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ABSTRACT

Studies have been published which extend
and apply the Rolomugorcov theory of turbulence
to the fluctuations of optical refractive index
in the ocean due to salinity and temperature
nicrostructure.

ot Ol

Matheratical models of sorme of the statis-

tical precperties of these fluctuztions zare

- developed to provide continuvous fusictions obeying
the various Pourier transfornm relaticnships
provided by the studies. The continuous functiors
are utilized to charecterize the phase «nd
inteusity fluctuations of z plane, ronochrozatic
optical wave passed throuch such a turbulent
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nf The knowledge of the relationship between
?12% fluctuations of the optical parazeters and the
E%é refrzctive index microstructure provides a basis
for the utilization of laser beams as data links
L} T or in studies of the prepagating rediun.
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INTRODUCTION

Considerable effort has been applied to descriptions cf the
temperature and salinity microstructure of the ocean. These
) descriptions, both theoretically and eapirically derived, are
, not yet definitive. There is, however, limited agreement between
.. theory and measurement. The results have been summarized and
discussed by Stanley.l The descriptions are based on the Fourier
transform reiated structure function (with distance as the argu- .
. s ment) and spectrum (with wave number as the arqument). These :
descriptions are composed of separate functions, applicable in :
- - specific ranges of the arguments. _

For a similar charecterization on a weasurement plane of

. the optical intensity and phase fluctuations c¢f a plane, rono-
chromatic wave which has been passed a given distance through tne

= . turbulent ocean, the descriptions of the refractive index micro-
structure of the ocean (based on the temperature and salinity

microstructure) must be mathematically smooth to elirinate unrezl

s effects caused by "corners"” in the descriptions. That is; a
smooth transition £ ctlon must be found between the descriptions

-— in the separate rin
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Expressions valid over the entire range of interest are

be'dient

- developed to describe the refrac:ive index fluctuvations. These _
expressions are shown as to agree with present theory and available §
"= data. The desired descriptions of the optical fluctuations are

found. As som2 of the statistical descriptions are not in the
comon literature, the analysis techn_ques for obtaining these

- descriptions are reviewed in appendix A for both scalar cuantities
and vector fields.

I

A

!

OPTICAL INTENSITY AND PHEASE FLUCTUATIORS

| i .

The optical intensity and phase fluctuations of a plane, #
monochromatic wave passed through = t rbulent medium, character-
ized by refractive index 11crostrucuure, will be cescr-ueé on 2
measurement plane. Tre measurement plane is perpendicular to the
original direction of th= wave and situated such that the wave
passes a distance L through the medium. The wave number of the
(Light) source is x, the wave length is . The medium is described
by the three-dimensional spectrum of its refractive index nicre- -
structure, Eyq{kg).

E,‘

1y
2

i Bq

[vaeon
i

&

DESCRIPTIONS OF THE INTENSITY AND PHAS
T

C
SOLUTION OF TEE WAVE EQUATION BY SFEC X

E FLU :Lé”TORQ BASED O TEHE
RAL EXPA

NSIOol

o
ik

The fluctuations of an optical wave can be described by
amplitude ané phase fluctuaticns. By taking the _ogarithm, cne

T
3
¥

i - 3 . s e e e e

2 1Superscrlpts refer to similarly numbered entries in the Technical .

] e rReferences at the end of the text. )
E— _ ]
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separates the fluctuations into the sum of the logarithmic
amplitude or intensity and phase fluctuations, which can then

be treated separately if the fluctuations are small. Tatarski,?
chapter 7, applies the methods of “small" and “smooth" pertur-
bations to the solution of the wave equation by spectral expansion
to obtain the desired statistical descriptions in terms of the
refractive index spectrum.

The two-dimensional spectra in the measurement plane of the
logarithmic intensity Ezz(ké)' and phase, E¢2(kp), are given as

2 k kgL
EZZ(kp) = TiH L(l -;ZISlnT)Enn(kp) (1)
p
, y kgL
= " 4 e— i —— ?
E¢2(kp) AL 1 k2L Sin - Enn(kp). (2)
p
The corresponding correlation functions are
(=<
BzZ(C) = 2ijr°0(kp°)Eg2(kp)kpdkp (3)
[}
o«
. - d
Béz(o} ZnJFJO(kpp)EM(kp)kpdkp (4)
0
The corresponding structure functions are
w-
Dﬂz(p) = 4ijf _l - Jo(kpp)] Egz(kp)kpdkp (5)
[}
D¢2(D) = 411[ _1 - Jo(kpo)] E¢2(kp)kpdkp (6)

0

Appendix A reviews these statistical descriptions.

ASSUMPTIONS REQUIRED FOR TH: SOLUTION OF THE WAVE EQUATION BY
SPECTRAL EXPANSION

As stated, Tatarski,2 chapter 7, applies the methods of
"small" and "smooth" perturbations to the solution of the wava
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equation by spectral expansion. These methods require less
restrictive assumptions than those required if the principles
of geometric optics are employed (Tatarski,? chapter 6).

Tatarski considers a medium for which the mean refractive
index is unity. More general results are required here, but the
substitution is simple and does not affect the resulting relation-
ships. The derivation of the relationships involves extensive
work. As the effort here merely makes use of the results, only
a brief description of some of the assumptions will be given to
indicate the range of physical validity of the results. The
models are evaluated beyond the range of physical validity only
to demonstrate the characteristics of the functions. The assump-
tions are:

e The wavelength of the light source is much smaller
than the smallest Euclidian dimension of the inhomcgeneities in
the spatial distribution of refractive index, to.

x << £0. (7)

¢ The fluctuations in refractive index, n,, are much
smaller than the mean refractive index, n,, where tﬁe refractive
index, n = ng + ny.

n; << ng. (8)

e The wave is expressed as the sum of a perturbed
component, uj, and an unperturbed component, u,, where the per-
turbed component is much smaller than the unperturbed one. More
precisely, the assumption is

lul/uol S lnl/no[ << 1, (9)

Let log(u.) = ¥y, uj/uy = ¥3, and log(u) = ¥. Provided that
luj/ug] << 1, Bhen U1 = ¥ - ¥,. As |ny/nf <<1, |vp| << [9yo] is
required. As |Vyg|2k = 27/), it is required that AIVyj| << 2m,
Writing %3 = X3 + iS7, it can be shown that |X3! < |Si|, so the
cenditions here are satisfied if the phase variatiuns, S3, satisfy

[vsy| << 2m/x. (10)

Under these conditions, "the angle of scattering of the
waves by refractive index inhomogeneities is of order no greater
than 90 = A/ﬁc and is thus small. Therefore, the value of ¥, can

Report 6-196 3




only be appreciably affected by the inhomogeneities included i
a cone with vertex at the observation point, with axis directed 2
towards the wave source, and with angular aperture 60 = A/!o << 1."

MATHEMATICAL MODELING OF THE REFRACTIVE INDEX
MICROSTRUCTURE IN THE OCEAN

In order to permit computer aided calculation based on
equations (1) through (6), and to prevent excessive errors due to
artificial sharp corners in E  , a smooth, continuous function
is sought as the maihematical model. The difficulty is that the
available theoretical and empirical information concerns itself
with the inertial, viscous-convective, and decay regions of turbu-
lence and turbulent mixing separately. Thus, there are descrip-
tions of the refractive index variations in each of these regions
but there is no definitive information as to the manner in which
the pl.enomena behave in the transitions between regions. The
criterion of selection for the mathematical model of the spectrum
is that it and its Fourier transform, the correlation function,
agrees with the available information in the known regions. Once

this is assured, the model can be applied to describing the
optical fluctuations.

On the baces of work by Tatarski2 and Laster,3 Stanleyl shows
that the descriptions of refractive index fluctuations (correla-
tion, structure, or spectral functions) are a linear combination
of those of temperature and salinity fluctuations. These func-
tions and the coefficients of the linear combination are scaled
by tempgrature, salinity, and mean refractive index, as given by

Laster. They will be discussed here in an unscaled, separated
form.

SPETTRAL INFORMATION

Table 1 gives the form of the spectrum in the three regions.

TABRLE 1
SFECTRA FORIMS

Region One-Dimensional Three-Dimensional
. - - 3 -1 - -11/3

Inertial %Ele 1/3,-5/3 -ﬁ-%aln 1-1/3,-11/
Viscous-— L % 1/2 -1/2, -1 1+ -1,1/2 -1/2,-3

Convective 24V k 249 v©oE "
%q*vl/ze_l/zk-l- %q*ﬁ—lvl/zs—l/zk—B_

Decay )
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In the inertial region, the one-dimensional spectrum is
taken from Gibson ard Schwartz? except for the factor 1/2 which
is employed so that the one-dimensional spectrum is defined over
negative and positive wave numbers, instead of just positive.
The three-dimensional spectrum is definsd based on equation (11)
from Tatarski.

3E_, (k)
_ _ 1 ol ay-
Eaa(k) = 2k 9Kk ° (11

This is in agreement with Stanley,l as_his modified three-
dimension spectrum, has a factor Bj = §B% which corresponds to
the results of equation (12) from Hinze.

a2
Ey (k) = 47kE_ (k). (12)

. . . . 4
B is a universal constant given by Gibson and Schwartz" as 0.31.
The factor 5/3 is apparent from equation (11).

A similar transformation is employed in the viscous-convective
region. The factor g*, given as approxim~tely 2.0 by Stanleyl, is
given by Grant, et al,b as nominally twice that (3.7x1.5). The
diffzarence is apparently due to the difference in definition of
the spectra.

The spectral representations in the decay region only approx-
imaetely follow equation (11i). The form of the three-dimensional
term is found in Stanleyl and is the only available representation.

Batchelor7 predicts that the inertial subrange asymptote and
the viscous subrange asymptote (the relations of table 1) intersect
at

. (13)

c 1/4
k= ks = (—)

The intersection calculated for one-dimensional spectra gives

3/2; \1/4 3/2
1 [B € _ 91\ y
4 = I 3 = |I— X

. (14)
g v q / s

The intersection calculated for three-dimensional spectra gives

Report 6-196 5
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k = 3‘ = l-"3— = 2.15}{5. (15)
q v

This difference has occurred in the literature. Grant, et al,6

note a factor of (2.4#0 8) x 10-2k, working with a one-dimensional

spectrum, while Nye and Brodkey8 noted a value 5.0 x 10-2ks
working with the three-dimensional spectrum.

For the mathematical model, it is convenient to normalize
the one~-dimensional spectra by tne factor

gt/ 2e7Y2 puy (16}

making the one-dimensicnal spectrum in the visccus-convective
region simply

2zk . (17)
The result for the inertial region is
25 (8, /q*) k2 233 (18)

STRUCTURE FUICIION INFORMATION

. . . . . . - 7
The structure function information is taken from Batchelor
and appears in table 2. Of course, the stivcture function rises

to a constant beyond the inertial regicn. 1In the inertial region _
relationship, a proportionality constant is needed whaich Batchelor

assumes is unity.

TABLE 2
STPUCTURE FUNCTION FORNS
Region Function
. a1y 2
Decay (2 Z{'G—D- r
s . g*y 1/ - Eré
Viscous—-Convective E?%-—) in
€ ész
% -1 2
Inertial (i—a £ */3r“/3
Report 6-196 6




SELECTION OF A MODEL
Representative values of the known parameters are as follows:
€ =107 kinetic erergy dissipation ratel

1072 kinematic viscosity> ;

\Y

. 4
B1 0.31 universal constant.
This gives kg = 5.623 from equation (13). Selecting gq* =

3.815, k(1) = 0.023k; from equation (14) and k(3) = 0.049k. from
equation (15). Let

k, = k3 = 0.28;

3
thercfore

k) - k4/2.15.
Let

1/4
X e |/
Lt 4 mary r
5 uDZ

where £for representative values3 for temperature D = Dg = 10_3
(ks = 18) and for salirnity, D = Dg = 10 {(kgg = 180}.

Equation (18), for the inertial region, may now be written
as

ih..

2?{3/S)k§/3k—5/3, (19)

and the viscous-convective decay regions may be combined as
eguation (20).

27k} exp [-Z(k/zs)z] i (20}

Eguation (18) for the inertial regicn and egquation (20) for
the viscous-convective and decay regions, when considered in their P
respective rang=s, provids the same infcrmation as table 1; that

Report 6-196 7




is, a one-dimensional spectrum varying as k-S/? until k4/2.15,
then as k™1 until approximately kg, then an exponential decay.
The viscous-convective and decay regions are combined as k3 is
small compared to kg.

Permitting the spectrum to vary as x™?/3 a1l the -ay back to
k = 0 is equivalent to assuming an infinite energy source, waich
is not physically reaiizable. Instead, equation (19) will E=
said to hold only for k larger than k;j, where kj is much smaller
tian ka. This provides for what is essentially a scaling of Luvw
problem. The selection of a value for kj sets the variance

(the value of the correlation function at zero argument) and the
upper constant of the structure function (the wvalue at infinite
argument which is twice the variance). For k less than kj;, the

spectrum is a constant.

The forms of the spectral and structure functions are sum—
marized in table 3., The structure functions are normalized by
e juation (16) as were the spectra.

TABLE 3
SUMMARY OF STRUCTURE AND SPECTRAL FULTTICON FORMS
Yave Yurker . Distanc
a¥?;.r.<:§ Spectru= Structure Functien 3§iii§¢
AR Constant Constant ¥ r 1ik,
B, o€ R <R, 2-13r53.5 37373 2-012.3) (3/5) 1 273 Lx, o ox v asm
i B i
] -1 i 4 !
e € B 7K. Fig s 2- Infk xr /ol e, < r - 1/
| 33
woomy g ET exp [F2 0001 %] 2= 1176} tiegx) < Mg
: i

= =

Equation (21) is a smooth function whic
for the spectrun

273 1
o [-(Bfa}iS 1 ! 2

S

Tatarski® gives the following Fourier transform pair and
related information.
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where B is & correlation function, D is the associzted structure E
function, and W is the associated spectrum. As the first term

in the bracket in eguation {21) kecores negligibly small before

the exponential multiplier departs significantly fron unity, the

exponential can ke neglected. ¥#riting this ternm as

i
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and considerin ng equatior (26} with =, = %g; a=1%1/3% »= =k, we
can see that the corres.onding stiructure function can be derived
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fror equaticn (27). At small values of the araument, eguation
= 139) is valid, and th~ structure function is

=

'3 T{2 1 273
[_3.‘]{?_3_ ~ 1/ = 1 F(2/3) (k;x) ’l
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By pe rming an approxirate integration for the second
term in ecuation (21), including the rultiplicative exponentia
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*r e cosine integral function arnd v = 0.577 is Fuler's constant.

The factor k- is the wave nu—ker in the = ;g' orbcod of X
at which the exponential decay can be considered to kegin to
strencly affect the function for the purpcses of the arproxirate

£ integration. 1If k% is selected so that in the range r < 1/kg,
the resiLlit in eguaticn (32) ratches the desired results in table
3, taen

Jomd
L]
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(k%/ks) =7V1/5 = 0.408. (33)

. . ) ) )
This is a reasonable selection for kg, as the exponential multi-
- plier in the spectrum evaluated at kg is 0.72, and it decreases
rapidly thereafter.

. The desired result for r < 1l/kg no enger exists when the
results in eguaticns (31) and (32) are added for r 2/3/k in
order to eliminate these undesired effects of the r dependence,

= the spectrum rmodel is changed to

- =11.2/3 .2/3

37515/ (3/5)%%/

-:; _ 2=; - -

v
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FTsE ¢ - = 3
o = 178 42 £ 28 W2 1 kB2
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In finding the structure function associated with the first
] Ewo t=2rms of eguation (34), the exponential can be negliected.
= The result is
3
37 4=V= S . 273 _ 41
lE 7575 T(1/3) |(k/k,3%7° - 1 -
5F T(2/3) 371

| 3L ~1 i VA S
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. £ - - = - 73 _ = = -
-§ 31.74 §§§§:?§§2;j - ii : r > i/, . {35}
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The selected rodel is given in equations (37) through (39)
and displayed graphically in figures 1 thruugh 4.

(3/5)%3 /533
o2+ 575 62+ 1575 &2 =+ kg)llz

|
N
rt
\

E.:nl (k) =

exp [-2(x/x,) 7 (37)

2/ .2/3
1 ;{3/ "E

V)
|
¥
w
=

(k) =

p_, (r) = 31.7¢ [(ksl?z} - z}

2/2, /3. o 1 ,
-50.38 | (ey/k) >0 Py k0 - (k)Y 3k, (ke

+25.13 |1 & In(k /k

. = 180

75

T = 200 1L
kI = 0.408 k_.

CPTICAL PROPACGATICH PROPERTIES BASED ON THE MODEL

Usiug the codel given by eguation (38), the two-dicensional
spectre of the legarith=ic a—plitule and phase fiuctuations are
cbtained by eguaticns (1) and (2). Tre asscciated structure func-
ticns for termperatevre and salinity can be obtained f£ron the inte-
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grals g;ven in equations (5) and (6). A computer program was
prepared by Dr. F. Theilheirmer and Mr. R. ¥Wiybraniec of the
Computation and Mathematics Department, Bethesda, to perform
these integrat'oqs by means of the eight-point Gauss qua&rature
formula. 2 sample program listing an& additional information are
given in appen&zx B.

Each integral is calculated with unecgual intervals starting
at § and endinc &t the f£irst interval past 1000. The intervals
are of increasing length because the greatest degree of fluctu-
ation occurs for the small limits of integration.

Figures 5 and 6 display the structure functions of the phase
variations for temperature and salinity, respectively. Figures
7 and 8 display the < rLcthe functions of the logarithmic

amplitude variations for temperature and sa‘lnlty, respectively.
Figure 9 displays ;he variance of the phase variations for both
temperature and salinity. Figure 10 displays a similar result
for the logarithmic amplitude variations.

J

DISCUSSIGE

The mathematical model, equations (37) thro ough (39), is
shown to be consistent with the structure and gec;ra? function
information based on the referenced analytical and experimental
results., The functionzl form of the model is such that computer
axcec CG:S““tiGﬂ of the optical propagation properties is
2 I these computer re esults partialily
éeasa t:a?es the suitability of the model and the computational

o
4
o O

n
"
ol
U
Pt
'."‘
nm:!
[l
1]
%
&
0
r'l
o)
<}
]
4]
0
0
et

The primary results are given in figures 5 through 10
These are the results of the integrals given by eguations (5) and
{6). <These integrals are two-dimensional Fourier transforms.
For purposes of discussion, the term integrand will refer to the
two~Eimensional spectra given in equations (1) and (2), each
multiplied by the variable of integration k_ . The functicns
2
« kL
1% — 5in— 46
2 sin— (4G)
e
] will be referred to as the "window.”™ Tie resulis
4 2
- e  Tm 25
( :’.ﬁb i H éh
o s R s om0,
2= 1z P4 j’ ¥ 0.1
" kL
13— in— = (41)
7 Sin 2,
= aF ;iﬁh
1 i ; = >
= k i H < 13
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will be utilized. Thus the window for the lcgarithmic amplitude

variations is
L_,} 2
2 2
kL] k L
: 27 ; L <o
- < J ; e
2 (42)
kQL
o - s >
.. ; ” 10
= while, for phase variatioas, the window is
L kgL
2 ;. — < 0.1
- 2 (43)
I{Sb
-~ 1 ; > 10.
I As the three-dimensional spectrum has an insignificant
- contribution to the Integrals for k < k3, the window does not
affect the integrals if
h
L )
t W2
— > 1 24
< 19 (44)
10x -
L > 1% - 1,32 x 102 (45)
k
1
: L3 - ~ - - - 1
= The term "L is large® or "large L" shall refer to L > 1.32 x 10 2.
When L is large, as the window does not have effect, L linearly
P scales the results, but has no 2f£fect on the shape of the struc~
== ture function. The factor
|
==
s
-_— -_— T 5’ ‘
1 da(kﬁﬁ) (46}
== .
= shall be referred to as the transformation function, and the
result
==
==
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0; kpp < 0.1
1 - Jo(kpp) = (47)
s >
1; kpp 10
will be employed.

The results will be discussed first in terms of the functional
relationship to the separation distance in tlhe measurement plane,
p, then as a function of L, the distance traversed through the
medium.

When L is large, the integrand contributes no significant
"energy" (or, to paraphrase Batchelor,’ no temperature or salinity
stuff) for k < kj, thus, thg structure function should stop
increasing for p < 1,ky = 10°, as the results show (see the
£ = 1013 curves for this portion of.tne discussion). As p is
decreased, the transformation function inhibits the contribation
of the integrand to wave numbers on the order of 1/p and above.

At ke the integrand decays on its own. As p decregsss from 1l/k
to 1/k3 (the inertial range), the results show a p / dependenc%.
For p < 1/k5, the decay range, a p2 dependence is seen. E7§arskiz
predicts the p“ dependence in the decay rance but finds p

in the inertial range. His result is based on approximate ana-
lytical integraticn techniques that are not experimentally con-
firmed. WNo furcher discussion is possible, based on existing
information, except to »tate that his results can be duplicated
by the computer techniques utilized here, and by analytical tech-
niques, assuming, as he did, the inertial range spectrum asymptote
(k."11/3) exists for all k,s rather than utilizing the given
model.

In the viscous-convective range, l1/kg < p < l/k3, the results
show a rise, that is, the curve is above the inertial and decay
asymptotes. As this exists in a range of p ir which physical
measurem%nts can pe made, the phenomenon is significant. As
Tatarski4 worked with a medium with no viscous-vonvective range,
he had no such results. Similarly, as his spectrum rises to infin-
ity as k approaches zero, his results show no flattening iun the
structure function. The flatte- -7 represents the finitz "energy"
driving the turbulence. If a s .aller value of k; was selected,
say at the scale size of the ocean, it is apparent that the variance
would be larger. The gurves are easily extended for any k; less
than the selected 1000 reciprocal centimeters, and it is clear
that the selected value of k; was small enough not to affect the
results, that is, to pexrmit extrapolation.

The L dependence of the shape of the phase structure function
is slight. The shape of the curves is not a function of L, while
the amplitude is linearlX dependent upon L. Figure 9 shows that
at L of the order of 1011, the coeflicient of the linear dependence
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of the variance on L ali °s. This is noted in figures 5 and 6
also. At large p, a sep -ation change between curves occurs

at large L. As p 1is decreased, the separation change between
curves moves to smaller L. This is simply explained by the
window for the phase variation. For large L, the value of k

at which the window decreases is on the order of k;, the location
of the peaﬁ of k,E (k ). As L is decreased, the window affects
the function at gazger values of k,; therefore, the effect occurs
at smaller values of p. Once the w1ndow decrease occurs for

k, > kg, the effect is lost. Figure 11 further illustrates this
by showing the structure function at small p as a function of L.

It is significant that the change occurs at physically meaningful
values of L.,

The L dependence of the shape of the logarithmic amplitude
structure functions is stronger as the logarithmic amplitude
window has a stronger L dependence. As L is decreased, increas-
ingly more of the lower wave number (longer length) portion of
the spectrum is eliminated or "cut off" by the window. This is
apparent as long wavelenath phenomena cannot affect short distance
mneasurements, but will appear as nonstationarities in the mean
and be eliminated in a structure function measurement (see
appendix A)., Thus, ac L is increased, the lowest wave number at
which the integrand provides "energy" is increased. Hence, the
separation distance, p, at which the structure function flattens
is decreas~d (see figures 7_and 8). As the "cutoff" of the window
is given approximatel as \/L/», the "cutoff" value of p for
1/kg < p < 1/kq sV</L. For L > le/kE, the window no longer
changes the 1ntegrand. Similarly, for L < .1K/kg, the spectrum
itself "cuts off," so the window no longer has an effect . trher
than scaling.

Figure 10 shows the devmendence of the variance on L. For

L > k/k§{, L is seen_to 1i nearly scale the variance. f 7ék2 < L
< k/k¢, as Tatarski? predicts, the yariance varies as L
L <k kz, the variance changes as L Once again, a rise cor-

re@gondlng to Ehe viscous-convective range is_evident._For

L/k < L < K/k , the variance is above the 111/6 ang 13 asymptotes,
Thls is 51gn1f1cant, as in physically ueanlngful ranges of L,

from 1 centimeter to 100 meters, the variance of the salinity
variations, for example, is above the asymptotes by a factor of 10.

CONCLUSIONS

e In sea water, the existence of the viscous-convective
subrange in the temperature and salinity (hence refractive index)
spectra causes a significant increase in the fluctuations of the
phase and logarithmic amplitude of the optical wave. The increased
optical fluctuations caused by the salinity microstructure occur
for optical path lengths of about 1 centimeter to 1000 meters;
thus experimental confirmation is feasible.
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e The use of structure functions instead of correlation
functions to characterize the spatial fluctuations is considered

a more meaningful approach because the physical phenomena being

described are at best only guasi-stationary, with stationary first

increments assumed. The structure: function approach directly

provides the functional dependences, particularly at small distances,

because these dependences are not hidden by the variance as they
would be in the case of correlation functions.

e The smooth, mathematical representation developed for

the refractive index spectra satisfies theoretical and experimental

data where available and is suitable for computer solution of the
integral equations. Further, this spectra representation is
svificiently general so that it can be used for various media by

appropriate selection of the spectral cutoff and breakpoint wave
numbers.
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APPENDIX A

STATISTICAL DESCRIPTIONS OF RANDOM
FUNCTIONS AND RANDOM FIELDS
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(c) Hinze, J. 0., Turbulence, New York, McGraw-Hill Book Co.
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LIST OF SYMEOLS

(+)* 1Indicates complex
conjugate

Covariance function

(+)
(+) Structure function
() Indicates average

t Ti iab
T ime variables Vector wave number

c
D
- .
r Vector distance
-
k
w Radian £frequency B

(+) Modified three-
Py(-) Fourier transform £ dimensional spectrum

of time funvtion Bff(-) Three-dimensional

8(+) Dirac delta function spectrum

i \/-l Bfl One-dimensional

{£(t)} Ensemble of spectrum
functions, f£(t) sz Two~-dimensional

m(+) Mean spectrum

B(-) Correlation function

ANALYSIS Of A RANDOM FUNCTION

A set or ensemble of random functions, {f,(t)}, can be
described by all possible multidimensional progability dis¥ .ibu-
tions. In practice, only the mean and the autocorrelatio func-
tion (the first joint moment) are employed. If the Gauss .an
distribution applies, the functions are completely descr ned.

A priori knowledge or assumptions on the properties of tue random
function provide different methods for obtaining the descriptive
functions.

The mean and the autccorrelation function are given by the
expressions in (A-1l). The averages here are

mf(t) = {fp(t)f
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Bg(t,T) = {fp(t)f;(t + 1)} (A-1)
where
fp(t) = the pth realization of the random function
at argument t
mf(t) = the ensemble average at argument t
Bf(t,r) = the autocorrelation function at argument

t and log T.

If mg(t) and Be(t,7) are independent of t, the ensemble is said

to be weakly stationary. If all the probability distributions

are independent of t, the ensemble is stationary. If the ensemble
is quasi-erodic, then the mean and autocorrelation functions may
be obtained by the expressions in (A-2) employing averaging

across any member of the ensemble.

T/2
m, = lim = £(t)at
£ Ty T
-T/2
/2
o -
Bf(r) = %iﬁ 5 f(B)E*(t + 1)dt (a-2)

If all the probability distributions can be obtained by such an
average, the ensemble is ergodic. If the properties can be
derived from any short-term average (removing the limits of the
expressicns in (A-2)), the ensemble is referred to as weakly or
strongly self-stationary, where the weak connotates the same
meaning as in tke case of stationarity.

ANALYSIS TECHNIQUES FOP. WEAKLY SELF-STATIONARY FUNCTIONS

Where quasi-ergodicity and weak self-stationarity can be
assumed, additional descrintions of the furniction, based on the
mean and autocorrelation function are availabie. Expression
(A-3) gives the variance; expression (A-4) gives the covariance
function. In the case of a mean free function, the autocorrelation
function and the covariance function are equivalent.
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Ce(0) = B(0) - m (a-3)

T
Cf(r) = Bf(r) - m% = %-J[}f(t) - mf)(f(t +T) - mf)dt. (A-4)
0

A stationary function may be represented in terms of a
Fourier-Stieltjes integral as shown in expression (A-5).

[+

£(t) = [ e*tay_ (). (2-5)

-0

The autocorrelation function can then be written as expression
(a-6)

=3 o
) = FETEF - iwltld, -iwztgdm*{
Bf (tl" tz = ( l) (tz =] e ‘,Jf e Y (Uz)

o]

r .
i{w,t, - w,t,)
fj e 1 2P ay_(w)avk(w,). (A=6)

-0

I

For staticnary ensembles, the ensemble average,

ay (ml) d‘;'-’* (wz) 7

can be written in terms of a power spectra Wg(wj), as expression
(a-7).

dw(ml)d*¢(m2) = Wf(ml‘s(wl - mz)dmldwz. (1-7)
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In the case of weak self-stationarity, B(tl - t,) must depend only
on the difference 1t = t; - t,, so that the relationship (A-7) can
be employed. Thus, the Fourier transform pair relationship between
the autocorrelation function and the power spectra, the expressions
in (A-8) can be written. B2As both functions are even, the expres-
sions in (A-9) follow.

Bf(r) = feimwf(m)dm

(a-8)
Ve lw) = %jeiw’rlaf(r)d‘t
Bf(‘t) = 2fcos(mt)wf(w)dm
0
(a-9)
Welw) = l][;os(mT)B-(r)dt
£ T £ *
0

ANALYSIS TECHNIQUES FOR A CLASS OF NONSTATIONARY RANDOM FUNCTIONS

Many random functions descriptive of physical phenomena
cannot be assumed to exhibit even weak stationarity. For example,
the temperature and salinity of the ocean are characterized by
slowly changing means and variances. A technique has been devel-
oped whereby a meaningful analysis can be obtained for the class
of random functions known to have stationary increments. This
will be defined.

In the general case of a nonstationary random function, the
autocorrelation is defined (reference (a)) by expression (A-10).

7 _ i.(uuli:l - m2t2) )
BA(tl'tZ) = f(tl)f* (t,) =] |e dwf(wl)dt,b?m;f
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It is desirable here to make the variable :changes :defined
by the expression in (A-1ll) which provide the definitions of the

expressions in (A-12).

The expreéssions in (A-10) and (A=12) provide the expressions

in (A=13).
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BB(T,,,‘!;) = BA(ti’t

SB(f,g) = SA(f"i'fz)

«

B (t,8) =Jg;izx(ﬂr -

Sp(£,9) =ffe—12“(ﬁ -

[ [ ot = wt)) : f
4/; " s, (fy.£,)df,df,. (A-10)

S

P ——

2 |
4 ) (a-11)
. - £, + £, 1
5=
fz =g + ﬁ/Z Y, i
2)
. (a-12)

[~

9 (£,g)dfdg

gt) Bg (t,T)drdt. (a-13)




If £(t) were statlonary, the expressions in (A-14) must
hold to satisfy expression (A-=8).

'EE(T)

Bp (T,£) 8 (t)
(a-14)

We(£) = Sy(£,9)6(g)-

The Dirac delta functions of the expressions in (A-14) show
the lack of depenclence on tj and ty. If this lack of dependence
occurs only over a range T < T,, the expressions in (A-12) can
be approximated (reference (b)?

By(t,t) = Bi(1)By(t); T <1

0
(A-15)

The applicability <f this approximation can be demonstrated.
This leads to a practical method for obtaining stable information
about the random function in guestlgn.

Consider a mean-free, random function with a slowly varylng
multlpllcatlve scale factor. The variance, for example, is
varying with this factor. The stationary variations c¢an be
separated if the scale length of the variations of the scale
factor is T > Toi Where To > 13, the scale 1ength which includes
the §tat10ﬁary variations. A Correlation of the form given in
expression (A-10) performed at some t = t; will have the same
form as oneé performed at t = tb except for a scale factor. All
such correlations will be 0 for T 2 T<T At T > 145, the
approximation no longer holds; an Gevxagxon from zero occurs.
Thus, the correlation function of the stationary variations can
be obtainec.,, and the scale iength of the nonstationarity can be

determined.

Difficulty occurs if the random function contains: a non-=
stationary mean. Correlations of the fZorm of expression (A-10)
cannot be usefully empioyed. The average of expression (A-16)
provides a method of analysis;

Repozt 6-196 A-6
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[f(tl) - f(i;z)] = 'Qh(o.t - 1/2) + B‘E(O,t + 1/2)
~2Bg (1, t). (A-16)

An important feature of the average of expression (A-16) is
that any variations in the mean of scale length greater than
T = t3 - tj will not affect the result. Thus, expression (A-16)
can be treated as if the random function, f(t), were mean free
and expression (A-17) can be written for t less than the scale
length of the variations of the mean.

- 2
[;(tl) - f(tz)] = 31(0) Bz(t - t/2) + 32(t + 1/2)

L

-2B; (T)B, (t). {A=17)
Expression (A-18) can be wiitten

Ey(t - T/2) = By(t) = By(t + T/2); T < T4 (A=18)

if the scale length of fhe variations of the scale factor exceeds
Finally, expression (A=19} can be written if the scale length
og the variations of the mean and the scale factor (varxance)

exceed Tge

2z ,, ]
[f(i;l) - f(tz)] = 2B, (t) [Blm - nl-m]: T<T, (3-19)

If the average of expression (A-19) is evaiuated at different
t's; the result will remain < invariant. If the scale length of
the stationary variations 1; 11 < Tgr the result will be zero at
T =0, a constant for 1] < T < T,, and will deviate from the
constant for T > Tg4s Generally, a random function which can be
analyzed in this manner is said to have stationary increments.
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The average introduced by expression (A-16) is referred to
as the structure function (reference (c)). The expressions in
(ArZO) define this function using the definitions of the -expres-—
sions in (A-1l).

= Y = r :
Dy (£185) = Dylr,t) = [f (t)) - £(t,)

SUMMARY OF MOST OFTEN EMPLOYED ANALYSIS TECHNIQUES

‘The most often employed analysis technigues are summarized
in this section. It will be assumed that the random function is
at least weakly self-stationary except for nonstationarities in
mean and a scale factor (variance). Quasi-erqgodicity is then
also assumed.

Mean and Variance

The mean is calculated as shown in expression (A-21).

me = %i[;(t)dt. (a-21)

T is chosen based on the scale length of the period of the
lowest “sationary"™ variation.

The variance is calculated as shown in expression (A=22).
T
v _ 1 ]2 z 3
C.(0) = & [ £5(t)at - mf. (a-22)

0

b

T must be chosen as expressed above.
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Autocorrelation and Covariance Functions

The autocorrelation function is calculated as shown in
expression (A-23).

T
B (1) = % f £(t)£*(t + T)dt. (a-23)
0

Again T must be carefully chosen. The covariance function is
calculated as shown by the expression (2-24).

T

Celx) = % f(f(t) - m)(£(t + T) ~ m)*dt
0
. o2 5 i
=Bg(r) = ;. (A-24)

Thus; for mean-free random functions, the correlation and covariance
are equivalent. In the case of nonstationarities in mean and
scale factor (variance), particularly if the mean is large as

compared to the variance, expressions (A-22), (A=23), and (A-24)
may not provide useful results.

Structure Function

Expression (A-25) defines the structure function.
2
£ fe) — 1 £ = - 2, =
Df(_i) =7 [£{t) = £(t + )] Gt. (a-25)
0
T is determined as expressed above. The structure function

to be most ©ften employed is defined by the expressions in (A-26),
where 7 is the scale length described above.

Df(T) = Dé(t); T g_fQ
(A=26)
Ef(t) = DE(TOY; T 3_19.
Report 6-196 A-9




The definitions of the expressions in (A-26) provide a
methodology of defining a mean-free autocorrelation function in
teriz of the structure function which can be unxversally applied
in later analysis. This is shown in the expressions in (a-27).

De() = fzinf(or - Bg(T)]

ﬁf(c) =:23f(0) = 2Cf(0} (A-27)
Be(7) = 1/2[Dg(a) - Dglx)]

Spectral Functions

The expressions in (A-28) were giver above as expressions
(a-9).

Belr) = 2[ COS (wT) Wy () ds

Py

L (A-28)
Welw) = %:[COS(L“)B (v)dx.

o

The expressions in (A-29) relating the structure function
to the spectral function, follow from expression (A-28) and the
definitions of expressions (A-27).

nf(-;;-) = 4f{1 - c¢$(at))ﬁf(fé)dﬂ

0 )
(A-29)

B,,,- (o)

gf(u) = &) - 5_' COS(%;)D (7)ax.
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ANALYSIS OF RANDOM FIELDS

A random function of three variables is a random field.
Only scalar fields are considered here. A random field is
s.onsidered homogeneous if its mean value is constant and auto-
correlation does not change with position. The expressioris in
(A-30) show these results.

—p ol

f(x) = constant
(A-=30)
Setting fb = ;fé in expression (A-30) provides the expressions

in (a-31).
B(.t A - = - 0) = - 2 _ =

~ Expression (A-31) shows that homogeneity corresponds to weak
stationarity in random functions.

If Bg(T) depends only on |r] = r, the random field is iso=
tropic. Thus, isctropy corresponds to quasi-ergodicity.

A random field may be represented by a Fourier-Stieltjes
integral as shown by expression (A-32).

— a2 A > _
£(r) =1[l];xp(ik°r)d¢f{k)- {a-32)

The autocorrelation function can tlien be written as shown
by the expressions in (A-33).

Be(X) = £(x)E*(x,)

=[ m ﬂ;xp[i (R, %, - K,-2,1dvg (k) v (xy)
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r
, j f exp (ik+T)E - (f)d;': (3=-33)

‘where

-

. S - -3 S 2

Cons:.der1ng the -even characteristic of the functions, the

-expressions. in (A-34) :show the Fourier transform pair relationship

between the autocorrelation and: the three-dimensional spectrum.

Ege(k) =[5 ) cos (k-T)Bg () dr.

(a-34)

ISOTROPIC :HOMOGENEOUS RANDOM FIELDS

If the random field is isotropic and homogenediis on a plane
x = const,; the autocorrelation can be expressed in terms of a
two-dimensional spectrum which can be related to the three-
dimensional spectrum. This is developed in the expressions in
(A-35).

» w 2%

r
H - —
Bf(xgg) =fj f&ﬁkpdkpdkx cos(kxx + kpp cosﬁ)gff,(kp,kx)
- 0 0
=fff&°k dk dk [cos(k x) cos(}f pcosg)
- 0 Q

- 3in (& 3
sin(k x) S;n(pkp cose)}Eff(kp,EX)
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(As Ege is even)
0 oo ,27‘1[ ‘
= f f [dﬁkpdkpdkxcos (kyx)- cos(pk, cosB)Ege (k) k)
- 00
2n :
(As ZIJO;(kpp) = fcos (kpp cos6)de
0
= 2n j}gs (kxg'c) Iy (lgpp)Eff;(k pkx')_k pdkpdkx 4
- 0
= 2-r dkpkao(kpp) fdkxsff(kp’kx) cC?S-(kxx)' )
0 fw _
= 2% dkpkao(kpp)E 2k, X) . (A-35) |
3 E 4] E
é The final expression shows the two dimensi-wpal spectrum; E £2
= (k_,x). The Fourier transform relationship to the three-dimen- E
— sional spectrum is shown in expression (A-36).
£z g :
) Eeny (k,px) = ) cos {kxx) ng (kx’k'p}dkx
- (A-26) ;
- Bee (x K ) 32| Ega (kp.x) cos (k, x)dx. 2
% - 1
%ﬁ Report 6-196 A-13 :
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Further insight into- the two-=dimensional spectrum: is

shown by the expressions in (A-37). :]

,p ]
£(x,y,2) = H;xptl (kgy + k,2)1d gy (k k%) Al
—-00- I 3
K
- kit ¢ - 1y ; Aeaya b 1
6(k25 kz)é(k3 - k3)Ef2(}gy,kz,x)dkydkzdkydkz
2N N
= dwfz(ky,kz,x)dﬂgz(k;,ké,x). (A-37) — |
The first of these shows the random field on the plazne x = const ! %
expanded in a Fourier-Stieltjes integral. The second expression —1 1 7
shows the two-dimensional spectrum in %erms of that expansion. IR
If the random field is homogeneous, the correlation function i
i and the two-dimensional spectrum are independent of x as shown E
in the expressions in (aA-38). -
i
- (O
Be(p) = ZT/ﬁdkpkac(kap)Eﬁz(ka LJ‘ 1
i K
0 J
1
j” - 4
r 3
= ] A3 )
Eg, (k) —} Epglkyoky)dky . (A-38) i
00 ;
M
Ll
!
If the random field is homogeneous and isotropic, the auto- r“?
correlation can be expressed in terms of a one-dimensional power' P
spectrum which can be expressed in terms of the three-dimensional - 3
specctrum. This is developed in the expressions in (A-39). —
! : -
S

e
, .
Sl s
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7 ®© T 7/2
] Bee(k) = Wf[ cos (k ¥ cos8)By(r) (r sindd8)(rdd)dr
- _ 7!;— - :5 o =
2 e - 0 -7/2
- ] = -cos (k r éQSB)Bf:(—f)rz sin@dedr
i
| 0
3 T = B (xr) d j—sin (k rrcose)::de
} H a3 r? ,
L
0 ]
; o0
L4 T _
= —=>[dr &= B_(r) sin (k_r)
a (2m)2 f kot r
3 -0 ‘
1 3 f , f
= (ﬁk— - 5 -Zl?fdr cos (}gr«r—) Bf (ri]
o r °7 ‘
b -1 2
Lo = 7k; 7k etk (a-39) 3
r r -
T ard
! Ece(K)) = —3— | rBg(r) sin(k r)dk_ /
] ff r 27 kr[ f Ve ) r j
0 o
® L
= B.(r) = dn k _E__-(k.) sin (k.r)dk
£ r | TxUffVpl Sinligridi,.
- 0 é
. The expressions in (A-39) show that one-dimensional spectrum
{ exhibits the expected Fourier transform relationships of the
} expressions in (A-40).
S : N
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ar cos,(krr)Bf (r)

Bg(x) F‘lﬂdkrcos(krr)Efl(kr)»

-~ 00

In addition, expression (A-41) may be written

oo ©

k. =k
b of r

05~

=f dk(41rk)Eff(k) .

k
x

Efl(r).

LOCALLY HOMOGENEOUS AND ISOTROPIC RANDOM FIELDS

Efl(’kI) =[dk(2nk)Eff(k) + [dk(an)Eff(k):

-(A-4C)

(a-41)

All the results of previous sections defining relationships
between the autocorrelation and power spectral functions apply
to the autocorrelation, B¢(r), and the one-dimensional spectrum

The methoédology of previous sections on local stationarity
is applied to locally homogeneous random fields. The three-~
dimensional structure function is defined by expression (A-42).

Dp(E),E,) = [f(rl) - f(rz)l

Report 6-196 A-16
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The field is locally homogeneous if :shifts -of r1 and rz

within .a reglon do not change the structure function as shown
in expression (A-43).

Df(r1 +try, ry+r,) —~Df(rl,r2) = Dg(ry - r2)5 {A~43).

In: case of local homogeneity and isotropy on a plane x
const, expression (A-44) results.

D¢ (p) = 4 j [1 - 3o (k ) IEg, (ky, 00k dk . (A-44)
0

In the case of local homogeneity and isotropy, expression
(A-45) results,

Df(r) = 2 (1 - COSkrf)Efl (kr)dkf

sinkrf ,
= 47 1l - —k—rf-—f— (kr)krdkr. (A=45)

The one-, two-, and three-dimensional Spectra are related as
ab@ve except that no Dirac delta exists for the mean. The

structure and correlation functions are considered modified as
expressed above for large p and r.

The term 4nk> E££ (kK

) or, in general, 4Tk Efg(k) seen in
the last of expresszon ?

-45), is employed often. For simplicity,
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the definition of expression (A-46) is employed. E_(k) is
referred to: as the modified three-dimensional spectrum.

R T —4E).
Eg (k) = 4nk“E (k) . (A-46)-
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APPENDIX B

COMPUTER PROGRAM FOR -CALCULATING
THE OPTICAL PPOPAGATION PROPERTIES

This program is -utilized for all four of the required
calculations. A particular calculation is obtained by changing
lines 17 and 19 in the program. In line 17: ICODE = -1,
logarithmic amplitude variations are calculated; if ICODE = +1,
phase variations. Line 19 sets the kg factor; thus XKS = 18 for
temperature; XKS = 180 for salinity.

The program provides both printed results and a control tape
for a plotter to provide plotted results.

e e Somim. ¥

ALn

PR NV S

[




CARWOPT.T3000,TP1,213, "B42+NYRRANIEC -x}
CHARGE » CARM .+ 18420040 ] . PR, R, 7
ATTACH(SCORSCASGSCORS41D=289001202) '*]

REQUEST o TAPE4R s HT+ S, (CAN343/RING IN)-
FIN(T)
REDUCE.
LOAD (SCORS)
6o, ) !
UNLOAD (TAPE4R) .
1 0000000000000000006000 , ,
PROGRAM OPTCL (O4TPUT , TAPE6=0UTPHT » TAPEGR 5 INPUT o TAPES=TNPUT)
COMUON TCODE + XL + XKS s RHO {
DIMENSTON ¥ (85) o XRHO (85) sEE (%) 400 (4) » TITLF (5). !
CALL CAMRAV(35) ] -
PEAN(5.10) (TITLE(I) «I=1,.8)
10 FORMAT (R419) ;
XM I“;’Sa
XMAX=6, ,,j
YMIN=D, 1
Yusx=30, ;’}

L

px=1.,
' ny=1. - --
i CALL SETMIV(24404100,24) ;
i C‘LL'QQIDIV(03XNIN'XHAX'YﬂlﬂoYHAx,DX.DYco00o'l5‘2'4'41
: ‘CALL PRINTV(R0.TITLE:1504+24)
PI=3.141592
1CnDF=]
1 RUAX=1000, -
] xr.s=130, i
Fox=1
r(1)=]1.8
WRITE(A+101) _
101 FOoMAT(1R]) J

_ WRITE(&+102)
107 FOPMAT(IR .= L RHO DPHIS1508).
WRITE(54+103)
! 103 FOQYAT (1R ) O
! AL=1.E-2
{ N0 S5 IS=1.15
JJj=0
Ex0)=1 F-5
N0 5 IA=1,.11
0o 7 I7=1.5
JI=JI+]
H)=2,=174ExPD
XRHD {.}J) =aqHN
Nitly=.0n13
StM=n,
A=°o
=A+DD{[JX)
&7 AA=,S5#%(k.9)
BR=3-4
CC=.42014499n7 .
Y=.05061427# (FUNC(AACC) +FINC (AA~CC) )
CC=.3922337+R8 ~
Y:YO.!Il1905?(FUQC(IA*CC)OFUHC(§A~CC))
CC=.2627662eR8 ~ ]
Y=¥+. 1568533% (FINC (AASCC) sFINC [AA-CC) )
CC=.05171732%RR _ _
Y:RB'¢70.§Rl3&39'(FuNC(§l0CCIOFUNC(AA-CCIJ)
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SUM=SUMsY
IF (B-RMAX) 46446448
46 DDIIIKY=ND(TI)SEE (T UK)
A=R
R=A+DD 1K)
60 1047
4R N (JJ)=6,.2P8SIM
VRITE(6+4) XL WHOsW(JJ))
FORVAT(IH JEB.142XeEB,1e2X+E12.5)
CONTIMNUE )
EXPI=FXPO#10.
CONTINUE
WRITF.(6+10&)

o -~

104 FORMAT(IH )

XRHO (1) =ALOGI0(XRHO (1))
W1)=ALOGIN(M (1))
NO 11 Jil=1,5&
112=711+1
XQHO (112) =3LOG104XRHO (112) )
WIi2)=ALOGIO(NII12))
IX:=IXVIXRHO{I!1})
IX2=zIXV{XRHO(I12})
IYI=IYV(N(IL]))
1Y2=IYV(N(112))
CALL UIMEV(IX12IY151IX21Y2)
11 CONTINUE
xLx=XL#10,
S CONTINUF
CALL PLTND(#)
STOP
END
FUNCTION FUNC({XKP)
COMMON_ TCODE « XL ¢« XKS o RHO
XK1=,001
XK3=,2R
XK=,132361F6
PI=3,141592
Z=176, )
N1=<2.# (XKP/XKS) 282
 IF(Z-ARS(01)) 32.31+31
32 ENN=O0,
60 IO 2% , , ] ,
31 E"N=((!KJ"lZ./36)Ipr"(11¢/3.l)'(lo/((l.‘(X‘IIX‘P)"2)'?111.’6.)
l)*l./((li’(!KB/XK?)"Z)"(I!./6.)!)‘(l.I((XKP"Z‘!K3"Z)"(3./2-))
2))sEXP(n])
36 X=XXPsu2s)[ /XK
CALL TALSIN(X.AMIMI}G)
. TF{ICODE) 2121422 )
21 £2=PI%(XK®83) #XLSAMINUSSENN
60 T0 23
22 APLUSZZ .~AMINUS
E2zP[#({XK#8D) sX| SAPLISSENN
23 ARG=XKPeRH( i
CALL BFS{ARG.SUM)

FINC= (1 ,~SUM) *E25XKD
IF(ARG,LT.e1) FINC=SUMSE2&XKP
— RETURN
g END
1 SURNITINE CALSIN(X.AMINUS)
3 XCONLI=] F~50
; a)=1,-X
iz TF{31) K649
§§ 9 X=1
atnd AviNgS=D
& FACT=1 )
- T3 TEMP=((=1,) 9% (Xs]1) ) #(X08(2,¥K))
1]
£
N ‘
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AI=ANS { 1EMw)
XCON=z]15E~S0
A2=XCON-A]

IFLA2) 114747
JJ=2%Ks1

no 3*!1=chJ

Ay=11

FACT=FACT=aj
CONTINUE
TEMP=TFMP/FACT
TEGT:XCOHI-ABS(TEEPD
IF{TEST) 12+7.7
K=Ks}
AMINGS=AMINYS s TEMD
6 TN &
A!IHUS?(!.-(SIN(X)?!!)
RETIAN

£ND

SUBRGYT INE ES (X SyM)
LoMNI=1.E-50
CoN=1.E-50
PI=3.!§159Z
IF(X~10.5) lel.2
X=1

Sys=1,

IF(X.LT:.13 Stm=n,
FACT=},
!Nﬂﬂ=((§l.)"K)’(!.ZS'!"Z)'!KI
IF(X.LY:.1) XN ==X a0
Al=ARS (XK1™)
A2=CON-a}

JFIAZ) Z.R.R

N 5 IT=1,K

AJ=F1

FACT=F, ACT*AJ
CONTIMNIE
TF”’:!ﬁyﬂltFACTi'Zgl
TEST=C9¥I-ABS(TEHP)
TFUTEST) 7.8.8
K=K} )

SUM=SIpL+ TEMD
IF(1,.F65-0) Be8:50
IF () .E37=xN1™) ReS51551
69 70 3

Pn=1.,

xX=1

X&=HeK

NpMl=1

00 3 L=1amg,2

MMl =NM] s we?
CO‘TIHUEA

YR ={~] ,#eK) oNyp]
Al=ARBS (XN} )
A2=A1-1 F45

IF(A2) 1G.11.11
FaCr=g,

L)=oex

0o 12 11=1.0J

AJ=11Y

FACT=FACT#4;
COHTIEUEZ
TEMI=XNIBe1 / (FACT® R, 0x) o8 (2_2X) )
PO=2DsTEND
TE§T=COH!§iB§(TEHQ)
IFETEST) 313s11.11
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il e U G
u»umm f l ! '

E’

13 K=Xe]
‘G0 10 1S

11 00=-1.7(8.%X)
x=2

15 =1
K3=bOK-2
DO 17 L=1:K3+2
NEpM2=NUM2 o 882

17 CONTINUE -
XNMZ2=(~1,99K) sNype2
A1=ARS (XNIp2)
AZ=A1-1.E6S
IF(A2) 13519.19

18 FACT=1
JI=29%K~1
Dy 20 1I=1.0J
A=11 .
FACT=FACT®*4AJ

20 CONTINUE ) 7
TEMP=NUMZ/(FACT® (R, *X)s#(2,9K~]1})
oD=00+TEMP i )
TEST=CONL=ASS(TENS)
JIFITEST) 21419419

21 K=Ks}
G2 710 15

19 SUv=((2,/(PI®X))*2.5) s (PO*COS(X-P1/4,) ~DO*SIN(X-P1/4.))

» RETUAN
0000006090000000803000

LOG(DPHI (RM0)) VS. LOG{ZH)) FOR SAL. AND L = 10%s-2 TO 1u®*]13 BY POMERS OF 10
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