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Abstract 

This paper is concerned with a curved triangular finite shell element, 

which represents the rigid-body motions exactly and assures convergence in 

energy. The stiffness matrix is derived in a general way that is valid 

for all mathematical models which accept Kirchhoff's assumption. A numerical 

example is presented to indicate the quality of results that can be obtained 

with 9 or 18 degrees of freedom at each meshpoint and basic functions of 

1     2 
classes C  or C . 

This study was initiated while the authors were at the Ecole Polytechnique 
Fe"d€rale-Lausanne (EPFL, Switzerland) and was supported by the National 
Foundation of Scientific Research (of Switzerland).  The present report 
was prepared at Brown University in connection with a program of research spon- 
sored by the Office of Naval Research, under Contract N000m-68-A-0191-0007. 

ft* 
Now at Brown University, Division of Engineering, Providence, R. I. 02912, 
U.S.A. 

*** 
Now at the University of Ottawa, Faculty of Pure and Applied Science, 
Ottawa, Ontario, Canada. 

Reproduction in whole or in part is permitted for any purpose 
of the United States Government. 



1. INTRODUCTION 

The application of the finite element method to shell problems has 

been the object of many papers.  Leaving aside cases which are essentially 

one-dimensional by symmetry considerations, problems may be classed in 

three groups. 

1. The most widely used method replaces the shell by a polyhedron and 

treats each face as a plate element (see [1-5]). Approaches of this kind 

differ from each other by the choice of shape functions and by the connections 

imposed between the elements.  Note that these connections concern the nodal 

displacements and do not automatically ensure continuity of displacements 

along the sides of the elements.  Some comparisons with exact solutions 

show that, in many cases, approximations of this kind are sufficient for 

engineering purposes.  It should be noted, however, that this approach is 

without any mathematical support.  It is not justifiable as an application 

of Ritz's method, because the functions used do not have the required con- 

tinuity.  Moreover, the relation to the general theories of thin elastic 

shells is teneous, because these theories concern shells with smooth middle 

surfaces. 

2. Another method treats the shell problem as a three-dimensional one, and 

uses curved finite elements which are called isoparametric (see [6-8]). 

This procedure, which is essentially used in arch dam problems, is primarily 

reserved for the relatively thick shells.  In the same way, Amhad [9,10] 

proposed a method, in which the thickness of the shell plays a privileged 

role with respect to the other dimensions of the elements.  This method, 

however, does not seem to be satisfactory when the shell becomes thin. 

3. Some curved finite elements based on two-dimensional shell theory have 

been used (see [11-15]).  They do not, however, assure the continuity of 



displacements, or displacements derivatives, along the sides of the elements 

and do not represent the rigid-body motions exactly. Some numerical investiga- 

tions concerning curved beam problems show that the last condition is essential 

for good numerical results. This remark has been confirmed theoretically in 

[16]. Contrary to what has occasionally been stated in the literature, the con- 

dition that rigid-body motions should be properly represented is essential, not 

for convergence in energy [17], but for acceptable rate of convergence.  If this 

condition is fulfilled, it can show that the stresses and reactions computed 

from the approximate displacements assure the equilibrium of the shell , and this 

is, of course, of great practical importance. 

In this paper, we construct a triangular shell element that guarantees con- 

vergence in energy and satisfies the condition of rigid-body motions, according 

to the following statements: 

1. The unknown functions are the Cartesian components of the displacement. 

2. The middle surface of the shell in both the undeformed and deformed states 

are defined, in Cartesian coordinates, as linear combinations of the same 

set of basic functions. 

3. The strain energy vanishes exactly for all rigid-body motions of the middle 

surface. 

4. The basic functions satisfy the conditions for convergence in energy. 

In the following we shall make use of three types of basic functions ; with 

one of them, the continuity conditions for the stress field are automatically 

satisfied. 

Various mathematical models that are based on Kirchhoff*s assumption 

differ in the expression of the extension and bending strains and in the 

constitutive equation. One of these models is therefore characterized by the 



matrices A and B of the strain-displacement equations, the matrix K 

of the stress-strain relation and the boundary conditions.  In fact, in 

view the variational formulation, a model is completely defined by the 

three matrices A , B , and K  .  The kinematical conditions are the same 

for all models of this class and the statical conditions are the natural 

boundary conditions of the variational problem. 

We shall consider here the model proposed by Koiter (see [18,19]), 

which is briefly surveyed in the second section.  In section 3, we obtain 

the expression of the strain energy in Cartesian coordinates, from which 

we form the matrices A , B , and K .  Section 4 deals with the discret- 

isation of the boundary value problem while section 5 shows how to form 

the stiffness matrix of the element.  An illustrative numerical example 

is given in the last section. 



2.  BASIC EQUATIONS 

We give below an abstract of the basic equations of the Koiter's theory of 

thin sheels (see [18, 19]), using the usual notations of tensor calculus* (see, 

for example, [20]). 

Let I be the middle surface of the shell, defined by the equation r = r 

(6 , 6Z): a = r,  the base vectors; a„ = a.x a./  an x a. 
a    a 3   1  2  '  1   2 

the normal to    T.; 

•*        •* 1   #•* •+       \      •+ . 
a   a = a     *  aD   and    b      = — (a     0+a0    )   •   a,,    the two fundamental quadratic 

otp a p a f       /       ct,p P,CX O 

forms on E. The shell considered is the volume defined by the equation 

Rte1, 02, 63) = r (e1, e2) + e3 a, where (61, 62) E D, -h/2 < 93 < h/2 ; D is 

a domain of the plane  (91, 62) and h  is the thickness of the shell. 

The displacement of the middle surface Z    is defined by the vector field 

v = va a + w a3, (1) 

where a = a  aQ are the contravariant base vectors and  ((a  )) =  f(a.)l p v    /    \ a(j 

is the contravariant tensor metric.  It is convenient for the following to in- 

troduce the antisymmetric tensor 

U«B  = I (v6|a  "  v«|8>- (2) 

which expresses the rotation of the middle surface around the normal.  After de- 

formation, the normal a  becomes the vector a„ = a + u a ; Kirchhoff's 
O '      • i ex 

hypothesis yields the relation. 

Ua  =  "(w'a + ba VBK (3) 

The deformation of the shell is characterized by the two symmetric tensors 

1 
Ea6    2 (v I. + v..  - 2b  . w) , 

a|6   6|a     a6 

In this paper, Greek indices have the range 1, 2, a single stroke stands for 
covariant differentiation with respect to the surface metric and a comma de- 
notes partial differentiation with respect to 6a . 
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06    2  a|g   B|a   a  8y   8 ay ' 

which respectively represent the extension of the middle surface and the varia- 

tion of its curvature. The strain parameters have a very simple intrinsic sig- 

nificance. Let us calculate the two fundamental forms a D and b   on the 

deformed surface £; keeping only the linear terms in the displacement, we get 

ea6 = 2 Ua6 " aoB)f 

PQ = - (b . - b fl) + 4 (bY e0 tblt  ), 
a8        ag    aB     2  a  8y   6 ay 

(5) 

These relations show that, by a fundamental theorem of differential geometry 

of surfaces, the strains vanish indentically for all linearized rigid-body 

motions of the middle surface. 

In the considered model, the strain energy density has the form 

3 

W =  2B    (h Ea6 EY6 + 12 Pa8 PY6> ' 

where (6) 

Ba6Y6  = G (aa6 a6Y • aaY a66 • 2v/(l - v) a°6 aY<S), 

with G = E/2(l + v), E being the elastic modulus and v the Poisson 

ratio.  It is shown in [18] that, within the three-dimensional theory of 

elasticity, the expression (6) is a consistent approximation with the hypothe- 

sis of the conservation of normals. The strain energy of the shell is 

Ul 

f f 
W do. (7) 

O0 The state of stress of the shell is characterized by the symmetric tensors n 



rtft 
and m , defined by 

n013    =     9W/8ertfi,       ma6     =     8W/9p     ; 
ctp ap 

(8) 

n   and m   are the two-dimensional membrane and bending stresses. 

From relations (6) and (8), we find the constitutive equation 

aP    . RagY«       a0 = ^Ba^6 p n   = h B     e ., m      12       y& 
(9) 

a-* 
The external loads acting on the shell are a surface load of density p = p a + 

p a_, applied to the middle surface I; a line load of density q = q a + q a„ 
O Gt        O 

and a couple of density m = m a , both applied to the boundary r of E. The 

line force and couple are given on r • they are reactive forces on r (r = I\ur2), 

The potential of external loads is given by 

U_ (p v + p w) d a     + (q v +qw + e  u m_) ds,   (10) 
ot ot p 

.     aP .  ..    ..      . 12    21  ,./-  11   22 where e   is the antisymmetric tensor e  = -e  = l//a, e  = e  =0. 

The relations (7) and (10) define the potential energy of the shell 

U = U - U , that is the quadratic functional of the displacements v and w 

U[va,w] = r 1 ua$y6  ,,        L h        . 
C 2 B    (h eaB e

Y6 
+ 12 P

«6
P
Y6

) 

(p v  + p w)] da 

/ a aB     . , 
(q v  + q w + e  u m.) ds, (11) 

in this expression the components of the rotation  u  are defined by (3) and 

the strains e g and p   by equations (4). 



The position of equilibrium of the shell is defined by the condition 

6U = 0 (12a) 

and by the geometrical boundary conditions on r  .  In the three simplest cases, 

these boundary conditions are 

v = 0 , w = 0 , u =0 along a clamped edge, where u  is the normal rotation; 

v = 0 , w = 0 along a supported edge; (12b) 

no kinematic condition  along a free edge. 

From relations (12) there follow the equilibrium equation in D , the natural 

1   2 
boundary conditions on 3D  (image of r  in the plan (6  , 9 )) and the forces 

of reaction on 3D  .  The equilibrium equations so obtained coincide with the 

exact two-dimensional equilibrium equations given by Green and Zerna [20], if 

ctB 
the tensor m   is supposed to be symmetric.  It follows that the stresses 

solution of our boundary value problem ensure the equilibrium of all parts of the 

shell defined by (61 , 92) e B C D, - h/2 < 63 < h/2 . 



3.  STRAIN ENERGY IN CARTESIAN COORDINATES 

Let (x , x , x ) be a system of Cartesian coordinates, we define the 

middle surface £ by the equation x = x (x , x ) or r = r(x , x ) , with 

r = (x , x?, x (x1,x2)J .  In order to simplify the writing, we shall use in 

the following the notations z = x., z = x„, , z „ = x„, . .  The base vectors 
3  a   3 a aB   3 aB 

on £ can be written in that case 

a* = (1, 0, Z;L), t
T

2  = (0, 1, z2), a7
3 = ~  (-zr -z2, 1), (13) 

/a 

2   2 r with a = 1 + z, + z. . One deduces from them the two fundamental forms on > 12 L 

-*•-*• -*•-*• a& /     x 
a „  = a    •  a„  =  6  „ + z z„, b  „  = a    „   •  a.  =   ; (1U) 

aB        a        3        aB        a 6'    aB        a,8 3       ,— ' 
y 3L 

where    5   .     is Kronecker's symbol. 
aB 

ft 
Let u , u , u_ be the Cartesian components of the displacement; the 

X   ^   o 

deformed surface £ is defined by the equation r = r(x. , x„), where 

-T   /• i      r 
r = (x1 + u1(x1, x2), x2 + u2^

xi' x2), z + u3(xl5 x2>J.  On I   , the base 

vectors take the form 

t[  = (1 + uri, u2,r z±  + u3)1) , 

a]  = (   ur2, 1 + u2,2, z2 + u3,2) ; 

(15) 

from this, we can find the fundamental forms I „ and b „ . On keeping only 
aB       aB 

the linear terms in u.  and their derivatives, we get 

a a   ~   a o = u  o+uo    +z  uo'o + ZOU0'  > aB   aB   a,S   B,a   a 3 B   8 3a 

3 o - h  = — [z .(z z u ,. - z u„, )/a - z u ,  + u„  ] 
aB   aB   /—  aB y  X y  X   y 3 y y    y  aB   3,aB 

(16) 

ft 
Care will be taken to not confuse the Cartesian components of the displacement 
and the rotations defined by equation (3), which will not appear in the rest of 
this paper. 



Formulas (5) and (16) define the strains as functions of the displace- 

ment.  Let us introduce the following notations: 

e   -  lei:L, e22, e-^),     
p   =  ^pll' °22' D12 ' 

+T     , 11   22   12,      -+T     , 11   22   12. 
n  =  (n  , n  , n  ),     m  =  (m  , m  , m  ); 

let  9  still be the symbolic vector of dimension n(n = 3 or 6) defined as 

3x  =  (1, 3x1, 3x2, Sx^x.^ 3x?3x2, Sx^x^ 

-»-3 
3  will be the three first components of this vector.  If no confusion is 

possible, we shall write  3  rather than  3  ; in the same way, we shall 

omit the subscript n if it is not necessary to the understanding.  The 

notation  3,  will be the kth component of this vector.  With these 

notations, the strain parameters can be set under the form 

•+ 

3u, 
#   x \        I 

G  = (Av  A2, A3) 

(17) 

P  =  (Br B2, B3) 

•> -+6 
where  3  is written for 3  and the matrices A and B , of dimension 

x 

3 x 18, are the functions of z, z , z „    given in Table I. 
o  Op 

Let us introduce in (6) the contravariant components of the metric 

deduced from (14), we get for the constitutive equation (9) 

C  Ke  ,  m  =  C, K p ; (18) 
m f 
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2 
where K is the 3x3 matrix given at Table II and C = Eh/(1 - v ), 

IB 

3        2 
C, = Eh /12(1 - v ) .  The physical components of stresses, that is to say, those 

relative to unit base vectors, are 

n(aS) = ^ C(a6)' "<«6> = ^  C(aB) ' (19) 

where c(n) = /a(l + z*)/(l + z*)   ,  c(22) = /a(l + Zg)/(1 + z*) , 

c(12) = ^  *  Both formulas (19) must be understood without sum on the indices 

a and 6 . 

The strain energy of the shell can now be written as 

, rr  3 
Ul = 1 \        %      9 ui Rii *ui ^ ^1 **2  ' (20) 

jJ
D i,j=l 

where 

R.. = C A? K A. + C. BT K B. (21) i]   mi   j   f I   ] 

is a 6 x 6 matrix only depending on the geometry of the surface (the functions 

z, z , z .) and on the elastic coefficients C  and C.. ; D is the projection a  op m       r 
1  2 of the shell in the plane (x , x ).  In the same way, we could find the expression 

of the potential of the external loads, in Cartesian coordinates. 
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•».  DISCRETIZATION OF THE PROBLEM 

Let us divide the domain D into triangular elements, approximating the 

curved parts of 3D by straight segments; we denote by 5 the polygonal domain 

so formed and by 3D its boundary.  Let N be the number of nodes of the mesh; 

D. the domain formed by the triangles admitting P. for vertex (see Fig. 1) and 

y.(x-, x.)n functions associated with the node P. , having the following prop- 

erties : 

1. They vanish outside of the domain D. ; 

2. They verify the conditions 3, i|>.0 (P.) = 5.. 6, , where i|».  is the £th 

component of the vector IJI. , 3,  is the kth component of 3  , P. is a node 

of the domain D and 6.. the Kronecker symbol: 

3. The functions f. are of class C  with piecewise continuous partial deriva- 

tives of second order and square integrable. They satisfy the conditions of 

convergence in energy, relative to the variational problem of second order. 

These conditions are given in [17]; we recall them for the clearness of the 

following. 

The basic functions ty.    assure convergence in energy of variational prob- 

lems of second order if, and only if, for all polynomials of second order 

Q(x , x_), one has the relation 

I    3X Q(PJ • t^x , x2) = QU^ X2) . (22) 
i=l 

In particular, this relation is of course verified for all polynomial of the first 

order in x , x . 

In the following, we consider a shell whose middle surface is of the form 

N 

z(x., x2) = I    z.   '  *. (x1,x2) , (23) 
i=l 



12 

where z. = 3z (P.) .  Practically, one gives the vector z. at each meshpoint 

of the domain D , which entirely define the surface. On the other hand, for our 

variational problem, we restrict the space of the three unknown functions 

u , u , u  to be a space of finite dimension, of the form 

N  -T + 
u.(x , x ) *    I    V  u.(P.) • J.(x , x ) , (i = 1, 2, 3) .     (24) 
1 ±       e. . __     l  j     j  ±   / 

With such a choice of admissible functions one can represent exactly the rigid- 

body motions of the surface.  Indeed, a linearized rigid-body displacement may be 

written u = u +ujx(r-r), where r  = (x , x„, z(x , x )) ; the components 

of u are therefore of the form Q. = a + anx, + a„x„ + a.z and, for such a 
l   o   11   2  2 3 

function, one has the equality 

N  * I    1 ui (P.) • $.(xv  x2) = ^(Xj^, x2) 
j=l        -    ^ 

The proof is immediate:  set u. = v + a z , v is a polynomial of the first order 

in x , x  for which we have the relation (22) and, from its definition, z(x. , x„) 

has the form (23). 

Besides, we show in the second section that the strain energy vanishes if, 

and only if, the middle surface of the shell undergoes a rigid-body displacement. 

It follows that the formulas (23) and (24) represent the rigid-body motions of 

the shell exactly. 

It is convenient for the following to restrict the functions v». on an 

element.  Let A be the triangle of D , admitting the vertex P , P , P  and 

let us note v(x , x^)  a function defined on A by the formulas (23) or (24). 

In order to lighten the writing, we introduce the vector v , relative to the 

element A , defined as 
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V = (9T v (P ), ST v (P ), 3T v (P )) . v     r       s        t ' 

If we denote by $ (x,, x_) the 3n functions i>   , ty   ,  w      defined in A 
12 r  s  t 

only, then v(x , x ) takes the form 

T -J 

v(x1, x2) = v $ (x , x2)  . (25) 

Now, let us consider a linear mapping such that the triangle P , P , P  of the 

plane (x., x ) is mapped on the unit triangle of the plane (£., £„) whose 

vertices are (0, 0), (1, 0), (0, 1)  (see Fig. 2), defined by 

where (26) 

C = 

xls " xlr    xlt " Xlr> 

X2s " X2r    X2t " X2r/ 

(x, , x„ ) being the coordinates of the node P  . We have pointed out in [21] 
lr  2r r 

that the functions $ relative to the triangle A , can be put under the form 

| (x^  x2) = T I (Cr C2)  , (27) 

the set  (x , x )  and (£, C„) being linked by the relations (26).  The matrix 

T characterizes the geometry of the triangle and $ (£,, £„) are some functions 

defined on the unit triangle of the plane (£ , £.) .  The functions of the form 

(25) can therefore be written as 

v(xr x2) = vTT | (Kv   C2)  • (23) 
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The functions $ (£ , C~) are called basic functions of the plane (£,» £_) • 

In the following, we shall use the three types of basic functions given in [21] 

and summarized in Table III. For our variational problem, they define the sub- 

spaces of admissible functions of dimension 18N, 18N and 9N respectively. 

Remark 

Koiter's model reviewed in the second section only involves the derivatives 

of second order of the function z . Of course, basic functions of class C 

are sufficiently regular in this case. However, in some other models (for example, 

that given by Green and Zerna [20]), the expression of strain energy in Cartesian 

coordinates, make use of the derivatives of z of third order, and there it is 

2 
necessary to use basic functions of class C 
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5.  DERIVATION OF THE STIFFNESS MATRIX OF AN ELEMENT 

We now propose to calculate the contribution of an element to the strain 

energy (20), restricting the admissible functions to those of the form (24). 

The contribution of the element A is 

n    3 
AU1 = y V  u. R.. 3 u. /adx, dx„ , (29) 

...XI  11  XT       1   2 
i,]=l 

T T 
with R.. = C A. K A. + C- B. K B. .  Let us effect the change of variable (25) 

i]   mi   j   f l   ] 

in the integral (29).  One has the formulas of derivation. 

9 v = S 3„ v  , (30) 
x       E, 

where S is a 6 * 6 matrix depending on the geometry of the triangle A , given 

at Table IV, with the notations 

*1 =   U2t - X2r)/J'     *2 = " (xlt " Xlr)/J' 

*3 = " (x2s " X2r)/J'   % = Uls " Xlr)/J' 

J = (xls " Xlr) (x2t " X2r> " (xlt " V (x2s " X2r) 

being the Jacobian of the transformation. Substitution of (30) into (29) gives 

AU1 = 

3 

I       3^ u. R.. £r u. /a |j| d£. dC0  , (31) 

where    R..   =  C    AT K A.  + C^ BT K B.   ,  with    A.   = SA.     and    B.   = SB.   .     Let us now 
ij        m   i       j        f   i       j ii ii 

introduce the admissible functions   (24)  in this  integral.    Writing henceforth    <t> 

rather than    <£  ,  the basic function of the plane    (£.,  £;_)   , we find 
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3  -T       6   f 
AU  =  |j|    E  u! T {   E 

1        i,j=l  1    k,*=l J 
3k * \ *T *ijk* ^ «l <v ^    • 

The elements ^••lf. of the matrix R..  depend in a nonlinear way, on 

the geometry of the surface.  In order to enable us to effect the numerical inte- 

gration once and for all, we interpolate this function as follows 

Rijkt   CO   /a7IT  =     ^   Rijk4 dp) GCT)   ep (C) ,       (32) 

where 9  are Lagrangian polynomials of interpolation, relative to the points I 

of the unit triangle and E,    stands for £, , C„. The contribution of the element 

to the strain energy becomes then 

3    T      6     m   _#_ 
LU±    *  |J|  E   U T {  I     E R    (I ) /XT)  Gk  > T u   (33) 

1,3=1        k,Jl=l  p=l  J r v v J 

where G, „  are the matrices k£p 

Gu.^ =   3u * CO 3„ ITU) 6_(C) dC, d£„ (34) k&p    JJ  k Y   vs/  £ * xs/  pvs' ^1  s2 

which depend on the choice of the basic functions and the Lagrangian polynomials. 

For a given set of such functions, these integrals may be computed once and for 

all.  Finally, the stiffness matrix of the element is defined by the relation 

3 
ii      -+T       T •* AU.  =  J   E  u. T Q.. T u., 

1,3=1 

with 

6  m   
Q..  =   E  E R..._ (I ) /aTT") G,. . (35) 
1D   k,i-l p=l llkl      P     P   k*P 
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6.  PRACTICAL ASPECTS OF COMPUTATION 

Practically an element of shell is defined by its coordinates in the plane 

(x , x„) , its vector z and the thickness on the vertices. 

We make use of Lagrangian polynomials of the third order, relative to the 10 

points of interpolation shown at Figure 3.  At each such point, we have to form 

the matrices A., B. (i = 1, 2, 3) and K entirely defined by the geometry of 

the element.  For this purpose, we compute the values of the function z and its 

derivatives at these points from the basic functions and the vector z .  We get 

then the matrices R.. , from which we draw the stiffness matrix. 
ID 

To estimate numerically the integrals G   , we use the 7-points formula 

given in [23]. We found a satisfying accuracy on using these formulas on 64 sub- 

triangles by dividing each side of the unit triangle in 8 equal parts.  Those 

coefficients are computed once and for all and kept on a tape. 

The interpolation of functions R>-v.n by means of the polynomials 6  , 

yields that rigid-body motions cannot be represented exactly.  However, some numer- 

ical experiments show that we get a very good approximation with the 10 points 

.mentioned below, as soon as the mesh is rather fine (see [24]). 

This element of shell has been introduced in a general purpose program, 

developed for the IBM 7040 computer of the EPFL (see [22]).  This program deals 

with the formation of the master stiffness matrix and left-hand side of the struc- 

ture, taking account of the boundary conditions; with the solving of the linear 

equations and the computation of stresses.  One can introduce any linear condi- 

tions between the degrees of freedom of the structure and assemble elements of 

various kinds such as beam, plate, shell, etc.  For the elements of shell, the 

program computes the physical components of in-plane and bending stresses at 

the corners and in the middle of the element. With the T3 basic functions, 
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the stresses are not continued at the nodes; in that case, one computes the 

average stresses at a node from the elements admitting this node for vertex. 

7.  NUMERICAL EXAMPLE 

We consider the shell shown in Figure 4; it is defined by the equation 

2 
z = 5 - x /20, - 10 < x < 10, - 10 < x £ 10; its uniform thickness is 

7 
h = 0.2 , and the elastic coefficients are E = 2 10  , v = 0.15 . 

This cylinder is supported along the edges x_ = ±10 , in such a way that 

we have u = u = 0 ; it is free along the edges x = ±10 .  We propose to 

settle the field of displacement and the state of stress under a uniform pressure 

We have computed the quarter of the shell, with the three meshes shown in 

Figure 5 and the three types of basic functions Tl , T2 and T3 .  Some 

characteristic numerical results are given in Tables V and VI.  From these 

results, we can draw the following conclusions: 

1. With a coarse mesh, the elements Tl generally give a better approximation 

than the elements T2 .  The results are almost the same when the mesh becomes 

fine. 

2. The elements T3 which have only 9 degrees of freedom at each node, instead 

of 18 for Tl and T2 , lead to worse numerical results for a given time of 

computation. 

3. If the mathematical model only requires basic functions of class C  , the 

elements T2 seems to be the best one. 

Acknowledgment 

The authors are indebted to Professor J. Descloux, EPFL - Switzerland, for 

helpful discussions and to Professor W. Prager, Brown University, for his help in 

correcting English translation of the manuscript. 



REFERENCES 

1. 0. C.  Zienkiewicz, The Finite Element Method in Structural and Continuum 
Mechanics, McGraw-Hill, London, 1967. 

2. C. P. Johnson, A Finite Element Approximation of the Analysis of Thin Shells, 
Ph.D. Dissertation, University of California, Berkeley, 1367. 

3. A. J. Carr, A Refined Finite Element Analysis of Thin Shell Structures 
Including Dynamic Loadings, Ph.D. Dissertation, University of California, 
Berkeley, 1967. 

4. R. W. Clough and C. P. Johnson, A Finite Element Approximation for the 
Analysis of Thin Shells, Int. J. Solid Struct., 4_, 43-60 (1968). 

5. 0. C. Zienkiewicz, C. Parekh and I. P. King, Arch Dams Analysed by a Linear 
Finite Element Shell Solution Program, Proc. Symp. on Arch Dams, 19-22, 
Inst. of Civil Eng., London, 1968. 

6. J. Ergatoudis, B. M. Irons, and 0. C. Zienkiewicz, Three Dimensional Stress 
Analysis of Arch Dams by the Finite Element Method, Reports AD/1935 and 
AD/1745, Inst. of Civil Eng., London, 1966. 

7. J. Ergatoudis, B. M. Irons and 0. C. Zienkiewicz, Three Dimensional Stress 
Analysis of Arch Dams and Their Foundations, Proc. Symp. on Arch Dams, 37-50, 
Inst. of Civil Eng., London, 1968. 

8. S. Ahmad, B. M. Irons and 0. C. Zienkiewicz, Curved Thick Shell and Membrane 
Element with Particular Reference to Axi-Symmetric Problems, Proc. 2nd Conf. 
on Matrix Methods in Struct. Mech. , Wright-Patterson Air Force Base, Ohio, 
1968. 

9. S. Ahmad, Curved Finite Elements in the Analysis of Solid, Shell and Plate 
Structures, Ph.D. Dissertation, University of Wales, Swansea, 1969. 

10. S. Ahmad, B. M. Irons and 0. C. Zienkiewicz, Analysis of Thick and Thin Shell 
Structures by General Curved Elements with Special Reference to Arch Dams, 
Research Report C/R/99/69, University of Wales, Swansea, 1969. 

11. G. E. Strickland and W. A. Loden, A Doubly-Curved Triangular Shell Element, 
Proc. 2nd Conf. on Matrix Methods in Struct. Mech. , Wright-Patterson Air 
Force Base, Ohio, 1968. 

12. B. E. Greene, R. E. Jones and D. R. Stome, Dynamic Analysis of Shell Using 
Doubly Curved Finite Elements, Proc. 2nd Cong, on Matrix Methods in Struct. 
Mech., Wright-Patterson Air Force Base, Ohio, 1968. 

13. J. J. Connor and C. Brabbia, Stiffness Matrix for Shallow Rectangular Shell 
Elements, J. Eng. Mech. Div., ASCE, 93, EM5, 43-65 (1967). 

14. S. Utku, Stiffness Matrices for Thin Triangular Element of Nonzero Gaussian 
Curvature, AIAA J., 5, 1659-1667 (1967). 



15. H. Fette, GekrUmmte finite Elemente zur Berechnung von Shaleutragwerken, 
Shriftenreihe der Institut fur Konstructiven Ingenieurbau, der Technishen 
Universitat Braunshweig, Helft 1, DUsseldorf, 1969. 

16. Ph. Clement and J. Descloux, On the Rigid Displacement Condition, to appear. 

17. J. J. GoSl, Construction of Basic Functions for Numerical Utilisation of 
Ritz's Method, Num. Math. ,  12_, 435-447 (1968). 

18. The Theory of Thin Elastic Shells, Proc. Symp. IUTAM, Delft, 1959.  Ed. by 
W. T. Koiter, North-Holland Publishing Co., Amsterdam, 1960. 

19. Theory of Thin Shells, Proc. Symp. IUTAM, Copenhagen, 1967  Ed. by F. L. 
Niordson, Springer-Verlag, Berlin, Heidelberg, New York, 1969. 

20. A. E. Green and W. Zerna, Theoretical Elasticity, Oxford Press, Oxford, 1954. 

21. G. Dupuis and J. J. GoSl, Finite Elements with High Degree of Regularity, to 
appear. 

22. C. Bossoney, G. Dupuis and J. J. GoSl, CASTEL a General Purpose Program for 
Structural Analysis, Technical Report, Ecole Polytechnique Fe"de>ale-Lausanne, 
Department of Mathematics, Lausanne, 1969. 

23. P. C. Hammer, 0. J. Marlove and A. H. Strond, Numerical Integration over 
Simplex and Cones, MTAC, X, 130-136 (1956). 

24. G. Dupuis and J. J. GoSl, Some Numerical Results in Finite Element Analysis 
of Thin Elastic Shells, Technical Report, Ecole Polytechnique Fe'de'rale- 
Lausanne, Department of Mathematics, Lausanne, 1969. 



Table  I 

A,   = 
1 0 

0 0 

0 1/2 

A„  = 

0 0 

0 1 

1/2 0 

z, 0' 1 
0 Z2 

z2/2 Zj^/2 

Br- 
3/2 

2 
-Z11Z1 -Z11Z1Z2 a ^ 

+°1 +ct2/2 

2 
22  1 -Z22Z1Z2 

%/2 

a Zl 

1  

2 
~Z12Z1 -Z12Z1Z2 a Z;L 

+V2 +(0^03)/^ 



Table I (continued) 
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Table VI 

Mesh 1 

(Fig.   5a) 

Mesh  2 

(Fig.   5b) 

Mesh  3 

(Fig.   5c) 

Point 
sElements 

Stress\^ 
T2 T3 T2 T3 T2 T3 

A 

"(22) 280.0 125.7 272.2 228.9 272.4 261.6 

m(22) 
3.73 2.38 3.73 3.63 3.74 3.93 

B 

"(22) -69.2 -42.4 -69.2 -66.9 -69.8 -69.3 

m(22) 0.78 0.97 0.25 0.56 0.21 0.30 

C 

"(22) 55.1 64.9 48.1 57.9 48.0 50.6 

m(22) -1.03 -0.82 -1.08 -1.04 -1.06 -1.01 
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