes

a maximization problem and the optimal strategies are derived
from the interaction of two special cenvex sets. It is shown that
this maximization problem can be approximated in a straightforward
and intuitively satisfying manner by a linear programming problem.

In the approach used, the state vector of the game is a
parameter. For this reason the continuity prope:ties of the

functional dependence of the value and the strategies upon this

Preceding page hiank
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parameter are investigated. One result is that for a ga:ae with
quadratic payoff and iinear dynamics the value function is piece-
wise quadratic.

Computational aspects of the solution technique are ox-
tensively discusssd, and several illustrative examples are given
to demonstrate various points, including the fact that the principle
of optimality cannot always be used with the method of dual cones
to find exact solutions to multistage polynomial games. A brief

formal discussion of the extension of the method to differential

games is also presented.
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CHAPTER 1

INTRODUCTICN

The mathematical theory of games i3 still a relatively
immature discipiine with a multitude of theoretical and practical
problems. Solution of those problems will bring about increased
understanding of cooperation and competition in such diverse fields
as anthropology, economics, military defense, diplomacy, sports,
and behaviora: psychology. It is even pcssible that game theory
will become 2 major branch of applied mathematics, for it encom-
paeses optiraization theory 25 a special case while introducing new
questions due to its concern with the interactions of multipis intelli-
gent participants.

One objec.ive in the theory of games is to determine, for
any given situation, the best tactics for each participant to use
and the payofi fo each when all use their best tactics. In practice
the theory is applied to a mathematical representation, or model,
of the actual situation, and the adequacy of a particular analysis
depends upon borh the sensibility of the model and the intuitive
acceptiability ¢f the resuits. This rneed for realism leads to a
requirement that the theory be applicable, for example, to dynamic
situations with multiple competitors whose knowledge of the true
situation may at times be incomplete, and indeed researchers are
attempting to resolve the mathematical difficulties presented by

guch cases.
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It is well known, however, that in many types of competition
the pariicipants diversify their tactics so that under similar circum-
stances their actions vary and are unpredictable to their opponents.

Such mixing, or randomization, of tactics is common in many

e

sperts and parlor games and in guerrilla warfare. It also underlies A
such maneuvers as bluffing and feinting. Thus one would expect
the theory to produce randomized tactics as solutions of its models.
Surprisingly, although solutions of games based upon static
situations are often randomized, this is not presently the case for
most dynamic games. Therefore, this paper is concerned with
P develoning a theory which produces randomized tactics as needed in o
the sotution of a particular class of dynamic games. The class ;
} studied is that of perfectly competitive situations with only txo |

participants, the so-called two-person zero-sum games. 7The )

dynamics of the game are modeled by multistage equations,

and each player knows all pertinent information concerning the game

except the futurz tactics of his opponent. The dynamics and payoff 8

functions which define the game are multivariable polynomials. «
Finally, each play of the game lasts a fixed number of stages, and
the plavers choose their control actions as elements .from compact 3
hypercubes.

Such apecialized games should prove to have wide application.
The two-person zero-sum model ic¢ often used, and multistage’
dynamics may be more accurate fos representing applications such
as business decisions than continuous dynamics. Furthermore,

polynomials are frequently employed in models of real situations.
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Particular applications which mayv be foreseen include pursuit-
evasion and weapon allocation problems for defense purposes,
optimal pricing and advertising determination for direct business
competitions, resource allocation for political campaigns, and
perhaps even game plan determination for some sports and parlor
games. The theoretical results of this paper will allow approximate
solutions of these ui.d other problems for which suitable models

of the requisite type are derivable.

The existence of saddlepoint solutions using mixed strategies
has been established for this class of problems, the concern in ihis
report is with developing a theory for actual synthesis of those
solutions, a task accomplished by extending the theory of dual cones
originally developed by S. Karlin, M. Dresher, and L. Shapley
for a restricted class of static garnes. Suitable background material
and relevant definitions are in Chapter 2. The theoretical dzvelop-
ment begins in Chapter 3 with a precise definition of the problem
of interest.

The principal the.retical results and discussions concerning
approximate solutions are in Chapters 4 and 5. In the first of these,
tiie problem is attacked by solving a special static ga;'ne. The
solution is obtained by reducing the problem of finding the optimal
mixed strategies to a problem of determining the generalized
moments of such strategies. Next the gets of admissible moments
and certain convex cones which they generate are described. The
value of the game and the optimal moments are then obtained Ly

exploiting features of the dual convex cones. The chapter is

et e~ gt
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concluded with discussions of computational aspects of the solution
method, including an approximate formulation as a linear pro-
gramming problem.

In Chapter 5 the effects of introducing the dynamic aspects
of the game are examined. The essence of the approach is that the
dynamic game is reduced to a sequence of stitic games in which the
system state is a parameter. The applicability of the method of
dual ccnes to finding onen-loop and closed-loop optimal strategies
is discussed. Then continuity properties of the value and of the
optimal strategies as functions of the state vector are evaluated
in detail. Finaily, the dual cone approack is utilized to prove that
the value of games with linear dynamics and quadratic payoff is
piecewise quadratic.

Chapter 6 is devoted to four examples which illustrate various
aspects of the theory developed in Chapters 4 and 5, Chapter 7 con-
tains a brief, formal discussion of the extension of the methods
developed in this report to aifferential games. A summary of
results and a look to the future comprise the concluding chapter,
Chapter 8.

The original contributions of this work are en:xbodied in the
extension of the method of dual cones to include vector control
elements, the creaticn of a solution technique based upon that
method, the manner of formulating the approximate problem so that
linear programming may be applicd, and certain aspects of the use

of the method for multistage games, Among the last of these,




the proof that certain linear-quadratic games have piecewise-
quadratic value functions is original, as are portions of the argu-
ments concerning continuity of the optimal mired strategies. The
discussion of the extension to differential g=mes also contains

original elements.

(75
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CHAPTER 2

BACKGROUND

Hundreds of research works concerning various aspects of

game theory have been published since the field was founded by

ron Neumann and Morgenstern in 1944 [1]. In this chapter we
review the history and the commonly-used definitions for the coni.ol
systems-oriented branch of mathematical game theory to which the
present study belongs. Suction 2.3 contains a survey of the literature
which is particularly relevant to the synthesis of mixed strategies
for dynamic games.

2.1 TERMINOLOGY

Useful insight into a situation can often be obtained simply by
reviewing its terminology. This is definitely the case with game
theory. Thus it is fruitful to consider definitions and concepts at this
point. This terminology is relatively standard for the field, and we
shall neither probe its nuaaces nor attempt to compile a dictionary.

A game is the complete set of rules, definitions, constraints,
goals. etc., which describe a multi-participant interaction, whether
it be competitive or cooperative. The participants are called
players, and i{ tI zre are n such participants, the game is called an

n-player or n-person game. A single contest or realization of the

game is called a play or partie.

in a non-trivial game, the players are able to affect its course
and outcome. Mathematically it is said that the jth player does this

by choosing a control or control vector u,, or by choosing a sequence

Preceding page &iank
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u, = {_gj} or a time history 2j = _u,jit) of such vectors. Ordinarily the

control vectors are chosen from some sset Uj’ called the set of
admissible controls.

To further his own best interests during a partie, a player
does not usually behave haphazardly. Instead he uses a strategy, or
set of rules which govern his choice of controls depending upon his
observations of the course of the partie. Thus a strategy might be
thought of as a mapping § from the set of all possible observed situa-
tions into the set of admissible controls. If the control implied by a
strategy is always a unique function of the sgituation, then the strategy
is calied a purc strategy. On the other hand, if the rule assigns
control vectors to a situation in 2 manner which involves randomness,

then it is called a mixed ox randomized strategy. The essence of a

mixed strategy is the relative frequency of utilization of various
control vectors rather than the randomization mechanism, and it is
therefore common to refer to probability measures defined on the
sets of admissible controls as mixed strategins. Controls with
nonzero probability measure in a given situation are the ones which
are candidates for utilization, and these are said to belong to the
spectrum of the mixed strategy. Note that control vectors chosen
using mixed strategies are random variables.

Sc.me games operate within a framework or system which
evolves over time (or some other pavameter) in a manner which is
important to the structure of the gzme. We call such games dynamic
games, and their complement we call static garnes. The dynamic

system ig usually described mathematically using a state or state
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vector z which is a function of the controls aand of other parameters.
The progression of the state during a partie is described by a

dynamice equation, which may be a differential equation,

2=2f(z w0 ugeeeen upit) (2.1)
or a difference equation
z(i+l) = z(), w @), ..., w (i) 1) {2.2)

In the former case the game is called 2 differential game, and in the
latier it is referred to as a difference game, a discrete differential

game, or a multistage game. A dynamic game whose rules prescribe

that a partie proceeds for exactly T time units or N stages is called

a game of fixed duration.
Along with the direct complications which dynamic games

introduce come several conceptual problems. An important one

of these is that the nature of strategies must be further refined to

account fcr whether the players are allowed to expect to have know-

ledge of the state whenever they choose control vectors. If not,
then they must consider the possibility of making open-ioop control
choices when they design their strategies, and the resulting

strate yies are called open-loop strategies. If the rules allow them

to expect that they may always have up-to-date observations on which
to base their control choices, then they may degign closed-loop
strategies which depend upon those observations. For example, in
one simple differential game the ith player may be required to gen-

erate an open-loop mixed strategy function represented by a




conditional cumulative distribution function Fi(g_i )l z(1), 2.1(3); T<3%t),
whereas in :nother such game he may design a closed-loop mixed
strategy with ¢. ¢ f, Fi(gi(t)l_z_(t)). Clearly these concepts are gen-
eralizations of the ideas of open-loop a2nd closed-loop controls. Note
that the strategy type i3 determined by the vulee of the game rather
than by the conditions obtained during a partie of that game.
Ultimately, each playcx in a game strives to achieve some
soal, For mathimatical games his fact is represented by associ-

ating with each player j a payoff functional, which for each partie

assigns to that pleyer a real number J ; that depends upon the struc-
ture of the game and the course of the partie. In particular, if
3j’ j=1,2,..., n, denotes control histories and :denotes state

histories, then we write

szJj(Eu' Uy 22....}_1“) =L 2,s0y 0 (2. 3)

to represent the payoffs. A game for whichi Jj = 0is called a
i=1
zero-sum game; any other game is nonzero-sum. Depending upon

the nature of the game, the payoffs may belong to finite or infinite

sets and may be bounded or unbounded.

Each player in a game chooses his control history during a

partie, and thus designs his strategy,to best serve his own interests.

The exact nature of '"best'" is dependent upon the rules of the game;
for example, a player may in some games submerge his direct

interests to those of a group and in other games may strive for

maximum security of payoff rather than to maximum payoff. Fur-
thermore, frequently a function of the payoff such as its mean is

extremized rather than the raw payoff. In any case, if it is possible

10




for each player to design a strategy which in the game sense best
serves his interests in terms of a function .‘fJ of the payoffs, then

his payoif when all players use such optimal strategies is called

the value of the game "o him. We write this as

- 7 .
Wj-Val(.f:i(Jl, Jz'oo:, Jn)) J-I,Z.....n (204)

Because the exact nature of the maximization is so intimately related
tc the particular structure of a game, it is generally difficult to be
more definitive than this except for one particular class of prob-
leins, the class of two-persgon zero~sum games.

Two-person zero-sum gamesg are the subject of intense
research interest and accordingly are the source of considerable
specialized terminology. In such games, it is possible to define

2 single payoff function J which has the property that

J:Jl'—'-Jz (2‘5)

Such games are often called perfectly competitive, since by their
nature one player's gain is the other's loss. In these games a
rational player attempts to maximize his minimum possible expected

payoff; i.e., Player I attempts to maximize the minimum possible

$(J) and Player I tries to minimiue the maximum of ¥(J). If we call

Wi the strategy sets for the players, i=l, 2, then we write

j‘ - max min [:}(J)J
1 w1€w1¢’2€‘y2

11
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as the goals of the two players. If J 1= 3 2 then this common number

is by definition the valuz of the game. It is clear that

w=J, =7,z ?(J)l{o o = val ?I(Jl, J,)
¥,

has the property

FOl - Ssws R (2.6)
bye¥; b3,

where the notation indicates that the payoff function is to be evaluatr 4

using the optimal strategy :I)ioe \I’i and any admissible strategy

() jc\llj. j#i. Condition (2. 6) 33 called a saddlepoint condition, and a

strategy w;’ which yields this condition is called an optimal strategy,

a saddlepoint strategy, or a mini-max ctrategy. These notions are

also used in some other classes of games.
If at least one player in a game lacks some essential piece
of information, such as exact knowledge of the state vector, the

nature of the dynamics, or the payoff for some player, then the game

is calied a game of imperfect information, or a stochastic game;

otherwise, the game is one of perfect information. Commmon

dynamic garaes of imperfect information are those for which at

least one player has knowledge of a vector function of the state,

Y=y (2w (2.7)

12
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where w is a random vector, rather than of the state vector z, or
where the dynamics functions depend on a random vector { as well
as on the state and the controls. Many games do not fall naturally
into either category, and their precise classification must be by
convention, We slall use the following convention: if the controls
and state are random variables due solely to the use of mixed
strategies and the participants have equivalent knowledge of the
game, then we shall call it a game of perfect information.

With the above concepts in mind, we are able to characterize
a great variety of mathematical games. In this report are described
the optimal mixed strategies for two-person zero-sum multistage
games with fixed duration and perfect information and with payoff
and dynamics functions characterized by polynomials. Both open-~
loop and closed-loop strategies are examined.

2.2 THE HISTORY OF GAME THEORY

A great amount of research concerning mathematical game
theory has been published: A bibliography compiled in 1959 (2] has
more than one thousand entries, and a recent bibliography of
differential games [ 3] contains over two hundred references and is
still incomplete. Therefore, any overview of the field is useful but
necessarily cursory. This section reviews the history of the branch
of game theory which is most closely related to this report.

Although there are earlier relevant publicaticns, it is gen-

P e, SN b

erally conceded that game theory had its birth with the publication

of the classic work of von Neumann and Morgenstern [1]. Besides

B e e B 2

creating the field, these researchers contributed some standard

13




results, the most important being a theorem proving that for static
two-person zero-sum games for which the controls must be chosen
from finite sets, optimal strategies and a value would exist provided
that mixed strategies were allowed. This was latexr proven in
alternative ways, among them the dual theory of linear programming,
and it was shown that the mixed strategies could be computed using
lincar programming (See, for example, Gassl4]).

Following the publication of that book, game theory was the
subject of intensive research interest for several years., Interest in
static games was particularly high, and among the results are
algorithms for solving general two-person zero-sum games with

finite control sets and theorems showing that a value and optimal

mixed strategies exist fcr certain two-person zero-sum games with z

infinite control sets. The former fact was alluded to ir. the preceding
paragraph, and initial versions of the latter are attributed by Kukn
and Tucker [ 5], among others, to J. Ville and to A. Wald. Black-

well and Girshick [6] supply a fairly comprehensive discussion of

the mini-max theorem.

Along with these general results, maay gpecial two-person
zero-sum games were examined, including in particular the
so-called games over the unit square, in which the players choose
controls as real numbers from‘ ihe unit interval [0, 1] and the payoff
functions are of special forms, such as polynomials or convex
functions. An excellent source for this period, with interesting and

enlightening commentary by the editors, is the seriee Contributions

to the Theory of Games (5], [ 7], [8], [9].
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A new dimension was added to game problems in the middle
1950's by Isaacs when he created dynamic games, particularly two-
person zero-sum differential games (101, [11], {12], {13]. His
highly original work is available as a book [14] which is best read

along with 2 book revizw by Ho {15). 1In brief, Isaacs ie concerned

with examples of problems with dyramics

2=z u vt} 2z =2z,
and payoff function .
"¢
Iz ulth w(t)) = gz . t ) +ﬁ(g(t). ulsy, w(t), t) dt {2.8)
0

where t. is the time at which a given termiral manifold is reached
and z c is the final position on that manifold. He assumes that the
payoff has a saddlepoint when pure strategies are used and argues
that if the value function J *(.._z_, t) exists, it satisfies his Main Equation
One, or MEI.

g_t.zi 4+ min max [@J*)Ti(i’ u v, t)+glz u oy, t)] =0 (2.9)

whereV is the gradient operator. To find this, he applies what he
calls the Tenet of Transition, a game theory analog o: Beliman's
Principle of Optimality which he apparently found independently. In

principle, (2.9) may be solved for p_o = uo(g_. YZJ*, t) and
o z
v

= _\Lo(_z_. YZJ*, t), which are then inserted to give the Main

Eiquation Two, or MEZ’
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%= ¢ “_73 ”I Ha, Eof.?-_' %J'- t), 1°€£. YZJ’ £, ¢}, t)
- - (2.10)
+ glz, uo(_g: Qs ), 3°(£, zjat, t), =0
Thkis =guation is of Hamilion-Jacoki type, 2nd is commonly referred

0 as suck. Eguation (2. 9) is ofter called a Hamilton-Jacobi-Bellman
equation or a pre-Hamiltoniax sgu~tion.

Using his ma:mn eguations, Isaacs also contriiutes 4 suiticiency
theorem. In essence, be finds that if J*(_;_f t) is a uniqua continuous
function satisfying the ME's and the soundary condition J¥{z , t ) =
‘{ﬁgc. tc'). then J¥* is the valve w{z, t} of the game and any gure
strategies which furnis: the min-max in (2.9) and cause the desired
exd point to be reaches zre optimal. Tkhis is true in a limiting senze,
that is, z2s the limit of a convergent series 5f diecrete approxi-
mations to the differentisl game.

Interest in diffcrential games built up gradually for several
years and cuiminated in 2 major work by Berkovitz [16}. whoe
axtended zesults of the classical calculus of variations o zero-sum
two-person differentiai games. His principal results are that under

some fairly redstrictive conditions, tise Hamiltonian-like function
__T
H(z. u, v, p} =p f(z, u, v} + glz, u, ¥) (2-11)
satiafies, for optimal controls go and zo,

2= Hiz w0, ¥, p)
(2.12)
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(2.12)
T 3K _T 3K _
z“%*&i:o Q‘ZTH+‘_—5?:~0
y=c uxl(i=0 gz0 ﬁiKi =0

where K andg are vector constraint functions on u and v,
respectively, and g andg_ are associated mulitipliers. He 2lgo
establishes a form of Hansilton-Jacobi eguation (2. 10y and sufficiency
conditions using field concepts. The results appiy tc problems which
have soiutions in pure strategies.

Once these basic results werc established, a great many
researchers applied them to special cases and interpretations, and
to extensions of the same class of procblems. Among these, a very
influential work was contributed by He, Bryson, and Baron £17], who
studied a particular game with linear dynamics and quadratic payoff
which has pure strategy solutions. Oth. r contributions in the same
general area of two-person zero-sum differential games include
those of Wornz [18], Meier [15], Meschler L 20], and Wu and Li [21].
Interesting geometric work in an augmented state space is found in
works by Leitmann and others. Blaquiere, Gerard, and Leitmann
[22] is representative of this approach.

A variation of the above differential game has received
attention from several researchers, including some of the prominent
Russians. If the payoff for a two-rerson zero-sum game is the time
T of attaining a terminal manifsld, a problem is created which may
not end; i.e., it may be that T = . Pontryagin {23] ghows that if an

optimal payoff exiats, his maximum principle may be appsied to such

oy




games provided that the Hamiltonian can be written

H(_z., E_: zl R) = pO + RT-f.(-z—’ 2’ .‘i)
_ (2.13)
= Hy(z, u, p) + H,(z, v, p)

Other results for related problems appear in such works as Chat-
topadhyay [24] and Varaiya [25].

Research interest is now shifting to games other than two-
person zero-sum differential games of perfect information which
have pure strategy optimal solutions. In particular, dynamic games
with n players, with imperfect information, or with mixed strategy
solutions are being investigated. These areas overlap, of course,
but it is enlightening to consider them separately. The third area
is surveyed in the next section.

The fundamental philosophical problem of n-person games
and the closely related nonzero-sum games is the definition of what
is meant by a solution. There ave at least three basic solution types:
min-max for each player, equilibrium solutions in which no player can
improve his payoff unilaterally, and bargaining solutions in which
no player can change his strategy without adversely affecting at least
one other player. Therefore, the rules of the game, and particularly
questions of agreements and side payments among players, dominate
the theozry. Refcrences [1), (7], {8], and ($] contain some of the
relevant publications for static games. Case L26] and Starr and Ho N
{273, (28], who alseo have published similar works elsewhere, are
leaders in studies of the n-person differential game problem. In

particular, they have found that when equilibrium solutions are sought,
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individual Hamilton-Jacobi equations apply for each piayer along the
optimun: state trajectory and that a method of characteristics is
sometimes applicable. Min-max solutions may be found for each
player by applying two-person game theory, and bargaining solutions
are related to optimal control problems with vector payoff functions.
Studies of games with imperfect information have generally
been concentrated on two-person zero-sum dynamic games with noisy
state transition and noisy observations of the state by the players.
The fundamental problem is that a player must base his controls on
his available information, which tends to be incomplete and inexact,
and must guess not only the state, but what his opponent thinks the
state is, what his opponent thinks he thinks the state is, ad infinitum.
The payoff is usually taken as the mean of the given payoff function.
Behn and Ho [ 29] circumvent some of the computational prob-
lems by assuming a control form and then determining its parameters
based upon the statistics of the noise processes. Rhodes and Luen-
berger [30], [31] show that a type of stochastic Hamilton-Jacobi-
Bellmann approach is applicable when the contenders are able to
determine their opponent's strategy, and it is noteworthy that their
results do not require pure strategies. An interesting approach is
suggested by Sugino [ 32], who postulates bounded noise and thus is
able to find mini-max strategies by using regions of attzinability.
Other important research includes that of Kushner and Chamberlain,
who in several works, among them | 33], study the Markov process
characteristics of stochastic games, and Bley and Stear [ 34), who

use a Payesian analysis of muiltistage games to find conditions




for pure strategies.

In closing this section, we remark that there is much to be done
even in the {ields so far congidered. It is noteworthy that much of the
work on dynamic games since Isaacs has been so highly control system
oriented that it has lead to what hars only recently been recognized as
a distortion of the approach and a lack of recognition of some of the
peculiar, fascinating properties which mathematical games possess.
This fact kas been noted by Isaacs [ 35] and Ho [ 36], for instance.

2.3 THE SYNTHESIS OF RANDOMIZED STRATEGIES FOR
DYINAMIC GAMES

Early researchers actively sought mixed strategy solutions to
their static problems. We have already noted that linear program-
ming yields mixed strategies for two-person zero-surn static games
with finite control sets. Other games, such as games over the unit
square, that is, games for which the controls are scalars chosen
from the unit interval [0,1], were examined, and solutions weve
discussed for two-player zero-sum games for which the payoffs
are convex functions (Bohnenblust, Karlin, and Shapley [ 37]), poly-
nomial functione (Dresher, Karlin, and Shapley (38)), and bell-shaped
functicns {(Karlin [ 39]), among others. Many of the results from this
era may be found in Karlin's book [40].

The research of Karlin, et al, [38), [40], and [ 41], on
polynomial and separable games is particularly relevant to our prob-
lem. They, however, are concerned solely with static games with
scalar controls. They show that for games with separable payoff
functions the problem of finding optimal mixed strategies can be

reduced to finding moments of those strategies. The latter problem
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is thenexamined for games of known value using the method of dual
convex cones. Their concern is with characterizing the relevant
sets, and they consider neither synthesis of solutions using the duzl
cones, problems with vector controls, nor the effects of introducing
dynamics to the game.

Few other researchers have considered extending the theory
of static games to dynamic games. Bley [42] suggests the appli-
cation of the theory of convex games and works a scalar multistage
example in his study of linear-quadratic games. Cliff [43], who is
generally discouraging about the utility of mixed strategies in
realistic dynamic games, suggests analyzing the pre-Hamiltonian
using static game theory and examines a simplc difierential game
example using the theory of bell-shaped games. Rhodes [44] employs
arguments related to the theories of convex and polyun. aial static
games in examples of iinear-quadratic dynamic games. None of
these researchers is primarily concerned with synthesizing mixed
strategies, and their efforts in this regard are confined to examples.

Techniques other than extensions of static game theory have
been suggested. In a series of publicatione Berkovitz and Dresher
L45], [46]), [47] evaluate tactical air-war problems which have
linear payoff and multistage limited-linear dynamics. Their
solutions are obtained by ad hoc methods which do not appear to be
of general interest.

An interesting approack suggested by Ho [48) and extended
by Speyer [49] is to force the controls to be random variables by

introducing a dependence of the controls on random vectors. Speyer
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does this by choosing controls of the form

u=Ki+¢ (2. 14)

where .2_ is a state variable estimator and_g_ is a white noise vector

with zero mean and controllable covariance Q. His problem, a o
particular linear-quadratic game, is such that only the statistics

of the random variables, rather than their instantanecus values, are

of importance, and the problem becomes one of finding the gain K

and covariance matrix Q. Thus the problem is considerably dif-

ferent in means, if not ends, from that of synthesizing the ran-

domness by generating probability distributions for the controls.

In an interesting and provocative paper, Chattopadhyay [50]
points out that since in the game surface approach the normals to the
surface are intimately related to the optima' strategies, finite ’
mixed strategies might be related to '"mixed normals.' Thus one
can in principle seek an optimal normal and then relate it to pure
normals and to mixtures of pure strategies. As with much of the
game surface technique, this appears to be more useful for supplying
insight than for construction of solutions.

Another suggestion is made by Sarma, Ragade, and Mandke
(s1]. Arguing purely formally, they state that the value must
satisfy a stochastic Hamilton-Jacobi-Bellman partial differential
equation with simultaneous extrema in the probability density
functions of the mixed strategies of the two contestants in a zero-sum
differential game. Existence or uri‘jueness of solutions is neither

proved nor claimed. Since the concept of probability densities does
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not appear to be useful (because they cannot represent pure strategy
regions as degenerate cumulate probability distributions can), it
is likely that the particular result of Sarma, et al, will have limited
application.

Smoliakov [ 52] formulates the problem slightly differently tc
find mixed strategies for a two-pe-son zero-sum differential game.

By requiring that the dynamics equation hold in a mean sense

E(E’ V) (2 -z, u, v, t) =0 (2.15)
rather than in the absolute sense, he is able to put the problem of
mini-maxing the mean of the j,ayoff over t};e mixed strategies into a
form which can be attacked by variational mecthods. The physical
significance of (2.15) is debatable, however.

Little othér werk conceruing actual synthesis of mixed strate-
gies has been performed. Some researchers have been unconcerned
with synthesis and neither found nor ruled out mixed strategies. The
publications of Rhodes and Luenberger [30], [31] and Rhodes [42]
are examples of this.

We have already mentioned that much of Chapter 4 represents
extensions of the work of Karlin and others. Another portion of the
foundation of our research is the fact that a saddlepoint solution
indeed exists for the static and the open-loop problems formulated,
for proof of which Blackwell and Girshick L 6] is one of many possible
references. For the closed-loop dynamic problem, the dynamic
programming approach is used. This has been used by a number of
authors; its validity for the problems of concern here has been stated

as a theorem, for example, by Fleming [53].
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CHAPTER 3

PROBLEM STATEMENT

This research was motivated by the desire to syathesize solu-
tions for a particular class of mathematical games, although many of
the results have a more general domain of applicability than this. The
goal may be stated as follows: we seek to find the value and the

cumulative probability distributions representing the optimal mixed

strategies, both open-loop and closed-loop, for the class of fixed-
duration two-person zero-sum multistage games characterized by
polynomial dynamics and payoff functions and by noise-free infor-
mation. This statement is clarified and the importance of such
problems is discussed in the following sections.

3.1 SYSTEM SCENARIO

The systems of interest to us are dynamic systems which pro-
ceed in a step-wise manner under the influence of simultaneous inputs
from two controilers. Thus we are concerned with sequences of real
L-vectors {z (i)}, m-vectors {u(i)}, and n-vectors {v(i)} (where i is
an indexing variable which traverses the real integers) which are

interrelated according to the dynamics equation

z(i+1) = £ (z(i), w(i), v(i); i) (3.1)

The functions f are presumed kncwn to the players and by assumption
are polynomial functions of their arguments _g,_(i), ufi), and v(i) and
are indexed by the stage index i. The vactors have the following

additional properties for each i:
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z{i) - Belongs to euclidean £-space El'. Called the

state or state vector of the system.

u{i) - Chosen from a unit hypercube U in E™,

U= {Elui e(0,1], i=1,2,..., m},

(3.2
by a rational controller ca'led Player ] or the

maximizer.

v{i) - Chosen from a unit hypercube V in En,
V= {.‘il v, €l0,1], i=1,2,..., n}, by a rational

controller called Player Il or the minimizer. )]

A game may be described for this system oy introducing
rules and a payoff function. We are concerned with games such that
a particular play, or partie, proceeds from a given initial state z, J
which is identified with stage 1, i.e., z(l) = 2, for a fixed number
N stages. Two variations on the basic rules are of interest.

In the first game, called the game of closed-loop strategics, ’

each controller, cognizant of the state ﬁ(i)' of the history of play

(i.e., of 2(1), 2(2),..., =z{i-1), u(l), u{2),..., w(i-1), vil), v(2),...,
v(i-1)), of the dynamics f and the payoff function J, and of the number Y

N-i of remaining stages, but ignorant of the other controller's future

control vector choices, chooses a control vector from his set of

s

admissible controls U (or V). This happens for each i, i=1,2,..., £ 4
ﬂi
N; each participant fully expects it to do 8o and hence designs 4
i

cloged-loop strategies.
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In the second game, called the game of open-loop straiepgies.

the controllers cannot be certain of ever receiving updated data.
For this reason they design open-loop controls to use for the re-

mainder of the game, and recompute these if any new data become

available. Data are assumed available to both plavers or to neither;

they have equivalent knowledge of the state.
For either of these variations, at the end of the partie a

scalar amount J determined by

J = J(_z_: 3(1): 9_(2): ey B.(N)o 1(1)» 1(2), ey X(N))
(3. 3)
N
* gy (2NFD) + 37 g (z(i), u(i), wii)
i=1
is paid by Player Il to Player 1. The functions g; i=1,2, ..., Ntl,

are assumed to be polynomial functions of their arguments.

By describing the dynamics, rules, and payoff function, we
have defined a game. The concepts of solutions to this game are
pursued in the next section, and the particulars of solutions are
treated in Chapters 4 and 5.

3.2 THE CONCEPT OF SOLUTION: VALUE FUNCTIONS AND
STRATLEGIES

The two plavers in the game of Section 3.1 are presumed to be

both intelligent and rational in that each will attempt to optimize the

payoff J according to his own best interests. To ensure his success,

each player employs a strategy, which we may think of as a ruie or

mapping which implies an admissible control vector for each con-

tingency in the game, that is, for each possible position z and stage i.
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If a unique control vector is implied by this function for each con-

tingency, then the function is called a pure strategy. if the mapping

also depends on a random variable, so that the selected control
depends upon the realized value of this randem variable in addition to

z and i, then the function is called 2 randomized or mixed strategy.

it is clear that a pure strategy is a special case of mixed strategies.

Since finding good strategies for the competitors is funda-
mental to solving games, we must refine the notion of mixed strate-
gies. The key concept is that at each stage each player chooses his
control vector in a (possibly) random manner. The exact means of
introducing the randomness is incidental; the crucial factor is the
relative frequency of utilization of the elements of the admissible
control set. In other words, the important aspect of mixed strategics
is that they are related to probability measures defined over the set
of admissible controls. Thus part of our objective is to find for each
player a best mixed strategy, where by mixed strategy is meant a
cumulative distribution function, or c.d.f., defined over the set of
admissible controls and parameterized as necessary by the state z
and stage index i.

Since randomness was introduced via mixed strategies,
the payoff function is a random variable and the state is a Markov
sequence. Hence, it is reasonable that the contenders should wish to
optimize a statistical function of the payoff J, in our case the mean.
Therefore, in the games considered here, Player 1l is to use a
strategy such that the minimum achievable mathematical expectation

of J is maximized, and Player II wiil adopt a strategy which
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minimizes the maximum achievable expectation of J. The mean of J
for a given initial condition z when both players uce their best
strategies is known (See, e.g., Blackwell and Girshick [ 6] and
Fleming [ 53]) to satisfy the saddlepoint condition (2. 6) for gares of
the type considered here and therefore is called the value w(z) of the
game.

Let us make the above paragraphs more precise for the two
variations of our basic game. To do this, we first introduce the
rotion of the truncated game i, which is the game which starts at
stage i and position z(i) and continues for N-i stages. The payoff for

this game is

J; = 3,0z uli), u(isl),..., u(N), (i), v(itl), ..., v(N))
(3.4)

N
= gy (2(NH1)) +z: g (z(k), ufk), v(k))
=i

Fox the game of closed loop strategies, we seek optimal
cumulative distribution functions (c.d.f.'s) Fo(g_(i)l_z_(i), i) and
Go(l(i)i_@_(i), i) defined for the maximizer on U and for the minimizer
on V, respectively, euch that for each j=1,2,..., N, and for each

i=j, j+l1,..., N, the vaiue of the truncated game j is given by
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(3.5)

w;(z(5)) =f ff / T (2035 9o es wN), VUi, e VD) .

vu VU

dF°(u(N)] 2(N), N) 4G°(v(Nj| 2(N), N). ...

oo AP (3, 32 aGO (il z(5), )

min
=G, €T, f f ] f T2k i .- wiN) viid, ... ¥(ND :

i=,...Nyyg v o

dF°(u(N)| 2(N}, N} dGp{v(N)| z(N), N). ...

.+ dF°(uli)] 203), ) dG(w(i 2(b )

max
-F e® f / f ﬁj(g(j);g(j).--~ (), b, .., v(N) '
N

i=.... Ny gy vu

dF (u(N)| 2(N), N) dG°(v(N)] 2(N), 2. ...

o+ AF ()] 245 J) dG%{v(j)l z(5), j)

Here Fi and @i are the sets of all admissible conditional c.d.{.'s
defined on V and U, respectively. That sucha wj(_:_a_) indeed exists
is known from Fleming [ 53]; this function is discussed further in
Chapter 5 when dynamic programming is considered.

For the game of open loop strategies, the players of the
truncated game j must develop their strategies under the assurmption

that #(i), i~ ), may never be known to them. Hence, in this case the
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/f j fo(])- ulj), ..., &(N), ¥(i), ..., ¥IND
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dF (e 26), ji wl), - .0 B(N-1))
dGO(ANN 20, §i vl oo .s WN-1))..
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aga2in®, aca T, are 1be sets of aéoiesible conditioned c.&.L's, b
they are mot idexticai 2o those of tke closed-loop strategy caie,
wiick kas 2 Sifferent siructure. It is dermoznstvaiad in Chapter 5 thar
tiis caze reZuces Io 2 parasneterized static case, 30 thar s2amdars
min-mmax tReorems zre spplicable {c.g., see Blackwel! znd

Girsxick £5]]).

3.3 THE IMPOARTANCE OF FOLYNOMAL N-STACE G&ES

The clasy f games considered bere is 2 special ane: reanoval
cf the zero-summ asyzmiption or introduction of stockastic obser-
vatiors cr Syramics «CulE creste 2xtremely difficuit probiems botk
of copcept and of computation. Nevertbeless, our gzmes are not
trivizl. Two-persor zero-suwx games are gocd models of paricr
games and s2tisfactory approximations < many sther situations.
Maultistage dynamics are suitable for deacriking the manrer in whick
many recak siteations effectively evoclve. That the certrol vectors
must be finite is eminently reasonable.

The polynomial approximation must be justifiec more sub-
jectiveiy. Polynomials are widely used in engineering werk as the
next step beyond simple lincar models for many functions of interest
can be approximated arbitrarily weil by polynomials. Farticularly
when elaborate, aesthetically satisfying models prove insoluble, the
golutions to polynomial mcdels may be important for themseslves
aind for the insight which they provide. It can be expected that

soiutions of polynomial games will have similar utility.
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CHAPIER §

THE SOLUZION OF SEPARASLE STATIC GAMZES

In this ckapter we consider the saluion of gamces for which
Player 1 seiects 2 poinz uw € UcE™, Player ! simuitancously selects
xE€ VCE®, and then Player II pays to Piayer § an amouas defined by
2 function cf the form

v
Jn, v} =Z t %45 r.tn) sj:_y} {¢. 1}

j=0 i=0

Bymzﬁng'tbecoeiﬁdem:z_.fmcﬁansafa state vector z, we will
in Ckapter 5 relate this oroblimm to the multistage garme problem.
We vemark tkat the geame with cayoff /4. 1) is known ic have
2 valge and optimum strategies provided that J(u, ¥} is continuoue,
U and V 2re cicsed and bourded, and mixed strategies defined on an
infirite number of poirts are aliowed. 4{See, for example, Blickwell
and Girshick (6], Chapter 2). The resulits cf this chapter will hav:
the effzct of proving this independently since they essentially demon-
strate the v lue and strategies for the clage of games considered.

4.1 SEPARABLE PAYOFF FUNCTIONS AND THE MOMENT
Kl

Single-stage games with pzyoff functions defined by poly-~
nomiale,

I(u, v) tZa u® v, (4.2)

i=0 j§=

where u and 7 are scalars, are among tle simpiest examples of a
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cenersl class of games with separable payoifs, i.e., payoffs of the
form

3 v
J(u, v) =f: Z aij ri(g_) cj(g) (4. 1)

i=0 j=0

whers= ri(g) and sj(_'g_} are contizuous functions, and where ue¢ U,
ve V, for U and V defined as unit hypercubes of dimension m and n,
respectively.

U = {ujuele. 1], i=1,2,..., miue ET}

n (4.3)
v ={ylvelo,1], i=1,2,..., nive E)

For general polynomial payoffy, in which our ultimate interest lies,
the functicns ri(g) have the form

ki1 52 Em
ri(g) =u; oy eelw T, (4. 4)

wheve the exponents kij are non-n=gative integers; the si(_l_’_) have
analogous forms. The importance of separable payoffs is, as we
shall develop telow, the fact that the problem of detsrmining optimal
mixed strategies may b2 reduced to z problem of finding optimal
vectors in certain coavex sets.

To find solution# to the game with payoff (4.1}, we will
search among the classes of mixed strategies for the contestants.
keeping in mind that pure strategies are special cases of mixed
sirategies. Thus let admissible sirategies for Player I, the maxi-
mizer, consist of all cumulative distribution functions {c.d. {.'s)

defined over the set U, This might also be pictured as the class of
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joint distribution functions for the variables U Uppeees U . Let
F(u) ¢e¢aote an adriissible c.d.f. Similarly, let admissible strategies
for Plaver il, the minimizer, consist of all c.d.i.'s defined on V

and let G{v) be an clement of this class. Then we may compute the

expected value for J(u, v) as

JEF, G) = f f Hu, v) dF(u) dG(y) (4.5)
vu

At this point we use the separability characteristic =f J(u, v) to

rewrite {(4.5) as

| 74
KE Gy Dy / s.(v) dG(w) f;(w) aF(w) (4.6)
i=0 j=0 v o

If we define

=(F) =.[ r.{u) dF(u)

U
(4. 7)
3;(G) -:/‘ 8,(v} 4Giv)
v
then (4. 6) can be rewritten as
v
IF, G) = Z 3;; 73(F) 5,(0) (4. 8)
i=0 j=0

We may crmpress the notation somewhat by defining vector

£(F) = (rg(F), 1) (F), ..., £, (FNT and 5(G) = (801G), ..., 5,(GN)
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and 2 matrix A = {aijf i<0,1,...,4, j=0,1,...,v. so that [4.8) be-

comes
T
JF, G) = £ (F) A 3(G) (4.9)

It is oftea convenient to remcve the explicit dependence on the

c.d.f.'s F(u) and G()_r_) by rewriting {4.9) 2s
_.T
JHr, s}=2" A3 (4. 10)

Let R dencte the set of all vectors r{F) obt.ined as F ranges
over all admiesible cumulative distributicn functions on U, and let
S similarly denote the set of all g(G}. Since _r_(I") and 1({211 are
moments of their respective ¢.d.f.'s wken the functions r.(u) ard
sj(g_} are terms of polynomials, for the more gensral separable
games it is useful to think of the functions as gereralized moments
and we shall often refer to them as such. By extension, R and S
are called the generalized moment sets for Players 1 and Ii,
respectively.

The importance of these transformaticns is that choosing a
c.d.f. turns out to be 2quivalent to choosing generalized moments
for a competitor. Thus our eventual problem, finding I-‘o(g_) and

G°(v) such that
IF, c°) % JF°, G°) = J(F° G) (4.11)

where F and G are arbitrary admissiole c.d.f.’s is equivalen?

to finding _1;0 2nd 10 such that
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Iz, s 3(=°, 5%y = 3(:°, 8) (4.12)

for all r € R and s € S, and then finding distributions corresponding

tc the optimal _r:',o and 50, provided, of course, that the saddlepoints

{4.11) and (4.12) exist. This transformation of the problem is a key
step on the path to solution cf our separable games even though it is

little more than a change of variable.

4.2 ADMISSIBLE MOMENTS-THE SETS R AND 3

The search for the saddlepoint implied by (4.12) requires that
the sets R and S of admissible generalized moments be carefully
characterized. They are by definition the sets of all moments gen-
erated by the classes of all cumulative probability diastributions
defined on the hypercubes U and V, respectively, The theorem of this
section allows a simpler and more meaningful characterization of
the sets, and is a generalization of a theorem of Dresher, Karlin,
and.Shapley [38]. We consider the set R and note that analogous
results may be obtained for S.

The following well-known lemma is necessary for the proof
of the th.2orem and is also used repcatedly in later sections. A

proof is given by Karlin [40].

Lemma A: If (X] is the convex hull of an arbitrary set X
in n-space, then every point of [X] may be
represented as a convex combination of a most
n+l points of X. Furthermore, if X is con-

nected, then at most n points ars needed.
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In many applications of this lemma we are particularly inter-
ested in the fact that a finite convex representation of a point of the
convex hull of a set is possible with the dimension of the repre-
sentation being of secondary importance.

We return to our development of a characterization of the set
R by definin‘g the set CR as the surface represented parametrically

as a transformation via the functions ri(p.) of all points in U, that

is,

Cp = {xlxe B, A teUdx = £(t)) (4.13)

With this set defined, we may proceed to the following theorem
for which the proof is nearly identical to that for a less compre-

hensive theorem given by Karlin [40].

Theorem 4.1, The set R is the convex hull of the set CR
defined by equation (4. 13).

Proof: Let D be the convex huill of CR' Then we must
prove that R = D.
(i) We prove first that R C D. Assume the
contrary. Then there exists 3_°€ R such that
_z;ol D. Now D is the convex hull of the con-
tinucus mapping of the closed convex set U,
and therefore D is itself closed and convex.
But then there must be a hyperplane with normal

vector h, which strictly separates _z;o from D,

i.e.,
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h'r® - b r(u)26>0 foralluel (4.14)

Since £o€ R, there exists a c¢.d.f. Fo(g_) such that

f};(g) dFo(g) = £° (4.15)
U
If we average (4.14) using this distribution, we

find

bz / dF°(u) - B* / x(w) dF°()

U U
(4.16)

=n % .n02 Gdeo(_t_x_) =5>0
6)
which is clearly contradictory. Therefore, RCD.

(ii) To prove D C R, we choose an arbitrary
£°€ D and demonstrate a c.d.f. for which the
generalized moments are _r_°. From Lemma A,
since D is by definitiun the convex hull of CR’ we
know that _r_° can be represented as a finite convex
combination of points of CR’ each of which is an

image of a point of U. Thus

2
il ;=0
o]
z =Z°‘i-r-(l‘-i" yev i=1,...,040  (4.17)
i1
atl
& ge1
iz1 3
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Now let I (u) represent the degenerate c.d.f. such

that,for x¢€ u,

(4.18)
dli(g) =
U
and define
B+l
Fow) =) ot (w), (419}
=1 3

where the ari and y; are those determined in (4.17).

Then it follows tha¢

+1
ﬁ'_(g} dF°(u) = iaig(gi) =z, (4. 20)

U i=1

Hence the c.d.f. Fo(g_) yields £o and DC R. Comn-
bining this with the result of part (i), we have
R = D as required.

An immediate corollary of this is the theorem of Dresher,
st al [ 38], which was concerned as was the rest of their work, with
scalar controls u and v for the competitors.

Corollary
4,1-1: When the control space U is one-dimensional,
then R is the convex hull of the curve CR whose

parametric representation is r = {f_(t)} forte(0,1].
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Under some circumstances the general formulation of Cr
given by (4. 13) can be simplified. The set U can aiways be written

as the cartesian product of smaller hypercubes. Suppose

Uzl.’lez 4.21)

where U1 is ml-dimensiona.l, UZ is mz-dimensionai, and m1+m2=m;

and assume that the functions ri(p.), i=0,1,...,i, are such that if we

write
4
v= e Ul,ng UZ’ (4. 22)
u,
then

ri(_\i) s ri(}‘-}.) i=0,1,... By

(4.23)
ri(g) = ri(gz) i=yl+l, cooold
Then if we define the surfaces
u1+1
C = {xIx¢E » X; = r;lt) for some t ¢ Ul}
(4., 24)

C ={x‘x€E“-“l X, = ‘t) for some t ¢ U,}
2 — — ' i “l+u“. haned 2

i

and let Rl' Rz be the sets of genernlized moments corresponding to

the first and second of (4.23), we have the following useful theorem:

Theorem 4.2: If there exists a decomposition of U such that
(4. 23) holds, then CR = C5 x C, and R = Rl xR,

for Cl’ Cz defined by (4. 24).
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Proof: The first statement follows directly from the
definitions of CR' Cl, and CZ' The second

statement is an immediate result of the fact that

R, R}.’ and R2 are convex hulls of CR’ Cl’ and

CZ' respectively, as is seen by using their

definitions along with Theorem 4.1.

This simple theorem is particularly useful when the functions
ri(g) each depend upon only one component of u, which we refer to
as a situation with uncoupled controls and which is often useful as
an approximation in engineering applications. Under these circum-

stances we may order the functions so that

ri(_g) = ri(ul) i=0,1,.. colby

ri(ﬁ) = ri(uz) i=ul+l, cooaby

) (4.25)
ri(p_) = ri(um) i=ym_1+1. cosalh
Then by defining
ﬂ1+l
c, = {x|xcE » x, = 1,(t) telo,1]}
4. 26
- (alxemd L, s o
Cj = {x|x¢E ) % = r“j+i(t), te [0,
j=2,3,....m

and letting Ri be the convex hull of Ci for i=1,2,..., m, we have

the following corollary:

42

iy
A=

D




¥ e A e o o S e Ak DR A RN = P OMBTI AN FIg R ¢ o W S e C

et

B R T N A xR WP Y e

ALYy

Corollazy
4,2-1: If the controls u, are uncoupled, thern the surface

CR is the cartesian product of the curves Ci’
and R is the cartesian product of the convex

hulls Ri of Ci' i=1,2,...,m, that is

CR=C1xC2xC3x...me
(4.27)

R=B,lxR2xR3x...me

Proof: The corollary follows from repeated application

of Theorem 4. 2.

Note that theorem 4.2 and its corollary are not trivially true;
a general parameterized surface cannot always be represented as a

product of parameterized subsurfaces.

4.3 SOLUTIONS-THE METHOD OF CONVEX CONES

At this point we are ready to proceed with the development
of solutions tc our problem. We shall follow Dresher, et al, L38]
for the early development and theorems 4.3 and 4. 4. The key
result of this section is thenrem 4. 5.

Let us briefly review our results so far. We have found that
the problem of finding a saddlepoint in mixed strategies for J(u, v)
as given by (4.1) can be transformed to the problem of finding a
saddlepoint in the generalized moments r and s for the function
-r_TA_g_ where r€ R and 8¢S, Furthermore, we have found that R is
the convex hull of the set CR defined parametrically by r(u) as u

ranges over U and that S is the convex hull of an analogcusly defined
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set CS’ The definitions of R and S imply that they are comgact
and convex.
Rather than augment the sets R and S, we shali make the

convenient assumption that the functions ri(g) and ai(_y’) are guch

that
rolu) = 1
(4. 28)
sylv) =1

80 that i re R, thenr_ =1 and if BE S then sa = i. Also we dafine

0
the sets S¢ S and RC R as the projected sets §= {_§_I_§_e E,

Si = 8, i=1,2,...,v for some g€ S} and R = {zlte B, 'i'i =z,
i=1,2,...,4 for some e R}. These notational conveniences are
useful when considering convex conee and support hyperplanes and

clearly lead to no loss of generality in our problem definition.

We begin the solution by defining the convex cones

Pp = {zlze B, r = Ax for some A20 and x€ R}
(4. 29)

€ Ev+l

Pg = {si » 8 =)y for some A20 and ye S}

Geometrically, these are cones with vertices at the origin, and
with cross-sections R and § at ro=1, so=l, respectively. Associated

with these cones are the dual cones defined by

P ={r|r€E#+1, Tea 0 for all xe P}
5 Lnir X x€Pp

|

(4. 30)

Pg = lslsc B, sTy 2 0for all ye P,
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Noteﬂnl?ﬁitadosc&ccavucou. and&hzz_gt?%isa
boandary point of P} only if there exists xe R such that ' x = 0.
Aralogocs scutements beld for Pg.

The relationsaips of the cones and Izal cones are worth
amplifying. Since PR is a convex cone with vertex at the origin,
if £° is ar: element of its boundary, then there will exist a hyperplane
of suopozt Hto Py at 1 which sontains the origin. Hence,

E={xik’ x=0, ze# *13 for an appropriate h° suck that

0" o
B r =0

{4.31

"o

oT
- _r_Z 0, £€P

R

The representation _1_:_° of H tkus beloags to Pﬁ, and in fact it can be
skown to be a boundary point of—Pﬁ. Equations (4. 31} also hold if
£°€ R 2nd re€ R, provided that ornly support hyperplanes H to R which
pass through the origin are considered. in fact, a little reflection
reveals that H car ke generated in joul by using support hyperplanes
to R which are rot constrained to pass through the origin, a fact
which follows from the definition of R. Therefore, support
hyperpianes to R are closelv related to tne support hyperplancs of
R and of PR, a useiul promerty which is exploited in later sections.
Furthermore, since (Pﬁ)* = PR’ as ig easily shown, the support
kyperplanes of Pﬁ correspond to boundary points of PR and,
ultimately, of R and of R. The situation for S and Pg is, of course,

analogous.
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Assume that it is known that the valuc of the geame under

corsideration is zers, that is

i max 7
mo = T4y 0 .
Define the set
5A, R) = (slse 2%, sz aTrfor seme re R}l (4.33)

which is the image under the l'inear transformation represented by
the matrix AT of the et R.

The following two theorams were criginally due to Dresher,
et al, 138] and are fundamental to our theory. Brief proofs are
given because they help illustrate the interrelationships of the gets.

The proofs are basically due to Karlin [40].

Theorem 4.3: For the game of value zero, if R® denotes the set
of optimal strategies for the maximizing player,

then

S(A, R%) = S{4, R)N F} {4, 34j

Furthermore, S(A, R) does not overlap Pg in its

interior.

Proof: Assume to the contrary that the two sets overlap.
T
Then there exists 3'_06 R such that _z_:o Asz2¢E>0
for all s€ S, implying that the game hze a value

of at least 6, a contradiction. Thus the second
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statermecs is eﬁz&ish&.
Sinse optimal stratcgies exisz, B° i3 =of

empty. Le!_r_ctaoc R, and rote thas optixaliny
implies _r_OTAik 9 for 2l €S, so tkat ?_‘1’50‘ ?§.
Thss Sla, R)) CSA. RIGPE

Conversely, Al’ﬁc( Pg for some _r_oc R iz=piles

-—

3
1% As2 @forall 2€5, which gives r¢ R°. Tkers-

R AR

o

fore, S(A, R%) O 5{A, R} Pg. 22d the proof is

comp:ete.

e K k},\\"w‘;‘.

= Theorem 4.4: Tke separating planes of 5{A, R}and PZarein

one-to-ore correspondence with the optimat strate-

TR

gies for the rrinimizing player.

AL ‘."4“"\

Proof: Let S° be the set of optimal strategies for the

0o,

als = T,k o
minimizer. For zny io‘ s°, we have r’A_s. <0

e

for auitxandETioz 9 for a.ll_i_z_( P§. Thus ﬁo

[y

represents a separating hyperplane.

N N

Conversely, cince S{A, R) and P§ are in

R e
'n;,'.‘

n

contact, any separat’'ng hyperplane must be 2 support

ES

hyperplane to both. Let s* represent such a hyper-

plane. Then .r_TA_s_* £ 0 for alt r€ R, and 'ET_g* 20

(

“..s' R W
e

P

for all he Pg. The latter fact implies s*€ PS so that

TR e
e
i

by suitable scaling we may take g*€ S. But this
- together with LTA 8% < 0 gives that s¥e¢ s°, and the

procf is finished.

In general, of course, a game will have a non-~ero value
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. min rax
w= 2€S reR= A' (€. 35)

Define 2 vectoz 22 %) suchthaz ¢, =@, anda, = 0, 5=1.2,....0.
Mcdify the set (4. 33) by Jefining 2 new set

SiA. R, o}={3}p_¢£yﬂ, _s_=AT_1:-gfe: some r€R

(4. 36)
and ¢y =@, & =0, §=3,2,....¥08

T::e foliowing theorem is fundamental for our solution
methods.

Theorem 4. &: Forthezamei“r‘a_-_. T€R and 8 S, the value
w is determined by

w = max {@{ PEN S(A, R. ¢) # ¢} (4. 37;
where § is the expty set.
Proof: We note that the parameter ¢ has the effect of

o—axzs.

Becaure Ty = 1 for r€ R, this same effect may be

translatirg the set S(A, R) parallel to the s

had by modifying the a, . elemert of the matr.x A.

00
Let us do so, creating the matrix A,

a.€cA
ij
= [aiJ i x..} (4. 38)
faa i=j=9
Qa,. =
i 0 Othezwise
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so tEa2

Hmw:siéez:&e‘amécﬁneébyﬁ.c, R, ard S,
we find, sizcesﬁ=l£otits. tkat

mir max T

_minmzx T
seSreRE Al  gesren (4. 20}

As-2=w-a
From this equation, our proof follows readily. K
@> w, then tze vaive of the game with matrix 4
is negative, implyiny that there exists 3_96 S suck

that_{TAa_s_°< OforallitR. Since Eei’gmems

-
h‘_s_l g, itmustbethatAgi( ngorall_r_cR, or

2quivaizntly that PE NS{A, R, a)=2.

On the other hand, &« S w implies that the game
(4. 40} hz3 a non-negative value., Thus there wili
exist _rfe R such that £° Aag_z 0 for all s€S. This
implies AL :°€ P4, =0 that PENS(A, R, a) # 4.
Therefore, w is the largest value of & such that the

interscection is non-empty.

Trom (4.40) we see that as a result of our notation the game
witk matrix Aw has value zerc. Theorems (4. 3) and (4. 4) can be
used to determine tke optimum strategy sets R? and S° for this
game, and since w is a simple translation of the zet S(Aw, R),
for the original game with matrix A. The three theorems form,

therefore, the foundation of a solution technique: t(ranslate
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SIA, R} eatil it shares only boundary poirts with Pg. Then the
points of intersection deiermine R°, the amount of transiation is
the valze of the game, ard the separating hyperglanes define s°.

4.4 GEOMETRIC AND ALGEBRAIC CONSIDERATIONS FOG.!
SPA

We have zow established the esserce of a solution technique
for tke problem of finding 2 saddlepoint in mixed strategies of the
mean of the payoff J{u, v} in equation (4.1). Inthe remainder of
this chapter are discussed some of the important considerations
in applying the method, including algebraic and geometric descrip-
tions of some of the sets, numerical approximations to solutions,
and actual generation of the required probability distribution
functions. Of necessity many of the results concern special cases
for, as we shali see, characterization of the general problem is
often difficult.

in this section we develop more detailed descriptions of the
sets K and Pﬁ. As usuxl, analogous results hold for S and P§.
Altkough we consider mostly special polynomial cases and, in
fact, show the difficulty of applying our methods to more general
problems, we must remember that Theorem 4.1 is true in gen-
eral and can always be applied to generate R and that Pi can be
developed directly from its definition, equation (4. 30). We continue
to assume that ry = 1.

Let us first consider the set R under the condition that uis

one-dimensional and

r,(u) = W i=0,1,....4 (4. 41)

50

o~

.
71




This corrzaponds to a scalar control for the maximizer, and was

{ : considered by Karlin and Shapiey [41], whose development we follow.
)
’ For convenience define vectors ij
2 .3 T
. g =0 g 8t ), gelon] (4. 42)
z ' J J
and note that CR is the set of all such vectora. Assume go belongs
to the houndary of R, and let y._o represent a support hyperplane to
é‘ t R at 20‘ Then
: T 1
P 9 E0 S_-O =0 £0 = )
. - r (4. 43)
. 8 _1_1_0 rz0 for all re R

wili hold for this _l_x_o. But by Lemma A,

+1
(¢}
I3 =E o, t, (4. 44)
h B §

+1
for suitable_gie CR’ where | @ = 1 and o, 20, i=1,2,...,4+1,

Substituting (4. 44) into (4. 43)

+1 OT
a.h” t. =0 (4. 45)
1 - -l

h® t =0 (4. 46)
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aince_gje CRC R implies l_x.o -Ej 2 0 for 21l j. Therefore, we may

state that all points L which appear nontrivially (ozi > 0) in the rep-
resentation of £o also lie in the hyperplane represented by 31_0.
Furthermore, all points r which belong to the boundary of R and
which are convex combinations of points _Ei , i=1,2,...,k, for some

k = 41 lie in the hyperplane defined by
r° t.=0 j=1,2,...,k (4.47)

With the above basic facts established, we proceed to develop

a representation for Eo. The requirement on _110 represented by

(4. 43) implies that

r® tz20 (4. 48)

for all te[0,1]. This is a polynomial in t by definition of t, and
the inequality implies that any root of the polynomial on the open
interval (0, 1) must be a double root. Thus there can be at most
[g-] zeros of (4.48) in (0, 1), where [x] is the largest integer less
than or equal to x. The roots corresponding to t=0 and t=1, if any,
may be single roots.

We notice that we may confine our attention to hyperrlanes
for which (4. 48) has exactly 4 zeros in [0,1]. This follows from
the observation that, for exainple, a boundary point r withrepre-
sentation in terms of points Lo i=1,2,...,k< [-“T] can be repre-
sented in terms cf points t,, iz1,2,..., [-g-] when the additional

points are given weightings ¢, =0, izk+l,..., [ -g—] . This is
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equivalent to selecting a particular support hyperplane when there
is not a unique support hyperplane. Thus we come to two cases,

depending upon whether g is odd or even.

Case 1: i even. The hyperplanes of interest will have
either (a) -g— distinct roots in (0, 1) or will have
(b) JZ" - 1 distinct roots in (0, 1) plus single roots
of t=0 and t=1. Therefore, the hyperplane will

have elements implied by

m

2
(a) hlt=q I (t-t.)z a>0
(4. 49)
L.
T 2 2
(b) _kl_t_=at(l-t).n (t-tj) a>0

j=1

which result from simply writing out the polynomials

in different form.

Case 2: i odd. The hyperplanes of interest have -%—1—
distinct roots of (4. 48) in (0, 1) plus either (a) a
single root at t=0 or (b) a single root at t=1. The

elements of h will be implied by

e_é_],‘

(a) hit=at 1 (t-t.)2 a>0
at 1 ;
J
(4.50)
=
T

(b) hlit=g(l-t) M (t-t)%2 @>0
bt i i
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In either Case 1 or Case 2, the elements of h may be found in
terms of the roots -t-j by simply matching coefficients. Ther=fore,
b may be found explicitly in terms of a s.t of parameters. For a
given i, then we may find all support hyperplanes to R by con-
sidering both type {a) and type (bj hyperplanes and allowing the
roots tj to vary over {0,1)., We shall find occasion to refer to the
type (a) and (b) hyperplanes as lower and upper support hyperplanes,
respectively., As a memory aid, we note that upper supports always
have a single root at t=1.

To clarify the ideas developed so far, we present a simple

example. Suppose 4=2, sc that CR = { Ito =1, tp =t t, = tz;

t€[0,1]} and R is the convex hull of C,,. Then for any h, either

Ro

hlt = gt - tl)" t €(0,1)

or

hlt = at(l - t)

These equations imply lower support planes of the form

2
8!
h=a |[-2t tle(o,l), a>0
1
and upper planes of the form
0

h=a 1 a> 0

.,
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We may now use our knowledge of the support hyperplanes
to characterize R in ../0 ways. First, since R is convex, it is
determined by the intersection of the half-space defined by its
support hyperplanes. Thus we may determine if a candidate point

r belongs to R by checking whether

T -
.‘3,-,,“" 0; t; t t[%])_{z 0 all tie(o, 1)

(4.51)

To: 0: 1
bW 0515ty ty, ity )220 allte(0,1)

where ha and l_xb are the explicit representations ot the relevant
lower and upper support planes in terms of the parameters t.
and k(g) = [%] for i odd and k(i) =% - 1 for 4 even, This inter-

pretation is exploited in the next sectior.

Second, and perhaps more important, the development of the

representation of h suggests what the boundary of R looks like.
Examination of the arguments indicates that R will have a lower
surface consisting of all convex combinations of all sets of exactly
[£] pointe t, te(0,1) and, if  is odd, the pointt for t=0. Also, R
will have an upper surface consisting of all convex combinations of
the point t=1, k(4) points gencrated by t in (0,1), and, if 4 is even,
the point generated by t=0. Thus if 4=2, R has lower boundary
defined by points t, t€(0, 1), and uprer boundary defined by all
points on the line segment from (1 ¢ 0)'r to (L 1 l)T. If =3, R
has lower boundary defined by all pcints on the line segments from
2 t3)T

segments from (1 1 1 l)T to(l t ¢t

(1L oo 07 to (1 tt¢ and upper boundary defined by line

2 t3)T.
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The above discussion is easily extended to the case of
uncoupled controls, equation (4.25), since by the use of Corollary
4,2-1 it is known that R is a cartesian product of sets Ri‘ Thus if
each function r has the form

k

rw=ut ez (4.52)

for some admissible in‘e2gers j and kij> 0, and if we then order
these functions in increasing j and for each j order the functions

in increasing kij' then each Rj will, except for the constant term
implied by ro=1, be like the set R for the scalar contrel considered

above. Explicitly we define

A “‘ 3
R; = {x|xeE ) x, =¥, i=1,2,.... 0y tel0,1]] (4. 53)

sr%that we have R= {1} x R; x R, x...xR_ and, by implication,
E “j = p. (This latter assumption is made without loss of
j=1

generality, since the payoff may be augmented t¢ make it true. )

Then it is easy to show that he E“H‘ such thaté supports ﬁ.

hTr2z0 allreR
ET_EO =0 some ¢ R

implies, for j=1,2,..., m and proper choice of h0 '
J

h +hir 20 all r.€R,
OJ- =j = ! N
h, +hir®=0 % R,
OJ- = =j =j
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Im
Hence, the hyperplane must support each cf the sets f{j individually.
Thus the character of each of the sets Rj is established, as is the
character and potential parameterization of the suppert hyperplanes.

Of particular interest is the fact that each ﬁj has an upper
and a lower surface, and therefore we may think of R as having 2™
surfaces and of there being 2™ types of hyperplanes supporting R.
Each surface and each hyperplane type can be explicitly generated
by choosing ar upper or lower surface and the corresponding hyper-
plane set for each ﬁj’ j=1,2,...,m, for each combination of "upper"
and "lower. "

The construction of R when the contrcls are coupled does not
appear to be amenable to analysis of the type used above. A pair

of simple examples will help illustrate the difficulties. For

example, let

r(u) = u,€l0,1], i=1,2 (4. 54)
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Then, as sketched in Figure 4-1 for the cross-cection rg = i, we

find that R is the polygon with vertices

=) r e =
1 1 1
0 i ¢ 1
s » ’ (4. 55)
0 0 1 1
DOJ .OJ ’04 }J

where CR is the surface given parametricaily by

1
¢
1
. t.el0,1], i=1,2 {4. 56)
1
2
t,t
172
For example 2, ‘et
po 1 -
uy
rfu)= | , v elo, 1], i=1,2 (4. 57)
2
1%

Then, as sketched in Figure 4-2, CR is given paramatrically by
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Figuie 4-1. The sets CR {above) and ﬁ {below) for Example 1.
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(4. 58)

and the surfaces of R are (2) the surface CR’ and portions of the
planes (b) ry = 0, (c) r = 1, (d) r, = 1, (#) ryptr,-r;= 1.

In comparing examples 1 and 2, we see first that CR is not
necessarily a boundary surface of R, although it may be. Further-
more, the examples do not even have the same number of sets of
support planes, since Example ] has four sets and Example 2 has
five sets.

Because of the apparent lack of common properties in the
two eéxamples, it appears likely that construction of R must usually
be done on a case by case basis using Theorem 4.1. Naturally,
other important special cases besides those of scalar and uncoupled
controls which we have discussed may be characterizable.

At this point we turn from the set R to the dual cone Pi.
Since it is the boundary of the dual cone which is of importance
for problem solutions (Theorem 4. 3), we shall be particularly
concerned with generating that boundary. We establish the following

theorem as being particularly useful in this regard.

Theorem 4.6: The dual cone Pﬁ may be generated using

the surface CR’ that is,

Pﬁ = {il?_{TX_Z 0 for all ye CR} (4. 59)
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Proof:

Let R be the convex Imil of CR and let Pﬁ be the

dual cone corresponding to the cone PR gererated oy

R. Let P; denote the set defined by ihe right hand

side of {4.59). ben we must prove that Pﬁ = P:

Siace CRC'PR’ it is clear that the definition of P:

is less restrictive than that of P§ go that Pﬁc P:.
Conversely, let ke P:. By Lemma A any

point _x_'_oc R may be represented by a finite convex

combination of puints x5 of CR’ i.e.,
k k
o E : Z
s = x. r. . =1 x.>0
~ i—i i i
i=1 i=1

for some integer k £ +l. Furithermore, any point
x€ PR may be represented as a non-negative scalar
muitiple of some point 5_06 R, x= A£°. Thus for

arbitrary xe€ PR we have for he Pg,

k

T _,.T o_ T

h"x=Ah" ¢ -AZ l;aill' ) (4. 60)
i=

Since X and o, are non-negative, and b_T 12 0

becauea he P* and r, € C,, by definition, equation
- T C ~i~ "R

(4. 60) ie non-negative. Therefore P*C P} and

our proof is complete.
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P Use of this theorem leads to a general tecknique for gon-
i [ erating Pﬁ. ore that will be used for the 2nalogous set Pg in the
1 next section. For each point re CR' we may generate 2 talf-space

. Hir) = {xlxe E¥*L, xT r2 0} (4. 61)

The intersection of &ll suck kali-spaces constitutes the set Pﬁ’ The

boundary of Pi can consist orly of points x for which g_:_r =0 for

: at least one re CR’ although the existence of such an r does not
r ‘ guarantee tkat x is 2 boundary point. The generation of Pﬁ oy
| this approach can obviously be tedious.
( ; ! ‘ For the special case of polynomials and scalar coxtrols,

we are atle to say slightly more about Pﬁ. In this case, we

o Ag g

are working with polynomials

S —
It
L)

T

Gty g v B Y% Y

h"tz0 (4. 62)
;2 2 m v, . .
2 where t = (1 tt...t) b since C‘l is defined by the vectors t,
'y =
. and where he Pi. To be on tke boundary of Pﬁ, a vector h
% muyt have a corresponding L such that
i
{
D e BTt =0 (4.63)
{ However, since (4.62) must hold for all t for a given h, it follows
¥
: that if t, € (0, 1),
¥
B
(a) Znly, =0 (4. 64)
t - = -—-=th

~
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(b) & .1 ¢l =zo0 (4. 64)
@l = Ty
As we shall aee in later cections, the relationships (4.63) and (4. 64a)
can be used to find h in terms of te€ (0, 1) foxr some regions of Pﬁ. The

usaal extensions to include end points t = 0 and t = 1, and to ccasider

4

uncoupled controls using cartesian products may be made.
“7e remark that since »oints of the boundary of Pﬁ correspond

to support hyperplanes, the discussion at the beginning of this section

()

concerning suppo.t hyperplanes for R can in principle be used to find
Pﬁ. However, considerable additiona! work is needed because that
discussion did not use all support hyperplanes when a cheice was pos-
sible. The unused planes were unneeded for defining R, but are
essential for defining Pﬁ. Therefsre the method outlined here appears
preferable operationally. Theorems related to extending the hyper-
plane approach for scalar controle may be found in Shapley and Karlin
[41].

4.5 NUMERICAL SCLUTIONS AND AN APPROXIMATION

Actual solution of problems of the type considered here is

difficult at best. Dresher, Karlin, and Shapley { 38] suggest a formu-
lation in which a set of nonlinear equations are to be solved, and
Dreshes and Karlin { 54) and Karlin [40] propose a type of fixed-point
mapping. Both methods can be exceedingly tedious algebraically even
for modest problems, and numerical approximation does not appear to )
be straightforward.

Any two-person zero-sum static game may be approximated

and solved numerically by restraining the players to finite control t
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sets {9-1' Uyseens p_e} ard {Xl’ Voreees g{}. computing the payoff

bij resulting from the use of u by the maximizer and -Y-j by the
minimizer, and then solving the matzix game B = [bij} for mixtures
of the given contzcls. This brute-force approach tends to obscure
any subtleties in the interactions of the players and to be difficult

to interpret relative to the given problem. Its sole advantage is

its generality.

An alternative solution method, amenable to both numerical
approximation and analytic interpretation, may be developed based
upon: Theorem 4.5. Infact, that theorem implies that we may solve
our game problem by solving the following mathematical program-

ming problem:

Problem: Find the maximum value of the parameter &
for which there exists a vector re R such that (4. 65)

Ay € P§, where A, is defined by (4. 38).

The resulting maximum value of & is the value w of the game by

T

Theorem 4.5, the set R° C R of all vectors £° such that Aw

_1;06 Pg
represents the optimal strategics for the maximizer by Theorem 4. 3,
and separating hyperplanes of P§ and S(A, R- w) (See Equation 4. 36)
yield the optimal strategy set s° for the minimizer by Theorem 4.4.
For simple problems the constrained maximization problem
(4. 65) may be solved fairly directly, as is demonstrated in the ex-
amples of Chapter 6. For more complicated problems the maxi-

mization becomes difficult to visualize geometricaliy and difficult

to manipulate algebraically. Approximation, however, is straight-
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forward, for since the sets R and Pg are convex, they may be
approximated by a convex polyhedron and a convex polyhedral cone,
respectively, to any desired accuracy; then the constraining sets are
polyhedral, and problem (4. 65) may be solved as a linear program-
ming problem. This discrete approximation and use of linear pro-
gramming is the essence of the method which is discussed in some
detail in the remainder of this section. One of the examples in Chap-

ter 6 helps illustrate the concepts.

We begin by demc:\str'ating the nature of the linear program-
ming approximation to our problem. Let R be a convex polyhedror
and let Fg be a convex polyhedral cone. Then the requirement ye¢ R
can be expressed by the requirement that r satisfy the linear inequal-
ities.

';T
-4 R

for some finite NR and suitable vectors E_i; similarly g€ Fg can

20  i=1,2,...N (4. 66)

be expressed by

~T -
5, 820  i=1,2,...,Ng (4. 67)

for a finite integec NS and suitable Ei’ Note that we have used our
convention Ty = 1, ;10 = 1. Using these representations and the
definition of A, We may approximate problem (4. 65) by the linear

programming problem:

max o
o, r

subject to the constraints

(4. 68)

T rz0  isl,2,...,Np
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fA'é_’i-azo i=1,2,...,Ng (4. 68)

This approximation applies to general separable games of
the form {4.1), since no specia! nroperties of the sets P and P§
have been utilized.

Creating suitable approximations to R and to Pg turns out
to be straightforward, as each can be handled in either of two ways.
By Theorem 4.1, R is the convex hull of the surface CR' If a finite
number of points £j€ CR are chosen, then R may be formed as the
convex hull of those points, and the Ei are then the representations
of the hyperplanes defining R. Under these circumstances R C R,
so that an _x_'_o which is a solution to (4. 68) is an admissible moment
vector for the maximizer. The value G° may, depending upon 15§ ,
tend to underestimate the value w of the original game.

Forming a convex hull of a given set of points and then
finding the defining hyperpianes can be very tedious. If the support
hyperplanes of R are known parametricaily, as discussed in
Section 4. 4, then the 3-1 for equation {4, 68) may be taken as realiza-
tions of those hyperplanes for a finite number of parameter choices.
By implication R will then be the intersection of the half-spaces
defined by those hyperplanes and thus Rc R. This approximation,
while easv to generate, tends to overestimate w, and it may also
produce an optimal strategy vector _z:_oi R. This latter eventuality
requires an additional solution step in order to find r¥ e _g_o, r*eR.
Note that the vectors Ei’ i=1,2,..., NR’ represent support hyper-

planes to R whether the approximation to R is internal or external.
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This will be useful in establishing optimal c.d.f{.'s,as is shown
in Section 4. 6.

If the boundary points of Pg are known explicitly, then by
forming the convex cone of a finite set of those points and deter-
mining the support planes Ej' we may generate an approximation
Pfc P4 Because of the nature of the interaction of P§ and R,

w may be underestimated when problem (4. 68) is solved. Also,
although the support planes s of Pg belong to S, the support planes
Ej of P§ may not have this property.

An alternative method of creating Fg is both simpler and
occasionally more useful than the method above. For the purposes
of solvi.g the linear programming problem, we are interested only
in the support planes to ﬁg. From Theorem 4. 6, the boundary of
P§ may be obtained using only the set CS. Therefore, we may

define a boundary of ?g using a finite set of pointas of C_; i.e., pick

S
3.¢€ Cgr J=1.2,.. ., Ng for use in (4. 68). This yields PXC Fg and

J
a possibly overestimated value w. Since Eje S and Ej supports
?g. if it also supports S(A, R, w) it will be an approximate optimal
strategy for the minimizer.

Because approximations to R and P§ are reasonably gener-
ated and because the game problem may be reduced to a maximation
problem, linear programming is clearly a useful tool for approxi-
mating the value of a game and the optimum moments for the
maximizing player. The strategies for the minimizer, which

caonnot in general be read off from the solution of (4. 68) because

they correspond to separating hyperplanes rather than points, can

68

Y

)

™

L)

e




e

be found simply by taking the negative of the original game, so that
the minimizer becomes the maximizer. Errors due to approxi-
mation can of course be reduced using sophisticated computer
programming, fine granularity in the approximations, iterative
techniques, and special problem characteristics.

4.6 COMPUTING THE CUMULATIVE DISTRIBUTION FUNCTIONS

The method of dual cones can of course be used to find
saddlepoint solutions for given general problems with payoff £T As,
where r and s belong to compact convex sets R and S, respectively,
but ordinarily such problems are intermediate steps to solving
problems with payoff J(u, y_) of the form (4.1), that is with separable
payoff. For these problems it is ultimately desired that optimal
cumulative distribution functions (c.d.f.'s) Fo(g_) and GO(_Y_) be
found for the maximizer and minimizer. In this section we consider

the problem of finding the function FO(B_) corresponding to a given

. *€R, with the understanding that the situation for GO(X) and s€ 3 is

analogous.
The fundamental relationship between r and F(u) is given by

equation (4. 7), which in vector form is

x(F) =/_r_(g) dF(u) (4.7)
U
where 5_(3) results from the defining cost function

J(y, v} = _r.T(y_) A s(v) (4.1)
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As in Section 4.2, letl o(y._) denote the degenerate distribution
u
(4. 18) for which the entire probability mass is concentrated at 30,

so that
I uzy’
I ol = (4. 69)
- 0 otherwise

where the vector inequality denotes element by element inequality.

This distribution has the property, if Uis an open set in U,

0 w¢Tcu
fdl ) = (4.70)
- 2 o =
U l 1 ueucu

Then if F(}_l_) is a pure strategy concentrated at 2_06 U, i.e., if

F(u) =1 o(_tl), we have from (4. 7) that
u

x(F) = x(u°) (4. 71)

Therefore, as can be secen by reviewing the definition {4.13) of the

set CR’ a pure strategy gcnerates a point of C Furthermore, a

R'
point _r_oe CR must have at least one inverse point _\_1_06 U, implying

that there is a }_1_0 such that the pure strategy I 0(3_) generates _z:_o.
u
Ag stated by Lemma A and used in the proof of Theorem 4.1,

any point _z_'_°€ R may be written

}H’l [-H‘l
o _ -
_r_ -Z ai "I:'('Ei) ai >3 O» ai - 1 (4. 17)
i=1 i=
i weU i=]
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and this £° will correspond toc a c¢.d.f.

Fo=) ol (4.19)

1=1 -

Therefore, any point loe R may be generated using a c.d.f. which
is a finite convex combination of pure strategies. This rather
surprising fact is the basis for finding c.d.f.'s, for a general
method, given £°€ R as a result of the method of dual cecnes, is to
find 2 convex representation for _1;0 in terms of points I € CR’
i=1,2,...,k $ g+l, and then "invert" the functions _x;(.\_x_) to find the
corresponding pure strategies U i=1,2,...,k. The pure strategy
set u,, i=1,2,...,kfor a c.d.f. is then the spectrum of that c.d.f.
Finding a convex representation of £o and then inverting the
functions r(u) may be very difficult for some probiems, and it is
then necegsary to try a more direct approach. For example, one
might attempt to find the spectrum { u } and weightings {ai} as the

solution of a programming problem of the type

min || £° -g o, _l_‘.(g_i)uz

i=1
E—i’ ai i=1' 2’ . “+1
subject tc cornstraints (4. 72)
+1
o = !
i=1
aii?- 0 i=1,2, ..., ptl (Cont'd)
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B ey i=1,2,..., g+l (2. 72}

(i.e., u € fo,11],
j=1,2,.2.,m)

where the minimum distance is of course zero.
If the functions r(u) can be inverted, the geperal approach
may be appropriate. The critical part of that approach is to find

the spectrum {_t_x‘ 1 or the equivalent points 1€ Co. Tae weightza,

R!
are relatively easy to generate since they appear linearly and must

be a solution of

or {4.73)

For the special case of scalar controls and polynomial payoifs,

Karlin and Shapley [ 41] show that when
i .
ri(u)-—'u i=l,2,..., 4

and a point _:E_oe R is given, the spectrum of _x_'_o is given by the roots
of the poiynomial functions generated by d:terminants of the type

(for p even and _.:_o belonging to the lower surface of R)
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a4, = (%2 T3 "mir * (4.74)
£° o 2 T
m m+l 2m-1

where 2m = i, They also derive other cases. Their results are
easily ¢ stended to multidimensional yncoupled contyols.

Arncther way to compute the spectrum can be used when the
suppcrt hyperplancs of R are known. In our discussion we assume
that _r_o helongs to the boundary of R, which is for our purposes
completely general because the compactness of R implies that any
r€ R may be represented in terms of ¢ convex sum of two boundary
points of R. For any :{o belonzing to the boundary of R, we know that

there is at leist one guoport hyperplaae to R which contains :z_'_o.

Let P_o represent such a hvperplane, so that, since zg =1 by
assumpticn,
-~
1
T r
-110 3;0 =0 ‘{O =
T (4. 75}
T -—
_lf rzo all re R

As already cstablished in Section 4. 4 for a less general case, for

y; to belong tc the spectrum correspondiny to 5_0. it is necessary

that
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b’ rlu)=0 (4. 76

Thereiorz, we may seek the gspectrum among the points _r_je CR for
. (] - . .
which h 53 = 0 and fxnd_t_x‘i as the inverse of x5
An impe: rtant property of this hyperplane technique is that it
is a useful companion to tke method of linear programming used to
solve the dual core problem. The solution 50 of problem (4. 68) of

uecessity lies on at least one face of R, that is, at least one of the
inequalities

~T o .
£i E-zo 1‘1.2’.0..NR

will in fact be an equality for some index j. But :;.’5 represents a
support hyperplane of R. A catalog of the points in Cp whick
genezate each hyperpiaae will inmedistely reveal which suca points
generate :i'_'_j and, by implication, which points belong to a spectrum
for £°.
4.7 SUMMARY

At tuis point we take stock of our accomplishmeats ir this

chapter. For the static game problem with payoff
. T
J{g, vi=zx (u) A s{v) (4.1)

where 3 and v belong to unit hypercubes, we have demonstrated,
using the rnethod of dual cones, both a solution technique and an
iuteresting geometrical interpretatioa of the iuteractions of the
control spaces. Of particular importance are the facts that the

game problein wag shown to be solvable as a constrained
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i maximization problem and that approximate numerical solutions are
i possible using linear prcgranmiming, for which well-daveloped com-

k puter programs alreacy exist. We also characteri:>d some of tke

sets involved in special cases and indicated how the optimal c.4.{.'s

‘ ( may be found.
) Thege facts are the foundation fozr the consideration in
i
4

Chaper 5 of multistage games.
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CHAPTER 5

THE SOLUTIONS OF A CLASS CF MULTISTAGE GAMES

In this chapter the problem of firding a saddlepoint for the
expecte > value of the cost function J of two-person zoso-sum N-stage
games of perfect informaticn is discussed. For the games of inter-
est, the cost fuiaction has the form

N
J = gpgp (2(N#2D) ) g (z(E), ufi), vii}), (3.3)

i=1

the dynamics have the form

Lot )
W
.
-y

~-

(i1} = f(z(3), i), (b 6,  #ii=z,

and the controle g(i) and - (i} arc to be chosan at each stage from
m- and n-dimensional urit hypercibes U and ¥, respectively. The
functione & and £ are polynomia‘e.

Two variatiorns of this dynamic game, that of open loop
strategies and that of closed loop strategies, are analyzed using the
methods of Chapter 4. This is done by first showirg that each of
those games can be reduced to certain static games in which the
state vector z is a parameter. Then continuity properties of the
optimal solutions are estahlished, and finally stronger resulis for
the claas of linsar-grdratic games are derived. As indicated in
Charter 2, existence of the saddiepoirt optimum was establishzd
by earlier resesarchers, who will be cited as appropriate in the next

two sections.
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z.1 CLOSED-LOGP STRATEGIES AND THE PRINCIPLE OF
OPTIMALILY

Ix Thapter 3 the multistage game with closed loop strategies
was defined. Thke closed loop optimil mixed strategies Fuig{i)l zli), i)

and Go(_\_r_(i}l 1(i). i} and the value function wiLz_(i)) were defined via

t

equation (3.5). By simple substiturion in that equation it is clear

that the value satisfizs the recursive equations

“ne1 12 = By (2)

w.(z(i)) =f [gi(g-_(i). w vi+ow, (2, u, v:i})]
v dJd

L L

arful 2(i), i) (vl (i), i (5-1)

vai

= (o, v v, v; )]

g zti), u, v) 2w (flz(i), u
The fact that such a2 quartity exists and satisfies (5. 1) has been used
either explicitly or implicitly by many researchers. Fleming (53]
states the necesgsary facts in 2 theorem which is directly applicabie to K
the present prchiem.

Since U and V axr2 hype:cubes, ¢t probier of solving {5.1)
for each i ard for fixed 2z(i) can be approach 4 by the methods of b
Chapter 4 provided that the quantity to be optimized is separable in

u and v. Thig ig true since by suitable grouping of terins we may

~orite (5.1) as t

78




PP

e

{5.2)

“'i(i) = (u ¥) [t Z k(u’ 35 (z) s ('l)] [r (s} Aalz) s'v)}
L e S

In tke special case of polyrnomials, for example, the functions Ty
akj’ s_ have the folivwing forms:
3

Elk Eax &
mk _
k(u) L RIETEL Y k=1,2....,p
(3 ik * non-negative integer

i=f,...,m

h. N, [
sj(_') =v J v,z’...unnj j=1,2,...,v {5. 3)
ﬂ'kj = pon-~negative integer
k=1,...n
T
a-si__) = C.j zth---zz B i=1,2,....,p

j=l,e,...,v
= non-negative integez
k=1’ L l‘

Ckﬁ

This form is analyzed in detail in later sections. Ncce that itis a
pazameterized version of the problem of Chapter ‘.

The constraint that the right hand side functions in (5.1} be
separable is important. The functions gl(z, u, v) are separable by
definition, sc it ic the term Wi“(ﬂi' u, v; i)) wlich is of concern.
Unfortunately, as demonstrated in an example in Chapter 6, this
term is not always separable. This is act surprising, for even simple
optimization problems with parameters often have inflection points
which are not of the same form as the given problem. For example,

the equation of the maximum in t of the quadratic function

v
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flz, t} = ao(z) + 'al(z) t+ az( z

3 <0
z}t 32(2) o

is

Although the value function is not alwaye such that
w, +1(£(£. 4, v; i)) is separable, this term is separable for i=N ard
for linear-quadratic problems; the latter fact is proven in Sections
5.4 and 5.5. In addition, it may be separable for other classes of
provlems and for special regions of probiems for which general
separability does rot hold; this requires further research and
detziled anaiysis of the functions. Finally, for numerical purposes
it should be satisfactory to appyoximate w. +1(£(£, u, v; i) by a
suitable separable functicn and to apply dvaamic programmiag and

the methods of Chapter 4 to the resalting probiem.

5.2 OPEN-LOOP STRATEGIES AND BATCH PROCESSING

ot

In Chapter 3 the polynomsial game with open-loop strategies
was described. In tbis section we reduce a stage i of that game for
which z(i) is known to an equtvalent single-stage game in which z(i)
is a parameter and show that this truncated game may be solved s
a batch process. The reduction is essentially algebraic, and the
fact that the rasulting form is identical to that uoec in Chapter 4
guzrantees a saddlepoint solution.

Without ioss of generality, but with a considerable gain in

notational conveniencz, let us consgider the protlem for i=i. By

30
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repeatedly substituting 3. 1) into {3. 3), we may demonstrate ex-

plicitly the independent variables in the cost functicn
{5.4)

J = gy(z(i) ufl), w(1)) + g,{f(z(1). ufl), v(i): 1), w(2), v{2}}+ ...
T glftit. . - £(z(1), i), ¥(i) 1)...), u(N-1), v(N-1); N-1),
u(N). ¥(N))
gy - . - £(2(1), uil), w{l) 1)...), u(N), v(N) N)j

Because all of the functions gi{. PP | and_f_(. ,-».:1) are polynomsials

ia their ¢ gumerts for all applicable indices i, this may be rewritten

ase

- oy
0
L]
W

-

J = glz(1), w1),...,u(®), w(1), ¥{2),..., v(N)}

where g is a suitable polynomizl function of the arguments. We may

define an mN-vector u and an nN-vector v
H—

u(1) ] w1} ]
u(2) v(2)
u= . v= {5.6)
u(N) v(N)

noting that these are elements of an mN-dimensional unit hypercube
U and an nN-dimensionz! unit hypercube V, respectively, and

rcwrite {5. 5) as

J = glz{l), u, v) (5.7)
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where we have simply changed notation and g is still = polynomial
function of the elements of the various vectors. A typical iterm
of (5.7) has the form
LSt Lo & b i T g
1 %2 0% "% %2 "Nm Y Y2 YN
- . th . t
where c is a censtant, z.i is the }  element of i(l)' u't is the )
element of u, etc., and all exponents are non-negative finite

integers. Define

ro(g}z.\

so(:r_)al

w1 b Enm
r(u)=u " g

M % Mna

sj(l) =V Yy e vy

r
a.{z)=c¢c - zcl z.z zcl
ij= 1 72 °°°7¢
where it is img.icit that the constant ¢ and exponents { depernd upon
the indices i and j, that the exponents £ depend upon i, and that the
expenernts ) depend upon j. Then we may for suitable finite integers

# and v rewrite {5.7) as
v
J =Z i: a;;(zi rolu) s(v) = ET(};) Alz) sly) (5.9)

j=6 i=0

In the vector-matrix representation, r and g are the obvious g+l and
v+l dimensional vector functions and Ais a (4+1) x (v+1) matrix

function. F)r a guven initial condition z, (5.9) is precisely the

L W)
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problem which wae solved in Chapter 4. It is noteworthy that 1t is
not necessary that the payoff and dynamics functions be polynomials
for (5.9) to reeult from the substitutions of (3. 1] into (3. 3), although
the class of polynomials is perhape of widest interest to us. Cer-
tainly if the functions are separable in z, u, and v and polyromial in
z, the pavoff can be written in the separable form (5.9} and solved by
the method of dual cones. Many special problems may also have this
characteristic.

That (5.9) is equivalent to (3. 3} and is solvable by the
methods of Chapter 4 is easily shown. The sclution of (5.9) is a
value w and 2 pair of mixed strategies Fo(};} z, 1) and Go(,:! z, 1).
These are eguivalent to the value &l (z) and the set of strategies
Fotui)z, 15 u(l), ..., uli-1)) and GO(uli)lz, 1; ¥(1), ..., v(i-1)),
as can be seen by substituting (5. 9} into {3. 6), changing the order

of integration, and grouping terms to get

wy(z) =U' f_r_T(g) dEQ(u(M) z, 1, u(d), ..., u(N-1)
L
U U “o

... dF (u(l)z, 13]

A(_g){ f . .fg(;) dég(i(N)Ig, L v(l), ..., v(N-1))
vV Vv

L 4GV 2, 1)}

[
: [fgr(g) ch'(glg. 1)} A(z) ifg(g_) dco(xlg. l)}

U v
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Here U=Ux Ux...x 4 V=VxVx...x V. Integrability ;s no prod-
lem since we may restrict the c.d.f.'s used to thoae with finite
sprctra if necessary. Hernce, solving {5.9} for mixed etrategies
°on u and y is equivalent to solving the opern-loop strategy problem,
and the fermer may be done using the method of dual cones.

The mixed strategies Fo(glg. 1) and Go(xlg. 1} have specira
consisting of control histories u and v. If it is necessary to find
the optimal mixtures of controls for stage i, the usual steps of
integrating over all admissible coutrole for the other stages must be
performed, a procedure which is reduced o summations because
the spectra are finite. During play of a game, when oniy a
realization of the control strategies is needed, this step may be
bypassed by choosing a control history u {or ;.'.) in a random manner
and then picking out the desired elements u(i) {or v(i)).

The discussicn above applies in a natural manner if the game
is assumed to start at stage i with initial conditicn 2(2) = z. There-
fore each player wili, 3t any stage for which both obtain new state
information z, uge the methods of Chapter 4 and tke 1nitial condition
z to generate his remaining control histories and then select his
control for the present stage using a random choice among those
histories.

If both players have optimal pure strategies, then the batch
processing method mayv also be used for the game with closed-loop
strategies. This fact is discussed in an enlightening manner by
ilo {36]. It does not hold when mixed strategies are used, however,

as the reader may demonstrate using simple counterexamples.
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Example 6.1 is a good one on which t¢ base a counterexample.

5.3 CONTINUITY PROPERTIES OF THE SOLUTIONS OF
SEPARABYTE GAMES

The exact nature of the dependence of the solutions of
multistage games on the initial conditions z varies with the structure
of the game and must be established on a case by case basis. One
particular property, namely continuity, can be skown to hold in
fairly general circumstances. We shail discuss continuity con-
ditions for the value function and for the strategies in the present
section before moving on to establish sharper results in later
portions of this chapter.

Using our previous results and the notation established in
Sections 5.1 and 5.2, we know for some poiynomial games with
closed loop strategies and all with open~-loop strategies that the

value function w(_z_) satisfies, for given z

Alz) 5= TR sesE Al@ds  (5.10)

min max T

w(yz_s_es_z;eRf-

where R and S are convex hulls of continuous mappings of compact
sets Uand Vor U and V, respectively. This representation will
prove useful in much of the discussion to follow.

The following well-known result is essential to understanding

the interactions of the dual cones when the matrix A is parameterized.

Theorem 5.1: If the elements aij(iz_) of the matrix A(z) are

coutinucus in z and if R and S are compact, then

max min T

Wiz) 2 teR ses &

A(z) 8 is continucus 1n z.
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Proof: Let Zg be an arbitrary element of E” and let D p (30)

denote the set 3uch that, for givene > 0,
- ni s
Iaij(_z_) aij(go)! <€, alli,j

for 2l Z€ D( (_.',;0). Such a set exists since the
elements of A are continuous. Then if 5_0(2) and
g_o(g_) are optimal moment vectors at z,

T T
wiz) - wizg) = 1° (2) Alz) 87(2) - *° (z4) Alzy) 3°(2)

T
< 1% (2)[A(2) - Azy)T 57(zy) (5.12)

N\ ‘. 0; o i
se) ir;lz) s;lzohl

i,j

and

T
wiz) - wlzg) 2 r° (20 Alz) - Alz)] 8°(z)

2 -¢ E !rf(g_o) 33)(_2)‘
i,

(5.13)

which, since R and S are compact, implic.

]w(_z_) - w(g_o)‘ € k ¢ for some f{inite k.

Another well-known fact is that the iimit of the optimal
strategies of a sequence of games is an optimal strategy for the
limit oi the games. This is usefu] when payoff functions must he
approxitnated, as we shall see in Chapter 6, and for proving results
about continuity of optimal strategies. For reference we formalize

this fact in the following lemma and indicate a brief proof.
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Lemma B:

Prooi:

Ifr, s are optirnal tegies for th: garme
’ e optirnal strateg gars
T . .

r A€ S where Ae is element-by-element

n n
within Gn of the matrix A

lae - aij' <€n
n..
15

and where r and & must be cnoser from compact
-n -n
sets R and S, respectively, then there exist limits
o o .
and of th uenc r ng {s -0,
r s e seq es tin} a {-n}' Cn
which are optimal strategies for the game with

matrix A.

We indicate the proof for _x;o; analogous results

hold for _elo. The existence of limits fcliows
immediately from the ract that { T } is an infinite
segquence in a compact sei R and must therefore have
a convergent subsequence with limit point in R.

Call thie limit point uz_-_o. Then _z_:o is an optimal
strategy for Player I for the game with matrix A,

for if it were not, then

w_min mas rTAs>min roTAs
8€S reR - =" 8€S ~ -
or
min o
- 26> .
fw sesk Aslz8>0 (5.14)

for some §. But if we define
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The first term on the right can be made less than%
for large enough n > Nl by the arguments used in
Theorem 5.1, which used only the closeness € of
the terms of the matrices A(_z_) and A(gn). Similarly
the second term can be made less than%—for n > N2
by arguments using closeness of the matrices and
boundedness of S, and the third term can be made

o

less than%for n> N3 using the facts that r-r

and that S is compact., Thus

min ;-T

< 5,17\
seSE As|sec (5.17

(w -

for arbitrary € > 0, contradicting (5.14).

In discussing continuity of moment sets and c.d.f.'s as
functions of z, the following version of the definition of upper

semicontinuous mappings is useful.

Definition 5-1: A point-to-set mapping §(x) is callec upper semi-
continuous at X if corresponding to any open set ¥

containing zp(gio) there exists some 6 > 0 such that
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d(x, io) < b implies $1z) C ¥ where d(-, *) is u metric

deiined on the domain of ¥.

Using this definition, we adapt a theorem of Karlin [ 40] to

our interests.

Theorem 5.2: The set Ro(':') of optimal strategies for the game

Proof:

defined by £T A(z) 8, r€R, s€S, is an upper-

semicontinuour fraction of the parameter z.

Let kN be an arbitrary point in ool and let Ro(g_o)
be the optimal moments for the game with initial
condition 24 Suppose H is an arbitrary open set
o .
such that R (_z_o) C H. Let DE(EO) be as in the
proof of Theorem 5.1 and let R€ be the set of all
moments r€ R which are optimal for at least one
z€ De (50). We rmust show that for € = 0 sufficiently
small, R€ C H,
Suppose the contrary. Then there exists a
3 -
sequence {en,, € =0, such that REn C\: H for all n.
For each n, choose z € Dtn(io) with corresponding
optimal strategy r_such that r ¢ H., Then we have
-n -
a sequence {r_} in a compact set R such that r ¢ H.
-n -n
Thus the sequence will have a convergent subse-
quence with some limit point 3_0 € R, _x:ol H. But
by Lemmaez B, 5_0 ig an optirnal moment vector for the
game £T A(Eo) 8, and therefore 5_° € Ro(-z_o)C H, a

contradiction which completes the proof.
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At this point we go beyond previous work to establish a forma
of continuity for the optimal cumulative distribution functions
Fo(gl_z_) and Go(xl_g_). Some of the pitfalls ar: recognizable in
advance and must be carefully circamvented. 1ia particular, we
must remember that (1) the optimal c.d.f.'s are not necessarily
unique, and (2) the c.d.f.'s are discrete over the sets U and V,
and hence continuity in z is much like the continuity of the zeros of
a polynomial as functions of the coeffirj.ats,

We shall develcp our theory using the support hyperplanes to
R at its boundary points. We remember that by assumption Ty = 1
for re R, and without loss of generality we assume that bounded

normals of hyperplanes have length less than or equal to unity,

Theorem 5.3: The set H(_z:_) of the bounded representations (! =., i
o

normals) of the support hyperplanes to R at 3* is an o !

upper semicontinuous function of the bourndary

points of R.

Proof: Let :z}_o belong to the boundary of R, lot H(_{o) be the
set of all h such that h* r° =0, h' r 2 0 for all
r€ R, and ||h| €1 where £°= .o|» and let H be an

T

open set containing H(lo). ~ We assume that the
contrary of the theorem holds and that DE is the
open set of all r in the boundary of R such that
H}; - _r_oll < €. Then if {(n} is a real sequence,

> - . o Yies .
€, 0, € 0, we have that I,€ De has limit point

n
r’. Furthermore, if H_is the set of all h which
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Corcllary
5.3-1:

support R at at least one point of D€ s we have

Hn ¢ H as our contrary aseumption. n'I' he set of all
hyperplanes with normals of unity or less is neces-
sarily compact for the compact convex set R and in
fact is a portion of the dual cone Pﬁ. Choose from
cack H a vector h_ ¢ H. Then the sequence {x ]
has a limit poist, call it h®, such that h® ¢ H. But

io supports R, and taus R. Thus we must have

oTo
h _1;26>0

T

Sinc: h"r = 0for somer ¢ D for eachn, we
-1 ~-n -1 €
have
T
B % -hgr 28>0
But (5.18)
T T
| n° ro-hTr | =|h° (x®-r)-(h -hO)Tr_I
- ~=n -~ =n - - =

ol 11 .0 (JJTIR
< 10U 2® - 2l + i, - B0 e )

which can be made arbitrarily small because " io
and lx_n - _}io. a contradiction which completes our

proof.
‘ihe set H'(_g_) of the bounded representations of the

suppert hyperplanes to R at the optimal strategies

Ro(_g_) of the game with initial condition z is an upper
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Proof:

. . . . o
semicontinucus function of z provided R (z) con-

sists of Foundary points of R,

This follows immediately from Theorem 5.3 by

using Theorem 5.2 and the definition of H'(_z_}.

Our next theorem leads to a characterization of the con-

tinuity of the spectrum of F‘o(y_[_z_).

Theorem 5. 4:

Proof:

The set ¢(h) cf all contact points of the support
hyperplane to f{ represented by h witl the set CR is

an upper semicontinuous function of h.

We remember that R is the convex hull of CR' Also
we rem-rk that ¢ may or may not be connected. We
proceed much as in the proofs above, taking a

seguence Z‘L_n of normals to support hyperplanes to R

and looking at their sets e of contact points with

C
R

in the open se‘,a which contains (p(_ll(’), then there

If h° is the limit of h_ but no ¢ ig contained
- ~n n

. o
must be a sequence of points r € CR' I ¢ o(h”),

such that r, - 5_0 4 (p(go). But lp(-f_l.o) is the set
h° r= 0}

. o »
and thus, since h supports R, we rnust have

T
h® 126> 0

for some 6. This situation is similar to that of

to

-




Proof:

. . . . o)
semiconiinuwous function of z pr¢ -ided R (z) con-

sists of buundary peints of R.

This follow. immediately from Theorem 5.3 by

using Theorer; 5.2 and the definition of H'(_z_).

Our next theorem leads o a characterization of the cen-

tinvity of the spectrum of FO(EiE_).

Theuvzrem 5. 4:

Proof:

The set ¢(h) of all contact points of the support
hyperplane to R represented by h with the set CR 1s

an upper semicontinuous function of h.

We remember that R is the convex hull of CR' Also
we remark that ¢ may or may not be connected. We
proceed much as In tre prucfs above, taking a
scguence .iln of normals to =.:pport hyperplanes to R
and looring at their sets 0, of ¢ mtact points with
CR’ If _}_1_0 is the limit of b_n but ne 0y is contained
in the open set a wkhich contains <p(_1lo). then there
must be a sequence of points r € CR’ L ‘.’:p(_lf).
such that " _1;0 ¢ (p(ﬁo;. But (p(_}lo) is the set

T

n® _1_'_=0]

o(h°) = {z]zre Cp, b

. o -
and thus, since h™ supports R, we must have

oTo
h r 20>90

— —

for some 0. 7This rituation is similar to that of
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Theorem 5.3 and i pasvticular to equation (5.18),

and a similar contradictica arises, completing the

proof.
Corollary ,
5.4-1: The set @ (r) of ail contact points of all .i¢ support
hyperplanes to R at r with the set CR <8 an unper
semicontinuc us function of r.
Corcllary Y
5.4-2: The set @ (z) of all contact points of all suppert

hyperplanes to R at points r¢ Ro(_v_:) with the set CR
is an upper semicontinuous function of z, provided

that RO(E_) congists only of boundary points of R.

We reniark that Hurwitz's theorem gives a version of these
results for the special case of zeros of polynemials as functions of
their coefficients. For the game problem this is similar tc a case
with polynomial functions and scalar controls. Ncte that the
corollaries to Theorem 5. 4 requirce that all support hyperplines of
the given class be cousidered.

There is one more step before establishing our final result,
We remember that Lemma A implies that for x € R it is possible to
form a finite convex representation for r in terms of elemexnis
r€ CR’ where R is the convex hull of CR' We may write such a

representation as
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@ 20, r.eCp i=1,2,...,u+l1
+1
$ e
1
i=1

We are interested in establishing continuity for the convex coeffi-

cients a,. Each coefficient is a function of the vector r being repre-

1

sented, of the spectrum Tis ToreeenX

e used, and of the index i.

Thus when the representation of r is not unique or when a set of

vectGra r is to be represented, one becomes concerned with an

infinite set of such functions o.. Fortunately, our purposes are

served by a more modest theorem than one concerning continuity

of this set,

Theorem 5. 5:

Proof:

If a sequence {r(n)} has %imit ro, if each r(n) has
L + L =
convex representation &i(n) g_i('.x), then £° has
o 5 o
representation o rd where r.(n) = r; and
i~ i ~i

o i=1 |
ozi(n) - ai for eac)in i.

Since each Gti(n) € (0,1] and each _r_i(n) € Cps both
of which a:'e compact sets, each sequence has a

convergent subsequence. (We assume implicitly

that the elemente are kept ordered, so that the limits

will be independent.) Denote the limits by oz‘i’ and 5_;).

We are to show that £° =t a{l) _1"_;). Suppose the

1=1
contrary. Then
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+1
l° -2 @ rl 26> 0 (5.19)
i=]
Bat
+1
i 0 o _oy_ a0 L0
" =) o rll =Mz’ - x(n) +) (a,(n) r;(n) -] £l
=] i=]1
+1
< o - - o]
l£° - z(n)| t 1 (a,(n)ll z;(n) - £l +
i=

+ ”_1:; ” l ai(n; - aiO l ):~

+1
< o
€ +$:1 (a(n) €, + ]z ]l €5)
1=

for sufficiently large n and arbitrary positive €
. o .
€, €4 Since ai(n) and ”54 || are bourded, this

contradicts (5.19) and completes our proof.

Using this theorem, we are able to develop a statement of a
form of continuity for the c.d.f.'s in terms of the initial condition
z of the state vector. To do this, we extend the concept of spectrum
of a ¢.d.f. slightly by defiping generalized spectrum sets.

Let RO(E_) be the set of optimal moments for the maximizer
for the game starting at z. Then an element u of U is said to belong
to the generalized spectrum at z if there exists a convex repre-
sentation of some ._1;06 Ro(g_) in terms of boundary points of R such

that at least onc support hyperplane to R at one of these boundary

T Ka vl By sl a5y 2]
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points contzins a point T € CRwhich is the image of u under the
transformations r(u). From the discussion of Section 4. 6 relating
c.d.f,'s to moment vectors, it follows that the spectrum of any
optimal c.d.f. for the maximizer at z is contained in the general-
ized spectrum. The generalized spectrum thus contains all vectors
u which might belong to a spectrum of an optimal c.d.f. atz. A
generalized spectruru for the minimizer may be defined analogously.
Using the definition of generalized spectrum and the results
of Corollary 5.4-2 and Theorem £, 5, it is little more thana
restatement of those results to obtain the following important

theorem.

Theorem 5.6: The generalized spectrum for each player is an
upper semicontinuous function of z. For given
spectrum elements in this set, the ~orresponding
weightings are also upper semicontinuous in z.

Loosely put, the implications of Theorem 5.6 are that if

z72zy then in an upper semicontinuous sense

+1
Flulz) ﬁ: ay(z) 1y (@)~ F(ul zg) -

1

i=1

The upper semicontinuity is required primarily because of

lack of uniqueness of solutions. The use of generalized spectra allows

for the case in which ai(_z_) - 0as z~ 24 since our definition of
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spectrum would not then consider v (50) as a spectrum point of
Folulzy).

These concepts of continuity are important in understanding
the efferts of parameterization of the sclutions introduced by con-
sidering dynamic games. The continuity of the value function and
upper semicontinuity of the optimal moment sets are particularly
useful in visualizing those effiects and in problem solving.

5.4 A LINEAR QUADRATIC GAME WITH SCALAR CONTROLS

In this section it is demonstrsted that the value function for
one special class of games is piecewise polynomial and therefore
that the principle of optimality may be applied along with the
parametsrized method of dual cones in order to find a solution, In
the course of the demonstration, the use of Theorem 4.5 is shown,
the solution to the problem is generated, and the ideas to be used in
the more general problem of the next section are illustrated.

Let z(i) be an £-vector with stage index i which satisfies

a(i+1) =T, 2() + @ uli) + 8, vii) + ¥, (5.21)

where '1‘i is an £ x £ matrix, -qi and Ei are L-vectors, u(i) and v(i)
are scalars to be chosen from the unit interval {0,1], and Z-i is an
£-vector. Player] is to choose mited strategies F?(ul_g_) to maxi-

mize the minimum expected value of the payoff function

_.T T
=z (N+ DE 2N+ Do 2N+ 4, + (5. 22)

(Cont'd)
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(5.22)

N
+ D T0E 200 + T 2060 + ATl ati) + 7 sty vit
i=1

+ B u?) + p, uli) + p, uli) vii) + O, v20) + q; Wil

where the £ x £ mairices é'i.- the L-vectors e, A, §., and the
scalars Pi’ Py Qi’ 9 pi. ‘N-l-l are known to both players.
Player II will choose mixed strategies G:(vl _z_) to minimize the
maximum expected value. A special case of this problem is given
in great detail as the first example of Chapter 6, so the arguiment
below is somewhat abbreviated.

We proceed by induction on the indices i, taken in reverse

order. Define wi(_z_).

Wi(zl = (u‘lv),l\?(l)) [ e z + z + Pi uz(i)"’l}l u(i) +% u(i) V(i)

+ AT zuli) + £7 2vli) + Q; v20) + g v(8)

(5. 23)
+ oy (T, 3+ 0y uli) + B, vii) + 7-4’]
1=1,2,...,N
in the usual manner, and note that
gy (2 =2 2 en, B heyy (5. 24)

We aesume that w, +1(_g) is quadratic in 2 in some region of interest,

.
ie.,
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. N ¥ T
wo(2i=2" D ,z+d. 248, (5. 25)

+1

and attempt t.\ prove that wi(_z_) is-piecewise quadratic, that is, that

wi(_z_) is given by some quadratic form in z for any region of E‘.

' - Liet us make the following definitions

T

D=T D, T, +&

T T
Ty 4,420 Y

; P ) +

g

T
P=g, D&t FH

T

F 4 T
P D%t %+py

Dinédi+9q
T, T
B DLt Bty

_ T
A=4+2T D, &

) T
£ =6,+2T, D, 8

) T
9 =p;+20° D, B

Q

Pt ]
N R 1 T e R T Iy R

m.
=i,
T

8;

(5. 26)

N ey

' q

o Sevn TR Ly e

N T T
8 =0t D Lt Y

Using these definitions, along with the agsumption that Lyyp is

symmetric, (5.23) becomes, under assumption (5. 25)

w.(z) = val [zT Dz +dlz+ Pul+ Qvl+ pa 1 qv + puv
=" (u,v) "= Tl = = (5.27)

+6+QT£\1+§_T£V]
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wi(_z._) = {1, v)

.

Defining

TR T

LA W%‘bs

im0

val“:‘ u uzl

Alz) =

let us write (5. 28) as

We may write this in vector matrix form.

rf%?fa.“ §Ts+q
a'z+p p
P 0

3_3’/ u| dF{u)

2

_0-3/ v | dG(v)
2

""1(!) - Mmax min {.’:'.T A(.é;) !}

r€PR 3¢S

is the region encloaed by

100

(5. 29)

As developed in S:ictiow %i. !, for this problem CR is the set
{zl rorliryat r,= tz. te 20,11}, Ris the convex hull of Cp and

v

O

-,
e




R

S T T S T 2, A S 0TIy e SRR ™01

i
e

oLt oy

s

2
=1; <
o 1; r,*r and r, 2 r, {5. 30)

or parametrically by the curve CR and by c'= {5_ ! ¥y = 1,
r, =T, =t te £0,1]}. Sis analogous to R. The dual cone P% is

defined by the boundary curves
a. so=0for31203ndsl>-sz
b. so+sl+sz = 0 for so?» 0, slS -Zsz (5. 31)

2
c. 45092-31-0fm:3220.0"=t;l?--Zs2

The seta'ﬁ. which ie the projection of R on the (rl, rz) plane, and
Pg are sketched in Figures 5-1 and 5-2. The set Pg is the space in
the positive soodirection with boundary given by (5. 31).

At this point we introduce a parameter @, to be maximized
according to the dictates of Theorem 4.5. The elements of the set
S(A, R, @) defined in equation (4. 36) are then given by vectors

8€ E3 such that

s°=__TD_+_c_1_T_z_+6-a+(éT2.+p)r1+Prz

s, =§ z+q+pr (5. 32)
1 zratpr

sz=Q

Since A(_z_) is linear for any 2 its boundaries correspond to those of
R. Trivial or special cases such as P = 0 will not overly concern

us, since the methods below still apply.
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Figure 5-1, The set R,

) %2

Figure 5-2, The set Pf.
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The implications of the continuity proofs of Section 5.3 are

that S(A(z), R, wi(ﬁ)) moves smoothly over Pg as z is varied.

=
‘ ;
[ J
¥
%
5

This essential fact may be verified here by substitution of numerical
values, and is used in the discussion below. Basically, if Pg and

5(A(z), R, wi(_z_)) are in contact at a point which is internal to one of

S b T T

& the identifiable boundary regions of each, then as 2 varies slightly,
3 y these surfaces will remain in contact although the exact contacc

poin. may move. Therefore, we may restrict our attention to

V_ pairs of surfaces, one each from S{A{z), R, wi(_g)) and Pg, in

generating wi(g). We will simply examine the possibilities

™

exhaustively, using the ~urves

IR N W, SR T,

and (5. 33)

ﬁ“mwﬂwmm
o
1 ¢
"
N
u
"
it

a. lo=0

b. s,+8, 48,20
0" 17 "2 (5. 34)
c, oo=0,ol+nz=0

2
d. 4lolz o Nl 0

of P§. We shall find the value wi(g) and the optimal mixed
strategies F°(u|_z_) and Go(vl_z_) for each possibility, Where

strategies are not unique, we shall simply demonstrate at least

one optimal strategy.
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Case 1. The plane 8, = 0 of Pg.- All support hyperplanes to
this surface except at the line s, +s,=0 (Case 3) have reprz-
sentations A, O, O)T. A> 0. Thie impliesrthe moments (1 0 0)'r

for the minimize., with corresponding pure strategy
G(vlz) =Ifv) - (5. 35)

From (5. 32) we immediately have, using (5.-23)

a. a:E_T D£+iT_z.+6 + (éTg-f p»)rl +'Prf

(5. 5h)

b o=z Dz+d’s+8+(A z+p+Ph,

where r, € {0,1]). Examination of coefficients and maximization of

@ over r; leads to the following results. - {5.37)

i, P20, ATs+p+P%0. Thenr) =0, Foluz) = Ijfu),

. P20,ATs+p+P20. Thent)=1, Folulz)=1(u),

andw*(g.)=_z_'r D_z_+(§_+é_)1._§_+6+p+P

iii. P<0, 0% . (g’f_g(rg‘l- p)/2P £ 1. Then r‘l’ = -(_QT§_+ p)/ 2P
and F%(u| 2) =1 (u). Also, the value is

r

1 T 2

win=sTo- @3z - g

(Cont'd)
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iv. P<O0, - (_A_:r3+ p)/2P % 0. Same result as i,
(5. 37)

v. P<oO, - (QT£+ p)/2P 2 1. Same result as ii.

Case 2. The plane 8ot 8 t8;= 0 of P‘g. In this case we fina

find that 8° = (1 1 1)7 so that G%(vlz) = I (v). Substituting (5.32) in

(5. 34b) and using (5. 33) gives (5. 38)
a. a:z_TD£+(§_+QT_2_:_+6+q+Q+(éT_z_+p+p)rl+Prf

T, +(@+8)T2+8+q+Q+ (@ z+p+p+P)r

b. a=z" Dz '= 2 q Qz+p+p 1

Once again we maximize o over r, € L0, 1] to get the following

results. (5. 39)

i. P20, éT_g._-l» p+p+PS0, Then r? = 0, Fo(ulg_) = Io(u).

wi(g_)=gTDﬁ+(§_+§_)r§_+6+q+Q

i, P20, Alz+p+p+ P20, Thenr)=1, Folulz) =1 (a)

wi(_z_)=_z_'r D_z_+(g+§_+QT3_+6+q+ Qip+p+P

i, P<0, 08-(ATz+p+p)/2P< 1, Then

o_ _ (ATZ"'P‘*P)
Fy ° 2D

T 1
wylz) = 27(D - 281z + (@ - ERT,

2
+6+q+Q-«(2‘i%L

, Fo(ulg_) =1 o(u) and

(Cont'd)
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iv. P<y, -

T
+
-(g-%?—e)- £ 0. Same resultasi

- P<o' - s

T
A z+
(—%z-p!-,:—p-)- z 1., fame result as ii.

Case 3. The line g = 0, s, + 8, =0o0of Pg. We note that

1 2

this case applies only to 5, £ 0. Itis more complicated than those
above because the :eparating hyperplanes of the two sets, which
imply the strategy for Player I, no longer are in one-to-one
correspondence with the points of contact. Tixus we must examine

the slope at the contact point of the boundary of S(A(z), R, wi(_g_)).

1 i - *

which must be substituted in the appropriate equation of

a. a=_z_T D§_+QT‘_z_+6+(_A_T5_+p)rl+Prf
(5. 41)
b. c=£TD_+Q_r£+6+(_A_T_§.+p+P)r1

provided of course that r?( £9,1], a neceszary condition for Case 3

to hold ail. The following cases may be found.

i, Pz 0, Then Fo(ul_z.) =(1 - rg) Io(u) + rgil(u); that is,
the rnaximizer uses a mixed strategy of points u =0
and u = 1, a condition which is clearer if Figure 5-1
is examined and the discussion of Section 4. 6 is

remembered. It can be seen that
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ii,

T
wi(_z_) = E.T(D - —é-é'-)_z_q» (d - (R';P); . (Q':JQ)Q_)T£+ 5

_{pr¥No+ Q)
[+]

This results simply by substituting (5. 40) into {5. 41b).
Using (. 32) we find that, by eliminating ry with T,=1),

os T
a°=45;"+p (5. 42)
|

Equation {5. 42) aiong with the conditamn 8= 0 0, 8y t8,% 0
] as
can br vsed to show that s =(1 - “630 330 )T or
Bs 9s 1 1

that G° (viz) = (1 + 5——) Io(v) - s--?- I (v) If r‘l’ =0 or

r‘l’ =1, this result may not give a separatmg hyperplane;
one of the extremal strategies Io(v) o1 Il(v) is then

optimum, althougn not necessearily uniquely so.

P< 0. Inthis case Fo(u|z) = Irq(u) where rc; is given
- 1

by (5. 40). Substituting into (5. 41a) yields

T
wyle) = 2T - S5 +_zg_§_ 2 (5. 43)

P, 2
+6--§—(q+a)+;z {q+ Q)

Since g, = Q at the point of confact, 5 = - Q. There-

fore we have
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38, _{pA- 26¢)T 4 + RP - 2PQ - 2Pg
-1 A - 2

1 P P

ds
and Go(vl_z_) depends upon 33-0- &8 in part i of this case.
1

(5. 44)

Cage 4. The surface 458, - s% = 0 6f P4 In this region
we concern ourselves with tangency of S(A(z), R, @) and Pg. Note
that at a point of Pg in this region there can be on.y one support

hyperplane, namely, that corresponding to

8% = |- 52) (5. 45)

where
3-3-% = ﬁé (5. 46)

Using (5. 32) we find that

Bso §_T3, +q+ 91‘?

asl = o (5.47)

where r? is the first moment of the maximizer's optimal strategy.
Substituting {5. 33) and (5. 32) into the equation (5. 34) for the surface,

we find
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a. a=£TD +gT 6+(Az+p)r +Pt m(zg_g_

t2pr, §_T£+ 2q £T£+ qz + 2pqr, + pzrf)

=27(D-dhe) 24 (d-ode )Tz 4 (6 - 135)

2
b. a=_z_T(D-'§§ )z +(d - Z%Q)T_zj'(ﬁ--fb*)

+(AT£--£G§.T£+p--§8-+P)r1 --gérf

Implicit in Case a. is that P < 0, while the contrary holds in Case b.
Cases a. and b. are so similar in analysis that we shall treat them

together, writing (5. 49)

T 2
az-z-T(D -%)_z_{- (.‘.l."‘gﬁi)T_z_"' (6 -%)+xr1+yrf

where the definitions of x and y should be obvious. Then we have the

following situations.

i Ify20, x+y%$0 Thenr} =0, F'(ulz)=1u)
Go(v| z) -I o) where e = - (i z +q)/Q and

i.(z)--z (D j%—)z-l-(d ﬁ_) z+ (b~ f}d‘)

M., Iy20, x+y>0. Thenr)=1, Fo(ulz) =1 (u),
Go(vi_g_) =1 c(v) vwhere 8° = - (§_T§_ +q+p)/Qand

8
(Cont'd)
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iii,

iv.

v,

T 2
wi(z) =2 (D - '%5"!.* -2+ 0 -5 +x4y

X O_“X.
Ify< 0, and,os-z-’-'—s 1. Then l'l "‘Ty",

Fo(ulﬁ) ] o(u) if P<O0(i.e., Case a. is pure

Ty o Oy y o o .
strategy) an& F (ulg) =(l- rl) Io(u) +r, Il(u) ifPz0.
The minimizer uses the pure strategy G°(v|z) = I o

8
where

T . X
o Eita-BH
= ro) ,
and the value is

T 2 2
wyle) = 2 (D -%)v -z 8 a4~ Fy) - 5

If y< 0 and -7'-’-;- < 0, then r‘; = 0 (because
rge {0, 1)) and the optimal strategies and value of i.

occur.

If y<02and -2'3;» > 1, then r;’ =] and the results of ii.

apply.

We have demonstrated by exhausting the possibilities that

wi(g_) is piecewise quadratic if Wy +1(_g_) is quadratic, and by extension

we see that if Wi H(3_) is piecewise quadratic then wi(g) will
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necessarily be zo also. This completes our induction step and shows
that for the linear quadratic game with scalar controls the principle
of optimality and the method of dual cones may be applied to arrive
at a solution.

A trio of remarks may be made about the constructions above.
First, we have not been particularly concerned about the lack of
uniqueness of sclutions, a fact that may seem to obscure the semi-
continuity of the solutions. Neverthcless, the semicontinuity holds.
Second, we note that the optimal first moments are either extremal
elements of L0, 1] or are linearly related to z. Finally, it can be
observed in the solutions that for Player 1 to have optimal mixed

\

;ty ategies, it is necessary that

P=aT

-iD a +P 20 (5. 50)

i+l i i
For the minimizing player to have such strategies, the condition

=81 .
Q=8,D, 8 +Qs0 {5.51)

must hold. These conditions are of course not sufficient.

5.5 A LINEAR QUADRATIC GAME WITH VECTOR CONTROLS

If the controls of Section 5.4 are vectors rather than scalars,
then the value function is still piecewise quadratic. This is a fact
of fundamental importance, {cr it is a characterization of the
soluticn for a comncn <lass of games. It is proven in this section
by a technique which is in the spirit of Section 5.4, but which is of

neceseity not exhaustive in nature. The approach is to show that

i1l
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for an arbitrary pair of surfaces, one from Pg ard the second from
S(A(z), R, a), the value function implied by use of Theorem 4.5 is
quadratic in z. Piecewise quadraticity follows immediztely. Becaus=
of the nature of this proof, it is concerned only with the form of the
solution, although the techniques might be used to find the exact

solution if that were desired.

T a~ problem of concern to us has d mamics given by

20i+1) = T, 5(i) + @, ufi) + B, vli) + 265) ' (5.52)

and payoff function, for the truncated game starting at stage j,

=T T
Ty=a (N E ) sNEL) + ey (N#L) + €y,

N
£, (2T0& 20 + e 206 + 2705} A, ui)
i=j 15.53)

+ 27 & vii) + uT() Py uli) + plut) + vI(5) Q vii)

+ g7 v(i) + u () p, v(i))

where z is an 4-vector, u is an m-vector to be chosen frow. 4.
m-dimensional unit hypercube U, v is an n-vector to be -hosen
from an n-dimensional unit hypercube V, and Ti’ 0., Bi' é'i. Ai’gi’
Py, Q) p; are known matrices of suitable size, ¥,, ¢, p., g, are
known vectors, and €N+l is a scalar constant. We are concerned

with proving that the value wj(_g_) is piecewise quadratic in z, where
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Note that W+

hypothesis, we assume.that w, +1(z,_) is pi;cewise quadratic, so that

1(_z_) is indeed of the required form. For our induction

T
z+d z+bi+1 (5. 55)

_ T
Wi-l-l(i)-i D, ~i+] =

i+l

for some D, ,, d..,» 8,

that wij_z_) is also of this form. Using the ‘priﬁciple of optimality

in a given region of interest, and prove

(5. 56)
+plu+y’ Qv+t ay+ulpy+ wi(Tiztopu

+B, v+y,)]

/

which after substitutions and definitions in a manner similar to that

of the previous section gives the form.

wy(z) = ("f‘ll) [2'Dz+dTz+u’ Pu+y’ Qu+ptu+gly
(5. 57)
+ulpv+d +zTAu+zT€ v]

At this point we define functions r(u) and s(v) and a matrix
A(z) so that (5. 57) may be put in standard form. For clarity of
presentation we utilize notation which is somewhat more appropriate
to matrices than to vectors in that double subscripting of vectors
is used. To be consistent with our previous work, however, we

continue to work with vectors and matrices rather than crecate
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O
awkward definitions for some of the sets involved. Thus we define
D
*(u)guu i=1,2 m u. &1
uij Sl i j g hsg 000y 0
j=0, i’ i+l. co 0y m
{5. 58)
sij(l)gvi Vj i:l.z,...,n vo-l D
j=°p i’ i+1, e20 9 n
and we define r and s as
s O
p _ L = q
) S00
10 810
F20 820 D
*mo n0 j
i
S} *11 !
D
*22 322
*mm %nn
2| M2 LY (5. 59) 5
13 %13
Im $in
J
¥23 #23
T24 824 i
2m 82n O
rm-l. m 'n-l. n
e -d =9 nd
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€ The ordering of the compenents of r and s will not generally be of
3
d , ) significance to us. With these definitions, (5.57) may be rewritten as
PoE T T T,, T 7
» § 2 Dz+d"z+b6 2z E+q [Qll sz...
- f; ) Q- g11"'(')11, n-l] .
1 in T[T
& _max min
; wi(f‘-)"_r_’ea_g_esi A'ztp P 0 LA
3 o -
; » Pi
X P22
: (o) o
; Prm
2 |
P1a+Py
P13tPy
Em-l.m‘ir Pm.m-g

In this equation, we have used as usual the definitions

z éf x(u) dF(v) ,
U

R is the convex hull of CR’ S is the convex hull of CS’ and so on.
The proof proceeds in three major steps. First it is argued

by using our knowledge of simple cases and of the nature of a solution
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to the problem that the boundaries of R and S. must have a certain
form. Then we show that the boundaries of Pgtmust have certain
properties. Finally, using this knowledge of R and Pg. the form of
wi(_z_) is discussed.

In developing a structure for the boundary of R, we shall
exploit the fact that the competitive element of the game‘ appears
only through the p matrix in the form of terms pijuivj‘ Thus only
the first moments 0! i=1,2,...,n must be chosen with the opponent
in mind. The terms rij’ j#0, may be chosen to optimize the payoff,
consistent only with the constraints imposed by the value of o0
Since we know from the scalar control case (Figure 5-1) that
Ty ® rfo and T L T are required for any realizable distribution,
and since Ty must be chosen to have minimum or maximum value
depending upon the algebraic sign of P, it follows that the boundary
regions of R have U related to 0 by

_ .2
a. min Ty T riO
(5. 61)
b. maxrﬁ =710

We may argue in a similar manner concerning the cross-
coupiing moments Ty j» i#0, j#i. Two separate possibilities arise
in this case. If either rp OF rjo is associated with a pure strategy,
thenr,. = r, r.. = E[vL.u ], If both control elements are associated

ij "iojo ij
with mixed strategies, then using the argument about the possibility
of choosing T35 independently of the competitibn yields that T should

be either minimized or maximized within the limits of the chosen
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first moments 0 and rjO' Some thought and an examination of
’ Figure 4-1 reveals that the maximum value of rij is given by

-

g 18 - . - gyt &
i _ max T min [riO' rjo] (5. 62 E
(

é ' and the minimum by
1
£
; i = - - . -
min r, max [0, rio¥ Fi0 1] (5. 63)
¢ This can also be shown by considering possible bivariate distribution:
i onu, and u..
; S
;k' To find P%, we exploit Theorem 4. 6, which =ays that the
¢ boundaries of Pg may be generated using the pure strategies
represented by CS. A pure strategy for the minimizer will have n, ﬁ?
elements, say the firat 0 < n, € n, chosen from (0, 1), no elements,
¢ 0= n, < n, with value zero, and n, elements, say the last
0s n, < n, n, =n-n, -0, with value one. Let the region of Cs
with this characteristic be denoted Cé, so that
C
vz+v+2
Cé = {3c_|:_:_€ E ,» x = 8 (t), where
‘ t.¢(0,1), i=1,2,...,n
( i r 40 ’ ' % (5.()4)
1:i = 0, 1=nt+1, ceny nt+n0
f t, = 1, i=nt+no+l....,n}
i ¢
’ and let Pg' be the dual convex cone generated by Cé. i.e.,
{
?
X
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vzwﬁ

Py = {slseE :
(5. 65)

s x=0forallzecy) .

The set Pg' consists of the intersection of all halispaces defined by

hyperplanes with representatior. x€ Cé

For a given x(t )¢ Cé. this requires that

» and it is clear that P¥ cpg.'

a & xth=o :
b, %—[ Tx(t)] =0 i=1,2,...n

t U [ t

- (5. 66)

¢ 9 L Tx(t‘] 290 i=n +1,2 n+n
. rt'\i- 3 AL, t t pbeg oo vy t o

.} T -
du wi ["_ i(f)] ¢ £ 0 i-nt+no+1. sse R

By using (5. 66a) and (5. 66b) we may remove the dependence upon t_
and thus find an equation for the surface of Pg' as the relevant come
ponents of t vary over (0,1). To do this, we expand (5. 66b) to get,

using the notationzl conventions defined previously for s,

(5.67)
jol n

jtj=0 i‘-‘-l,Z,....nt

When the known valuos tj = 0 and te = 1 are substituted into (5. 67),
there remain n, linear equations in the n, unknowns t i=1,2,..., n,.

These may be represented in the form

118

o

&3

0

b

Y

. ——— " <o——— =2 5 7o

<




2 - T wwwr * » -

b
?Q (5. 68)
:‘. ;5‘: ’ r - ) -1 . " - D
E ;’i - Z‘ll 812 e e o ¢ o o+ . ‘lnt tl - slo+ - .li -1

: 2s s t Rttt

% 812 22 S2n, 2 .

é s 813 83 283 I R Rl IO

g : ; N

}‘? ; 8 s t s & 8

' g lnt Znt ntnt n, ntO + Z i

! . -4 L - ~=nt+n0+l .

R

Suppose (5. 68) were sclved for the cornponents ti’ i=1,2,... n,

and the results substituted in (5. 66a). In solving for the t,, any

denominator terms will contain only elements sij which corresponded

to quadratic elements tf or titj in (5. 66a). Furthermore, num-
erators will contain terms for which tj =0or tj =1 or terms which
correspond to linear functions of t;, that is, elements 80" Finally,
%00 does not appear in the solutions for the elements ti. Thus

¢ inserting the expressions for t; in (5. 66a) and clearing of fractions

gives an equation of the form
(5.69)

o

L -

n
8,0 Bols) + 2"1 o hyle) +2; %0 %0 hij (s)) + H(s) = 0
i=1 )=
; where the functions of s§ indicated are functions only of the higher
order terms sij’ i, j#0. Many of the fvnctions are in fact zero

and are retained only to keep the expression (5. 69) simple and

symmetrical, since their exact nature is unimportant for our

purposes.
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Havir § developed characteriitics.(s. 61), (5.62), and (5.63)
of the boundary of R and characteristics (5. 69) of the boundary o.f
P§'. we proceed to examnine the nature of wy(z). In the usual
manner we bias the (0, 0) term of the matrix of {5. 60) by subtracting
a parameter @ and then forming S(A(z), R, @). From {5. 60) we see

that a particular element r€ R is mapped as follows into s-space.

r
*10]
201 &
_.T T T
’ i=1
.rmod
-1 m °
2, Z (Pig + pji) ’i; -0
izl j=i+l (5. 70)
pee o P~ -
10 T10
s r
20 20
S EAETXTY AN B
L'no_ _’mo,,
’ii=Qii i=l’2.ooopn

.’.j s Qij+ jS i'-'l. 2....,!1-15 j=1+1.i+2,....n
These coordinates must lie, for the maximum &, on the

boundary of Pg'. and thus must satisfy (5. 69). Substituting (5. 70)

into (5. 69), recognizing that 5; is a constant for i, j#0 and that
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8,ois linearinzandinr i0° and using the fact that h( 3)#0 by the
; ’ nature of ¥ .:"%' we can write the %00 point in the hypexrplane cox-
‘ % responding to sij’i’ j#0, of S(A(z), R, @) in the form (for suitable
: constant matrices and vectors)
5
¢ T T T T
" ‘ = ~ .~ ~ ~ ,
% 500 c0+£-l T4z Cz_g_+£ C3§_+_z_" C4_xj_ {5.71)
£
\ E Here we define
N
. - -
; FS, 10
3 L | T2
s r=| . (5. 72)
- 8 :
' | "md_ -
1 _
g It is noteworthy that 850 in (5. 71) depends only on the first moments
¥ G
" r;o Of the maximizex's strategy. Substituting (5.71) into the first N
3 equation of (5. 70) and solving for & yields the form, for suitable ‘
matrices and vectors
!.‘ B
e - T T . TN T ~ ~T ~
; a-£~Bl£+Ez£+b34h4£-_z_ 35£-£C4£+
x (5.73)
m =1 m
& + Zpii rt (PiJ + Pji) riJ !
i=] i=l j=l+l
s
E It is necessary that re R be chosen to mas.mize a; the
¥
i (N maximum of & will be wi(_z_).
{

The structure of the boundary of R may now be exploited. 4

Parameterize (5. 73) by letting T = ti' i=1,2,...,m, tit fo,1].

re g WL, 3
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The boundary region of inter~st is such that it generatés some pure

st-atégies and some mixed siratégies forcdn’:ﬁoneixti of u.. Without

e -

"lows of generality, let ‘the first'm’ components, 0 s m’ < m, be

associated with pure strategie:, and let.the finai m-m’ be mixed.
Then (5. 61) implies

rii=tf izl,z,...,m' B
(5. 74)
J;ii = ti~ iém'+l,...,m
For the rij’ m2j>i> m’, for which mixed strategy cross-coupling

occurs, we may suppose that the coefficients (Pij + Pji) in (5. 73) are
such that, using (5. 62) and (5. 63)

rij =1 (i, j)e Kl
rij = rJo (i, j) e KZ
7 | (5. 75)
rij =0 (i, j)e K3
rij=rw+rjo- 1 (i._i)el(4

where the Ki are sets of integer pairs, and K v KZUK3UK 4 is the

set of all (i, j) pairs, m2 j>i>m’. Then (5.73) becomes

_.T T T T 2
a=z Bl£+_§2_z_+b3+§4§“-_z_ 355_-1:_043:. eriiti+
i=

(5. 76)

Zpﬁ E(PiJ+Pi)t+2(P + Pyt +

=m’'+l {i,j)eK
(Cont'd)
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%3* 4
Py
%
b
4 . - i
- ¢ + Z (Pij + Pjimi + tj 1) (5. ¢
. d.j)eK,
k’ The maximization of & over tit fo,1], i=1,2,..., m may now be
¢ performed. Some t; appear linearly in (5. 76) and take on values of
either 0 or 1 according to the signs of their coefficients. For these
t, which appear quadratically, we find the inflection point of (5. 76)
1 , ) L
; ™ .. ., T T (T
g = 0 (k) - 2 (Bg), -1 ((Cy); - (Cy)) (5.77)
+ B+ Pty

where the notation (* )i indicates ith element or column and

: §=Z(p.+p.) R is set of

. ¢ z oo applicable (i, j)

‘ (5. 78)
Py m2i>m’

P'(ti) =

‘
ZPﬁti lsism

Eguations (5. 78) are purposely left vague, since they depend upon
which sets Kk contain index i, and in what manner it is contained.

This is not important to our argument, since P is constant in any

o

case. The set of zquations (5. 77) is linear in z and t, and the
coefficients of t are known constants. The equation set may in

principle be solved so that tic {0,1], although in practice con-

~
,

o e a TRATENAA e R AT

straining the values to this bounded set may be a nuisance. A
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solution, perhaps not unique, must exist by the nature of the probiem,
and after all the extremal values of t; have been found, there will
remain a set equations of the form (5. 77) in which some number k of
the components of t are unknown and the same number k of equations
may be solved. It is clear that the unknown components must be
linear functions of %, a crucial point. 7

Therefore the elements ti' i=1, 2,.,., which maximize &
are cither ;erq or one in value or are linear functions of z. Sub-
stituting themn into (5. 76) clearly gives the desired result, i.e.,
® ax = i(3) is a quadratic function of z.

Since both S{(A(z), R, @) and Pg must by their nature have
finite numbers of recognizable surfaces, i.e., boundary regions for
which a single equation set or parameterization rule may be used to
describe the region, the arguments above may be repeated for each

pair of surfaces. Therefore wi(f-) is piecewise quadratic. We have

proven the following theorem.

Theorem 5. 7: The N-stage game starting at stage i with linear
dynamics, quadratic payoff function, and controls
chosen fcom unit hypercuhae a* each stage has

a piecewise quadratic value function.

This theorem holds whether open-loop or closed-loop strate-
gies are involved. It is particularly significant for the closed loop
case, for it implies that the principle of optimality may be applied

to give exact solutions. It is also significant for numerical solutions,
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since :omputation of the value is then reduced to determination of
coefficients. -
5.6 SUMMARY

In this chapter certain multistage games were shown to be
reducible to sequences of separable static games in which the state
vector is a simnple parameter. The continuity characteristics of the
optimal solutions were then ext.ensiveiy investigated. Finally, the
method of dual cones was applied to linear-quadratic games and it
was demonstrated that the value function is not only continuous, but
piecewise quadratic.

The implications of these results are obvious: certain
dynamic games can be solved. This can bz done, at least in
principle, for all games (of the class studied here) with open loop
strategies and for linear-quadratic games with closed loop strategies;
it may also be possible for other games. Furthermore, the con-
tinuity properties and the nature of the method of dual cones
guarantee that numerical approximation is both straightforward
and appropriate. This latter point should prove to be particularly

important for applications.
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CHAPTER 6

EXAMPLES

In this chapter are several examples which illustrate the
ideas involved in solving polynomial multistage games using the
method of dual cones. The examples are of low dimension so that
the geometric interrelationships may be visualized and are motivated
by using a multistage formulation even when it is not the mu}tistage
character which is of primary intcrest. The demonstrative value of
the models is emphasized rather tian the intrinsic value.

6.1 A LINEAR-QUADRATIC SCALAR PROBLEM

The first example is an eictremqu simple ore which we shall
examine in detail; its simplicity is such that we may concentrate
on our techniques and not be distracted by algebrai: detzil.

Let z be a scalar state variable andletu’ € [- -i-. %J.

v e [- %. %] be scalar controls for a system with fynamics

z(i+l) = z(i) + u’' (i) + v/ (i) (6.1)
Suppose that an N-stage game with final value payoff
J =22 (N+1) (6. 2

is to be played using this system, with player I choosing u’(i) and
maximizing and player I choosing v’ (i) and minimizing, where
i=1,2,...,N. Let us agree, since the parameters are scalars,

to use subscripts to indicate the stage index, z = z{i), etc., and

Preceding page blank
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let us transform the contFolé using L w'{i) + %. v = v(§) + i- #0
that the dynamics (6. 1) become

where u, ¢ [0,1], v, € [0,1]: a8 required-by.our: paradigm.
The solution to this problem.appears.intuitively obvious except
near the origin s = 0: the maximizer:will:.choose his.control to get

. .asfar:from:tb: origin, %:2.0, as-possible.ond.the minimizer will

attempt-to.cause gN 1 to bengartheori“’gin ~Thus .for,‘ zi;?? .0, for
example, u; s i-.. vi' 2. %-,»,j.wi,qbvious., 80 that By Sy andzg, =2,
For s, ~ 0, however, intuition is not.so:helpful; e.g., if zy = 0,
then ‘
min mex ) = 0
U
(6. 4)
‘ ?;:" ‘:3;” ’iz%l =1
and the neec for a mixed strategy for one or both players is apparent.
We shall find those mixed strategies and also verify the intuitive pure
stratogies.
Let us first solve the single-stage, or one-stage-to-go,
problem. For eass of notation, define u = upy, v = vy, %= 8y« 1,
80 that

zN+1u:+u+v {6. 8)

and
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T=(z+u+v) =2z 9 v) (6.6)

We seek cumulative distribution functions F°(u] z) ard G%u/ z)

such that

wiz) = g{:}, fa(z. u, v) dF°(u| z) dG(v)
VvV U (6.7)

Expanding J and writing it in matrix form yields

7

r o 22 AEEN

ﬂz):&‘:l’z)_ﬁﬁz)ﬁ <t a wlf2s 2 o] |v|p (6.8

' \ Ll 0 O_J VzJ

By subtracting w(z) from both sides an aefining

r = E[ul] ='fui dF(ulz) i=0,1,2

0
(60 9)

1
-j=E[v‘]= W aGivlz)  §=0,1,2
/

we may write (6. 8) as
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-zz - w(z) 2z 1‘T i 1 }

_min max
0"'_€S _eRLl T, r2] 2z 2 ol |s (6.10)
! 0 L%

where S and R are the sets of admissible moment vectors [ s,, ll, sz]’r

and L34, r,, !-'ZJT.}egpec,t,ively, and. 8y = rg = 1.

The set Cp, is givenparametrically by Cp = {r lro =1,
r = t, T, = tz. tel0,1]}, and R is the convex hull of this set. The
significant crosg-sections éR and R are shown in Figure 6~-1. We
see that g= {_g_l.i‘o =1, <rf $r, 521, rlc[o, 1]}. The sets Cg
and S are identical in form to Cp and R,

The cone Ps is easily conittu_éted using the cross-section S,
i.e., Pg= {s]s = )._s_"'for some A 2 0 and 8¢S}, This set is drawn
in Figure 6-2. i ]

The dual cons P¥ is slightly more difficult to visualize. By

s
definition
Py = (sl x 0, Vx e P} (6.11)

Let us use one illuminating method of construction. Pick a par-

ticular point x € PS and consider the set P’s'(_:so)

Py (x,) = (sl 8%, 0} (6.12)

This will be a half-space in E?" with boundary points _l_o such that

_§_°T3c_o = 0 (Figure 6-3), The region in the direction of positive 8,
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and its convex aull R,
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Figure 6-1, The set C
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T ey .

belongs to P§ ‘3‘-0" For two points X, 2od x X in PS' we see that only
points s belonging to both halt spaces can belong to P§; ie., 8 €P#
implies ng (x ) n Pg (54) In fact sel’g implies that sc'Pg (x,n
Pg (gl)ﬂ oo nP§ (xi) Neeee for all xi(P .. Therefore a boundary

point of Pg must- belong to Pg {x} for all xePs and must be a boundary

point of P4(x) for at least one x€P.. -

--Fx’-ozré Theorem 4.6, we know that boundary points of P
other than the oagm can only be-generatad by points § of Pg which
for some A > 0 !uve the. :propeity MGCS. ‘Hence.the construction of
the boundary requh'es cotuideration only of points s from the set |

{_t_l_t_ j_:!:_‘= 0 for sor;ie}_i’s‘ecs. _e;- Ty2o for ally €C} (6.13)

In this example, thé’agacommeﬂ‘ts—a‘nqévjuttofréiir!ébogr attention

to points s which satisfy

sy + alf + oztz =0 for some t€[0;1],

V“o + 8.t 4 8it’?

1 3 2 0forallt’elo0,1).

If fc (0,1), then for suitable 8, ¢ + 8¢(0,13, and (6.14) is equivalent to

Y ,
g+ 8t 8,t" =0 te(0,1)
and (6.15)

Sot 8;(t+0) + s,(t+8/220  t+8e[0,1]

This implies that

z,
s, +g,t+s,t =0
0" 1" "2 (6.16)

016 + sz(th + 62) 20
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Since § may be either positive or negative-

2 _
s +-lt+ozt = 0,

o R
te(0,1), (6.17)
s + Ztcz‘= o,

from which t may be eliminited to give
L (Y L, 1 6. 162
A.o~ --.—2-(#) ?9,‘ i | <,2;'-£'< 0 ( o ! )

The end points t =0-andt'= 1 yield:~

‘0 =0 - (6. 18b)
8y + s! + 2‘3 0 {6.18¢c)

as other lgpundlry surfaces. Combhﬁng ”(9.} 8a)-(6. 18c) yields the
boundarien of P} iFiguife 6-4). These are more easily visunalized if
the pair of cross-sections in Fi'gure 6-5 are considered.
With R and P# known, we are ready to‘ proceed with the
~ problem solution, :LQt us use the matrixof (6:10) to map R int;)
S-space; i.e., define

S(A(z), R,f) = {3'3};( R )'Io = lz - f+ erl + rz. )
(6.19)
5, =22 +2r), 8, = 1}

~ For convenience, let us denote S{A(s), R, f) by S(x,f). Then if {f = w(z),

S(z, f) intersects P¥ only at boundary points. We see that for all

f and 2z, s¢ S(z,f) impliecs s, = 1, so that the intersection of the sets
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Figure-6=4, .Boundaries cf the dual cone P;.
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) Figure 6-5, Cross-sections of P; for Example 1,
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must occur for this value of 85 and we need only consider the s, = 1

i ; cross-section of P§ This cross-section is given in Figure 6-5(b). S
¥
r Let S’(z, f} be the projection of S(A(z), R, f) on the s, = 1 plane.
i Let us now consider sample values of z and f'and perform
* the mapping of (6.19). _ “ ] &
: , ) : _ )
5(1,0) = {s s JdreR 38 =1+ 2r; + r,, 8, =2+ 2r,]
: 5'(0,4) = {8y, ) |qreR >2,= -3+ 2r) +xp, 8, =2+ 21} (6.20) 0

{ :
f . V These sets are shown in Figure 6-6. Performing the mapping is

aided considerably by the fact that, for given z, it is a linear mapping.

Tkus the straight line segment ¥, 5 r, maps into a straight line seg-

<

- ment s, "% s - £ - 2, and the segment of r, = rf maps into a

) segment of 8y = % sf - f. }

Examination of Figri‘xtg 6-6 reveals forcefully the effect of f in
causing the translation of S'(z, i) parallel to the s,-axia. Further- 9
more, 1t is obvious that w(l) is the maximum value of f for which
S(1,£ )npg # 3, or alternatively the minimum f for which a scparating

plane for S(1,f) and Pg exists. Since f = 4 hao the desired qualities,

- w(l) = 4, This occurs for Ty =1, = 1, so that the pure strategy

K
5

Fo(u) = Il(u), suffices for the maxii. 'zer. The separating hyperplane
is s, = 0, implying that the pure strategy G%v) = Io(v) i3 used by the
minimizer. (Aa usual the function Ix(y) =1lfory2x Ix(y) = 0,

y < x, is used.)

Before evaluating w{z) in general, let us examine two more

138

s R e T e




Sespace for z =1,
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sample values of z.

T TP

§'(-3,0) = {so, sll‘ﬂ T€R>8,=9-br +1, 8 =-64+ Zrl}

’ - - N - -
§(-3,4) = {so. 81|3 r€R > 8y = 5 - 6r1 + Ty 8) = -6 + Zrl}

§'(~3,6) = {sq,’g‘lxla T€R >8,=3- 6:.'l try 8 = -6 + Zrl}

(6.21)

>

s’(-l.-q_f-;[ao. s‘,;.’!:alﬁ ZER3 S 22-2r 41y 8 = -2+2r) D

i g i vz N - ' .
S'(-li‘i-) = [86; aI‘IS TER 38,2 % - 21y + T, 8 = -2+ Zrl}

s’(-1, 2) :{so. sl;jﬁi 3_633-30 =] - 2r, + r'z; 8) = -2+ 2r1} 0

Thaese sots are: ;két’ched in Figure 6-7. Looki‘ng first at the sets
S(-3,f), we peé that S(-3, 6) does ;iot intersect Pg. that S{-3, 0) lies
entirely within Pg and thus does not have a hyperplane separating it
from P, and that 5(-3, 4) appea;fs; to both intersect and share the
separating hyperplane st 8 = <1, Thus it appéara that w(-3) = 4, 0

and Go(v) = Il(v). Furthermore, the intersection point 8g = 5,

s = -6 correspcnds 'ti'i';'l'?‘ “i-z = 0'i R £6F £ = 4, and thus

Fo(u) = 1y(u).

9!

i For the sets S(-1,f), it appears graphically that w(-1) = i-,
that the separating plane is 2.0 -8 = »i-. and that for the point of
contact 8y = i—. 8 = -1, the corresponding r€R is T =T, = %
Tharefore optimal strategies are G°(v) = Ii(v) and Fc’(u) = %Io(u) +
%ll(u). where the latter indicates a 50-50 mix of u = 0 and u = ] for

! the maximizer. These valucs will be verified algeraically below.

140 ﬁy

TR AR el T G ey v SR O "t e ST




Figu -
gure 67, Mappings uf R into S-spice forz =-land z = =3
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With the insight gained from the special cases, we may pro-
ceed to considér-moreé géﬁfi-ai valués of z. Note fint that every
tangent to the crou-ucﬁon of the boundaty of Pg ats ] 2= 1 cors
responds to a point of Cs. hence the minimher uses only pute
strategies. On the other h;nd for uch 1'l correlponding to at lcast
one TER the image pointa lcs (2, f) haye thef property that for fixed
Y the value of s for ’2 -«.rl is greater\ thin or eq\ul 0 84 for
r, = rf Therefore all optimahintenectiéns of s (2, £) with Pg e
on the line c,gr,relpondingth ¥ = xfén.inv R;-gg;ce. .and:the mg:ﬁ.@;et
always uses one of his extreme poizit;"u; 0) oru =1, of a mixture
of these two points. For this reaooﬁ,.gye ;zgeg only be conceraed with

the li:.xelcegmcnts in 8'(z, £) given by

8 = zz -f4 (22 +1)
tel0,1] (6.22)
1 ® 2(z +t)

in our analysis. Equations (6.22) may be written with t eliminated

o---(c-f-zz-z)-f(z-l-i—)o1 (6. 23)

In the proofs in Chapter 5, the properties of simple algebraic
maximization were emphasized. For variety, let us utilize here
geometric properties of slope and support hyperplanes.

From Figure 6-5(b) it can be seen that the slope doo/ ds,
of the boundary of P§ is between -1 and 0. Thexefore if for given ¢ the
slope of the boundary line of S(s, f) is either less than -1 or greater
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tharn zere, we may b sure-that,the maximizer uses one of his pure
_end point. strategies u=doru=1. ";‘rqg;}n, (6. 23)._~ds°/dall Siz.f) =
z+ %- Hencz, u uses pure strategies for z > -%or z'< -%. For
z> .%, {o.22) s}_ixow's that 'Olin “ax’é'cé"’?' fort=1 and that therefore
s > 0 at the contact point-of S(z, w) and Pg. It immediately follows
that a separating plane is 8 = 0. Subptituting t=1and 8) = 0 in
(6. 22) gives w(z) = £ = zz +2z+1 = (g + “1)2. Furthermore, t = 1
gives Fb(’gl z)‘ = 1‘1‘(u_). -and 8g = 0 fo;' f!_;e separating plane gives
GO(vlz) =s2g(v). Thiese old:tor s> g

Ifz < -%‘. thén 8] <=2 from (6.22). In this region a support
hyperplane and contact set with Pg h%io +8 = -1, implying
G%vlz) = 1,{v). The maximum for s, is att.= 0. Since the contact
point occurs on 8o 8 + 1 =0, we have z'z -f+2z+1 =0, Hence,
wiz) = £ = (3 + 1)° and Foul 2) = Lyfu).

For the regicn zc(-.g-, -:%), the slope of (6.23) lies in (-1, 0),
and slc(-z, 0) for some values of t (See (6.22)). Therefore tangency

f 2 0 must be considered in deter-

of (6. 23) with the curve s, - 1 g
0" ¢

mining the optimum payoff. The slopes. of the two curves must be

equal for tangency (and thus a separating plane) to occur. This re-

Quires

NNEY +§- (6. 24)

or

8, =+2z ¢ 1 (6. 25)

at the pcint of contact. Using (6. 22), this implies

1
t= YR (6.26)
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Hence F°(ulz) = 2— L4(d) + 2-1 {u), becauu we are working with the
r T, -tboundaryofR. OnPg

) N :%;(331)3 2s°t 3 sk% ) V (6.27)

so.that sigce
ioszz-f'-l-z-l»%— o (6. 28)

on S(z, f) in this region,. ‘elimiqggvii;g;go yields f = w(z) = %- The
minimjzer's pure strategy is concentrated at T = - -!.-z-?l-?-. .
i.e., Go(-vl z) = I-i _i(v).

The cases z = -’%an’d 2 = .-%are easily evaluated;‘ the sets
s'(- %’. w(-‘%))a&l S"(-’é-‘.' w(é%)) are shown in Figure 6-8. For
2= -3,w(-5) =5 Gvlz) = Io(vhand F(il 2) = alyu) + (1 -a) I ()
where ael0, %J: ‘i, e., the maximizer has a choice of optimal strate-
gies. Similarly, for z = -%, w(‘-%) = %—. GOv|z) = 1,(v), and
FO(ul 2) =wly(u) + (1 - @) 1,(u) where ae[}, 11.

The renults in terms of z) are summarized in Table 6-1.
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Table 6-1. Results for One Stage of Example 1

N Fnaldn)  Sgatdng by
<-} I L (2
-3 elfe+ 0w LK I
@iyl
-FS<T Tl iy Loyt 4V 3
vy alfu) + (1)L () I %
1
' ae LOQ'Z’l
>4 1,(u) Iyt¥) (2p)°

The results may also be written in terms of “l"i and v{v by the

obvious transformations. Note that the payoff may bs written

wylEy) = max [zg. %]. (6.29)

This is a piecewise quadratic as expected from the theory.

To find wN-l(zN-l)' we repeat the basic processes above.
Now, however, it is necessary to allow for the piecewise quadraticity
of wN(zN). Certainly for ZN.1 £ -% Or Znr g > -g- only the curve
zlz‘J is applicable, for the region zg < -i- is unattainable for any
admissible controls uy | el0,1], N-1 €(0,1). In thia region, then,

the results of Table 6-1 will apply with suitable changes in subscript.
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e “Whué»:‘ﬁtﬁ’-%. %‘3:‘( au"iihiblc: 'the;ii't“uaion»is more com-
plicated. Theze are: twcul “Ways' £0; argue .concerning the estabhsh-
-ment-of the; value and’atutggxu for: tlﬁs -region; ons interésting
techmque isto use attainable-cet ugnmentc. , Let us-instead approxi-
-matethe polynomialp(z) s-; bythe polynonnal -

-

Pg(iu) = e’ﬁ + (l°€",z-¢= G(zﬁ -I) +:; K 76 ([0, 1] (6.>3°)

. - . 2 , . ST : B 2

wN(zN) .max: f.( 'N) e .€(z 1') 4 I] . (6. 31)

has the same points of discontinuity of dWy,/dz,; as dwy léz . Let
us evaluate the game pe(zN) given: ’N i I we(zN 1) denotes the

vaJ.ue. then
. (6 32)
- - -
et 2 [
wé(zN_l)f;lt-l—é g(i:) g‘&’;[; u uz? 2(zy_,-1) 2 0| | v
) 1 o Q. -vzd

If we define z = zN-l'l’ we see immediately that the portion of

(6. 32) of interest, i.e., the portion to be mini-maxed, is the same to
within a bias constant as the one-atage problem (6.8). Therefore
the strategies for the game pé‘zN-l) are independent of € and are the

same as those for the gams wN(zN). The value is

we(le)-max[z+€[ 13'] ] (6. 33)
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As: € = 0; it:is: cleu tlnt '6"&[ l’ "z. Snitablc stntegin for the
litmt game: are. by continuity ugmuc thnihrato Lcmm B,
‘Hmits-of th= otratogiu for- the: pmc p“e(:n l). which we. alteady
noted zre indepeidefit of €. )

A 'Ihe’ ‘g’ameji(siii;i)r is ﬁiﬁci;iély:iﬁe‘:siﬁéj’aszwﬁ(iﬁ) except
for subscripts, and h&s the‘ aame‘ foi"m of strategy. T!iu; (zN 1)z
" and: pe(zN 1) have commcn optimal strategiea. which may easily be
read from Table 6-1. Either by;incerﬁng these ctrategies into
(6.29) or-by arguing concermng the contiﬁtiity -of the payoff and the
fact that each branch of -the game ¥N- l('N l) i8 lower-bcunded by T’

we ﬁnd that - i .

(o) = maxlagy, 7 (6.34)

Notii:g,that this is of the same form as (5.29) and that we have
already argued that the o?timal strategies are of the form in
Table 6-1, we sse that the multistage g;mq is in fact solved, and in
_terms of the original definitions (6. 1) the results may be sum-
ma;'ized in Table 6-I1.
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Table 6-II. Resulis for Exainple 1

isL....M . F fflay gl wysy
5<-3> = 3PS ) ‘ La )

R S

) “[%';3 ‘-

o< bpdy o b
5=+} a g+ am® 1 T
| ae[o.%] '

%> 3 L 14 (2,)?

6.2 COUNTER-EXAMPLE: A NON-POLYNOMIAL VALUE
A3 pointed out in Chapter 5, a polynomial game cannot be

expected in general to have a value function which is a poiynoniial

in z, A simple example will demonstrate this. ;
Suppose that u, v, and z are scalars, that

Iz, u) = 22(N+1) - u®(N) (6. 35)

and that

*These are optimal strategies. For i< N it may be shown that
otl:»r optimal strategies also exist,
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'f_;mm = 2(N) + (2(N) + Du(N) + V(N) 16. 36)

We are isterested in finding wN(z(N)). Any other stages of the game
are not of iixterest in this example. We assume that u(N)e lo, l],
viNye Lo, 1].

For ease of notation, certain subscripts may be dropped so
that z = z{N), u = uy(N), and:v'= v(N)». The usual steps of substituting

(6. 36) into (6. 35) and writing out the expression for wN(z) give

wN(z) = ;?(a“:i z; g’az)E[zz + 2:(?-!-1) u+ 2zv + l',(z+l)2 -1) uZ +

2 (6. 37)
2(z+1) uv + v°] )
In matrix notation, this is
(6. 38)
(e 0T
. A wN(z) 22 1 1
_max min 2
0= Pulz) Glvjz) By u u’d[2a(z+1) 2(z+1) o} |p
2 2
" _(z+1) -1 0 0_ )
Using the moment definitions from the first example, (6, 38) be-
comes (6. 39)
‘mad pos -
"
z2 - wN(z) 2z 1 1
_ max min
0= R 8¢S [1 =, r,l] 22(2+1) 2(z+1) 0] | 8,
(z+1)z-l 0 0 8,
o - e ol

Since the cont:ols appear quadratically, the sets R, S, and

Pg are the same as those of Example 1, (Figures 6-1, 6-4, 6-5).
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" and note that _g_eS(A(z). R, f) implies s, = 1, so that only a cross-

As in that example, form the sets

S5 1) = {89, 8,13 zeR Isg=22-£+22lztl)r,  (6.40)
= 257 . !
+ (2+1) ¥, -y

8 = 2z + 2(z+1) rl}

section of P; need be considered (Figure €-5(b)).

Oﬂcé again the minimizér will usé pure strategies, whereas
(because of the urﬁqg 'coef§iciexiti§f r, in the equation fo; so) the
maximizer may use either mixed or pure-strategies. In s'(z, £),

the line r, ='r, generates a segment of

2 322 + 42

8,=2 - f+ = (sl - Zz-‘) (6. 41)

Evaluating cases as before, we find that for ‘S;GS’ {z,£f), 8 2 0 for
all r) if 22 0. Therefore in this range G°(v| z) = Io(v) and (because
the contact line is 8y = 0) w(z) = 4zz 4+ 4z. Furthermore, since
r, = 1= r, is the best choice of moments for-the maximizer,
F°(u| z) = I,l (u). The strategy is arbitrary for z = 0.

If 2% -1, then 8 £ -2 and the intersection of S’(z, w(z)) with

Pg lies on the line 8, + L) + 1 =0, Therefore

f=224(22%+ 4z + 2) ry +a(zt2) T, +22 4 1 (6. 42)

If z$ -2, then clearly T T, 1 is optimum, yielding w(z) = 4z2 +

2
8z + 3, G%(v|z) = 1,(v), and F%(ulz) =1 (u). If -2< z< -1, then
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the coefficients of r; and r, in (6. 42) have opposite signs, suggesting

a pure strategy solution for the maximizing playex:. Maxumzmg

(6. 42) over et = & requires

r4

t=..2 + 2z ¥ 1

which after imposing the limits. t([o l] implxes

» ‘r; l e l“-l 4

t= { : (6. 44)
” PP A .
=(z+1)° | _ .@
—Z‘W l>zg2-<] - .

+8z+3, GOlvlz) =1 1{v) and F Ou) z} = I, (u) for

z‘-l--ér- For-1>z2 .1 "L, (6. 42) and (6. 44) imply
that

Thus w(z) = 422

4 2
w(z)=£=22»%+22+1=% (6. 45)

Also G°(v]z) = 1,(v), an¢ Fufz) = 1(u), where

z{z+d
For -1 < z2< 0, examination of (6. 40) reveals that the coef-
ficient of r, is negative, im..ying that the maximizer will use pure

strategies, Parameterizing S'(z,w{z)) by r) = t, r, = tz and inserting

in the equation (See Figure 6-5(b)) for the boundary of Pg
(6. 46)

2

-8
? + 2z(z+1)t + (z+l)z t2)= (—Tl—)

8, = zz - f+ 2z{z+i)t + z(z-l-?.)t2 = (=

[
™

SRR C

T P (6. 43)_

G

U
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0

@le

q“&:
5

: Hence

£zt (6.47)

Here t = 0 is the obvicus cho;cé; i.e., i‘f’(ul z) = Iy(e), inthis region. '
The intersection poixlt with Pg has 8, = 2z, implying the pure strategy
G°(viz) =1__{v) foi-the minimizer. From (6. 47) it is clear that :

w(z) = 2, 'I‘,iblé~6-m summarizes the solution and Figure 6-9 shows
repregeptiﬁte s'(z, w(z)) sets. Of pgartii;ulgr interest is that for

ze -1~ z - &Jﬂ(ylwisu-fseﬁqéé!ﬁ;h@s, not 3 polynomial. Theréfore,

if a further stage is to be solved, ‘t;lieume'thod, of .dual cones is unlikely

(=

1 to b2 applicable.
Table 6-JII. Solutions for Example 2
0 z Foulz) GOM z) w(z)
' £.1- ;45-_' 1, (u) 1(v) (22+3)(2z+1)
2 - (z+] 2
2
£ z+1
ziz+2%

o >.1,<9 Iq(u) 1_,(v) 0
|

0 Arbitrary Io(v) 0
0
E >0 Il(u) {[O(V) 4z(z+1)
N
]

g
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Figure 6-9. Representative sets S(z, w) for Example 2,
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6.3 A SIMPLE PROBLEM WITH VECTORS

L,

IR s A DT T

The biggést obstacle to finding solutions of a non-nuxz;erical
nature is dimensiorality, for schés larger than three-dimensiosal

it LA Lot iduipmend

are almost impossible to visualize. The following p:oblem is of

e

small enough dimension to be pictured and still is an interesting

A
N

problem coataining vectors.

Letz and u pe two-dimensional and let v be a scalar for a

system with dynamics

zl(§+l) = z,(i) + u i) - @ u,(i) + -'/2{ vii),

(6. 48)
zz(i'!'l)": zz(i) + -1‘/{ uz(i) + -i‘/zg_- vii),
and with v{i)e(0,1], \;l(i)e[o. 1], uz(i)eto, 1]. For the payoff
function choose 7
3 = 221 + 22(N41) - V) - ud() (6. 49)

As in the previous examples, drop the stage indices after sub-

stituting (6. 48) into (6. 49) and use vector-matrix form for J to get

- {6.50)
~ 1Ir 1
z§+z§ \/Z—(zi+z2) 1
1
Zz1 \/Z- 0
_min max
wiz))25) =Gy Fra) B L uyp vy 9] v
\/Z_(z -z.) 0 0
A |
2
7
L -v2 0 ol |




Using the usual definitions, this ma- be rewritten

(6.51)
I ]

zf-&zg-w(z) '/Z(zl+z2) 1l ¢

. : 11
O-m:mmax[lrrr]zzl v ’ 8
" 8€S reR 172 'x - : 171
8

L—ﬁ 0 0] - -

The set S is the same as in example 1, as is Pg. We see that the
mapping S(A(z),R, f) once again has 8, = 1, so that Figure 6-5(b) is
again usable, '

The set R may be consiructed by forming the set
éR = {r| r) =t Ty =ty 1=t tie[o, 1]} and then taking its
closure. The sets éR and R are shown in Figure 6-10, where éR
and R are projections for ry = 1 of CR and R.

The interesting thing about R is that it is a tetrahedron and
has as its vertices the points (r}, r,, r,) = (0,0, 0), (1,0, 0), (0,1,0),

(1,1,1). These points correspond to pure st:ategies I u) =

(ul
Uy,
100(2). Im(g_). 101(}_1_). 11}.(2-) respectively.

The set S'(_z_, f), which is the projection on 8, = 1 of the image

of R for a given parameter { and initial state z is defined by

(6. 52)
5'(z, ) = {80' ﬂll, 8y © z':' + zg - {4 2z;r, +\/5:(z2 -2z)) 7, - \/-Z_rx,

8 = \/Z.(zl + z?.) + \[’.— ry» L€ R}
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=10, The sets CR and R for Example 3,

Figure 6
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We will consider the interactions of this set with P for various values
of z. Note that the maximizer's moments r and r, may be chosen
independently, provided that the coupling T, is accounted for.

Case 1: 2y + z, Z 0. In this region, 8 =‘/Z‘(zl+zz)+\/2- ry 20
for all admissible ) ﬁnplyiug the pure strategy Go(vl z) = Io(v) for

the minimizer and
_ 2. 2 .
f= 2y + 2, + Zzlr1 + \/E(zz - zl), r, - \/;rx (6. 53)

as the expression vo be maximized over reR.

For z, <0, r = 0 is obvious, as is T, = 0 for z, = %) <0. In
both cases r, = 0 follows from the choice of ryorr,. If both
z, > @ and (zz - zl) > 1, then clearly the penalty of taking r = lis
worth the benefit from having both ry=1 and r, = 1. If, however, we
have zy >0, z2> Z), but either zy < —éi-. or z, <114 Zy then further
examination is necessary to determine the desired strategy.
Figu. e 6-11 shows the form of S'(g_,f) for z in this region. The cor-
ner markings indicate the pointe of R which generate the corners.
From this it is clear that 101 or 110 will be preferred depending upon

which has the larger coefficient. Thus

Zz1 >\/§(z2 - zl)
or (6. 54)
(\/é-:i'l)z1 > z,

leads to choice of Lo the opposite irnequality leads to the opposite
choice, and equality implies an arbitrary mixture of the two

strategies. Resalts for Case | are summarized in Figure 6-12.
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Figure 6-11, Representative mapping of S'(g_ o f)
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e

FO = 10,0l
G° = Io(v)

2
w = zl:l'zgfl;ﬁ(zz-zl

F = Lolu)
G°=1.(v g
w = z1+zz+Zzl

Figure 6-12, Strategies and values for Case 1,
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Case 2: I s, = !/2'(51 + zz) + y/Z-" ~ 2, the minimizer uses
the pure strategy il(vl z) and the intersection of S'(‘_z_ » w(z)) with
P¥ lies on the line s, + 8; + 1 = 0. From this it follows that
(6.55)
- 2 ) "
f= z) + zg + ‘Zzl + \/2_)1'1 + \/2-(22 - zl)r2 - \/Er* +‘y/,'2_(z1 + zz) +1

Arguing as in Case 1, we find the reuuitsvwhich—are summarized in
Figure 6-13. ~

Case 3: z, -j—‘%z< 0, z, + zz> -1- \/2— This final region is
more involved to evaliate because the curved nature of the boundary
of Pg (qo = (—;L)z) in part of this area m#kes possible non-trivial
mixed strategies for the maximizer and fractional pure strategies

for the mim=I.or.

Note that on S'(_z_, f) for r # 0 we can relate 5, and 8 by

8
0 zf+z§-'f+ 221(7;--z1 -zz)+\/z-zzz-zl)r2-w/2—rx
(6.56)

- zf-zzlzz + zg - f-!-\/Z_zlsl +\/2-(zz . z:‘)rz - \/Erx

For r = 0or r = 1, L) is constant.

Consider %) 2 0, so that z, - 2, £ 0. Then the mapping
(6. 5¢) of R is of the form shown in Figure 6-14.

Clearly Il 0(3) is preferred by the maximizer, and contact with
Pg occurs on the curve 8, =-i— sf for (zl + zz) $ - 1andon 89 = 0
for 2, + z,> - 1. The strategy for the minimizer is It(v). where
t=- -;-L = - -{-?"‘- (z1 +z, + 1) inthe former region and 1, in the

latter, with the payoff function evaluated accordingly as either
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FO=1 (u)

G® = L(v)

w = zz+zz+2\ﬁz +1
17%2 2

o .,
G = II(V)

2
w = z—l*zzz +ﬁ(z1+zz)+1

-~

" =11 . (u)
10'8
G° = 5(v)

2.2
w =.z) +z2+(z+/2)zl
/22,424

Figure 6-13, Strategies and values for Case 2,
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e Dk ‘,.._,,,—-'
. 5

r g2 g2 (6.57)
1 2 .
tgt bty 532 -7 - o tz<-l
w(z) = 4
2, .2 :
zZ; + z, + Zzl z) + zz> -1
-

{4 z, < 0, more possibilities arise. Let us consider the case
z, - % < 0 in some. detail. A possible corfigur~tion of the mapping
of R is shown in Figure 6-15.

From (6. 56) we know that the slope of the line from I o to

0
Lois \/Z- z,. Since the slope of the Pg boundary is greater than -1
and less than 0, 2z, <. —‘g— implies that 100 is the contact point,
with suitable interpretations as in the case z > 0.

On the other hand z Zz - .427. implies a contact poin§ either
at I, , or on the line from 160 to 1l 0’ depending upon the exact values
involved. For the line to be tangent to the curve 8, = %— sf, the

slopes must be the same at the point «f contact. This implies that

8
1
T"/{zl

This equation along with the definition of 8, on the set S(z, {) gives

8 =2\/Z-zl =\/2.(zl +zz)+\/2_rl
or

r = (zl - zz) (6.58)

Since 0 r) ¥ 1, the limits of the range of internal contact are clear.

Where it applies, the mixed strategy for player I is
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Figure 6-15. Mapping of R for 2,< 2,< 0
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Fo(ulz) = (1 + 5, - 2,) I ) + (=, - 2,) I, y(u) (6. 59)

and the minimizer strategy is

Govl z) =1 (6. 60)

(v)
VEay

The value is

wiz) = (z - zz)"‘ (6. 61)

I ry is limited, the results are obvious.
Similarly, if z, > z and z; < 0, the mapping has the appear-
ance of Figure 6-16.

In this case, the line of i;xterest is from 101 to 110 and has

equation
(6.62)
s
so=zf+z§«f+(2zl+\/2—zl -\/‘Z.zz)(v—i- - % -zz)'!'\/z-(zz-'zl)

In the region of interest, the slope of this line is less than -1
and therefore I01 is the preferred strategy. A region for which
tangency is possible requires 2, > z, which violates the hypothesis
for the region, The results for Case 3 are summarized in Figure
6-17,

A comment on the nature of the continuity of the resultc s
perhaps in order. Within regions, of course, continuity is obvious.
At boundaries of regions, however, the continuity is not always so
clear. This is because only upper semi-continuity holds; that is,

if D is a sufficiently small open set containing the set of cntimal
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Area A:
F°-= (l-zl-t-zz)loo( u)
ﬂzl'zz)llo( 2_ )

G%=1 i
_\/z'zli v)

w = (51-22)2

Area B:
o .
F~ = Ipplw)
G° = Il(v)
w = z% +z§+ﬂ(zl+z2)+1

Figure 6-17. Strategies and values for Case 3.
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strategies R°ata point z, then for _z_' sufficiently close to z, the
optimal strategies at _z_' are contained in D. However, R® may not be
contained in the set of optimal strategies of z". The meaning of this
for the boundary regions is that st;ategie: there are typicaliy not
unique. Thus solutions on opposite sides of the boundary may not

be near each other although both are near some optimal strategy

V2

For example, consider the Region'Aboundary Zy = -~

for the boundary point.

in Figure 6-17. The situation here is as sketched in Figure 6-18.

From this it can be seen that any strategy

F(a) = (1 - &) Iyglu) + @y (u),  aelo, z2+-{‘3'-] (6. 63)

will be optimal for the maximizer. Strztegies on both sides of the

line z) = -4/2-2- are continuous with this strategy for some a.
Figures 6-19 and 6-20 are sketches of the results given in

detail in Figures 6-12, 6-13, and 6-17, /

6.4 LINEAR PROGRAMMING FOR APPROXIMATE SOLUTIONS

Chapter 4 discussed the use of linear programming to gen-
erate approximate solutions to game problems. We shall see some
of the implications of the technique in an example. Only a simple
problem evaluated at a single data point is needed to‘ clarify the ideas.

Consider the game of Example 1, Section 6.1, with one stage
to go and with initial condition zy = 0. From Equation (6. 8) wé

have
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f K 2 1)
o . _ min max 2 ) 4
- wi-1) = G0) Flu) Eﬁ[l wu®lJj-2 2 -0 v | (6.44)
. 1 o o] VA

In Section 6.1 the solution was found to be

1
) W(’l) = z-
‘ ;‘Z Fou) = 3 I+ 31, (6.65)
3
i °tv) =
g G (v) Ii
%
£
& F The set R is shown in Figure 6-1. Let us approximate it by i
[ 5 0 the poiygon R shown in Figure 6-21.
/‘ 1
%; To lie within this polygon, r must satisfy ~
; <
i 8 T
13 .
; i 1
f P |
; 3 1
d 2 - .
E
5 3
k -
f 2°T%1°3 *
f 7 3
; 2 -
e 2°¢N "7
' The polygon is internal to R and thus our solution point r of the

approximate problem will be a viable strategy for the maximizer.
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Figure 6-21,

Polygonal approximatior. to R,
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Now create an approximation ?3‘ to P# by uaing the support
planes generated by points in éS (Theorem 4.6). A plane will have
the general form { s} 8g t+ts) + 1:232 =0, te{0,1]}. Let us choose
t=0, %, ;lf. -?5-. -g-, -g-, 1. Also note that we are interested only in

8, = 1 because of the transformation matrix in (6. £2j. Thus we say

that if 3€P'§, then 8q» 8 must gatisfy

3020
80*%"12‘;6
St T % TE
so+%31z «243- (6.67)
0tge -5z
0t7 215
so+e.l2 -1

However, after using the usual biasing parameter f, we find

from (6. 64) thai 8> 8; must also satisfy

so=1-£-2rl+r2

(6. 68)

sl=-2+2r1

Substituting this in (6. 67), rewriting (6. 66), and maximizing

f, we find that we have the following linear programming problem:
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maximize {

‘rl' rzlf)
subject to
q oy
B -1 0 o
- % 1 0 0
-3 1o -3
-3 1 0 --g-
AN
r
1
-2 ] -1 -1
r, e (6. 69)
-3 1 -1 -2
£
-3 1 |k -
--g 1 -1 - 2‘25
-3 1 -1 - &
-2 1 -1 - zl-g
0 1 -1 0 ]
o__o_39
For this problem, the solution is r, =T, %5 and

o _ 21 _ 2l 0, . 41 39 .

f" = 5" Thus w = 0 and F(u) = '53'10(“) + 55 Il(u). Equality of
the constraints holds in the first, ninth, and tenth of (6. 69). The
latter two correspond to the hyperplanes generated by t = % aad

= -g- It should be noted that neither of the latter planes is a

separating hyperplane of Fg and the mapping of R (See Figure 6-22),
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although each supports Pg_. Either (or a combination of both) may
be used as an approximate strategy for the minimizer, since it is
known that pure strategies are sufficient for him.

If another iteration is used, with the R approximation being
the same but with Pg approximated using t_= 0, %, %, %, 1 {so that
a smaller granularity appears in the region of the possible solution
t= %. t= -g- fromn the first iteration), it is found that w = £° = ?lf
and that both rg s r; ¥ 95' and r: = rg = i% yield this value
(as will rcl’ = rg. r‘l’ tf,-z%-. é%-]). Support planes t = %, t =% give
the latter r values and t = %. t =% give the former. In this cace
t= %‘- is a separating hyperplane and Ii(v) is a good strategy for the
minimizer. Either or both of the r-moments may be used by the
maximizer with justification; one suitable c.d.f. is Fo(u) =
2% Io(u) + é-é- Il(u). Closer approximations achieved by smaller

granularity are of course possible.
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CHAPTER 7

COMMENTS ON DUAL CONES FOR DIFFERENTIAL GAMES

Two-person zero-sum differential games with closed-loop
strategies have beon the subject ofv considerable research interest,
and we would be remiss if we did not consider extending vur results
to such games. We shall find that this extension seemns fraught with
peril, however, and therefore confine ourselves to comments and
to formal arguments. Open-loop strategies are somewhat air;:pler,
but many of the same comments apply.

7.1 THE PROBLEM OF DIFFERENTIAL GAMES

The diiferential game analog of our multistage games has

dynamics
2(t) = £(z(t), uft), vit), t) (7.1)
and payoff function
T
J(z(r); ult), w(th T, 7) = g,(z(T)) + / glz(t), u(t), v(t), t)dt (7.2)
’ )

where g_(‘r) is an initial condition given at time T for the dynamics
equation (7.1), and uand v are control vectors. In the research
to date (See Chapter 2), the functions 5 g 8 are usually such that
pure optimal strategy functions _\.f(t) and y_o(t) exist, and tlLe object
has been to determine these functions and the value function

w(z(t), T, T)

179

A—— i, —

PO

-t

Jrappeneet




wiz(r), T, )= val Jiz(r) ult), vit); T, 1) (7. 3
(u(t), v(t))

In some cases it has even beenr possidble to find optimal closed-loop,
or feedback, strategies so that g_o(t) s 20(2’(!). t) and .v_oiz) =

xo(_g_(t), t). The usual technique has been to appiy either 2 method

of characteristics or a Hamilton-Jacobi-Belilman methed. The latter
method requires the solution of 7

e Wizt T, TYe  val  (g(z(r), w(r)w(r), )
(u(r}, ¥(r) (7. 40

* 1‘.’1‘)"(-‘."')- T, ) (21} ulr). v(r), 7))

When pure strategy solutions do not =xist, the problem be-
comes more difficult. For differential games even the precise
definition of wnat is meant by a mixed strategy can be elusive,
although it will in some sense be a cumulative probability disiribution
F(u(t)) Lor G(wt))] over all admissible controk functions uit)

Cor x_(t)]. We might think of a closed-loop mixed strategy for the
maximizer as a c.d.f. F(ujz(r), T), with a similar function
G(vlz(r), T) ior the minimizer, and then choose the control vectors
of cach time instant 7 by making random draws from the proper
distribution.

Defining these concepts precisely and computing the optimal
strategies is rife with pbilosophi~al and mathemati ~al difficultics.
The obvious step of applying the method of dual cones to the

pre-Hemiltoniai: on the right-aand-sidas of {7. 4) is not really obvious
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in implementatioa and, as we shall see, does not even seem to

necessarily lead to definitive results. An intuitively acceptable

approach is to discretize the differential game by taking a partition Il
of the time interval (7, T] and to agree to let the controls u and v
be constants within an interval (ti’ ti +1) of the partition. The
resulting multistage game is solvabie, at least in principle, and

its value wn(_z_(‘r), T, 7) and mixed strategies for each interval may
be found. We then accept the limit w¥(z(r), T, 7) of wﬂ‘-‘:‘-(”’ T, 1)
ag the size Il'll of the partition Il goes to zero as the value of the
differential game, provided that the limit exists, and similarly take
the optimal mixed strategy limits as suitable for the differential
game.

Fleming [ 55] shows that it £ and g are continuous and satisfy

a Lipschitz condition in z and if 8; satisfies a Lipschitz condition on
every bounded set, then the limit w* exists; he conjectures that w*
is indeed tke value of the differential game. In a more restrictive
theorem, but one applicable for our problem, Fleming £53] proves
that if a function w(_z_(‘r). T, T) satisfies (7. 4) and is continuously

differentiable in An open set containing the region o. interest, then

() wizir), 1, 7) = g™ wla(r), T, 7) uniformly

(7. 5)
(b) w(z(T), T, T) is the value of the differential game

with initial condition z(r) at timie 7 and fixed

terminal time T.

The latter statement holds in the sense of €~-effective
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closed-loop strategies, that is, strategies which are arbitrarily
close discrete approximations of continuous strategies.

Civen this exceedingly brief background, let us first solve
a simple example using limits of discrete approximations ard then
consider the question of direct evaluation of (7. 4) for that example.
7.2 A FORMAL EXAMPLE

A very simple example will help illustrate some of the points

to be made. Let the dynamics equation be

Ne
(1]
e
+
<

z(0) = 2z, (7.6)

where z, uel0,1]), vel0,1] are scalars, and let a payoff function

be given as
Izr) v v, T) = (2(T)? (1.7

We seek the value and optimal closed-loop mixed- stréiégies for
this game.

If (7. 6) is approximated by
Zp % te (ui + vi) (7. 8)

where € = (T - 7)/N, 1¢ [0, T), then we find that we have a game

which is of the type considered in previous chapters. In fact, since

w (z) = zz,
N+l (7.9)
rzlzq 2¢€ Zy ez ] 1
waglzy) = (u;‘:’lvN) (1 uy uf(,] 2€ 7y 2¢° o N
nfz 0 0 - ,vlz\l_
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Letting “’1'\1(7‘) = wN(z)lez and x = z/€ gives

’ 3
N = (o, v)

2
x

(1 u uZ] 2x

1

ho

- r -
2x 1 1
2 0 v | .10
0 0 vz

-ad __ 3 d

whick is precisely the same as the intermediate problem of Example

6.1. When we use the results of that example, we find

whi i) = max [x + 3%, 2

Io(u)

Fllulx) = -;-zo(u) + %‘11 (u)

L, (u)

I, {v)
Glvix) ={1 ;.8 (V)

Io(v)

x<-i-%—
. 1 ., 1
i-5%x 1+Z
x>-i+%

(7, 11)
x<i-%—
-i.%‘x‘-ii’%

x>+%-i

This may also be written in terms of w and 2z as
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1
wN~i+l(z) = max Lzz + 2i¢ + i2 cz. %62] ;
1(u) z2<(-i-3y¢ ‘
0 73 :
Foulz) = {FIg + 3w (-i-PeSzS(-i+De .
.1 ‘
Il(u) z>(~1+-2-)€
(7.12)
)
1,(v) z<(-i-%~)€

G?(v| z) = 1"“'#'(& {v)

Iyiv)

Taking € = (T - 7)/N, holding T and T fixed, and

formally, fori =N

wiz, T, T) = (z + (T - 7))2

1,(utr))

Foufm)lalr), 7) = {3 I tulr) + 31, (ulr))

1, (u(r))

1, (v(r)

Govirilz(r), T) = Iy(vir))

I,(vir))
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z>(-i+%~)e 0

(-i-3)eSzs(-it3)e

letting N »®, gives

9
!

z(r)< - T+ 7T !

z2(T)=-T+<+7

7

z{T)>-T+7T '

(7.13)

z{(r)< - T+r7 3%
i

2(T) = - T+7 }
Z2(T)> - T +7T ' .

g,
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This gives the value of the game starting at time 7 = 0 and position
zy a8 w(zo, T, 0)= (z0 +T )Z, and yields optimal closed-loop strate-
gies for the plavers for each 7 € [0, T).

Substituting in (7. 4), we find that for each 7

val

2(z+T-T)=(u, v)

[2(z+ T -7){u + v)]

11 (7. 14)
=//2(z + T - 7)(u + v) dF°(u] z) dG°(v| 2)
)

22(z+T-1)

Therefore, by Fleming's results [ 53] we indeed have a solution to

the problem.

7.3 SOL UTIONS USING LIMITS OF DISCRETE APPRCXIMATIONS

The example in Section 7, 2 is provocative in that it leads us
to conjecture as to which differential game problems may be solved
in that same manner. Solving the problems exactly appears to
require that the discrete approximations be analytically solvable
using the partition size as a parameter, which in turn seems to mean
that the discrete problems must be such that the value for each stage
is a polynomial and the stage patterns are repetitive so that induction
on the stage index is possible. These are clearly restrictive assump-
tions.

If only approximate solutions are sought or if the problem
is such that limit patterns are easily recognizable, then a much

broader spectrum of problems may be attacked. In principle,
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if f, 8¢ and g in (7.1) and (7.2) are polynomials, then the method

of dual cones may be applied to any discrete approximation to the
differential game and the results of Chapter 5 may be applied.

More particularly, this may be done for a sequence {Hl, l'lz. RFRLN 4}
of partitions of the time interval Lo, T], with lni + 1! < !Hil . This will
vield sequences of value functions {wni(zo, T, 0)} and of corre-
sponding mixed strategies, and an approximate solution to the
differential game may be taken either as one of the discrete versions
or as a ''"guessed" limit of the sequence.

There are two important diificulties with the approximate
approach., First, the value function may not be a polynomial in the
region of interest, so that further approximations are necessary.

We remark that, as shown in Chapter 5, this is not a problem if
open-loop strategies are sought. The second difficuity is one of
dimensionality, for if ll'lil is small, then a great many subintervals
will require processing. This may overburden a digital computer
regardless of whether open-loop or closed-loop strategies are
sought.

7.4 SOLUTIONS BY ANALYSIS OF THE PRE-HAMILTONIAN

It is tempting to try to solve (7. 4) dir.ectly, without resorting
to limiting operations. Unfortunately, it is necessary to be very
careful while doing this for it amounts to operating ''at the limit"
in situations where the higher order terms may be essential.

To illustrate this, iet us first return to our exampls. In
particular, suppose that the value is known to us but we are seeking

the optimal strategies. Then we seek distributione such that

186

1

£

o}

o U et Y




R PR

TR e O LN

st SRNND S

e

e

Ceely o

L

[t

N e LM BT SR O

20z+ T -7T)= (u‘:ai) 22+ T - 7)u + v})]

(7.15)

- min max[/.;(zyr THu+ v)dF(ul z, 1} dG(v] 2, 7)
00

The optimal distiibutions are obviously those of (7.13) provided that
(z+T- 'r) # 0. However, if (z+T-T) = 0, then (7.15) does not yield
information concerning the strategies. Thus there are both philo-
sophical and practical difficulties in attacking the pre-Hamiltonian,

The reason for the difficulty with the above example is easy
to find,fcr (7. 4) is a limit of the discrete form

W(.Z_, T, T)- W(ﬁo T, T+e) val (Z, u, v, T) + [VW]T

€ (u v) 2z
(7.16)
2
tefl -a—%"-£+...]
9z

Ordinarily *he terms on the r. h. s. containing € are ignored, for it
is claimed that they are dominated by the first two terms. However,
in our example this is not the case.

More generally, in solving discrete approximations using the

principle of optimality we deal with equations of the form

1
vtz T 1) = () Lealer w v ) (7.17)

+wplz + € £z, u v, T), T, T +€)]
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In appiying the method of dua’ cones to (7.17), z and € are simply
parameters in the sclution. We have already seen that as the
parameter 2z varies, the set S(A(ﬁ), R, @) moves relative to the
dual cone Pg and may posegibly come to or cross a boundary from
one form of strategy to another. This is particularly likely if a
coefficient within A(z) passes through zero. Since € may well
appear in (7.17) in such a manner that a coefficient in A(z) will

be zeroed if ¢ = 0, it is likely the problem for ¢ = 0 will be different
in nature from the problem for € > 0. It seems, therefore, that
equation (7. 4) is useful for sufficiency checks on candidate solutions

but is of limited value for synthesis purposes.
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CHAPTER 8

SUMMA.Y, CONTZLUSIONS, AND FUTURE WORK

In this repdrt a viabkle solution techniqu: for a special class
of dynamic games has been created. The necesesarily theoretical
flavor of the approach must not be allowed to obscure the followinrg
fundamental result:

Two-person zero-sum noise-free multi:stage polynomial

games of fixed duration may always be reduced to

separable static games if open-loop mixed strategies

are sought, and may oftex} be reduced to sequence of

such games when closed-loop mixel strategies are

desired. The separable ctatic gani:es may then be

solved . s mathematical programming problems.

Of particular significance in applications is th- fact that the tech-
nique is amenable to straightforward intuitively-satisfying numerical
approximation; in fact, the well.developed methods ind algorithms of
linear programming may be used. These results were obtained and
extensively discussed in Chapters 4 and 5, and they were illustrateu
in the examples in Chapter 6.

The method of dual cones, thcn, has been extended te the
point that it may now be effectively apnlied to some real problems.
Nevertheless, muck work remains to be aone, Numerical approxi-
mations should receive detaiied attention in crder that solutions
may be cbtained eificiently and precisely, and noniinear pro-

gramming formulations should be investigated. The ‘orm of the
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value function must be investigated further; both theoretical
questions of algebraic form and practical quastions of numerical
approximation require answers. The convex sets irvolved in vector
problems need analytical description, if possible. Thcae 2nd related
questions should be the subjects of immediate reccarch.

Broader extensions of the method of dual cones may also be
possible. The need for furthe: investigation of its relationship to
differential games is obvious. For example, an interpretation in
which the sets S{A, R, w) and Pg move smoothly in relation to each
other as time varies, with the direction of motion depending on the
dynamics of the game, can be visualized. Some of the questions -
raised in Chapter 7 also bear answering.

Research should also be performed on the extension of the
method to stochastic games. Several approaches appear possible
here. One of the most intriguing possibilities is to note that
imperfect knowledge of the state may mean that the set S(A, R, @)
is "fuzzy." Using this picture, it may then be possible to fin4 not
only a value but' the distribution of the payoff.

Less obvious possible extensions undoubtedly exist, for
mathematical game theory is an extensive field with many

unsolved problems.
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