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LI ASTRACT

Studies have been published which extend[and apply the Kolomogorov theory of turbulence
to the fluctuations of optical refractive index
in the ocean due to salinity and te--erature

-microstructure.

ltheatical rodels of so=e of the atatis-
£ ~tical preperties of these fluctuations are

developed to provide continuous functions obeyingt.he various Fourier transform relaticnshipsIprovided by the studies. The continuous funrctions
are utilized to charecterize the phase end
intensity fluctuations of a plane, monoc-hroatic
optical wave pas;ed through such a turbulentL edium.

\The knowledge of the relationship between>1 fluctuations of the optical parameters and the
refractive index ricrostructure provides a basis
for the utilization of laser bears as data link s

l

S eor in studies of the propagating -edii.
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INTRODUCTION

= Considerable effort has been applied to Oescriptions of the
temperature and salinity microstructure of the ocean. These
descriptions, both theoretically and eapirically derived, are
not yet definitive. There is, however, limited agreement between
theory and measurement. The results have been summ arized and
discussed by Stanley.1 The descriptions are based on the Fourier
transform related structure function (with distance as the arcu-
-ment) and spectrum (with wave number as the argument). These
descriptions are composed of separate functions, applicable in
specific ranges of the arguments.

For a similar charecterization on a measurement plane of
the optical intensity and phase fluctuations of a plane, mono-
chromatic wave which has been passed a given distance through the
turbulent ocean, the descriptions of the refractive index micro-
structure of the ocean (based on the temperature and salinity
microstructure) must be rathematically sntooth to elirinate unreal
effects caused by "corners" in the descriptions. That is, a
smooth transition function must be found between the descriptions

in the separate ranges.

Expressions valid over the entire range of interest are
developed to describe the refractive index fluctuations. These
expressions are shown as to agree with Present theory and available

I -ii data. The desired descriptions of the optical fluctuations are
ound. As some of the statistical descriptions are not in theIcommon literature, the analysis techniques for obtaining these

descriptions are reviewed in appendix A for both scalar cuantities
and vector fields.

OPTICAL INTENSITY AND PHASE FLUCTUkTIONS

__j The optical intensity and phase fluctuations of a Plane,
monochromatic wave passed through a turbulent medium, character-

ZO ized by refractive index microstructure, will be described on a
measurement plane. The measurement plane is perpendicular to the
original direction of cha wave and situated such that the wave
passes a distance L through the mnedium. The lave nr er of the

I (light) source is K, the wave length is . The medium is described
- by the three-dimensional spectrum of its refractive i'dex micrc-
4 structure, Enn{k s ).

I DESCRIPTIONS OF THE INTENSITY AND PHASE FLUCTUATIONS BASED O:; THE
SOLUTION OF THE WAVE EQUATION BY SPECTIL EXPA&SIO.N

The fluctuations of an optical wave can be described byL amplitude and phase f!uctuations. Ey taking the ogarithm, one

lsuperscripts refer to similarly numbered entries in the Technical

References at the end of the text.
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separates the fluctuations into the sum of the logarithmic ' I

amplitude or intensity and phase fluctuations, which can then
be treated separately if the fluctuations are small. Tatarski, 2

chapter 7, applies the methods of "small" and "smooth" pertur-
bations to the solution of the wave equation by spectral expansion
to obtain the desired statistical descriptions in terms of the
refractive index spectrum.

The two-dimensional spectra in the measurement plane of the
logarithmic intensity Ez2 (kp), and phase, E 2(kp), are given as

Ez2(kp) = 10t2LI( 1 k2L Sin- k2)Enn(kp) (1)

P2! k k kL
E 2 (k p) = 2L 1+ k Sin P E(k

2 --k -L k Enn p

P

The corresponding correlation functions are

Bz 2 ( ) = 2 (kp)E 2 (kp)k dk (3)

0

,e2() J Jo(kp)ZEz2 (k)kpdk

S0

The corresponding structure functions are

£2(p) =4 1 -Jo(kPp0) E Z2(k p)k pdk p  (5)

0

0-fc

Appendi-x A reviews these statistical descriptions..

ASSUMPTIONS REQUIRED FOR TH: SOLUTION OF THE WAVE EQUATION BY --]
SPECTRAL EXPANSION

As stated, Tatarski,2 chapter 7, applies the methods of
"small" and "smooth" perturbations to the sojution of the wave

Report 6-196 2



equation by spectral expansion. These methods require less
restrictive assumptions than those required if the principles
of geometric optics are employed (Tatarski,2 chapter 6).

Tatarski considers a medium for which the mean refractive
index is unity. More general results are required here, but the
substitution is simple and does not affect the resulting relation-
ships. The derivation of the relationships involves extensive
work. As the effort here merely makes use of the results, only
a brief description of some of the assumptions will be given to
indicate the range of physical validity of the results. The
models are evaluated beyond the range of physical validity only
to demonstrate the characteristics of the functions. The assump-
tions are:

* The wavelength of the light source is much smaller
than the smallest Euclidian dimension of the inhomogeneities in
the spatial distribution of refractive index, t

<< o (7)

* The fluctuations in refractive index, n,, are much
smaller than the mean refractive index, no, where tAe refractive
index, n = no + nI .

n nO. (8)

* The wave is expressed as the sum of a perturbee
component, ul, and an unperturbed component, uo, where the per-
turbed component is much smaller than the unperturbed one. More
precisely, the assumption is

lu /U I In /no 1. (9)

Let log(u ) = yo, ul/uo = l, and loa(u) Y 1. Provided that
Iul/uol << i, ?hen 'li = ' - yl.. As Inl/n <<1, IVI << IVIoI is
required. As IVIoI2k = 2r/X, it is required that XIV]3 << 2ir.
Writing 'i = XI + iSl, it can be shown that IX11 < ISI, so the
conditions here are satisfied if the phase variati,,ns, Sl, satisfy

IVSll << 2/X. (10)

Under these conditions, "the angle of scattering of the
waves by refractive index inhomogeneities is of order no greater
than 0 = I/to and is thus small. Therefore, the value of yPi can
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only be appreciably affected by the inhomogeneities included in
a cone with vertex at the observation point, with axis directed 2
towards the wave source, and with angular aperture 00 = / ° <<1.

MATHEMATICAL MODELING OF THE REFRACTIVE INDEX
MICROSTRUCTURE IN THE OCEAN

In order to permit computer aided calculation based on
equations (1) through (6), and to prevent excessive errors due to
artificial sharp corners in Enn, a smooth, continuous function
is sought as the ma'hematical model. The difficulty is that the
available theoretical and empirical information concerns itself
with the inertial, viscous-convective, and decay regions of turbu-
lence and turbulent mixing separately. Thus, there are descrip-
tions of the refractive index variations in each of these regions
but there is no definitive information as to the manner in which
the pLenomena behave in the transitions between regions. The
criterion of selection for the mathematical model of the spectrum
is that it and its Fourier transform, the correlation function,
agrees with the available information in the known regions. Once
this is assured, the model can be applied to describing the
optical fluctuations.

2 3 1On the bases of work by Tatarski and Laster, Stanley shows
that the descriptions of refractive index fluctuations (correla-
tion, structure, or spectral functions) are a linear combination
of those of temperature and salinity fluctuations. These func-
tions and the coefficients of the linear combination are scaled
by temperature, salinity, and mean refractive index, as given by
Laster. They will be discussed here in an unscaled, separated
form.

SPECTRAL INFORMATION

Table 1 gives the form of the spectrum in the three regions.

TABLE 1
SPECTRA FORMS

Region One-Dimensional Three-Dimensional

1B i 1 /3k-5/ 3  1.5 -1 -1/3,-11/3

Inertial 2 .k-lT/3

Viscous-3.q* 1/2-13-1 1 -11/2-/
Convective 2 q V e kq V e k

1 a v1 2C- 1/2 k- 1 . I_ ,-i Vi/2 C- 1/2 k-3 .

Decay exptD3/2k 2 q*/ 1/2 exp(-D3/ 2 k 2q*/el/ 2 )
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III In the inertial region, the one-dimensional spectrum is
taken from Gibson ard Schwartz4 except for the factor 1/2 which
is employed so that the one-dimensional spectrum is defined over
negative and positive wave numbers, instead of just positive.
The three-dimensional spectrum is defined based on equation (11)
from Tatarski.2

EE a Wk
(k) (11

This is in agreement with Stanley, as his modified three-
dimension spectrum, has a factor B2  3 which corresponds to
the results of equation (12) from Hinze.

7E (k) = 4wk 2 E (k). (12)

B1 is a universal constant given by Gibson and Schwartz4 as 0.31.
The factor 5/3 is apparent from equation (11).

-
t  A simi3ar transformation is employed in the viscous-convective

region. The factor q*, given as approximivtely 2.0 by Stanley!, is
given by Grant, et al,6 as nominally twice that (3.7±1.5). TheIdifference is apparently due to the difference in definition of
the spectra.

The spectral representations in the decay region only approx-
imately follow equation (11). The form of the three-dimensional
term is found in Stanley1 and is the only available representation.

B Batchelor7 predicts that the inertil subrange asymptote and

the viscous subrange asymptote (the relations of table 1) intersect
at

k = k5 = . (13)

The intersection calculated for one-dimensional spectra gives

M i
()= B)32 )/ = (B 3 2 ks . (14)

The intersection calculated for three-dimensional spectra gives
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k~1
-ii) =2.1l5k. (15)

This difference has occurred in the literature. Grant, et al6

note a factor of (2.4±0 8) x 10- 2ks working with a one-dimensional
spectrum, while Nye and Brodkey8 noted a value 5.0 x 10- 2ks
working with the three-dimensional spectrum.

For the mathematical model, it is convenient to normalize
the one-dimensional spectra by the factor

1/2 -1/2/4 ,6

Q*V e /-, (16)

making the one-dimensional spectrum in the viscous-convective
region simply

2rk 1 . (17)

The result for the inertial region is

~(B /q*) k~/k d.18[s
STRUCTURE FUNCTION INFORIATION

The structure function information is taken from Batchelor7d appears in table 2. Of course, the stiocture function rises

to a constant beyond the inertial region. In the inertial region _
relationship, a proportionality constant is needed which Batchelor'Iassumes is unity.

TABLE 2
STRUCTURE FUNCTION FORMIS

K Region Function

Decay -_6D) r2

Viscous-Convective iH ln 4 D

Inertial (2 /3r2/3

Report 6-196 6



SELECTION OF A MODEL

IRepresentative values of the known parameters are as follows:

=10 kinetic energy dissipation rate

10=io kinematic viscosity3

B I 1 = 0.31 universal constant.-

P his gv s k 5.623 from equation (13). Selecting q*-
3.815,~~ kA'-0O3( rom eauation (14) and k() .049ks from

equation (15). Let

j k3  k~3  0.28;

therefore

I ~,l)k k3/2.15.

I~. Let

F 1/4

3 -3where for representative vaue for temp ra-ure D = T 10
MS5T =18) asid for salinity, D DSl10 (kS 180)J.

Ecuation (18), for the inertial region, may now be written
as

2' 3,1) k kL-" (19)

and the viscous-convective decay regions may be combined as

equation (20).

Equat.ion (18) for the inertial region and equation (20) for
the viscous-convective and decay regions, when consi'dered in their
respective rang2s, provide the same information as table 1; that
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is, a one-dimensional spectrum varying as k-5/3 until k3/2.15,
then as k-" until approximately k5 , then an exponential decay.The viscous-convective and decay regions are combined as k3 is

small compared to Ik5.

k Permitting the spectrum to vary as k -5 3 all t.e ay back to
kC = 0 is equivalent to assuming an infinite energy source, wich

is not physically realizable. Instead, equation (19) will ba
said to hold only for k larger than k, where t- is much smaller

t'U Ian k3. This provides for what is essentially a scaling of tzz
problem. The selection of a value for kj sets the variance
(the value of the correlation function at zero argument) and the

upper constant of the structure function (the value at infinite
argument which is twice the variance). For k less than k 1 , the
spectrum is a constant.

The forms of the spectra! and structure functions are sum-
marized in table 3. The structure functions are normalized by

Fe uation (16) as were the spectra.

TABLE 3
SUMMARY OF STRUCTURE ANID SPECTRAL FU -T10N FORMS

I| -- Sp'-c I Strccture flr.cti- j
I cI I.. Frtcf

I _____ I__________ ___________

Co s i i i In

" I i

E-quation (21) is a smooth f-unctCion, w.ic" satisfiJes Itable 3

for the spectrum.
i2(i3/5)k2/3I-

- 3 -2 W )2

T .2r/6(k142

1 2~ 2 Jk 2~

Tatarsxi gives t~he following Fouier transform pair and
related in (oor2sw seation.
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(Cr) =fos (~r) I (d c) (22)

B~r ( W - :) (23)
2a-ir (a + 1/2)0

3 (0) = iT(24)

]B(CO) -r0 (25)

2a

WT W ( 26)

( - 2) a-

=~(a I'( 12 (27)
-Na. 2 a-i)KIrca-31j

= 2B (o) =(28)
(a 1/

l(-a+1/2) 2a ,a-1 ' 0

m al Ci (29)

where B is a correlation function, D is the associated structure
runction, and W is the associated scectrum - As the ffirst ter-
in the bracket in equation (21) becomes aegligbly c~ai1 befor-e
the exoonential muwltipnlier dcarv-ts siLgnicant- fro untMh

WN exoonent-ial can be neglected. Vl riting this te rm as

2/3 k 2 3V
37 (30)

and cons idering equatior (260) with ; = k1 a 1/.~=k, we
can see that the corres..onding structure Luczncan. be derive.-d
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fro- eauation (27). At small values of the argument, ecp.ation
;;9) is validA, and th. structure function is

13 '-3 4/ '3 IAr(2/3) (k r) 2/

= 2-(48.25) (3/5) (k 3 r) 2/3; r e 1/k3 . (31)

By performing an approximate integration for the second
termn in equation (21), includina the rul tiplicative exponential,
one gets

[ k3 ~ ~s k3 r C kr

8 I i+n k- -n k f+irr) - Ci kr3 E3 r'3

CO2n nr2n 2nn~
-F 303

(2n + l 2n(2n)!

(k;,) r I/k-

-- , ---- in,.,,,..,,.2,, . .. '%

elt. [0.J, 57+ (k~r) ; /k5 <r < k3

8  I ) r>i/k 1

where

r

- - 2.r,- (2n)!Cl~z | os tt = -+ in z + n

7- ke cosine integral f-unction and ; = 0.577 is ruler's constanta."

The factor k! is the wave nuber in tA neig hrhood of k5
at which the exonentiai deca, can be considered to begin to
strcngly affect the urnction for the purpcses of the approxi2ate
integra , f k! is selected so that in the rance
the resLit in equation (32) "atches the desired results in table

3, then
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Ii

(k4/15 = 0.408. (33)

This is a reasonable selection for k5 , as the exponential multi-
plier in the spectrm evaluated at ki is 0.72, and it decreases
rapidly thereafter.

The desired result for r < rK5 no longer exists when the
results in euations (31) and (32) are added for r <1,k 3. in
order to eliminate these undesired effects of the r dependence,
the spectrum model is changed to

I

2I - )3  (3/5) 1%.7k

(k2 +k 2)5/ (k 2  k2 k /

Aexo [-2 (-Kfj&).2 1 
a(34)

L

In finding the structure fuction associated withk the first
two terms of equation (34), the excoonentiaI can be nealecteo.
The result is

i k- i  r -- I3Klkr -(3) 3(-3)(2/3) {(1)[cf~)I

r=

Ir 2/3 fi 1 -

(k-r)1/ 3 rijj (k~r)

(k. r)/F.)

31.74 L ) 2/3 - rr> i < 1/1
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combining this with the result obtmained from the last tr
of equation (34) as given by equation (32), we get,

_31. 74 [ (k 3flc1)2i r > ik1

2z- 33 +In (kz/kP) (21.55) (3/5) (K..r)-23

n(r) =a3

2%1.-108 lnU?'_C r Alk

2 7~/)cr r Cz I/k. ( 36)

Cozparzng the result i n, equalltion (36) to the Tforznarz-ion

on tale 3 we zee

* ±n.?-e constantE ressult forg r /.

a he desired two-thirds zeenence f ori /k- c rdk,

table 2, a prrcpo&crinant-,v con-stant of wrntv was assunea, so that

a edbe desire ecoaxit t-c tern to- Irk <r /lk with
C Zleadditve..csan.

* 7he Cesired eUaxe law dep-endence for.- Ih

-.te se.erc=ce m i, ---~-
aeqat.c..I ('Al -- fls c-c~fjo c.-fe->c- q"la6 L s Uc s.ae

VMSl..ncac acgree wi-- eistlina car - Note al±so tnrt tl.'e -ntercents

o-F the sT- tates Of *-P-e are~ as statd - .n cu-.cm
(14) an- r- As shown. L tazle 1, the .Zree r_: s-a - _4n

r~~-di ve- ten - an e--. te -Zs Wr~ca- b- s0..-= to-b a
a etipcatav -Co rm ma.e-. e.. - sC Sais.. itr.

constant on tr' e - ;z r f -- '- res the fact..c (fv'r -)~ 7h
factor- has a ii--t m ct ,ml c effect aroe- rnltth ce...a; re=-:c.

Th xcm. f -. eL

tLerefe-rns to cut c... what wculdcb ran In f '..ate pewe CC-nri-

Za -' - Ct.^'~ _ -- -Pa .-

exczantual atue' -& - -"te CeNCay. re' r- ac xrtC-
IS nelicilb-ie.
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I
The selected =ode! is given in equations (37) through (39)

i and displayed graphically in figures 1 thrugh 4.

4)! 2 lk 3S: /3 23Sk/3

ex2  - 2  +/5  2 1E 1 (k = k?{ k 3 7C)2 / (kr2  k
I3

I- exp [-2Uc/k5 )2J (38)

k 3

E inn 2cr) 2"/ 2. t_2/ I6 2 /

50(38 3 i3 (kr) -'3) /3 (k 3r )
Sinf (k/;38

-+25.3 [1 + lnk3) - + Ci0k 3 r) - Ci(kr r)39

-93

where

kI = 0.001 (selected)
1

-3 = 0.28

k- =180

5 S
k; =0.408 k -

OPTI.CA, PRPAATO PRO3PERATEFS BAtuOTE

VUsitg the mc~el given. by equaltion (38), the two-di-rmnsionai
sEtra of the l aittzic pliueand phase fluctuati.-on-s are

obtained by eauations 1) and (2). The associated structure f c-
tions for teperature and salinity can he obtained from the int-
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grals given in equations (5) and (6). A computer program was
[ prepared by Dr. F. Theilheimer and Mr. R. Wybraniec of the

Computation and Mathematics Department, Bethesda, to perform
- - these integrations by means of the eight-point Gauss quadrature

formula. A samople program listing and additional information are
given in appendix B.

Each integral is calculated with unequal intervals starting
at 0 and endina at the first interval past 1000. The intervals
are of increasing length because the greatest degree of fluctu-
ation occurs for the small limits of intearation.

Figures 5 and 6 display the structure functions of the phase
variations for temperature and salinity, respectively. Figures
7 and 8 disnlav the ctructure funcftions of the logarithmic
amotitude variations for temnerature and salinity, respectively.
Figure 9 displays the variance of the phase variations for both
temnerature ano salinity. Figure 10 displays a similar result
for the logarithmic amnlitude variations.

DISCUSSION

The mathematical model, equations (37) through (39), is
shown to be consistent with the structure and spectral function
nfor mation based on the referenced analytical and experimental

results. The functional f or of the model is such that computer

aided computation of the optical propagation properties is
possible. The smoothness of these comnuter results partially
deonstrates the suitability of the model and the comnutational
techniue.

The primary results are given in figures 5 through 10.
These are the results of the integrals given by equations (5) and
(6). These integrals are two-dirensional Fourier transforms.

For nurposes of discussion, the term integrand will refer to the
two-aimensaonax spectra given xn equations (!) and (2), each

nultinlied by the variable of intearation k,. The functions

k 2L
Ki

0z
ii+

will be referred to as the "window.' The results

2_L) 2_ k 2 0

2- 2

.2 2 >l
e> 14
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will be utilized. Thus the window for the logarithmic amplitude
variations is

k22 2Lv- P <0.1
S;k(42)

; -~-> 10K

while, for phase variations, the window is

2sk2L

2 P--- < 0.1

. 9 (43)

__ ! > 0.

As the three-dimensional spectrum has an insignificant
contribution to the integrals for k < kj, the window does not
affect the integrals it

k1 L > 10 (44)

z > =1.32 x _ . 1(45)
24

k k1

The term "L is 'arge" or "large L" shall refer to L > 1.32 x 1012

When L is large, as the window does not here effect, L linearly
scales the results, but has no effect on the shape of the struc-

W ture function. The factor

1- Jo(k p) (46)

shall be referred to as the transformation function, and the
result
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0; k p < 0.1

1 - Jo(kp p) =(47)

1i; kp > 10

will be employed.

The results will be discussed first in terms of the functional
relationship to the seiaration distance in the measurement plane,
p, then as a function of. L, the distance traversed through the
medium.

When L is large, the integrand contributes no significant
"energy" (or, to paraphrase Batchelor,7 no temperature or salinity
stuff) for k < kl, thus, thi structure function should stop
increasing for p < 1/kI = 10 , as the results show (see the

1013 curves for this portion of.the discussion). As p is
decreased, the transformation function inhibits the contribution
of the integrand to wave numbers on the order of 1/p and above.
At k the integrand decays on its own. As p decrems from i/k
to i k3 (the inertial range), the results show a p / dependencl.
For p < i/k5, the decay range, a p2 dependence is seen. Taarski2

predicts the p dependence in the decay ranoe but finds p
in the inertial.range. His result is based on approximate ana-
lytical integration techniques that are not experimentally con-
firmed. No further discussion is possible, based on existing
information, except to itate that his results can be duplicated
by the computer techniques utilized here, and by analytical tech-
niques, assuming, as he did, the inertial range spectrum asymptote
(k -11/3) exists for all kp , rather than utilizing the given
moael.

In the viscous-convective range, 1/k5 < p < 1/k3, the results
show a rise, that is, the curve is above the inertial and decay
asymptotes. As this exists in a range of p ir which physical
measuremwnts can be made, the phenomenon is significant. As
Tatarski4 worked with a medium with no viscous-;-onvective range,
he had no such results. Similarly, as his spectrum rises to infin-
ity as k approaches zero, his results show no flattening iii the
structure function. The flatte -7 represents the finite "energy"
driving the turbulence. If a s..aller value of k, was selected,
say at the scale size of the ocean, it is apparent that the variance
would be larger. The curves are easily extended for any k, less
than the selected 1000 reciprocal centimeters, and it is clear
that the selected value of kI was small enough not to affect the
results, that is, to permit extrapolation.

The L dependence of the shape of the phase structure function
is slight. The shape of the curves is not a function of L, while
the amplitude is linearly dependent upon L. Figure 9 shows that
at L of the order of 101± , the coefZicient of the linear dependence
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of the variance on L a!- -s. This is noted in figures 5 and 6
also. At large p, a sep _ation change between curves occurs
at large L. As p is decreased, the separation change between
curves moves to smaller L. This is simply explained by the
window for the phase variation. For large L, the value of kP
at which the window decreases is on the order of kl, the location
of the peak of k Enn(kp). As L is decreased, the window affects
the function at Earger values of kp; therefore, the effect occurs
at smaller values of p. Once the window decrease occurs for
kn > k5, the effect is lost. Figure 11 further illustrates this
by showing the structure function at small p as a function of L.
It is significant that the change occurs at physically meaningful
values of L.

The L dependence of the shape of the logarithmic amplitude
structure functions is stronger as the logarithmic amplitude
window has a stronger L dependence. As L is decreased, increas-
ingly more of the lower wave number (longer length) portion of
the spectrum is eliminated or "cut off" by the window. This is
apparent as long wavelenath phenomena cannot affect short distance
measurements, but will appear as nonstationarities in the mean
and be eliminated in a structure function measurement (see
appendix A). Thus, az L is increased, the lowest wave number at
which the integrand provides "energy" is increased. Hence, the
separation distance, p, at which the structure function flattens
is decreas2d (see figures 7 and 8). As the "cutoff" of the window
is given approximatel asji-/, the "cutoff" value of p for
1/k5 < p < !/k1 i/L. For L > 1OK/k3, the window no longer
changes the integrand. Similarly, for L < .lK/k , the spectrum
itself "cuts off," so the window no longer has an effect tther
than scaling.

Figure 10 shows the denendence of the variance on L. For
L > K k , L is seen to linearly scale the variance. For k < L
< K/kf, as Tatarski2 predicts, the Nariance varies as LI /1  . For
L < K k5, the variance changes as L . Once again, a rise cor-
responding to he viscous-convective range is evident. For
K/kg < L < K/k3 , the variance is above the L11/6 and L3 asymptotes.
This is significant, as in physically tieaningful ranges of L,
from 1 centimeter to 100 meters, the variance of the salinity
variations, for example, is above the asymptotes by a factor of 10.

CONCLUSIONS

- -* In sea water, the existence of the viscous-convective
subrange in the temperature and salinity (hence refractive index)
spectra causes a significant increase in the fluctuations of the
phase and logarithmic amplitude of the optical wave. The increased
optical fluctuations cauzed by the salinity microstructure occur
for optical path lengths of about 1 centimeter to 1000 meters;
thus experimental confirmation is feasible.
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a The use of structure functions instead of correlation
functions to characterize the spatial fluctuations is considered
a more meaningful approach because the physical phenomena being
described are at best only quasi-stationary, with stationary first
increments assumed. The structure; function approach directly
provides the functional dependences, particularly at small distances,
because these dependences are not hidden by the variance as they
would be in the case of correlation functions.

@ The smooth, mathematical representation developed for
the refractive index spectra satisfies theoretical and experimental
data where avai.lable and is suitable fox computer solution of the
integral equations. Further, this spectra representation is
svficiently general so that it can be used for various media by
appropriate selection of the spectral cutoff and breakpoint wave
numbers.
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: JAPPENDIX A

J STATISTICAL DESCRIPTIONS OF RANDOM
FUNCTIONS AND RANDOM FIELDS
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LIST OF SYMBOLS

(.)* Indicates complex C(-) Covariance function
conjugate D(.) Structure function

FT Indicates average r Vector distance
T, t Time variablesk Vector wave number

uRadian frequency Bf() Modified three-
p(.) Fourier transform dimensional spectrum

of time funotion B Three-dimensional

6(-) Dirac delta function Bff spectrum

i V-1 Bfl One-dimensional

{ f(t) Ensemble of spectrum
.:L functions, f (t) T3f2 Tw-iesol

m() Mean spectrum

B() Correlation function

ANALYSIS OF A RANDOM FUNCTION

A set or ensemble of random functions, {f (t)}, can be
described by all possible multidimensional probability disli-bu-
tions. In practice, only the mean and the autocorrelatio func-
tion (the first joint moment) are employed. If the Gauss-an
distribution applies, the functions are completely descr ned.
A priori knowledge or assumptions on the properties of tie random
function provide different methods for obtaining the descriptive
functions.

The mean and the autccorrelation function are given by the
expressions in (A-i). The averages here are

mf(t) = fp(t)
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Bf(t,T) = {f (t)f*(t + -)} (A-l)
fp p

where

f (t) = the pth realization of the random function
at argument t

mf(t) = the ensemble average at argument t

Bf(t,T) = the autocorrelation function at argument
t and log T.

If mf(t) and Bf(t,T) are independent of t, the ensemble is said
to be weakly stationary. If all the probability distributions
are independent of t, the ensemble is stationary. If the ensemble
is quasi-erodic, then the mean and autocorrelation functions may
be obtained by the expressions in (A-2) employing averagingacross any member of the ensemble.

T/2

mf = lim ! f(t)dtf T-co T f(tt

-T/2

T/2

B T) lim f(t)f*(t + T)dt (A-2)
f T--c T

-T/2

If all the probability distributions can be obtained by such an
average, the ensemble is ergodic. If the properties can be
derived from any short-term average (removing the limits of the
expressions in (A-2)), the ensemble is referred to as weakly or
strongly self-stationary, where the weak connotates the same
meaning as in the case of stationarity.

ANALYSIS TECHNIQUES FOR WEAKLY SELF-STATIONARY FUNCTIONS

Where quasi-ergodicity and weak self-stationarity can be
assumed, additional descrintions of the function, based on the
mean and autocorrelation function are available. Expression
(A-3) gives the variance; expression (A-4) gives the covariance
function. In the case of a mean free function, the autocorrelation
function and the covariance function are equivalent.
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Cf(0) = Bf(0) -
2  (A-3)

fff(A3

T
0 (T) Bf(T) - M2 = (f(t) - mf) (f(t +T) - mf)dt. (A-4)

_f ft mf To

A stationary function may be represented in terms of a
Fourier-Stieltjes integral as shown in expression (A-5).

CO

= t) f eit* (w). (A-5)

-00

The autocorrelation function can then be written as expression
(A-6)

Bt=fe1t fI f -i2t9
Bf(t I - t 2 ) = f(tl)f*(t 2 ) dfPe f - 2 )

CO -CO

COF // i(itl - __2t2
)

___

= je d)f(wl ) dyP (w2 ). (A-6)

-00

For stationary ensembles, the ensemble average,

- d (Wi) d *12 ) ,

can be written in terms of a power spectra Wf(w 1), as expression
(A-7).

dy(l)d (w Wf ( ! -w 2 )dwldw2 . (A-7)
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In the case of weak self-stationarity, B(tI - t2) must depend only
on the difference T = tI - t2, so that the relationship (A-7) can
be employed. Thus, the Fourier transform pair relationship between
the autocorrelation function and the power spectra, the expressions
in (A-8) can be written. As both functions are even, the expres-
sions in (A-9) follow.

,i
Bf (T) =fe (1 d(

(A-8)

Vf1 ei Bf (T) dT

1 f

Bf(T) = 2fcos (WT)Wf( )d .

0

Wf(W) = ~fos (WT)Bf (T) dT .

!f

ANALYSIS TECHNIQUES FOR A CLASS OF NONSTATIONARY RANDOM FUNCTIONS --

Many random functions descriptive of physical phenomena
cannot be assumed to exhibit even weak stationarity. For example,
the temperature and salinity of the ocean are characterized by
slowly changing means and variances. A technique has been devel-
oped whereby a meaningful analysis can be obtained for the class
of random functioxis known to have stationary increments. This
will be defined.

In the general case of a nonstationary random function, the
autocorrelation is defined (reference (a)) by expression (A-10).

(tle i '(witl - 2t2)

B..(t,t 2 ) = f (t l ) f* (t 2 ) ,ffe((2-

-R 6 6
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feiLl - At2  SAflO'f 2)df ldf 2. (A-b1)

It is des-irable here to- m ake the variable changes--defined-
by the expression in--(A-ll)-which provide the definitions of the
expressions in-(A-12)-.

f +ft
f -2 2

g 2

(A-11)I a

S (f'cJ) =SA(fl'Y 2

The expressions in (A-10) and (A-42) provide the expressions
in (A- 13).

B (T t) =ffeiwf - B )(f,g)dfdg

S(f~g) =f -i-w(T gt) DB (t,T.) drdt. (-3
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If f(t) were stationary, the expressions in (A-14) must
hold to satisfy expression (A-8).

SBf(T) = BB( T ,t)
6 (t)

(A-14)

Wf(f) = SB(fg)6 (g).

The Dirac delta functions of the expressions in (A-14) show _ I
the lack of dependence on t I and t 2 . If this lack of dependence
occurs only over a range T < T the expressions in (A-12) can
be approximated (reference (b)? as shown by expressions in (A-15).

BB(T,t) = BI(T)B2 (t); T < To

(A-15)

SB(fg) = Sl(f)S2 (g); f < /To

The applicability cf this approximation can be demonstrated.
This- leads to a practical mwthod for obtaining stable information
about the random function in question.

Consider a mean-free, random function- with a slowly varying
multiplicative scale factor. The variance, for example, is
varying with this factor. The stationary variations can be
separated if the scale length of the variations of the scale
factor is r > To where T > T 1 , the- scale length which includes
the stationary variations. A correlation of the form given in-expression -(A-10)- performed-at some t = ta will have the same ..form as one performed at t = tb except for a scale factor. All

such correlations will be 0 for T1 < T < T_. At T > To, the
approximation no longer holds, and a deviation from zero occurs.
Thusk the correlation function of the stationary variations can
be obtaineC., and the scale Length of the nonstationarity can be
determined.

Difficulty occurs if the random function contains- a non-
stationary mean. Correlations of the form of expression (A-10)
cannot be usefully employed. The average of expression (A-16)
provides a-method of analysis.

Report 6-196 A-6



) - f(t 2 )]= BB(Ot - T/2) + BB(O,t + T/2)

- 2 BB(T,t). -(A-16)

An important feature of the average of expression (A-16)- is
that any variations in the mean of scale length greater than
T = t - t1 will not affect the result. Thus, expression (A-16)
can be treated as if the random function, f (t), were mean free
and expression (A-17) can be-written- for T less than the scale
length of the variations of the mean.

[fl(t 1) - ) = Bi(0) B2 (t - T/2) + B2 (t + T/2)

-2B 1 (T)B 2 (t). (A-l7)

Expression (A-18) can be w,7itten

L2 (t - L/2) = B2 (t) = B2 (t / t2).; r < To  A-18)

if the scale length of the variations of the scale factor exceeds
T. Finally, expression (A-491 can be written if the scale length

the variations of the mean and the scale factor (variance)
exceed

ftl -1 f(t 2 ) = 2B 2 (MB(0) B B(] T T 0  (A-19

If the average of expression (A-19) is evaluated at different
t's the result will remain c invariant. If the scale length of
the stationary variations is T1 < T0 , the result will be zero at
T =O, a constant for T1 < T < To, and will deviate from the
constant for T > T6. Generally, a random function which can be
analyzed in this manner is said to have stationary increments.
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t
The average introduced by expression (A-16) is referred to

as the structure function (reference (c)). The expressions in
(A-201 define this function using the definitions of the expres-
sions in (A-ll)!.

DA(tlt 2 ) = DB(T,t) = (t f (t 2 )

= Df(t,T). (A-20)
f_

SUMMARY OF MOST OFTEN EMPLOYED ANALYSIS TECHNIQUES

The most often employed analysis techniques are summarized
in this section. It will be assumed that the random function is
at least weakly self-stationary except for nonstationarities in
mean and a scale factor (variance). Quasi-ergodicity is then
also assumed.

Mean and Variance

The mean is calculated as shown in expression (A-21).

_T

Mf f (t)dt. (A-21)

0

T is chosen based on the scale length of the period of the
lowest =sationary" variation.

The variance is calculated as shown in expression (A-22).

T
Cf(f = 2 - f. (A-22)

0

T must be chosen as expressed above.
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Autocorrelation and Covariance Functions

j The autocorrelation function is calculated as shown in
expression -(A-23).

j T
BflT) =f(t)f*(t + T)dt. (A-23)

0

Again T must be carefully chosen. The covariance function is
calculated as shown by the expression (A-24).

TC T (f(t) - m (f (t + - *dt
Cf(r)

0

2
=-Bf(T) n (A-24)

Thus, for mean-fzee random functions, the correlation and covariance
are equivalent. In the case of nonstatioharities in mean and
scale factor (variance), particularly if the mean is large as
comared to the variance, expressions (A-22), (A-23), and (A-24)
may not provide useful results.

Structure Function

SExpression (A-25) defines the structure function.

D } - f(t + )12dt. (A-25)
f -

0

T is determined as expressed above. The structure function
to be most often employed is defined by the expressions in (A-26),
where T is the scale length described above.

Df(T) - D {,- U < O

(A-26)

Df(T) Di (UCO; T > -

Report 6-196 A-9



The definitions of the expressions in (A-26) provide a

methodology of defining a mean-free autocorrelation function in
teria of the structure function which can be universally applied
in later analysis. This is shown in the expressions in (A-27).

j
Df(-) = 2 [Bf(0): - Bf(T)

IIDf(ca) = 2 Bf (0) 2C f (0) (A-27)

Bf (T) = 1/2 [Df(a) - Df() I

Spectral Functions

The expressions in (A-28) were giver. above as expressions J
(A-9).

Bf(T) = --[Cos (I)Wf (W) d
j I

0 (A-28)

W, u) = s W-0 B (-)d_.

0

The expressions in (A-29) relating the structure function
to the spectral function, follow from expression (A-28) and the
definitions of expressions (A-27).

Df = 4f(I - coS(clT))Wf(lC)d;3

(A-29)

W =(u) 2 - _ fcos(-T)Df (T)d.

0
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ANALYSIS OF RANDOM FIELDS

IA random function of three variables is a-random field.
Jl Only scalar--fields are considered-here. -A random field-is

t.onsidered homogeneous if-its mean value is constant and auto-
correlation-does not change with position. The-expressionis i n

(A-30) show- these results.

f(r) =constant

II (A-30)
B -(lf 2 Bf(r 1 + ro~r + r)

Setting r 0  12 in expression (A-30) provides the expressions

in -(A-31).

Bf(~, 2  Bfr- 0)=fr1 - 2  fr. (A-31)

Expression (A-31) shows that homogeneity corresponds to weak
stationarity in random functions.

If Bf(it) depends only on lrl_ = r, the random field is iso--
tropic. Thus, isotropy corresponds to quasi-ergodicity.

A random field may be represented by a Fourier-Stieltjes
integral as shown by expression (A-32).

LIftir) =ffx~i-~~ (k.A-32)

The autocorrelation function -can thenh be written as shown
by the expressions in (A-33).

1-i~~~ ~ =Jjjeri~~ - 22 dO(k )d9(k2
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=JfexP( kr)E ff (k)-dk (A-13)

where

d~f (kl ) di(k 2 ) =6 (k- k 2)Eff(kI )dkldk2 °

Considering the even characteristic of the functions, the
expressions in (A-34) --show the Fourier transform pair relationship
between the autocorrelation and the three-dimensional spectrum.

Bf(r) =ficos (k.r)Eff (k)dk

-(A-34)

Eff() cjJcos (k r) Bf.(r) dr.

ISOTROPIC HOMOGENEOUS RANDOM FIELDS

If the random field is isotropic and homogeneous on a plane
x = const, the autocorrelation can be expressed in terms of a
two-dimensional spectrum which can be related to the three-
dimensional spectrum. This is developed in the expressions in j
(A-35).

Bj(xj0) d'k dkpdkx cos(k x + kP9 cose)Eff((klI,kx) il

=fff

=fffdekdipdkdk(cCos (kx) cos kpcoOe)

-m 00

- sin( cxX) sin(pkp cosO)JEff(k p kx )
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(As Eff is even)

Li jj~ p dk pdkxcos (kex) cos (pk pcosO)E ff (kpIk k)

0 00

(As w~o(k pP)- os p p coOd

J -- 0

2wfr p (k) J p) cos(.(kp k k x

B 0 -

Ii=2rf d k OAIcpp) f Ef f(k p) (A-cos35)x

U1 0

j IThe final expression. shows-the two dimensi-ona1 spectrum, Ef
(Ic ,x)_. The Fourier transform relationship to the three-diuien- A
signai spectrum is shown in expression (A-36).

rz

LII

(A-36)

IF Eyf (Ik (k FX) cos (k I

Rer,6-196- A-13



Further insight into the two-dimensional spectrum is
shown by the expressions in (A-37).

f(x,'y,z)- =ffexp[i (k y + k zlI]d f 2 (k , kzx)
y yz

6(k2 - k)6 (k3  k1 )Ef 2 (ky kz x)dkydkzdk ' dk ' yu

d f(kylkz x)d*_ * (k',k,x). (A-37) I

The first of these shows the random field on the plane x const
expanded in a Fourier-Stieltjes integral. The second expression f
shows the two-dimensional spectrum in terms of that expansion. U

If the random field is homogeneous, the correlation function
and the two-dimensional spectrum are independent of x as shown
in the expressions in (A-38).

00
Bf (p) =27/kp~ k P p)Ef2 (kP)

J
£0

Ef 2 (k p) Eff (k k )dkx .  (A-38) (1

If the random field is homogeneous and isotropic, the auto-
correlation can be expressed in terms of a one-dimensional power'
Spectrum which can be expressed in terms of the three-dimensional--
SpecCrum. This is developed in the expressions in (A-39).
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LI 
7 -7~r/2

Bff (kr-) -1
(2 cos (krr cose )Bf(r) (r sin~dO)(rdO)dr-w o -7/2

- 2(cos(k r Cos)Bf(r)r2 sin~dedr

-d d2i J7 rr

- r

, - d cos (krr)Bf (r

:L i_ 2 Ef I (kr)
2w -2 (A-39)rr

2ir=7r r

a-CO

_ j Eff (kr (A-39) in( rr d k

r rJ

00

F Bf(r) (r) sin(k r) dk
[ r "

0

The expressions in (A-39) show that one-dimensional spectrumexhibits the expected Fourier transform relationships of theexpressions in (A-40).
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Efl(k r ) = fdr cos(krr)Bf(r)

Bf(r) - dk cos (krr)Efl (kr (A-40

In addition, expression (A-41) may be written

9
Efl(k) -fdk(27rk)Eff(k) + fdk (2rk) Eff (k):

kr -k i

dk(4k)E (k). (A-41)

LI k
rI

All the results of previous sections defining relationships
between the autocorrelation and power spectral functions apply
to the autocorrelation, Bf(r), and the one-dimensional spectrum
Efl(r)-

LOCALLY HOMOGENEOUS AND ISOTROPIC RANDOM FIELDS

The methodology of previous sections on local stationarity
is applied to locally homogeneous random fields. The three--
dimensional structure function is defined by expression (A-42).

Df(l, 2 ) = [f(i) f 2(r (A-42)
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The field is locally homogeneous if shifts of rI and r2?
within a region do not change the structure function as shown
in expression (A-43).

f Df(r 1 + ro , rD2 ro )  :D f(r1 r 2) D -frI r 2 ) . (A-43)-

In case of local homogeneity and isotropy on a plane x -

const, expression (A-44) results.

Dr(fW 4 [ J- p ]Ef 2 (kw0,)k pdk . (A-44)

0

In the case of local homogeneity and isotropy, expression
(A-45) results.

Dr(r) = 1- cosk r)E kdkEl fl r)E

.LI 2f~~~l sink r~i~r~d

-" !=4 1 krr- j krd (A-45)

The one-, two-, and three-dimensional spectra are related as
above except that no Dirac delta exists for the mean. The
structure and correlation functions are considered modified as

i expressed above for large p and r.

The term 4rk rEff(k ) or, in general, 4nk-Eff(k) seen in
the last of expression 'A-45), is employed often. For simplicity,
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the definition of-expression (A-46) is employed-. Ef (k)- is

referred-tct as the-modified- three-dimensional spectrum.-

Ef MY 4irk 2Ef_(k) . (A-46)-

Li
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APPENDIX B

JCOMPUTER PROGRAM FOR CJjCULATING
THE OPTICAL PROPAGATION PROPERTIES

L This-program is -utilized for all four of the required
calculations. A particular calculation is obtained by changingH lines 17 and 19 in the program. In line 17: ICODE = -1,

Ll logarithmic amplitude variations are calculated; if ICODE = +1,
phase variations. Line 19 sets the k5 factor; thus XKS = 18 for
temperature; XKS = 180 for salinity.

The program provides both printed results and a control tape
for a plotter to provide plotted results.

Li

Rl l

Iii

F'

iii

N



CAPWOPT.T-3-P0*IoaPl . 4,IYRCHARGECARW. 1R4?OOAOI .PR. -49BANE
kTTACH(Scops.CASCO. 02Qoz 2PRFOUEST.TAPE4qHy ,9* (CA0343,p!NGIN),
FTN (T)

REDUCE.
LA(SCOPS)

UNLOAO)(TAPE4R)
OOOOOOOOOOOO000oonoon

PROGRAM OPTCL (OITPITTAPE6=OUip1IIT,TAPF-48,TNPUT.TAPFS=TNPUT)
C0'4'4N 1CODE*XLXK5sI.
DIMCNSTOI W(45 .XQHO(Ri5J .EE(4) .00D(1.) TJTLFU3)-
CALL CAIIqAV(35)

:10 FORMAT(RAIO,

YMAX=30.
nx=l.
foy= I.
CALL SETMIV(249091o.#1.)
CALL GQRInIV(OXINXh9AX.YHI,4,YMAX.DX Dyo 0.1-2,4,4-CALL -PRIOTV(R0. TITLE. 150.24)
PJ=3* 141592
YC")DF=l

W'H YE A.101)
1-01 roov~aT(h1)

1 ?F0O-4ATC11H .* L RibO HJ I O.WIJTF(69103  i103 F0Q*4AT(1h
XL=1.E-2
9)0 5 15=1.16
JJ=O
Fxo3=i.E-s

#)o 6 IA=1.1i
flO 7 17=19S
jJJ4*1j

47 AA=.5.(A~qj
R8I=3-R -CC= .4401I449.*3q
Y=.0S061'.27.(FLNJC(AA.CC, .FICRAA-rCc))
CC=.39A333Jp._
Y=Y..l 1 l 90 S*(FipIC(AA-*C)FJC(AA-.CC)) i
CC=.Q9_!71l2*RR
YzM*(CY..j1341q.(FUpC(A4.CC) 'FEIC(AA-CCJ)))
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L IF(BRMiX) 4.6%4644.8

GO TO -47
4R W(JJ)-*..PISIIM

VPITE(6*4) XL*IHO9W(JJ)LI4 FI)QWATCjIH E.9XE*,XE2
7 C0'4TINUE

EXPO=FXPO.10.
6 CONTINUE

WRITF (6*1 O&)
-104 F00QATA1H )

XRHD(1)=ALOrol0(XRNO(1I))

00 11 411=1954

-- - XQH0(1)=LO1O-(XQHO(Ij2))

W(l1)ALO1O(W(112,)

1X2A=TKXQXHOUIZl)

!YZ=IYV(W(112))-

CALL LJEVIX1IylttXZ*1Y2)
11 C0!4TTNMJ

XL=XL*10*[ Li 5 CALL PLTt4O(O
STOP
END
FUpECT ION FbN4C(XKP)
CO"WOI4 ICMoD.L*XKS.SIHO

XI3=.ZR

PJ=3.1415 92
I I =176.

)1 =-2.' (xIP/XK5) ..2
- TIF(Z-ARS(o1)1 V-.31.31-1q3? ENN=O.

GO TO) 34
31

- ?))*EXP(QD
34 X=XKP**20$L/XK

CALL CAL5IMxAJ.~jq)
TF(ICO)E) '1921.22

21 EF2=?1f(XK*1*1 XL*AIJUS*E"9
GO TO ;?'l

23 qG=XKcP*RHO1" CALL RFS(APG*StLM)
FIPdC=(l.-SU4fl.F2lXKD
IV(ARG.LT..1) FEj'C=5U'9.EZ.XICP
DETUOMI
F.40

SUQOIIINFCALSTIq(X.AM4J'US

XCO(RI) .F60

4 FACT~l
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XCO'i=1 .E-50
AZXCO~i-Al
'iFIA2;- 11*7.7

11 JJ=2*K41

FACTFACT*AJ
A CON4TIPHJF

TEM0 =TFIP/FACT
TFSThxcoI1 -4RS TEi4PI
IF(TEST, 12.7.7

12 K=K.1

420 TO I.

7 RET!IQN

CO'I1=l.E-50
CONI.E-5O
P1=3.1415 9 Z

I (=1

IF(X.LT4.1 1 Stpj-o.
3 FACrj*.

4 n 6 IT=1,IK

FAC7T-FACTORJ

TrMv=X..pi, (FACTS*2.,

TF(T~t)7.89m

&UCFACT42J

15 P(Z.*KJ
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IL

11011.C4x

fi'

{-0-0 17 LZI,1C3,Z
17 RO#M)FNLZLO

~ 18 FACT=1

00 20 Iz-I*.J

AJ1 il
~FACT=FACTWAJI

YEW M1%2I(FACT* (P.-X) Q(.-K-D)
OttzOO.TEPP
TEST=COIl-!AS(TEIPI

.1 JF(YESTI 21919919I
21 K=K~j

Go TO 16

_LOGCWPHIiRHO)) VS. LOG(QuIO) FOR SL. AND L =1@0-2 TO lyL0013 BY POooERS OF 14

SEALeAo@,~oo~
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