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ABSTRACT

THE NATURE OF BUCKLING IN THIN SPHERICAL SHELLS

by Lynn Seaman

The report deals with a numbr of questions concerning the buckling
of thin elastic spherical shell segments unier uniform external presswure.
Both experimental end analytical studies wece performed to determine the
nature of the buckling phenomenon.

The experimental work was performed on plastic shells which buck-
led elastically so that tests could be repeated. The size and position
of the buckle or dimple, effect of creep on buckling loads; importance
of the precision of clamping conditions, and the reproducibiliiy of
buckling loads under unchanged conditions were determined. A general
discussion was given of the shape of the load-deflection curve, the
appearance of the buckle through the post-buckling range and the
dependence of buckling pressures, unbuckling pressures and minimun
pressures on the shape parameter A . No correlation was possible
between the observed imperfections and the buckling loads.

In the analysis, the nonlinear equation for tectal potential
energy was derived for deep shell investigations. A formula for
deflected shape, which was similar to that seen in the tests, was
used to determine esquilibrium positions for a number of shell con-
figurations. Besides the usual shape parameter A , a depth measure
was also necessary since the shells were not shallowe. The equilibrium
positions were plotted into load~center deflection, load-average de-
flection, and energy-deflection curves. Computed buckling loads were
much too high, probably due to neglecting the mode shapes which are
small surface undulations which occur in the shell before buckling.
The equation developed is adequate in the range near buckling but needs
improvement for use in the large deflection range.

The experimental buckling loads were in a fairly narrow band midst
those of other investigators. The repeatability of the tests added
greatly to the value of the resuits. Analytical buckling loads were
higher than previous results, and far above the test results.
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CHAPTER 1 INTRODUCTION

With the increased us2 of shell type structures in architecture,
space exploration, and other projects, much interest has been evinced
in the determination of the collapse or buckling loads of these
structures. This report treats the buckiing of thin elastic spherical
shell segments under thz sction of uniform external pressure,

The object was to define the nature of the buckling phenomenon.
This included the buckling load, shape of the load-deflection curve,
the effect of imperfections and testing conditions, and the size and
shape of the dimple which forms. Besides the buckling load (qcr),
other pressures of interest were the load to which the shell jumped

~at buckling (q;), the load to which 1t jumped at unbuckling (qun)’
and the minimum post buckling pressure (qmin)° A further purpose

was to find out if there was a difference between buckling loads
obtained from tests with displacement control and those obtained from
tests with pressure contrcl,

In the analytic=i study the object was to derive equilibrium
equations for the symmetrical deformations of deep shells and to use
these equations for buckling. The attempt was to find a deflected
shape andbuckling loads and to determine whether the equations were
adeguate. With a series of equilibrium positions, load-deflection
curves could be constructed and compared with test results.

The relevant literature was reviewed in search of clues to the

most successful approach to the problem. G. A. Thuraton, B. Budiansky,
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and others have investigated analytically the shape of the load-center
deflection and/or load-average deflection curves and buckling loads.
B. Budiansky and W, L. Chen have initiated the discovery of the
importance of imperfections on buckling loads. A. Kaplan and Y. C. Fung
have provided experimental knowledge about deflected shape as well as
buckling loads. T. von Karman and H. S. Tsien have suggested energy
criteria for buckling which contrast with a definition of buckling
pressuve a8 the first maximum point on the load-displacement curve.

The experiments were conducted on thin plastic shell segments with
depth to span ratios from 1/500 to 1/11. For the shells A, the
shape parameter, ranged from 3.5 to 25, A function of both the thick
ness to radius ratio and shell depth, this parameter has been found to

govern all shallow shell buckling phenomcpa.

A= J//Z//—y’);ﬁf:.smo( (1-1)

where a is the shell radius, h 1is thickness, 2nd X is one half the
opening angle of the shell.

Most of the tests were conducted by displacement control using
water pressure above and below the shell. These tests provided a
complete load-deflection curve from no load into the pust-buckling range
and back to zero load. A few tests were run with an approximation to
pressure control, 1In all cases the shells behaved elastically and the
tests could be repeated. Besides those topics mentioned above, the
study included the effect of buckle position and creep on the buckling

load and the variation of the pressures q _, qz, ., and g with A,
cr un min




The results were used to check the possible validity of the energy
criterion. In all this study the reproducibility of the tests was
very helpful, permitting even an estimate of the importance of effecte
which have caused so much scatter in test results.

Analytically, equilibrium positions were determined by the principle
of minimum potential energy. The energy equation wa3s derived with the
aid of an order of magnitude analysis and applied to finding buckling
loads for a number of configurations like the shells tested.

The experimental work is presented in Chapter 4 and the analytical
study in Chapter §. The results from these two portions are brought

together in the Summary, Chapter 6, and compared.
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CHAPTER 2 NOTATION

shell radius
angle defining edge of shell, see Fig. 1

variable defining buckle extent

/27, o%) ., /4 . . .
4-ﬂ7'&’) 77 ratio of extensional to bending
stiffness

linear and nonlinear components of deflection used
in an example
modulus of elasticity

modulus at one minute after loading

EZO'EXI’EIOlEOI szx 'E12’E02 ‘EOB’E04

£

Eer

€ 1625,
3

23, €r2
€ s &23

€11, €23, €33,

coefficients of energy terms defined by Eq. (5-28)

strain

strain at buckling

strain in @, 6, Z directions or X, Y, 2 directions

shear strain between ¢ and Z directions or X and 2
directions

shear strain between Y and Z, X and Y directions

strains in the —niddle surface in ¢, 0 directions

€33

linear strains corresponding to é;,/ €., €3, E33
creep coefficient

thickness of shell
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ky, k3

K(t,g)

X(T,g)

[

cr)N

central height of shelil

nondimensional curvatures of the middle surface in
the @, © directions (curvature times radius)

position coordinate, see Fig. 1 ~

variation of tangential displacement through thickness

stiffness coefficients used in an example

a function of creep and the time since commencement
of loading

a function of creep and duration of loading; it
defines the effect of creep on the buckling load

A%, }/b—é- sind =¥2 ¢ sinoh, shell shape
parameter

dimensionless volume change, Eq. (5-26)

quantity assumed to be greater than 10 used to define
orders of magnitude

a constraint

Poisson's ratio, taken as 0.3 in the analysis

rotation in ¢-Z plane

q/qT, nondimensional pressure

critical or buckling pressure

nondimensional pressure to which shell jumps at
buckling and at unbuckling, respect..ely

normalized pressure, see Eq. (4-4)

total potential energy

11




neq

dimensionless form of potential energy

pressure

linear buckling pressure

pressures of minimum and maximum points on the load-
deflection curve

buckling pressure

definition of buckling pressure given by K. O. Friedricks

upper buckling pressure as defined by H. S. Tsien
pressure to which shell jumps at buckling
normalized buckling pressure, see Eq. (4-4)
dimensionless pressure, see Eq. (5-26)

radius of shell segment in plan

shell surface

stress

stress in @, ©, Z directions

critical stress

normalized critical stress

time from beginning of loading

-
e 8

variable of integration used in Eq. (4-3)

time from beginning cf loading to buckling
deflection tangential tc middle surface
nondimensional deflection of middle surface tangen-

tial to the middle surface (deflection/radius)

i2
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S

strain energy

extensional and bending components of strain energy

dimensionless strain energy terms, see Eq. (5-26)

position coordinate, see Fig. 1

displacement component in Y direction

volume

deflection normal to the middle surface

nondimensional deflection ¢f the middle surface normal
to the middle surface (deflection/radius), or
displacement in the Z direction

nondimensional linear deflection

nondimensional depth of buckle at apex of shell
(depth/radius)

work of the external forces

variation ¢f normal displacement through the shell
thickness

rectangular coordinates

surface loads in the coordinate directions

position coordinate, see Fig. 1
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CHAPTER 3 HISTORY OF THE PROBLEM

The first attempts to solve the buckling problem dealt with the
linearized equations and assumed that buckling occurred when two
adjacent equilibrium positions could be found for the same load. The
solution ¢f the case with axisy.metric deformations was given by

1)

R. Zoelly( in 1915. This derivation can be seen in Timoshenko: The

2
Theory of Elastic Stability( ). The critical pressure is given as

. _2& /h) (3-1)
fr = /e (7)
(3)

A. Van der Neut later showed that unsymmetric buckling modes did

not yield a lower critical value. Hence the linear buckling load for
a complete spherical shell was established and served to define the
important parameters in the problem. However, experimental buckling
loads were generally i to 4 of this linear value so other criteria and
methods of analyses were tried on the problem.

An important idea was the suggestion that the shell could jump
fiom one position on the load-displacement curve to a position with
lower or equal total potential energy if one were available. (A
possible curve of pressure versus deflection is shown in Fig. 2.)

(4

T. von Karman and H. S. Tsien announced the notion of an energy

criterion by defining qcr = q For the critical load, K. O. Friedrichs(s)

nin’
suggested qm, the pressure at a point on the initial part of the curve

which had the same energy level as a point on the post buckling curve.

14




T. von Karman and H. S. Tsien, K. M. Mushtari(e), and V. I.

(7)

Feodosev were investigators who used the epergy or minimum load

criterion that q = q Friedrichs used his criterion q__ = q_.

min m

All five used an energy method of analysis and 211 except Friedrichs
analyzed a small segment of the dome as an isolated piece. Von Karman
and Tsien, the initial investigators, assumed that €,;, = O, among
other things, but found a Uiin of .316 Ap a goou estimate of buckling
pressures. This investigation also successfully predicted the size
of the buckle. Friedrichs discarded many of the assumptions of von
Karman and Tsien, refined the equations of equilibrium, and pointed
out certain handy mathematical techiniques which can be used on the
problem. His equations indicated that Uin could be negative, thus
showing the falsity of either his solution or the energy criterion.
It is suggested here that his neglect of the boundary conditions caused
occurrence of a negative load.

The first investigators were bothered by the edge conditions
on the small segment they analyzed. Feodosev overcame this problem
by specifying a deflected shape which cculd match the slope, shear,
and moment induced in the rest of the shell. He found a negative
value for Yin®

Mishtari, using different equations for deflected shape, and
properly applying boundary conditions, found a small positive value
for q . (28% and 16% of qT) in his two analyses. He also critically
examined the analyses of von Karman and Tsien, Friedrichs, and Feodosev

and pointed out errors in their calculations.

15




In a separate paper following Friedrich's publication, H. S. Tsien(s)
augmented the theories of von Karman and Friedrichs by proposing that

the shell should follow an energy def ection curve, rather than a load-
deflection curve. He showed tnat a negative value of 9., would be obtained
from the von Karman criterion and that an additional restriction had to
be made. Beside tie condition that the totaL potential energy must be

the seame before and after the jump, he required that either the load

must be the same (constant pressure case) or the volume: enclosed under
the shell must not change (constant volume case). In his analyses Tsien
obtained different critical ‘oads 1in the two cases, qCr for the constant
pressure case being about hal’ that for constant volume. A number of
tests performed under his direction verified his results for constant
volume and one test gave some verification for his results for constant
pressure,

The energy criteria have generally been applied only to deep shells
or to shells with o at least 40 or greater. The reason for this is that
the analyses have been performed on the region of the shell where the
dimple should form, neglecting the rest of the shel , and the total
angle of the dimple 1s 7° or 8°

These criteria predict some possible load deflection path which
15 lower than the route over the wmaximum point of the curve. The
peak of the curve and thas the buckling load may be reduced by
imperfections or clamping conditions. Since the energy criteria can

be used to find a minimum possible buckling load, the criteria should

be useful in predicting the effect of imperfect conditions.

16




The energy criteria and the analyses based on them lead to a
numbar of effects, some of which can be verified experimentally.

The criteria require the presence of adequate external energy to
produce a jump and thus it seems that buckling could occur at a range
of pressures and not be very reproducible. Presumabiy the critical
loads given in the analyses were minimum values at which Quckling

could occurand therefore test results should be equal to or above

these theoretical values. Th~ difference in buckling loads predicted
for constant volume and constant pressure tests is probably the most
significant effect and the most readily verified. It is significant
because in practical situations of buckling under wind or snow loading,
the failure is with nearly constant pressure conditions, Yet the tests
of Kaplan and Fung(g), Homewood, Brine and Jchnson(lo), aid most of the
tests of Tsien were made with volume control. If it is a fact that
buckling pressures with constant pressure tests are much lower than

for constant volume conditions, this is imporiant to know.

A number of investigators have sttempted tc solve the differential
equations of equilibrium for the shell segment and have usually considered
that the buckling load was the maximum point on the load-deflection curve.
Cylindrical coordinates have been employed and the analysis has been
restricted to fairly shallow shells (rise to span less than 1/8). The
technique used has beern to expand the dependent variables in terms of
a power series of the center deflection to thickness ratio. Then the

coefficients of the series are required to satisfy the governing

differential equations. A. Kaplan and Y. C. Fung(g), R. R. Archer(ll)

17




and H. J. Weinitschke 122!

have used variations on this method and found
it gives results near test values only for very shallow shells. It can
be pointed out from the analytical results of Weinitschke and Archer
that, with enough terms in the series, an accurate value for critical

load can be found. (That is, accurate theoretically, but not necessarily

near experimental results) Therefore, it is apparent that the deflected

shape is a series in which an extremely large number of terms 1s important.

The energy or variational approach has been used with the deflection

expanded 1n a power series. With this method the investigators have

3)

1
found results only up to A =7. G. P. R. von Willich( derived the

necessary equations and found results using only one parameter.
y

4) (15

1
¥. L. Chen( used the same technique and two parameters. A. B, Caseman

extended t he investigation to three parameters.

Chen also investigated the effect due tc various types of symmetric
imperfections such as grooves at midheight in the shell. His results
show that the effect of an imperfection may be either positive or
negative depending on the magnitude of the imprefection and the depth
of the shell. Hence a correlation between imperfections and buckling
loads is rather complex.

In dealing with shallow shells, many investigators have replaced
the spherical segment by a paraboloid with the same height and plan
dimensions. The approximation has the effect of introducing a symmetric
imperfection with a magnitude of about .002(h2/a)7\‘ at midheight on
the shell., It can be seen from the formula that the error increases

rapidly with A

18
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(16b)

H. B. Keller and E. L. Reiss have used a finite difference
approach fairly successfully in the shallow shell range to define qcr”
They also found q, and q,: the intermediate value suggested by
Friedrichs.

Four recent attempts have been eminently successful in determining
buckling loads for a large range of A. These are of p%rticular impor~-
tance since they essentially agree on critical loads. Weinitschke(lzb}
augmented his earlier power series approach by expanding the series from
both the center and edge and matching the terms at an interior point.
This decreased the convergence problem a great deal because both series
were shorter than a single series expanded about the apex, and the

7)

1
accuracy was correspondingly higher. G. A. Thurston( used a numerical

integration technique to find solutions at various points up to A= 9.

B. Budiansky<18)

transformed the governing differential equatgions into
two simultaneous integrel equations and found good results up to A= 13.
With the energy method Casem>n found results up to A= 7. Since these
four methods are essentially different from each other, yet their results
agree very well, it is reasonable to conclude that the buckling loads
for the perfect shell under symmetric deformation have been determined
in the snallow range. The buckling loads found in these analyses are
plotted in Fig. 11.

It may be mentioned that all the deflected shapes used in the

preceding analyses have been based purely on mathematical considerations,

not on the appearance of the shell surface during loading.

19




Budiansky also considered the posstbility of central imperfectiions
and found a significaut decrease in load for large imperfections. The
central imperfection is deceptive rince it implies a change in radius
as well as an axisymmetric groove at midheight. If the central height
is assumed to determine radius, then the imperfections of Chen and
Budiansky are found to be quite similar. In fact, b, the imperfection
megnitude of Chen is 3/16{€H), where £H is the error in central height
1n Budiansky's notation. The effect of simply an error in height
(and therefore in radius) can be found from the linear buckling lcad,
rewritten as follows

__En ¥
T 2Bu-v3 r?!

where r is the radius of the shell in plan and H is the central height

Qq

of the shell segment. A small change, AH, in H gives a corresponding

change in qT of

2/3(1-v*) r?

Therefcre

LAr - 244 - IHEH) . o¢ (3-2)
7r H

and £ is the nondimensional error in central height according to
Budiansky. He obtained reductions of 10% to 30% in buckling load for
£=0.05. A decrease of 10% caused merely by the change in radius
could be found from Eq. (3~2). In addition, qCr is a function of

A as well as of the variables in . and A in turn is a function of

20




Y H. Therefore a change in H should shift the curve of q.,. versus

n

A {see Fig. 11) down by —‘%ﬂ— ., and to the right by ﬁ‘%:—{- A . This
predictable effect seems to be verified by the plots of buckling
load given by Budiansky {and not reproduced herein;.

Budiansky and Weinitschke have suggested that probably the
consideration of unsymmetrical deformations will help Fo provide critical
pressures closer to experimental values. Weinitschke stated in reference
12b that the circumferential stresses which he obtained were sometimes
as high as twice the meridional stresses, thus suggesting the possibility
of nonaxisymmetric buckling. A simple linear analysis by Rabotnov(lg)
showed that buckling should occur when either of the two stresses reached
a critical value.

Extensive sets of tests have been performed by Kaplan and Fung;
Tsien; Homewood, Brine, and Johnson; and K. Kloppel and O. Jungbluth(zo).
The vuckling loads obtained by these investigators are shown in Fig.

12. Kaplan and Fung performed an essential service by carefully testing
a number of magnesium shells with A values between 4 and 10. They not
only found buckling loads, but also measured initial imperfections anu
deflected shapes as the shell approached buckling. The measurements
were plotted to show that during loading (before buckling) the shell
could form either a central dip, or a Lymmetric furrow about the shell
between center and edge, or both dip and furrow, or s>me unsymmetric

shape. Furthermore, the particular form depended on the value of A,

the more complex shapes occurring with the larger j\.
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These different defiection patterns have usually been referred to
as modes of deflection and appear quite similar to vibration modes.

) . _{16a)
Reiss, Greenberg, and Kelier

Weinitschke, and Budiansky have also
mentioned the chaunges of mode shapes. As A is varied the mode seems

to change at about A =3.2, 5.3, 8.8, 16, 25, . . . (These are equal
logarithmic steps). The first value of A is about the minimum at which
buckling occurs. Between 3.2 and 5.3 a central dip forms during loading.
Between 5.3 ard 8.8 the maximum deflection may occur in a symmetric
furrow about the shell. Beyond this point there is confusion as to
whether the mode is symmetric or unsymmetric, and the changenver

points are not well defined.

The tests of Tsien were for shells in a deeper range, fromA= 15
to 25 and the buckling loads were equal to or slightly above those of
Kaplan and Fung.

Kloppel and Jungbluth tested a large number of ribbed domes to
find the effect of stiffeners on buckling strength. Their shells
were made by welding a series of meridional and circumferential
ribs to a thin shell dome so that the structure became a composite of
thin shell and frame types. There is no theoretically predicted
buckling load for such a structure so it was assumed to be a uniform
shell with some effective thickness,

An expression which can be used for this effective thickness is

Eh* =472 5. Sg (3-3)

22




where SE 1s an average extensional stiffness (Eh for a uniform shell)

‘ 3
and S_ is the average bending stiffness (=Eh).

B 12

Kloppel and Jungbluth tried many combinations of rib sizes and
distributions yet their buckling loads were rather close together as
seen in Figure 12, Their procedure for finding an effective thickness
(which is similar to Eq. 3-3) was somewhat validated by this lack of
dispersion. Tests were performed under air pressure so that when failure
occurred it was sudden and complete., Many of the specimens exhibited
local failure before the snap-through tock place, It may be postulated
that local failure occurred in all cases, but it was only observed in
those where buckling did not occur immediately thereafter.

The buckling loads of Kloppel and Jungbluth are considerabliy lower
than those of Tsien in the same range and this fact may be explained
partially by the occurrence of local buckling and pa&rtially by the
assumed equivalence of frame and uniform shells. Since many dome
structures are actually composite, the work ¢f these two investigators
has a2 great deal of practical significance.

Quite recently R. H. Homewood, A, C. Brine, and A. E. Johnson(lo)
made a series of tests with A from 6 to 206, thus connecting the
experimental ranges of Kaplan and Fung and Tsien. Their results agreed
well with Kaplan and Fung but were considerably below the buckling
loads of Tsien. Two of their shells unbuckled when the pressure was
removed showing that the material had not been stressed beyond the

elastic range. These two were subsequently re-buckled and the second

23




buckling loads were nearly equal to the critical loads obtained the
first time. Hence some reproducibility of buckling loads could be
deduced from these tests.

The combined test results show a fairly large scatter, particularly
between buckling ‘oads of different investigators, The dispersion between
test results of separate experirenters may be attributed to differences
in shell material, test apparatus and procedures, clamping conditions,
and the range of A used.

The analyses and tests performed t.us far have been adequate to
solve a few problems of buckling and to raise a myriad of questions.
From the tests it can be predicted that q,, is between 15% and 80%
of the linear buckling pressure. The shell surface does not remain
uniform during loading but forms waves and the number of waves is
partially predictable. A curve of buckling pressure versus A has
been found analytically for symmetric deformaticns of shallow shells,
but this pressure does not correspond well with test results. The
convergence of iteratiom, perturbation, amd finite difference techniques
often is not adequate near the buckling point. This suggests that the
correct deflection shape is a power series with a large number of
important terms. Imperfections have been considered both snalytically
and experimentally and so far the only indication is that the effect

ot imperfectione i{s rather complex.
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The scatter in test results and the disagreement beiween
theoretical and experimental buckling loads prompted the suthor to
consider a number of questions. The investigations of this report were
designed to provide some answers for these problems. Some of the
pertinent questions were the following:

1. Are imperfections important? What is the effect of size,
shape and position of imperfections on buckling?

2. Are clamping conditions important?

3. Are buckling deformations symmetric?

4, Are buckling loads reproducible?

S. Is an energy critericn valid so that the critical loads
depend on the ambient energy level?

6. What is the position of the dimple which forms at buckling
and does the position affect the critical load?

7. Does the type of loading -- constant volume or constant
pressure -- affect the buckling pressure?

8. Is buckling precipitated by yieiding or local failure in

cases where qcr is below the analytically predicted pressure?

25




CHAPTER 4 EXPERIMENTAL STUDY

A Introduction

The purpose of this experimental project was to investigate
the nature of buckling of thin, clamped, spherical shells under uniform
pressure. Under this general topic the following specific items were
considered:

a. Shape of the load-displacement curve from no load to post-
buckling and the rebound or unbuckling curve.

b, Size, shape, and position of the buckle which formed.

c. Reproducibility of buckling loads.

d. Eifect of shell imperfections or clamping conditions on
the load-displacement curve and the buckling load.

e. Effect of creep on the buckling load.

Most of the tests were performed with control of the volume

enclosed under the shell and were therefore so-called constant volume

tests. This name comes from the fact that the enclosed volume does

not change during buckling. Such a restriction can be accomplished by
having an incompressible fluid filling the space under the shell. This
type of test was chosen so that a load-displacemcnt curve could be
determined since both pressure and a measure of deflection were known
at any time. The change in enclosed volume is proportional to the
change in average deflection of the shell under an increment of
pressure. The constant volume test was also chosen so that the

buckling process could be partially controlled and forced to occur
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gradually. 1In addition it seemed desirable to have either consiant
pressure or constant volume conditions so that the resul ts could be
applied to the discussion of the energy criterion of Tsien. (In a

constant pressure test, the pressure remains constant during buckling.)

In a practical situation the conditions often approximate those
of a constant pressure test. Consider a hemispherical structure under
a wind loading. If buckling occurs and a dimple forms, the internal
air may be compressed and produce some small resistance to volume change.
Thus the buckling action, although mainly a constant pressure situation,
is really somewhere between constant pressure and constant volume,
Therefore it was necessary to make some constant pressure tests. The
latter tests were made with the same conditions as the constant volume
tests so that a relation between buckling loads in the two cases might
be found. With such a relation, buckling loads in practical situations
could be predicted from the results of constant volune tests.

In the usual structure pressure is not uniformly distributed over
the shell but may have a variety of patterns. However, the rate of
change of pressure over a shell surface is usually small and buckling
would probably occur under a region of maximum pressure. If only the
small segment which forms a buckle is considered, there is nearly a
uniform pressure applied. Therefore, it is reasonable to test using
a uniform pressure. Also the uniform case is easier to reproduce and
easier to compere with other test results, A uniform pressure was

therefore used in these tests.
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A plastic was chosen as the shell muterial rather than aluminum or
other light metals which have usually been used. There were a number
of reasons for preferring a plastic material. A plastic was relatively
inexpensive and easy to form by vacuum drawing; it had reasonably small
thickness variation; and there was nc strain-Lardening nor residual
stresses developed during the forming operation. It was desired to test
entirely in the elastic range of the material so that each shell could
be buckled many times and not cause material failure or yielding. The
large ratio of yield stress to mcdulus of elasticity for the plastic
allowed the large deformations of buckling to occur while the strains
remained elastic. An added benefit was that the pressures used for test-
ing the plastic shells were 1/20 to 1/60 of that for comparable metallic
shells., With the lower pressures, the equipment was simpler, less
expensive, and more convenient to use. One difficulty with the plastic
material was its creep characteristic. The nature of this creep was
investigated so tha. test results could be reported in a uniform and
meaningful manner and extended to apply toc non-creeping materials. The
particular plastic chosen was a polyvinyl chloride which was available
in thicknesses from 0.010" to 0.080".

As mentioned in Chapter 3, the form of deflection seems to change
at certain values of A . To study the effect of the mode changes on
critical loads, it wes decided to test a number of shells with A values
at 3.2, 5.3, 8.8, 16, and 25, that is, at the supposed changeover points.
As a check, shells with A= 7.0, 12 and 20 were also used. To study

reproducibility of loads and variations of loads between shells, a large
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number of shells were formed for A= 7.0 and 12. 1In Fig. 13 it is
apparent that the tests sre grouped about certain values of A . That
the results are in groups instead of a single line shows that the desired
A's were only achieved approximately. Procedures described below were
used to find the dimensions of the shells after forming and these dimen-
sions were used in computing the A “or each shell. After choosing A's,
it was necessary to select values of thickness and radius which would
give the desired \ls. This choice was 1lim’‘ed by specifying that the
buckling pressure must be greater than 0.05psi. and that the sum of
bending and extensional stress at the edge must be less than 500 psi
at q = % qT. From Fig. 3 it is apparent that these restrictions left
only a narrow region for acceptable combinations of h and a. The
possibility was considered that A was not the only necessary shape
parameter. Consequently, where possible alternate combinations of h
and a8 were made for a single A. The small circles in Fig. 3 show the
combinations which were chosen. For each set several shells were formed
and tested. In the experiments a total of 39 shells were used.

Due to the presence of creep the test procedures are quite important
and are described in detail. The test results are discussed with a view
to answering some of the questions which have been raised by earlier

tests and analyses and which are mentioned in Chapter 3.
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B Preparatory Considerations

- Shell Forming -

The shell segments were formed from polyvinyl chloride (P.V.C.)
sheets by a process known as vacuum drawing. 1In this method a single
mold, the female, was required. The plastic sheet was heated, drawn into
the mold, and allowed to cool in the new shape.

Since the shells were to have five different radii -- 15", 25",
35", 45", and 80" -- as shown in Fig. 3, five molds were needed. These
molds were made from aluminum plate with a thickness at least 4" greater
than the height of the shell to be formed. 1In Fig. 4A there is a sketch
¢{ one. auch mold. Aluminum is relatively easy to machine but has better
surface and is stronger than many of the other possible mold: materials
such as wood or graphite. A cavity with one of the desired radii was
machined in#e the plate and a 1/16" diameter hcle was drilled in the center
of the cavity for access to the vacuum,

The rest of the forming equipment can be seen in Fig. 4A also.

The wooden clamping rings held the sheet in place during forming. The
large cylinder was needed to provide a vacuum chamber and to hold the
sheet slightly above the mold so that the mold was insulated while the
sheet was being heated. The cylinder was located in a large oven and
a line to a vacuum pump was connected to control pressure in the
cylinder.

The forming process began with the cutting from a polyvinyl

chloride sheet of a circular piece with the diameter of the wooden
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clamping rings. The piece was rinsed in hot running water to remove
grease, dust, and other foreign particles. Wiping the sheet clean
vas not feasible due to electrostatic effects. yet cleaning was
necessary or bumps would appear during forming. The piece was clamped
into the wooden rings with negator clamps a:d placed in the oven atop
the cylinder as shown in the lower sketch of Fig. 4A. With the sheet
to be formed in place, the oven was heated to 150o - 170°C. The sheet
seemed to be properly heated when the steam from the rinsing water
had disappeared from it. Then the vacuum of one atmosphere was applied
and the sheet immediatelydropped 0 fit the mold. The heat was
turned off and the oven opened to speed the cooling. About one minute
was allowed for anneailing and then ccld water was poured in to fill
the cavity in the center and the gutter which formed just outside the
mold (see the second sketch in Fig. 4A). The newly formed shell was
allowed to cool under full vacuum for § to 15 minutes. The longer
period of cooling was required for the sheets 0.080" thick while the
t hinnest sheets neeéed only a very short time. After the cooling process
the vacuum was turned off and the shell was lifted out of the mold.
Then shell and rings were dashed together into a vat of cool water so
that the shelil could cool uniformly, and the rings were removed. At
this time the mold was also taken out of the oven so that it would be
cool for the next forming.

The finished shell was then examined to find any visible imperfections
caused by the presence of steam, etc. If the fault was in the forming,

the cycle could be restarted by rinsing, reclamping and heating as before.
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Or heating, the shell became planar again and was ready for redrawing.
If the shell passed inspection, the excess edge material was trimmed
off so that only 3/4" of flat rim remained and the specimen was ready
for testing (see Fig. 4A).

The vacuum drawing process described above gradually evolved
during the production of the shells for this research. Hence some of
the imperfections in the first shells produced were eliminated in later
production. The rim slope (see Fig. 7) was caused by too short a cooling
time under vacuum and/or not enough heat. Watermarks (shallow bumps)
were caused by trapped steam. Either of these imperfections could have

been corrected by reheating and redrawing.

- Shell Shape Determination -

After forming the shells it was necessary to find the thickness
and radius to which the shell actuallv conformed. Thicknesses were
read to the nearest ten thousandth of an inch with an Ames Dial gage
at five positions in the shell - one at the apex of the shell, and
the other four at points halfway between the apex and the edge. An
average of the five readings was taken as the shell thickness. The
thickness variation was about 1% except for the very thin shells
where variations were 10% to 12%.

The radius of the spherical shell can be found if the rise in the

center is known. The rise was measured to the nearest thousandth of an
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inch, Readius was then computed from the formula

2= L,/ (4-1)

2H 2

where H is the central rise of the shell, and r = 5.25", the radius of
the supported circular edge as seen in plan. Unfortunately some of the
rims of the shells were not flat but had a slope either upward or
downward as shown in Fig. 7. The radius determinations for these shells
were nade while the shells were clamped into the testing cylinders in

order to obtain the "a- tested' radius if possible.

- Creep Effect on Buckling -

The creep behavior of the plastic material used in the experiments
is similar to that found in most plastics. The total creep strair at
low stress levels was fairly small, around 5% (at room temperature).
The creep rate was very high so that creeping was essentintlly complete
in twenty minutes, The creep became nonlinear for stresses over a few
thousand psi, that 1s, the creep rate became a function of stress level
as well as of time. The creep rate varied somewhat with temperature
and humidity. At moderate stresses the creep could be termed =lastic
since the strain was completeiy recovered after some time. In fact,
the unloading curve matched the loading curve.

For the polyvinylchloride material used in the experiments the

following formula was found to describe the stress~strain relation
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adequately:

E=2L[/+qh(t+t, (4-2)
In order that£= O0at t =0, t, was defined by
/+9 /Ml =o r f=e I

This makes t, extremely small so that it can be neglected for most
purposes but it makes the evaluations of the integrals more reasonable,.
g is a creep coefficient and E; is the modulus at one minute after
loading.

In order to find the effect of creep on the critical load, certain
assumptions were made. As some investigators have suggested, buckling
occurs when a critical strain is reached at some point in the structure
and does not depend directly .on the stress level, In the following
derivation the strain was assumed to be a linear function of displacement,
This condition is reasonably correct to the point of huckling, after
which nonlinearities necome important.

The applied load may not be constant but vary with time T. In
this case Eq. (4-2) is still applicable but the stress and strain
must be replaced by the infinitesimal quantities d€ and dCT . A
general treatment of creep strain relations is available in reference
27. As shown there, in a short time interval from 7 to 7 +d/7 the
stress is changed by jé?béf At some later time t, the load j%g;érhas
been on for a time t - 7. The increment of strain caused by this

lcad can be seen from Eq. (4-2) to be

34




dé -—Ef-f;rdﬁ_//fj/y/é—ffz‘.)] (4-3)

In this equation 7' can assume any value from O to t. The total
strain at the critical point in the shell at any time t can be found
by integrating the preceding equation with respect to T from T =0

toT = t.

'
ey | 48[ 105k (¢-T )47

If the load is applied at a constant rate, then Cr-'d;ég'where T is

the time at buckling.

Elt) = %27.2;[/-3 +9 h(¢+2.)]

(3 /
£ K(t9)

A

"

When t = T, the time at buckling, £{(t) = é;r’ and the critical

stress is

dc.r- = E:E},—K(Z?)

where - /
K79) = = g b (T+2)

A normalized stress can be defined as

(02.)y = %r _ E&.,
W K(74) /€

The normalized stress is a function only of E; and ecr’ neither of
which is a function of the duration of loading T, or the creep coefficient

g; therefore, { d"cr)N is not a function of T or g. If stress is
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proportional to laod, then normalized buckling pressures can be similariy

(7"”3\/ = Ler

| (4-4)
/ c'r«i;-'" = ’”
K(T,39)

Pcr is a nondimensional form of buckling pressure defined as the critical

defined,

(2}

pressure, q_ ., divided by the linear buckling load, qT.

In equation (4-4), qCr is the actual pressure measured dur ng the

test and (qcr) can be interpreted as the pressure for a hypothetical

N
test with-a duration of 2.728 minutes; that is, for K(T,g) =

<+
[

1.000# =1,000 (since t, can be neglected). If the theory is

2.72
correct, the normalized pressure, like the normalized stress, is not
a function of either T or g. Hence, this value of pressure can be
compared to the buckling loads for noncreeping materials for which g
1S zero.

Since creep adds a certain amount of nonlinearity, it is of
interest to find the effect of creep on the shape of the load-defiection
curve up to the point of buckling. An estimate of this effect was
obtained using the constants mentioned previously and a T of twenty

minutes. Then points on the stress-strain curve were obtained for

various values of t from the equation

E(t) = %’%[/——j *f/” (% #f.)] (4-5)

A linear extrapolation of the initial portion of the curve was made to
obtain a stress at the abscissa of critical strain. This value from the
linear extrapolation was then compared with the critical stress obtained from
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the equation. The difference in this case was only 0.3%. Therefore
it is fairly safe to say that creep did not account for nonlinearities

found in the load-deflection curves.

~ Modulus Determination -

In order to relate these test results to other materials, some
procedure had to be found for evaluating the moduius of elasticity.
Simple tensile tests were run on samples of each sheet using SR-4
strain gages and a dead weight. Beam tests were also run in an attempt
to determine the compressive modulus in case it differed from the tensile.
Both sets of tests were conducted on 6" by 13" specimens. In the beam
tests the specimens were supported as simple beams with a load at the
midpoints and the end rotations were measured by the motion of a wire
fixed to the beam near the end. Although the beam deflections were
extremely large, the relation between load and end rotation was essentially

linear. In Appendix B it is shown that the end rotation equals

}‘:3

§ o+ Loov

where %Z is the end rotation in the linear theory. Hence for a rotation
of 6o or 0.1 radiens, which was about the maximum used, the nonlinear
correction was less than 0.2%. Because of the presence of creep, the
moduius changed with time. It was decided to use E,, the modulus at

one minute after loading. E; iz defined by the creep equation

é = g[/'+j/n /L‘#Z,y (4-2)
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Since to is negligible, t = 1 minute gives f = = and there is no creep
correction required for the determination of th; modulus, The beam
tests gave the most uniform results for modulus, the average value being
498,000 psi. A summary of these determinations is in Append.x B.

The tensile tests were not so reliable due to the presence of
the strain gages. On such small specimens the stiffness of the gage
produced an important effect on the strains and hence on the modulus
of elasticity. However the electric strain gages could be read with
more precision than the beam rotations. Therefeore the gages were
valuable in determining creep which is a small variation on the total
strain. Hence the creep equation {4-2) and creep coefficient, g, are

based on the tensile tests mainly. Results from these creep and

modulus tests are also given in Appendix B.
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C Testing

- Test Apparatus -

The main tests were constant volume tests which required the presence
of an incompressible fluid in a chamber below the sheli ‘shsll convex
up). Water was selected as the most ccnvenient fluid for this purpose.
But with water below and air above the net pressure on the shell would
be hydrostatic and vary over the shell surface., Therefore there had to
be a water chamber abcve the shell also. Tests were run by applying
a displacement and measurling the pressure taken by the shell. Hence
the required apparatus was a set of water tight chambers between which
the shell could be ciamped, a device for withdrawing water from the
lower chamber, and a system for measuring pressures above and below the
shell,

The compieted equipment can ke seen in Fig. 4. The lower chauber
consisted of a heavy pipe section bolted to a base plate. These two
pieces were rather heavy so that they would not alter the enclosad
volume much as the pressures changed., The upper chamber was made of
plexiglas and alliowed observation of the shell, the buckles, and bub-
bles which were trapped in the chambers. Holes for inlets and out~
lets were made at th.oee plales around the lower chamber., These were
necessary in crder toc allow the water to come in and the air bubbles
to be forced cut, It was found convenient to use water from a large
Jjug which maintained a nearly constant water temperature o that the

volume would not change due to temperature fliuctuations.
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The tubing which connected the reservoirs, chambers, and mano-
meters was of transparent plastic which allowed observation of bubbles
in the line. When bubbles were present,the manometer readings were
very unsteady since each motion ¢f the bubbles seemed to upset the
equilibrium cl the gages, too.

The manometers were capillary tubes with an inside diameter of
1.8 mm. These were used so that when the pressure changed, the change
1n the amount of liquid in the tube would not greatly alter the total
volume under the shell. The tubes for registering upper and lower
pressure had equal diamcters so that the capillary rise (3" to 1")
would be the same and no correction was required. The capillary
rise was quite a bit larger in pure water than in impure and so small
amounts of liquid soap were added in both tubes to make certain the
water was impure. The soap reduced wall friction between glass and
water and so also produced freer and more accurate motion of the
water,

The faucet for allowing withdrawal of water from the lower chamber
was at first a high vacuum glass valve. Later the valve was replaced
by a short rubber tube with a small clamp on it. With the clamp there
was good control of the rate st which water drops came out so that a
desired speed of volume change could be maintained.

The rubber gaskets used in clamping the shell may have caused
some inaccuracies. The narrow rim all around each sheli was supposed

tc be clamped ggainst a2ll motion. However, the thick gaskets in the
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clamping rings probably allowed some outward displacement and rotation
of the edges. Rough calculations show that the amount of displacement
would be quite small compared to the total shortening of a meridian and
is therefore not too important as a cause for snapping through. The
edge rotation would not approach that for the simply supported case,

vet the theoretical buckling load for the latter case is at least 3/4ths

h}

of that for the fixed condition according to the calculations of

leinitschke(IZb).

- Test DProcedure -

There were two basically different types of tests used. The
censsitant volume test was the most important and it was of the con-
trolled displacement type. It proceeded much like an ordinary tensile
test. A certain strain or displacement was applied to the shell and
the pressure which was required to make the shell stay in that position
was read. The other type, the constant pressure test, was carried out
by increasing the load until buckling occurred and hence the control
was on the load, not on the displacement.

Preparation for the constant volume tests was commenced by placing
the shell between the clamping rings of the test cylinders and bolting
them together, as shown in Fig. 4., Then the chambers were filled with
water, beginning with the lower chamber., The tube to the top chamber
was connected to the small elevated reservoir and the tube to the lower

chamber was connected to the taller capillary tube as shown in Fig. e.
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Equal heights were obtainsd in the upper and lower chsmber manometers
by letting water either in or out of the lower chamber through the faucet,
To force water in, the reversing standpipe shown in Fig, 4 was attached
to the valve and fil'ed with water. W%ith equal pressure above and below
the shell, the shell was sustaining a net load of zero.

Testing began by opening the faucet and allowing a number of
drops of water to come out from the lower chamber. The shell had to
move downward in order to keep in contact with the water and thus the
displacement was applied to the shell. Of course, a certain pressure
was required to hold the shell in the deflected shape and this pres-
sure was given by the difference between pressures in the upper and
lower chambers. Hence the load on the shell could be found from the
readings of the two m@&nometers. So the normal procedures was to open
the tap, let out a number of drops, close the tap, read manometers,
and then repeat. The information recorded in each cycle was the
number of drops and both manometer readings. At buckling the height
in the lower chamber manometer increased suddenly and readiangs were
taken both before and after the jump. Then the usual procedure was
continued on to some point in the post-buckling range. For decp
shells the q,, the pressure to which the shell jumped at buckling,
and qmin’ the pressure at the minimum point of the load-deflection
curve (see Fig. 2), coincided and so the test was often halted just
after buckling. For shallower shells, the curve looked more like the
one in Figure 2 and the test was continued until Uin had been passed.

See Figure 10 for some typical load-displacement curves.

42




After the test the total amount of water taken out during the
test was determined by weighing. This information was used to associate
& volume change with each pressure reading b apportioning the total
change according to the total drops up to each point. For plotting
load versus volume change curves, 1t was necessary only to plot the
pressure versus the cumulative number of drops. The drops were found
to be somewhat nonuniform in size but not encugh to make the initial
portion of the load-deflecticn curve appear nonlinear. Therefore,
the number of drops was probably an adequately reliable measure of
volume change.

In order to unbuckle the shell the reversing column was attached
to the faucet, Then the normal testing procedure was to open the tap,
allow g certain amount of water to run into the lower chamber, close
the tap, and read the heights of manometers and reversing column. The
difference between the current reversing column reading and the previous
one gave the volume change because the column was calibrated., The
rrocedure wes repeated until some point on the :initial portion of the
load-deflection curve was reached.

With the presence of creep, time became a factor in the test.
The steps of the constant volume test enumerated below were adopted to

standardize the effect of time.

a. The pressures in the water manometers and the time were
recorded.
b. The tap was opened to allow a number of drops (say 10) to

escave from the lower chamber and the number was recorded.
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c, Again the pressures 1n the gages were read and noted. At
some specified time (say 30 seconds) after the last time the tap was
opened, step b was repeated. By using an equal time interval during
each cycle, the loading rate was made to be constant stepwise,

d. At buckling the tap was immediately turned off and the time,
pressure readings, and number of drops in the last cycle were recorded.
The remainder of the experiment proceeded without being timed.

e, Steps b and c were repeated until the desired point on the
post-buckling curve had been reached.

The loading process was then reversed by attaching the reversing
column to the tap and fililing it with water. In the rebound test a
procedure similar to that above was followed.

a. The pressures in the water manometers and the height of the
reversing column were read and recorded.

b. The tap was opened to allow a number of centimeters of water
trom the column to enter the lower chamber.

C. Steps s and b were repeated until the shell had unbuckled
and the pressure was reducing along the initial portion of the load-
deflection curve., See Fig. 10 for some typical rebound curves.

The preceding tests give a complete curve of load versus displace-
sent measured in terms ofthe change in volume under the shell. After
the nature of this curve was known for a shell or a group of similar
shells, the only things that werc required of further tests were certain

si1gnificant pressures on the curve such as qcr’ 9z, 49 __, and qmin’ The

un

following modified procedure gave these impc. tant pressures and was used

for a majority of the tests.
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&. The time was noted and the tap was openeld.

b. A uniform drop rate was maintained. This was done visually
for short buckling times, but for long tests, the rate was kept even
by passing an equal number of drops each minute.

c. While keeping a uniform drop rate the pressure in the lower
chamber manometer was observed continuously.

d. When buckling occurred, the faucet was shut off, and the
time and the reading of the lower manometer prior to buckling were
recorded. The pressure in the upper chamber mancmeter was read and
recorded. t one minute after buckling the height of the lower
rianometer was read again, This latter reading was teken to find the
so called lower buckling pressure, q,, Just after buckling the height
in the lower manometer was changing rather rapidly due to creep so the
specification of a one minute wait was necessary to meke the readings
uniform,

e, The faucet was turned on again and the height of the lower
manometer was observed, If the height increased and then decreased
(pressure on the shell decreased and then increased) then a reading
was taken at the maximum to give Uin Otherwise it was assumed that
= Qip-

f. The reversing column was used as before to force water back
into the lower chamber. The tap was turned on and the lower chamber

manometer was observed,




g. The warning for the cnset of unbuckling was a gradually
accelerated decrease in gage height. Near the time of unbuckling the
tap was turned off and the shell was allowed to unbuckie without
outside influence,

h, At one minute after unbuckling, the two gage readings were
taken and recorded. The creep in gage height was generally not large
in this case but still noticeable.

After the pressures in the two chambers were equalized following
the test, a period of 20 minutes was allowed to elapse before the next
test was commenced. This wait time seemed necessary s¢ that the shell
would have essentially no memory (due to creep) of the previous test.

In order to check the reproducibility of buckling loads, a series
of tests was run without removing the shell from the testing cylinders.
Then the shell was taken out and replaced in the test chambers and
tested again. This procedure also served to demonstrate the effect
of precision in clamping the shell in position.

After a series of constant volume tests had been run on some of
rthe shells, the water was emptied out and a ''constant pressure” test
was run. Actually the volume of air was not great enough to allow

fo

4

full collapse of the shell under the same pressure, but the test

approximated constant pressure conditions to some degree. This degree
may be estimated from the fact that a lower buckling load was obtained
and that the buckle was about the same size as that for constant volume

tests. The maiin distinction then was that the pressure was applied,
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not the displacement. In these tests a U tube manometer and pressure
inlet were both attached to the upper chamber. The lower chamber was
open to the atmosphere. Pressure was built up gradually and the
manometer was watched continuously. When buckling occurred, the

maximum manometer height and duration of the test were recorded.
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D Experimental Results
- General Discussion -

The data from both constant volume and constant pressure tests
are given in Table 1 of Appendix A. The tests reported were made
in accordance with the procedures just described. Individual tests
are not reported, only series of tests which were made under the same

conditions. For instance "a'" 1s the designation for a series of

1"

constant volume tests and "a(air)" is a series of constant pressure
tests run under the same clamping conditions as the constant volume
tests. The values of pcr in each series were normalized according
to Eq. (4-4) and then averaged. This procedure removed the effect
of different lengths of time in testing. Under series "a' were
repcrted the averaged values of (pcr)n’ Py, Pun and the position of
the buckle whicn formed. Notice that during any series the buckle
occurred in the same position. The one exception to this is the

second series of tests on number 35,

The buckle and imperfection positions were given as:

c center of shell

n near center

m midway between center and edge
e adjacent to cdge

For each sheil the values of q., A, a/h, and o4 are listed. This is
followed by a brief description of observed imperfections. First was

the slope of the rim of the shell. If the edge strip curled up (with
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the shell convex up) after forming =« positive slcope was indicated.
Next was the estimate of the height of bumps and their lccation on
the shell.

From any series of tests run under the same conditions, it was
found that the value of qCr was nearly the same in all tests. When
the buckling pressures were normalized according to Eq. (4-4) to
account for creep, then the variations were less than 1% w- thin any
one series, With such small variations it was possible to conclude
that buckling pressures were reproducible and dependent on conditions
which were actually unvaried during a series of tests, Between series
of tests there was much more spread in the buckling loads, but the
variations were still of the order of 5 or 10%, which is guite
reasonable, The greatest variations occurred between different shells
with supposedly the same shape. In a number of cases the critical
load for one shell was 50% of that for another with the identical gross
dimensions. A number of test series were made with large variations
in test durations in order to check on the creep correction, Eq. {(4-4).
One such series is plotted in Fig. 6 and from the correlation shown
there between theory and experiment, it is apparent that the correction
1s of about the right magnitude.

The buckling pressures from the air pressure tests averaged
about 3% higher than those from constant vclume tests. This comparison
is made between results from experiments all made without changing

clamping conditions. That the counditions were quite constant between
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the two types of tests is shown by the fact that the buckle formed in
the same position in both cases. No explanation has been found for the
increase in load under constant pressure conditions.

The value of A for the shells were chosen at the points where
the modes of deflected shape were expected to change, and at intermediate
pcints. The buckle positicn does not seem to depend noticeably on
whether or not A is at a changeover point or not (Fig. 9a). Neither
15 there any particular differerce in buckling pressures between shells
in the two groups.

The nature of q,, the pressure to which the shell jumped at buckling,
and qun’ the pressure found at unbuckling, contrasted markedly with that
of qcr' (4o arnd qun are from constant volume tests only.) The spread
between q; and qun was not very great as shown in Fig. 13. 1In fact it
was reasonable to draw in the trend lines shown. In view of this uniformity
of averaged results, it was surprising to find that q, and qun were
actually not very reproducible under the same conditions. For instance,
in a single test series in which there was little variation in Qo p
the spread in values of q; might be 10% or even 30%. The variations
between values of g, in different series was not greater than the
variation within the series. Apparently all the conditions which
affect the value of q, and q,, vere not under control. No corrections

were made for creep and that may have been a partial cause of the

variations,.
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For the deep sheils there was a long, level portion in the post-
buckling curve and q, and qmin both fell on this part, sc that

Q3 = q In the shallower shells q, was sometimes quite different

min’
from Uin® The upper sketch in Fig. 10 is for such a shallow shell.

Not all of the important pressures == q_., Qz, 9 .. and Uy =

A}

depended solely on A, although this shape parameter was dominant in
most cases. From the plot of pcr versus A in Fig. 13a it can be seen
that PCr = qcr/qT was essentially independent of A and there was enough
spread in the data to obscure any minor trends. There is just a slight
tendency for PCr to decrease with increasing A g, and qun seemed to
be related more closely to A . as evidenced by the trends seen in

Fig. 13. 1In fact, q, and qun were replotted versus & and versus a/h,
but much better correlation was found in the plots with A as abscissa.

Since many analyvsts have predicted a negative vaiue for qm (which

in
equals q, for large ;\}, it might be expected that q, would 3t least
tend to zero as A increases. Extrapolation is risky with such scattered
results but the trend seems to indicate that the curve of q,; would
become asymptotic to zero but not reach a negative value.

The value of U in (from constant volume tests) seemed to be
related to sh~ll height instead of to A . This relationship was
indicated by the differences in behavior between shells 8 and 14,
These two have about the same value of 2., but the iocad-displacement
curves associated with them are quite different. 1In Fig. 10 it is seen

that after buckling, the pressure continued to decrease as the deflection

increased. Thus Q. , vas much less than q,. But vIth shell 14, the

51




ctrve started up again immediately after buckling so that q; = qm

in'

Probably 9an should be plotted with & as th. abscissa for good

correlation., Notwithstanding what has Jjust been said, 1t appeared from

Fig 9b that P - P . 1s probably a function of A. The same plot

waz attempted with PCr - P, and the scatter was worse 1n the low
psrtion wnich determines the relationship. However, the conclusion
that PCr - men 1s a functionof XA may have been due to a fortuitous

scatter in values of PC

- Buckling Process -

The entire load-displacement curve varies a great deal depending
on the value of the parameter A\ and on the shell depth. For the very
shallow shells {small A ) the curve became extrecmely nonlinear before
buckling and was essentially horizontal at the time of buckling. A
curve for a fairly shallow shell 1is shown in the upper sketch of Fig. 10,

Buckling then occurred by a gradual decrease in the pressure maintained

by the sheill. The pressure after buckling was only a few percent below

the maxlimum or buckling pressure of the shell, For the case of large

A tne situation was entirely different. Here the load-displacement

cir.e was vssentially linear up (o the point of bhuckling. Buckling was

extremely sudden, and wichout warning. The post-buckling pressure was

atout 1/4 to 1/6 of the maximum. A curve for a deep shell is also

~hown 1n Fi1g 10,




In all cases buckling was accompanied by the formation of one
buckle or dimple (see Fig. 5). The buckle under water pressure was
smooth, not jagged as in the constant pressure tests of Kloppel and

(20)

Jungbluth The total central angle of the buckle is about 7° for
all A. Actually the size of the buckle is a peculiarity of the constant
volume test and not of the buckling process or of the shell. When
further volume was withdrawn after the occurrence of buckling, the size
of the buckle increased. When the buckle was at maximum size, it
extended over the entire shell. When still more volume was taken out
after the buckle reached maximum size, the pressure taken by the shell
began to increase. If volume was then forced back into the shell, the
buckle decreased until its central angle was about 2o or 3° before
snapping back through.

The buckle could occur at any location in the shell. However,
if the shell was not removed from the cylinders between tests (no
change in test conditions), then the buckle occurred again in the
same position (except in test series 35b). But, under changed Loundary
conditions, as when the shell was unclamped and replaced in the test
apparatus, it was not possible to predict the new location of the
buckle.

For identification purposes, four buckle positions were chosen:
near the edge, midway between the center and edge, near the center,

and center. By correlating buckle positions with buckling loads for

the shells, it was found that edge huckles were usually associated




with low loads, center buckles with high loads, and the other two have
intermediate buckling loads. This correlation ecems reasonable from
the following viewpoint. 1In any given shell there will be some imper-
fections and Some moments incuced at the boundary by the clamping rings.
It the effect of the imperfection dominates, the same load should be
obtained in all tests, znd the buckle should be formed in the vicinity
of the imperfection, However, if the edge moments are domittant, the
buckle will be formed near the edge and a lower load must be founhd,
Since the imperfections will not be changed from test to test, the
effect of any other influence must be either none or such &s to de-
crease the buckling load. However, :n this reasoning a very simple
relation hetw2en imperfection and buckling load was assumed.

Unbuckling was accomplished by forcing water back under the shell.
For the deeper shells an unbuckling action occurred much like the buck-
ling. At some point there was a sudden increase in the pressure main-
ta:ned by the shell. This occurred as the buckle snapped back through.
Then the shell was back on the initial porticn of the load-displacement
curve and further volume change caused a decrease in the pressure in a
linear manner. Just prior to unbuckling, it was observed that the
dimple was vibrating at three or four cycles per second. No such
motion was noticed at any other time during the lcading or unloading
process.

Various investigators have determined the minimum value of X
at which buckling occurs. Below this value the load deflection curve

1s a single-vaiued function of pressure. Kaplan and Fung found
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A= 2.1 theoretically, but A= 5.0 experimentally as the minimum for

(12a)

buckling. In his analysis Weinitschke determined A= 3.2 as the
limiting value. In the tests of this report, one shell with A = 3.3
exhibited an inflection point but no decrease in load with increase in
deflection. Another shell with A = 3.4 showed a slight decrease in

pressure in some tests and none in others. These tests are therefore

some verification for the theoretical value of Weinitschke,.

- Effects of Imperfections -~

One type of imperfection encountered in the shells was a slope
of the rim as depicted in Fig. 7. The sign convention adopted was
also shown in this figure. Some change in buckling losds might be
expected due to this slope. When the shells were clamped into the
test chambers, the rims were forced flgt, thus inducing moments
along the shell edge and, for large slopes, the shell height was
even altered. Fig. 7 was plotted using the simple assumption that
a positive slope would tend to irc rease the buckling load and a
negative slope would have the opposite effect. However no trends
at all are indicated in the figure,

Budiansky made an observation concerning the interaction cf
mode shapes and boundary conditions which may be used here. During
loading a trough forms about the shell edge &s a transition from the
clamped boundary to che uniform deflection which occurs over the
center of the shell. The mode shapes are alsc & series of troughs

and crests. and the number and position of these waves depend on the
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value of A . For some values of A a trough should appeur at the edge,
for others, a crest. Budiansky showed that when the mode shape produced
a trough at the boundary, reinforcement occurred with the clamping
trough and lcw loads were obtained at between A = 3.5 and 5.5 and
between 8 and 12. For A between 5.5 and 8, cancellation occurred
and buckling pressure was higher. As A increases the oscillation
in the PCr versus A curve dies out because the conditions at the
apex and edge of the shell have less mutual infiuence, Fig., 7 was
replotted using these ideas. For shells with A between 3.5 and 5.5,
8 and 12, and between 16 and 25 the same sign convention was used for
the rim slope. For the other shells the signs of the slopes were
reversed. The figure which was thus produced lovked no different from
Fig. 7. That no trends appeared in either figure should not be taken
as a sign that there was no ef - ect from the slope of the rim. Rather
it was an indication that the influence of slope on buckling pressure
is small and obscured by other things.

Interest in the effect of clamping a sloping rim is not actually
restricted toc this set of tests, In a practical structure, edge
restraint is provided generally by other deformacle bodies which will

tend to curl the shell edge up or down in a manner similar to the above

Poey

effect
Various surface imperfections were found on the shells, Among

these blemishes were central bumps which were caused by an irregu-

larity 1n one of the molds and miscellaneous shallow bumps caused
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by the presence of steam under the shell during forming. In a few
shells there were very small sharp bumps caused by dust flacks present
during forming. A further imperfection was caused if the hot sheet
did not hit the mold uniformly when the vacuum was applied so that air
pockets remained. Such an imperfection was a symmetric groove at
midheight around shell 16, Shell 25 (and to a lesser extent, 24)
had a large f’at section at the apex. This seems to have reduced the
load considerably and even flattened the load-deflection curve so that
buckling occurred gradually, not suddenly.

Fig. 8 was a plot of imperfection magnitude versus the buckling
pressure, No trend was evident but again this was based on a very
simple idea about the effect of imperfections. It was not felt that
a more valuable plot could be made using the knowledge which is presently
at hand. The analysis of Chen has shown that buckling pressures may be
either increased or decreased by imperfections de;ending on the value
of A and on the position, size, and direction of the imperfection. This
is reasconable if one considers the fact that shell structures are usually
built with ridges, grooves, and flat spots for added rigidity and
strength. Yet in other cases grooves and flat spots would considerably
increase the danger of buckling. For a refined treatment of imperfection
effects it would be rnecessary to know the effect of a variety of sizes,
shapes, and positions of blemishes. Also it would be necessary to know
the mode shapes, both symmetric and unsymmetric. Finally, it is
postulated that the position of the imperfection with respect to troughs

in the deflected shape would have an effect on buckling pressures, Such
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complex relationships make some sort of minimum load criterion very

welcome although sumewhat improbable,

Testing offercd a further possibility for imperfect conditions.
The latter can change from test to test while rim slope and surface
imperfections will not. Hence variations in buckling pressures for |
a single shell are probably due to changes in test conditions. One
source of error is the accuracy of clamping the shell into the test
chambers. If the shell were placed slightly off center, the shell
would not be held correctly and symmetricall» but in some unsymmetrical
manner. This would tend to induce unsymmetric buckling and consequently
lower loads. The variation in buckling pressure which may be attributed
to this cause is about 7% as can be computed from the data of Table 1.
During the air pressure tests, the nature of the effect of clamping
conditions was studied for one shell, It was found that the buckle could
be made to form in any part of the shell by shifting the shell around
slightly in the test chambers. Early in the testing program this
importance of clamping conditions was recognized so that great care
was exercised in this regard. In the preliminary tests when no
special precautions were taken, the reduction due to 1ncorreét edge

conditions was as much as 50%.
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- Comparison with Gther Work -

The buckling loads of this report seemed to fall in a sort of
middle range between those of Tsien and Kloppel and Jungbluth, but
are quite near the results of Kaplan and Fung, and Homewood, Brine,
and Johnson. This was some verification that the results from the
plastic material were valid.

In the Historv it was pointed out that if the energy criterion
of Tsien were correct, buckling loads would derend on the ambient
energy level and not be very reproducible from test to test. However,
as was mentioned, the values of PCr are very repeatable under unchanged
nonditions. The criterion was also used to predict that buckling loads
under constant pressure would be about half those under constant volume
testing conditions. Kaplan and Fung made both types of tests and found
no indication of a difference; however, their experiments were in shallow
shells beyond the range ¢f Tsien's criterion. The tests of this report
are evidence that the constant pressure buckling load may actually be
above the constant volume load. Such a circumstance is not explainable
either by the energy critericn or by the usual maximum-point-on-the-
cu.ve criterion,

The main importance of this experimental work was in the repeated
testing and in the study of effects which could be investigated by
this type of testing. Since the other investigators used metal shells
which usually yielded on buckling, only one critical load was obtainable

and many questions were ruised as to why the shell buckled at that
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pressure. Some of the possible causes have been studied in this report

by using shells which buckled eilastically and could be re-buckled any
number of times. Thus the importance of clamping conditions has been
pointed out and the time-dependence of buckling loads in material which
creeps was considered. It was possible to conclude that the buckling

was due to a geometric instability and not to material yield or to some
local failure. Since the shells were buckled many times it was discovered
that the dimple could appear in many positions in the shell and that the
buckling loads and buckle positions were related. Finally, an unbuckling
curve was determined which may shed further light on the buckling

process.
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CHAPTER S ANALYTICAL STUDY
A Introduction

The main purpose of an analysis in a report on buckling 1is the
determination of buckling loads. However, with the large disparity
between analytical results of previous investigators and test results,
there was not much hope for finding better results for pcr from this
analysis. Rather, the computations were made to study the nature of
the load-displacement curves. The loading curves were plotted both
as load versus center displacement and load versus volume changs.

In add:tion, it was desired to know the variation of znergy along
these curves in crder to assist in a consideration of Tsien's energy
criterion.

The technique of calculation was the energy or variational
method. Since this approach provides a series ¢f equilibrium posi-
tions, the necessary curves could be plotted from the coordinates
(pressure and deflection) of these positions. The required equation
of total potential energy was first derived from the familiar
principle of virtual work. Noniinear strain-displacement relations
were taken from Love(zz) for use in the energy equation. Finally the
energy equation was simplified to contain only terms important for
large axisymmetric deflections of deep sphericesl shells with a
buckle at the apex. Most previous derivations either were restricted

to shellow shelis, used different strain-displacement relations, ur

were linear and not applicable to the large deflection problem.
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In oracr 1o continue the analysls, some estimate had to be made
of an equation for deflected shape. The usual procedure at this
point in the problem has been to propose a series of functions whicu
seemed to fit the equationz mathematically. The estimate used in
this 1nvestigation was taken from observation of the actual buckling
tests, The deflected shape was assumed to be a sum of terms: one for
the uniform deflection as predicted by small deficction theory, one
for the apparent shape of the buckie, and several others to satisfy
boundary conditions. The formula repr<sents quite well the appearance
of the deflected shape, particularly in the post-buckling range.

The first maximum of the lozd-detlection curve was assumed to
be the buckling load. This maximum point was found grsphically by
plotting 2 number oI cquilibrium positions near the maximum,

The calculations were carried out partially on the IBM 7090
computer because cf the complexity c¢f terms 1n the energy equation.
Equilibrium positions were found for unrestricted deflection and for
deflection where the buckle increased in depth but the average de-

flection ovar the shell remained constant,
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B Derivation of Equations

In this section the well-known principle of virtual work was used
to derive the principle of minimum total potential erergy. In the
application of the latter, a functional known as the total potential
energy was calculated for use in determining equilibrium equations,

In deriving the equation for the functional, various "order of im-
portance" studies were made on the terms in the equation so that
negligible terms could be discarded.

The principle of virtual work may be stated as follows (see
K. Washizu, ref. 21): If infinitesimal virtual displacements of a
body, u, v, w, which are compatible with the prescribed boundary
conditions are imposed, then at an equilibrium position, the principle

of virtual work gives

f///@&ﬂ,ug 01033063 10530803 + G308 + (L8, )dV/

Volume

//(X&u + PSv+ 28w)d/S = (5-1)

Surface
The quanticies ;, ?, Z are forces on the surface acting in the
coordinate directions, and u, v, and w, are displacements in the
same directions. The strains, 5“,522,633,5“,5”, and 512

are derived from the displacements. Alsc the stresses are specified

as functions of the strains by stress-strain relations, such as

Ou = /“/[5// Y- .w(fﬂffﬂa 7 332?

E
92 = 7 u)f
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From the prainciple of virtual work Washizu has derived the
principle of minimum potential energy which may be stated as
follows: Of all the admissible u, v, and w which satisfy the
prescribed geometric boundary conditions, the actual displacements
are given by the extremum condition of a functional Tl defined as

7 .,///(J';f * Oy + O Eaa? Tybay * 056,53 # 06, )dV

o/ume (5_2)

///Xu r P 2 2w )dS

Surface

If the fiirst variation of7T: the total potential energy, is taken

with respect to the displacements and strains, Eq. (5-1) is obtained.
The same minimization procedure is valid for any number of independent
displacement parameters and 1s not restricted to three orthogonal
components.

In the usual application of the energy method, the total
potential energy is evaluated and then varied with respect to the
displacement parameters. The first vaiiation provides the minimum
condition
57T=i175af5-)’7”£ij‘%-/7_75wf TN
Since the displacements $u, 8;, Sw, .. . are 1ndependent and
may be specified arbitrarily, each partial derivative must be zero
to ensure that STT: 0. Therefore the minimization and equilibrium

conditions are

77 _ I _ 7 _
Z , =0, $l=0, (5-3)
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If the displacement components are not independent, a slightly
modified procedure can be foliowed. For a two-variable problem the

usual equilibrium condition is

67 = 26w+ sy -0 (5-4)

but if u and v are not independent, there is a constraint condition

in the form M(u,v) = 0. Therefore it is also true that

M = 32-4&( ‘ :’T"f”Sr -0

or  Su= -(éﬁ%{?)&r

Replace this expression into (5-4) and obtain

Since 5v can now be varied arbitrarily, the equilibrium condition is

'

found to be

M, Jidr _
Jdv U Ju Jv

For convenience the total potential energy is often separated

into two parts, thus

7 =1u- ¥, (5-5)

where U is the stirain energy and W is the work of the external forces.
The present problem may be considered as a linearly elastic

case of plane stress, that is, the stress Uy, is taken as zero. Also

Kirchhoff s assumption that a line in the shell which is normal to

the middle surface before deformation remains normal after deformation,
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will be taker., This merely requires that the shear strain will be

neglected in finding deflectiors. Further it is assumed that it is
reasonable to neglect terms which appeavr to be small according to

some consistently applied criterion. In this problem the strain

energy takes the simple form

u=Ffffne » mEddy (-0

Yolume
and the stress-strain relations are

0;; = 7‘/5;:_)
.2
/ Vz(é‘” *Z d.(ll -“/ 22 a(i?z)
(5-7)
5 2
0‘;2 /- ‘?2 + VZ// + MEDLC[)

The quantities )(11, J€22 are dimensionless curvatures of the middle

surface in the ¢ and © directions and E;x’ 5:22 are strains of the

middle surface in those two directions.

Substitution of the relations (5-7) into Eq. (5-6) and

integrat:on 1n the direction of @ gives

U = ﬂ’g‘-*‘-/%f 2 &y )220 ] g

(5-8)

r ELTT ]
ez d /( 2 201-)H,H,, [ sing g

The required strains and curvatures are taken from the nonlinear

strain-displacement equations of A, E, H. IJo'u't';'(?":l The following

23a)
procedure is outlined in Novozhilov( a}' The relations are specialized
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here for the case of symmetrical deformation of spherical shells.

The strains sare

.
Q,:«Q,+éfEfW‘Cf@3'“&l]

- AP
Qn"Qu"zqk

(5-9)
33 * Gz *F[cs # (4 "“’a)z]
£/3 = /3 ///f 7‘6()2)'633/}‘@3'603)
where d,
U,

Cu = dfz(/ *“4)
Cn = o (UcCOTF + ur) (5-5)
/3 ()+2( - &) *j_:c
Cy3 = UL

J2
’?wz - Z’E‘c - , /M; a)

oz afz

Here u, ani w_are displacements tangential and normal to the
middle surface and z is the distance outward from the middle
surface,

In order to proceed further it is necessary to find a criterion
to determine the relative importance of displacement terms so that
small terms may be discarded. Edge loads and point loads on shells
both produce sudden changes in geometry and high moments just as the

. . . (24)
buckle does. From the analysis of point loadings by Reissner and
. ., (23b) o
edge loadings by Novozhilov the relative importance of the

deflection terms can established. In these analyses, uc, the tangential

deflecti ~omponent, is small with respect to wc, the normal component.
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In other words, wc is of the order of uc times m, where m is a number
which is larger than, say, 10. Also differentiation by ¢ or multiplica-
tion by cot¢ raise the order by one step, that is, increase the magnitude

by one power of m. Therefore uccot¢ and ué are of ine order of (uc)(m),
wé and ug are of the orderof (uc)(mz), and wg and wécot¢ are of the
order of (uc)(m’). These orders of magnitude apply specifically near
the apex where cot¢ is mich greater than one and are not as applicable
at the edge of a deep shell. In this analysis it is assumed that the
highest order nonlinear terms in the strain-displacement relations are
comparable to the highest order linear terms and that all other linear
and nonlinear terms are negligible.

From Kirchhoff's assumption it follows that £ ,, must vanish and

the plane stress assumption requires that (4, = 0. Therefore

oLQ;
E3=571/" 4#3(/0 %]fdjz(a‘%"—cé)’g'_;_‘f*/)zo (5-11)

=duk a/ac dup) ] _ __x_/_ (5-12)
P (55) )= -5 (6 8
Let u = u + E‘p
o (5-13)
wc = w-+£§(

where u and w are displacements of the middle surface and 57
and zfare linear variations of displacement through the thickness.

Substitute these values 1into the equations for &£ ,, and 5,, and
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the results are

/ ""”(QEU 23) = (/'*;K) 4 47

ir4 ‘/“’ a) //f fw)/ =0

G+ 2

Let e, u' o+ w

(5~14)

e; = ucotP + w

it

ey = W' - u

where u and w are dimensionless terms for the displacements of

, W = -E-. The primes refer to

m,cl

the middle surface, that is, u =

differentiation with respect to . Then

I= 2(12%)=-e,
X=-75(ere)-4g

Now return to fu and 5,2. Use the substitution (5-13) and let

and (5-15)

- 2 =

- 2
— ) ] ) ~ / ’
€, =6 rzlc 7/ = G pFer
- 2
22 =4 ‘XSG = 63
H, = -w"+ 4w “puwr rowar’ = (5-16)

My, = ~w'col@ + uw'cold -uwr ca)‘;a fyww‘(af;l w- ’*

=~ cafﬁ(
The results above have be.n found by keeping only the highest order

linear and nonlinear terms as determined by the order of magnitude

analysis.,
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The solution of the problem 1s greatly facilitated by solving
for u in terms of w so that only w remains as an independent variable.
The necessary condition is found by minimizing the total energy with

respect ta u. Since u appears only in the extensional energy,

ST7 = 8U = 8[ (67 + &} r 20 G, dsimp
-’-“2///@ */6 ff@?i/hﬁj&(/ﬂ

~f%§/§2§ +E + G ) cospbudp = o

!/
Or /0,7 Sf/?p’,} = lag C&S}ﬁ =0 (5-17)

which is an equilibrium condictior for a homogeneous case. This

may also be transformed to
2
U'rdColp - ucse +(-9U = ~(r2 )= prlur"'- /___/; X or'e o7 o

The fourth term is of smaller order than the others in the

equation and may be omitted. The rest can be arranged for in-

tegration as follows:

z

[577 sing)] = ~tr2der'= Lw")

(5-18)

" Uty
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Integration once gives

’¢ (asing) = &' »acofe =

=-(trjuw - Fw

(5 -19)

/w c’af/quf » A

Here it is well to notice that thexe is a simple expression for the

sunt of the extensional strain

N\

- — 2
£ = Z ..’
» ¥ é)z é, > CZ > 2 &S

2 5-20)
s ycoly » v+ F o’ (

(7 -i)er ~ %‘/f:a/:af;la/ﬁ » 4

Notice that if v is a uniform expanrsion this equation is incorrect
since &,+ &35 =2cs for oo = constant.

Another integration of {5-18) gives

y = -4 wsingd

Ey f w'sing Y

(5-21)

er / s g / w Ca7‘¢’ a’ﬂ a’/ # 4(/— co:ﬁf) fi,d

Imposition of the boundary conditions u

=0at@ =0
serves to specify A and B
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Since the sum of extensional strain, £ ;; + 512,, (see 5-20)

is easy to calculate but the product, é:llé?,, is not. the strain
] ? i

energy formula will be modified, using Eq. (5-7). The extensional

energy is

EFhra

/-v*

It

Ae

7(57 21 w2086, ) sing o

= ELTE[ (8, + &, snp 4p

"‘2(7’bd'4”"2j/25741 sind dy
&

The last integral can be integrated partially using equation

(5-17).

-:;zw)émjm;z sing o =
&

- —.?(/fgéﬂ‘dz g; sind (7, M;/}frcc,d 27 =

==l Jpral; my?«,yd,‘ //»u)bfg/f,; Sinly df
& A £ Cosd

The first term is zero at the lower limit and only u' is nonzero

at the upper limit. Therefore the integral of the strain product

becomes:

E B
- Ehmazsina Tans a’/
(-vX7-v3%) ]

4+ Ehma®  sin’
(7—;0(7-4/5’//?E; f‘/f;;) ;;;%d a@f
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The integral 1s of tke order of 1/m? times the evaluated term and can
therefore be 1ntegrated approximately or aeglected,

The formule for bending energy can also be transformed by partial
integration to a simpler form.

Uy = ETT 8, 208, I ~2r- ), b4, 5 dp

s
12(7 V)J

= fA‘Ey" “ fo z/, _ 3 v 7/
i, (' + pwreal®) sindals Z%%T”/wwcas,dd/

The second term in Ub is integrable since

s 2
jW’,W,COS/dﬁ :i/d/év”/(&f'dd‘/

_ / /z of / 2 i
=5w :a.rﬁ] ,‘;{/Ar’.s'm;va’p’
(-]
The evaluated term is identically zero and the integral is of the

order of 1/m? with respect to the first term in U The nonlinear

b
terms in the bending energy are found to be second order with respect
to the comparable extensional energy terms and are therefore omitted.

The work done can be considered as a scalar product of force and

distance, thus

W"-,?//(a cos X + wrcosZ)adS (5-22)

where cos X and cos Z are cosines of the angles between the surface

normal and the @ and Z coordinate directions. Here
cos X =&
cosZ !+ X

(5-23)

i
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Therefore

- 3 Ve 2 7 .
v --?W,ﬂ[af// - e 4G ~uefsinddY
or approximately
4 ‘—’.?77‘43?/40'5/}7/ 74
The energy equation can now be written in the form:
T =U+rU »U*» U -QL

where the dimensionless quantities are

7= 77(-2%
Ehra*

4 = 1rv //5 08 sing B

/=Y )

-— =
Uy, = ~—L— sinak Tandt a’/

/-

i

U = (a1, ) 20

/-y Goszg{

»
2

« a
4, = 4 —/(af”-f wicols) sind adf

‘2a*
o

2lr-2)F7
&4

[;fs/h¢c//

AN

™~
{
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C Deflected Shape

The deflected shape to be introduced into the equation for the
energy functional is probably the main difference between this analysis
and previous work. In the past the deflection was taken in a series
with as many as 200 unknown coefficients. With fewer terms the shape
was too restrcted and poor results were obtained. Also the number
of terms increased rapidly as A increased. For a deep shell (large A )
a power series might prove hopeless.

In this analysis a deflected shape was chosen which seemed to fit
the appearance of the shell surface during loading. Up to buckling
the deflection seemed to be uniform over most of the shell (tkis was
observed under air pressure where loading could be applied rapidly so
that deflection was visible). At buckling a dimple formed which
was a shallow, bowl-like, circular depression. The edges seemed to
be fairly well defined due to the reflection of light from the
region of sharp curvature at the rim of the depression. Therefore it
was possible to speak of a diameter or size of the buckle. This
sharpness of curvature indicates the presence of large and rapid
variations in shape, shear, slope and moment in limited areas of the
surface. Such regions of high derivatives are difficult to depict
analytically and require a long series of terms to make an adequate
fit. In the.shell .the buckle appeared as almost a separate region
1n an otherwise unchanged spherical curface. No wonder many of the

first i1nvestigators analyzed the buckle region as a separate entity.
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The buckles seen in the tests were symmetrical only for the shallow
shells with one exception. However the differences in buckle position
apparentiy caused fairly minor changes 1in Pcr' Therefore if buckling
loads for axisymmetric buckles were determined, the lcad associated with
unsymmetric buckles should be just 5% or 10% lower. The axisymmetric
case only is considered here because it is simpler mathematically =2nd
should depict adequately the nature of the loading curve,

Instead of trying to depict¢ the whole shape of the shell surface
a5 one term or one series of terms, the shape was divided naturally
into its two components: the uniform deflection and the buckle de-
pression. No mode shapes were considered since none were seen on the
shells. These small undulations in the surface were probably just tco
small to be detected visually without special equipment. Omitting
modal deformations from the assumed deflectéed shape probably led to
a somewhat higher buckling lioad.

The equation for deflection which was chosen was as follows:

w=uw, - w;[s/'nc[ot—,d) # CoS c(o{-g!)]é"dd-;d)

—es; (sinbg + cos 6ﬂ)¢_6/
(5-27)

Fl;(Sin bot + cos bat )™ &

*ROU] Sin bk & b (cos g —cos)
Sl

Each term here had a specific purpose. The first term, w,, is a

-c(oi-#,
uniform expansion and wo[sinc(ol-gt)f-cw c(d-ﬁ]f provides for the
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clamped edge condition. Both of these deflection terms are kown from
small deflection or linear theory. The third term, w,(sin b@ + cos b¢)e‘9¢;
describes the shape of the dimple which appears at buckling. For con-
venience thesz first three terms were plotted in Fig., 4B in various ways.
Notice that the third term has no siope at ¢ = 0, and that it goes to
zero at b = 2,35 radians, For larger values of b, the contribution
of this term becomes very small. 1/b is a measure of buckle extent
since the diameter of the dimple is about 4.7a/b.

The succeeding two terms were needed to satisfy boundary conditions
for w and w'. With the clamped edge it was necessary that

w=w =0 at@ =0, the edge

w'= 0 at § = 0, the apex

and v had to be finite at § = 0. These boundary conditions are not
satisfied exactly but approximately, since the edge correction has
both a defiection and slope at the apex. The deflection in the cen-
ter of the buckle is

- -bX
Wo - Woisin co + cos ¢t )e X w; + w, [sin bX + cos bol)e b

-bX
+ bw;sin bol e b sing

but for most purposes it was adequate to assume that the buckle depth

at the apex was
- WO + W,
(the terms were written wich different signs, but in actuality bothk

are inward deflections and therefore add since w, is always negative.)
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In general both ¢ and b will be large, that is, between 10 and
100. This means that the number of important terms in the series
expansion for w would be extremely large and this seems to be the
case for deeper shells, The factor b is the basis for all order of
magnitude analyses and exactly fits the scheme earlier specified.
Near § = O, it is assumed that b is of the order of unity. This
deflection equation is reasonable for shells of a certain depth
only, where the edge and buckle terms do not significantly overlap
and is not necessarily applicable to very shallow shells. For the
deeper shells it is possible to let e-CO(equal zerc in the evaluations
of theintegrals. e_cxcannot be neglected since it increases on
differentiation with respect to b.

The energy equation can be written in the following general

form:

The E's contain exponential and trigonometric functicns of b and c.

Equilibrium equations are now found by calculating

'.... 0'77 . 0'7‘7 - 0’27 -~
il =0 gl =0 @il = -
dw; g dM ’ & ° de ©
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The problem is simplified by using

Wy = 7—37_:(://’—"—’:2 , ¢ =V/.?(/—y’)/f (5-29)

which can be obtained by evaluating J’Z—. 0 and dﬁ; 0, neglecting
Iu; de

terms in w,. This merely means that w, is assumed to be the correct
linear deflection. But if this 1s so then the terms with coefficients
E,, and E,;, must also cancel, as Friedrichs has pointed out, and could
be omitted from the energy and equilibrium equations. That this:was.
the correct procedure can be demonstrated using a simple potential
energy formula which contains both a linear and nonlinear term.

et o =8 -4A5 £, 53 (5-30)
é:'can be considered linear since its derivative is linear. This
special definition applies since Tie actually the integral of the
physical quantities which are linear or nonlinear. Also the deflection,
5 , is broken into a linear term which is valid near 5 = 0, and a non-
linear term, 8,.

§=6,+8,

Then

TT, = A8, + PS, -4 KS7- £5.5 -+4,8
2B, 82+ 36,875, +3£.5. 87 £, S

or

L = #R& +ASS -3£,525, -3£,8,8°
"é'f'g/z‘:ag,J“Fgo’F& ’fa &3 (5-31)
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Notice that if wg, = Sa, W, = g, , 7Z= /7, then Eq.(5-31) is very
similar to Eq. (5-28). The former is much simpler, however, and can
be studied to determine the importance of the terms. The general

solution can be found from

e P-£Er3,5 =0

In this case there is a maximum or buckling pressure which occurs

at _")__Pz f,*éf,g-:o
Ly 2

= é’ = é’
or 5 523 and pmax br; ;éz_

Now the same result could be found using g= £°+S, . When Eq. (5-31)

is differentiated with respect to S,, the following is obtained:

- ST 2 86 3876658 14,5, -34,5" - P (3-32)

o (5-33)

A . £
or 5: éf‘ go and g 5; fg, -6_2.‘

which is the result obtained before for the deflection at buckling.

and P occurs at .é_P_-—,-— éég; "éég,‘ 7 /ef
max dg

2
Notice that in 77;the terms which contribute to (5-33) are only i/'l;é:)
-3#4,5,52, and -#,§). Simce § is the linear solution,
So = P/kl. Using this result and the deflection at maximum P in

{&

ARy =/Q

Eq. (5-32) gives
/
2

In finding Pmax' four terms in /7, are needed. Besides the
three which serve to determine the critical deflection, -3k, § 2 f,

is required. If the latter is omitted, the value of Pmax is twice
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the correct value., The interesting result is therefore that the
2
linear solution, 80, must be included in two nonlinear terms, Sa 5,
2
and S., S, in order to give the correct results. In passing it should
<

be noted that the terms in 77:, containing 80, So gl, P So. and
P81 cancelled out since 80 is the linear solution,

When the results of the preceding study were applied to the terms
in 77, Eq. (5-28), it was found that the terms with coefficients

Ezo» Byys Ejg, and Ey; could be dropped but that all the others had

to be kept. Finally the energy equation took the form

7 = E W57 + £ gt £ Eor 7™+ Epz ;3 # é';y“fy(5-34)

and the equilibrium conditions are

J: o and ‘J._W'::o (5-35)
LCA 7b
or Ey Wi + 2E;,WoW, + 2Eg,w; + 3Egaw? + 4Eow) = 0 (5-36)

where the D's a-= derivatives with respect to b of the E's. The

E's found in Eq. {(5-34) are given in Appendix C.
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D Solution

The procedure for solution of the problem is to satisfy the two
equations (5-36) and (5-37) simultaneously for w; and b at various
values of Q, the applied pressure parameter. Each set of values for
Q, w;, and b which satisfy the equations define an equilibrium posi-
tion for the shell, If a series of quantities for Q and w,; from
such positions are plotted, a loading curve is obtained. 1In this
report it was found convenient to plot -w, versus -w, + W, since
-wo 1s proportional to pressure and -w, + w; is the central deflection.

The first attempt at a solution was made with a somewhat less
complete formula for 77. Since e_bq is rather small for large b,
all terms with an exponential were excluded. This meant that all
trigénometric functions were also omitted since they occur only in
conjunction with the exponential. Hence the E's contained only
powers of b, making the equations rather easy to solve. Terms con-
taining e-bo(were alsc neglected in the expression for w, Eq. (5-27).
And finally E,,w3w, was neglected because it did not seem reasonable
for the linear solution, w,, to be of importance in nonlinear terms.
The two equilibrium equations, jgg: 0 and 5%?: 0, were sclved for a
number of values of Q. Eauilibrium positions were obtained first far
into the post-buckling range, and the solution was then continued,
working backwards towards buckling. The post-buckling part of the
curve was about right. However, at a point near what should have

been the maximum point of the curve, the pressure rose sharply
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towards infinity and the value of b became imaginary. Although
tais solution attempt fairled, it gave some useful information

for assistance on the next try. It was found that b would have a
vaiue near that of ¢ and that the value of b rose to a maximum

near Pcr' Thus a curve of b versus deflection should be similar o
a lnad-deflection curve,

The difficulties experienced in the first try could be traced
mainly to the omission of all teims containing e-bo( True, e-bc(
was much smaller than 1/b, with which it was usually compared,
especially if b were approximately equal to ¢. However, when the
derivatives of both terms were taken, the situation was different.
Then the comparison was between be‘bo‘and 1/b? and the two terms are
nearly equal for b = 36,

In the second attempt at a solution, the procedure outlined
in most of this chapter was used. The nonlinear terms E,,w2w, and

-bot -2bx -3bhX
3 e 1 e

Elzwowf were retained, all quantities containing e
"4bd - 2

and e were retained, and E, wg, E; wgow,;, E; (¥p and E,;Qw; were

cancelled out. The remaining E's were very complicated functions

of b as can be seen from the formulas in Appendix C. The normal

procedure for the solution of Eq. (5-36, 5-37) is to specify Q

and solve for w, and b. However 1t is also possible to specify

b and solve for Q and w; if that is more convenient.

In the present case computations were made by evaluating the

E's and D's at certain values of b. b was successively assigned
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values for each percent of ¢, that is, b(i) = 0.01(i)c where i was
an index running from 30 to 120. This range of b was suggested by
the results of the first attempt at solution and the interval was

chosen to give reasonable results for the derivatives. The latter
were ccmputed by a four point central difference formula from

reference (25). For example

' : / = (¢ ,
D, () =/_.:>7!a7)c WL, (-3)28E,(~1) -8 £, (ev) # E( #2/

and here the range of 1 was narrowed to 32 to 118,

The computations oif the E's and D's were programmed in Fortran
language for use on the IBM 7090 at M.I.T. The program was written
in essentially the order given for the calculaticns in Appendix C.

When these evaluations had been made, the simultaneous equations
of equilibrium, (5-36, 5-37) were ready for solution. Since each set
of these equations were for a fixed value of b, w, and w; (or Q and w,)
were treated as unknowns, The remaining calculations were made by
hand. The method used "vas to try to solve a few sets of equations
for b near 0.9 c¢c. When a solution of any set was obtained then a
set for a nearby value of b was attempted. ib aid in soluticn, the
two equilibrium equations were rewritten as

Eoz L. .5 Lo3 2 Lot 2
Lo A Y- w
-t = Ea 4 é:% 7 Ea (5-38)
&s,

§

S

2&, wy;




Loy, =

T 5 4
M//':: Daz (-3

w
[£e]
Mg’

/ - Q/Z % # 003 0./7 i’ DOVMZ
o2 o2 Doz

Then the equations were solved by relaxation. That is, values for
Wwo and w; were estimated and placed in (5-38) and a new value for
wo was found. Then with the estimate for w, and the new value for
Wy, W, was evaluated using the second equation. The process was
repeated until a set of solutions was found or until it became
apparent that the values of one or both of the unknowns would lie
outside the range of interest. When successive values of w, and w,
agreed to three figures, the equations were considered solved. The
values of v, and w; obt‘ained were plotted immediately to assisi in
estimating the next solutians:

For the graphs shown in Fig. 16, the plot was made of -w, versus
~W, + w, and then the ordinate scale was changed to make a pressure
versus center deflection curve. The pressure versus volume change
curves were made by plotting -w, versus L as given by Egq. (5-26).

The preceding calculations were all for "free' deflectims. that
is w; and b were varied independently to minimize the total poten-
tial energy. Hewever, when an experiment was run with volume control,
this freedom was not present. To duplicate this case analytically,

a restriction was applied to w; and b so that the volume L could be

held constant while defliection and pressure changed. The method
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used here was outlined in the discussion following Eq. (5-4).

M{u,v) = 0, the restraint condition, was replaced by L - Lg = 0,
where L, i the valiue of L at some designated point. For lmstance,
the value of L at Pcr was set equal 1o L,. Then with the constraint
condition, equilibrium positions shown in Fig. 15 duplicated tne
curve of an ectual shell undergoing constant volume testing (see
Fig. 10),

For both free and volume control testing it was possible to es-
tablish curves of energy versus deflection. These were simply made
by using the values w,, b, and Q which were already Mmown at specific
points and evaluating 77 from Eq. (5-28).

During the solution of the equatiesns, it was found that the terms
with By, and E,;; were very important in the initfal portion of the
loadiang curve up to buckling. Also in this initial portion the terms
with Egy and Eg4 Were not required and Eyy was contributing a very
small amount even at buckling. The situation was reversed for equili-
briam positions in the large deflection range. 7The terms with E,
and By, were dominant, snd E;, and E,; were essentially negligible.
The linear term EKge was of importance throughout the range of para-
megers.

One effect of the unimportance of E,,w3w, and lx,wov{ for large
defiections was the poor definiticn of w, and, therefore, pressure,
Thus when w; was large, one equation was solved for w, almost in-
dependently of w,. Thus the ususl interaction of simulsaneous equa-

tions was not nresent and the velues of pressure were somevhat
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doubtful. Also for large deflections the potential energy was not well
defined since it was & small difference between large quantities. Since
the term E, w} was the largest energy term as w, became greater than,

say, 0.01, it seemed spparent that terms in wd, wf, etc. would be of

importance.
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E Analytical Results

A detailed analysis as outlined in the Solution Section was
completed only for a configuration like that of experimental shell
number 23. Fig. 14 was plotted from the analysis of "free" deflection,
that is, with both w; and b as independent parameters., The calculations
were terminated in the post-buckling range when it seemed that the
pressure was no longer adequately defined. Fig. 15 was for the same
configuration, but for a case of volume control. Again the calculations
were terminated at a point in the large deflection range.

A number of analyses were made for the '"free'" deflection case
and the resul ting load-deflection curves are plotted in Fig. 16.

(The buckl:ing pressures for these analyses were listed in Appendix D).
From this figure it can be seen that the buckling loads were much
too high, averaging about 1.3 times the linear buckling load. There
is some variation between the values of the peak pressures and there
is even a difference for the two cases with equal A . The latter
circumstance points up therfact that A was not the only parameter
needed to specify shape; K was also required in the analysis. This
is of course due to the use of ¢ sin& |, sin c& and c/b sin bA&X |
which would all be designated as cX or 36% in the shallow shell
analysis. Hence it is quite possible that A is not the only impor-
tant parameter for deep shell huckling, but some depth measure such

as X or H is needed.
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Since the computed buckling loads were much above cxperimentsal
results and even above the calcv’'ated buckling pressures of Budignsky,
it was apparent that the deilected shape was too restricted. Not only
was the only form of deflection a central dimple, but no variations
were possible for the mode shapes.

The pressure-~volume change curves of Fig. 14 and 15 show that
the initial portion of the loading curve should be linear, at least
for large A. This was indeed the case in the experimental work
(see Fig. 10).

There was some difficulty in finding the proper range of b for
each shell. As may be seen in Appendix D, the values of b for the
peak of the curve varied in no orderly fashion. Further it was
found that b varied rapidly near buckling for some cases and very
slowly for others. At least the values of b which were of interest
were always near 90% of c. In all cases the value of b increased
as the loading proceeded, reached a maximum value early in the post-
buckiing range and then decreased. Thus most of the sets of equations
had two sets of solutions, one for small deflection and the other for
large.

The difficulties encountered in finding equilibrium positions at
large deflections have already been discussed in the Solution Section.
Evidently more nonlinear terms are required in the equation for m.
This would mean constructing a more appropriate order of magnitude
criterion than usei herein. Then strain-displacement relations could

be simplified using the new criterion. Probably the equations of
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Love used in this report should te reviewed to determine if they are
vaild for véry large deflections.

some of the added problems just described may be avoided or sim-
plified if the loading problem is divided into two parts: the buckling
problem and the large deflecticn problem. A: least for the buckling
problem, the present order of magnitude criterion and strain-displace-
ment relations are quite adequate.

The deflected shape used in this analysis is not recommended
for a future attempt. A reasonable formula for deflection should
satisfy all boundary conditions, conform to the known and expected
mode shapes, have as few termes as possible per parameter, and be

reasonably integrable,
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CHAPTER 6 SUMMARY AND CONCLUSIONS

In the experimental portion of this study, thirty nine plastic
spherical shell segments were tested under external pressure., Most
of the tests were made with displacement control so that buckling
occurred without a change in average displacement. A few tests were
also made with pressure control since the latter situation best
approximates a practical case. In this gcroup of shells, the shell
shape parameter, A , varied from 3.5 to 25. The test procedures used
in the experiments were listed in some detail because of the important
effect of creep and time on the buckling loads.

All the shells were buckled a number of times and the buckling
loads were found to be repeatable under unchanged conditions,.

With the tests under displacement control a measure of deflec-
iion was known at each stage of loading. Hence a load versus deflec-
tion curve was piotted in some cases, Important points on this curve,
were the buckling pressure, pressure to which the shell jumped at
buckling, pressure at unbuckling and the minimum pressure on the
curve. The critical pressures were found to fall in & fairly narrow
range in the midst of test results of other investigators, the results
for constant pressure tests being slightly above those with volume
control. The critical pressures exhibited a slight downward trend
with increase in A and the minimum pressure was evidently a function
of shell depth instead of A . The other two important pressures were

definitely functions of A
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A discussion of the occurrence of buckling is presented in Section
4D, describing the variations of buckle sizes and pcsitions, the
shape of the loading curves, and the changes in the buckling phenomenon
with changes in A.

The effect of imperfections in the shell were investigated, but
no relationship between imperfection and critical load was found.

The accuracy with which the shell was clamped in the test chambers
had a noticeable effect on the critical load. Since the plastic of
the shells exhibited some creep, this also changed the critical
loads., A simple analysis of the creep effect was made and used to
cancel out this effect.

The energy criterion of Tsien was reviewed and compared with
experimental results. However, Tsien predicted buckling loads under
constant pressure would be about half those under constant volume
(displacement control) and this was not verified by the experiments.

The tests have served as an indication of the value of plastic
as a testing material and of the importance of repeatable testing of
the same specimen.

A variational or energy method was used in the analytical study.
The equation for total potential energy for symmetric buckling in
deep spherical shells was derived. A formula for deflected shape
was choscn based on the shape seen in the experimental werk. The
equillibrium equations derived from “he energy equation were found

to be adequate in the range of deflection near buckling but not so
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good for large deflections. For an analysis far into the post-buckling
range a new order of magnitude analysis and new strain-displacement
relations woulu probably be needed.

The equilibrium equations were solved to find equilibrium positions
and thence load-deflection curves. In two cases a plot of energy versus
deflection was also made. Analyses were made for five shells with
from 14 to 25. Since these were considered deep shells, it was found
necessary to specify both A and &X. The curves were quite similar to
those plotted during the experimental study but ctitical loads were
3 or 4 times too high, That the analytical buckling pressures are even
above those of other investigators is probably due to a restricted
form for deflected shape which failed toc account for small undulations
which occur in the surfacc prior to buckling.

There is a large spread between theoretical and experimental
buckling pressures and even quite a range between test results. This
scatter is probably due to clamping conditions during testing (5%
or 10% but possibly a much larger effect), imperfections in the shell
(unknown effect), and nonaxisymmetry of buckling. The tests indicate

that the latter effect may be rather minor.
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CHAPTER 7 SUGGESTIONS FOR FURTFER STUDY

This investigation has developed many questions and problems
which still need a solution Among these are the following topics
for studyv:

1. Unsymmetric modes of deformation should be considered in
determining buckling loads. Techniques with a reasonable chance of
success in the project are those of Weinitscke, Thurston, Budiansky,
and Caseman.

2. The correlation between edge restraint and buckling load
should be studied. In practical situations, the edge support will
not be clamped or pinned but merely restrained to some degree.

3. A general theory for the effect of imperfections on shell
buckling is much needed. First the mode shapes for any A must be
known and then the interaction of imperfection size and position
and modal deformations could be considered.

4, The equations of equilibrium should be derived and a study
made of the importance of terms for any amount of deformation, Many
such studies have been made but usually a priori and not based on
any conrete results,

5. It would be useful to make some experiments with as little
error caused by testing conditions as possible and true constant
pressure tests should be performed as well as constant volume tests.
To reduce the effects of minor imperfections, the shells should be

thick and the shells should be clamped between rings with a spherical
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surface s¢ that no rim would be required.
6. The effect of rate of change of load over the surface should
be considered. So far uniform loads have been most popular, but wind

ioads and point lcads also produce buckling.
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FIG. | NOTATION ON SHELL ELEMENT
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FIG.2 LOAD-DEFLECTION CURVE
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FiG. 5
SHELL AND CHAMBER

THE FOUR PHOTOS OF THE CHAM-
BER WITHOUT THE PLEXIGLAS TOP
SHOW THE UNBUCKLED SHELL,
CENTER BUCKLE, ENGE BUCKLE,
AND NEAR CENTER BUCKLE. AT
LEFT iS THE TEST APPARATUS
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ENERGY-VOLUME CHANGE CURVE
(TFis ¢ 0)

FIG. i4 LOADING CURVES FROM ANALYSIS
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"FREE" DEFLECTION CURVES
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APPENDIX A EXPERIMENTAL RESULTS

Te data for Table 1 were taken from tests of spherical plastic
shells performed i accordance with the proceaures described in the
Experimental Chapter of this report. Shells to be tested were clamped
into the testing chamber and buckled a series of times. Then the chamber
was opened and the shell was reclamped. With the slightly altered
boundery conditions, a new series of tests was run. The main tests were
made under water pressure to maintain control of the displacement. The
few tests made under air pressure were so designated. When the same
series letter was applied to both water and air pressure tests, it meant
that both sets of tests were run without changing the clamping conditions.

The buckling loads were normalized using Eq. (4-4) to make the
values of Pcr correspond to E,. Since the results for each series were
rearly identical and corresponded to one set of conditions, average

values of (P )

, Py, and P were recorded for each series.
cr’y un

The buckle and imperfection positions are given as:

c center of shell

n near center

m midway between center and edge
e next to edge of shell

Following the values of qT, A, a/h, and X for each shell there is a
brief description of observed surfacy imperfections. If the edge strip
or rim curled up (with the shell convex up) after forming, a positive
slope was indicated. An estimate of the height of bumps and their

location on the shell was made: This information follows the slope.
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In the table E, = 498,000 psi and g, the creen coefficient

F T e aSTaeN

0.011.
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Table 1 - Buckling Loads

Series (p__) P, P Buckle Position
cr'N un
Shell #1  {q, = .237 psi, A= 9.25, a/h = 1635, of = 7.40°
slope = -.006, imp., = .015", at c)
a .319 175 .251 n
b .296 .160 .240 n
c .295 .164 .237 n
ave .303 .167 .243
Shell #2 (q .272 psi, A = 9.20, a/h = 1525, & = 7.62°
T
slope = -.06, imp. = none)
a .265 .256 .256 n
b .253 .243 . 246 n
c .240 .226 .229 n
ave .253 .242 .244

Sheil 45 (ap = .670 psi, A = 12.3, a/h = 972, ¢ = 12.75°
slope = =.03, imp. = none)

a .400 .187 .261 i}
b .390 .156 .264 m
ave .395 .161 .261
d(air) .368 - -
Shell #4 {qp = .787 psi, A = 4.67, &/h = 898, of = 4.11°
slope = £.02, imp. = necne)
2 .373 .383 - c
b .359 - - C
c .348 342 -~ c
ave .360 .352 -
S--11 46 (q. = .494 psi, A = 3.43, a/h = 1135, o¢ = 3.29°
T . \
slope = /.04, imp. = none)
a .610 - - c
b .698 - - c
c .556 .545 .245 c
ave .588 .545 .545
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Shell #7 (ap = 2.275 psi, A = 4.92. a/h = 527, o = 6.92
slope = £.04, imp. = .01" at m)
a .352 - -~ m
b .376 .367 - n
c .353 .345 - e
ave .360 .356 --
Shell #8  (q, = 2.375 psi, A = 5.15, a/h = 516, of = 7.32°
slope = -.015, imp. = .0004" at m)
a .313 .307 -- n
b .315 -- - n
c .294 .290 - n
ave .307 .298 --
Shell #9 (a, = 1.320 psi, X = 7.32, a/h = 692, X = 9.05°
slope = none, imp. at m)
a .447 .216 .375 n
b .475 .215 .380 n
c .491 .199 .371 n
ave .471 .210 .375
Shell #10 {q, = 1.400, X\ = 7.32, a/h = 672, o = 9,19°
T .
slope = -.003, imp. none)
a .449 .229 .381 n
b .442 .217 372 m
ave .4453 .223 .376
Shell #11  (q, = 1.435, A= 7.25, a/h = 662, = 9.10°
slope = -.003, imp. = .001" in symmetric rings)
a .447 .205 .366 m
b .436 201 .358 m
ave .442 .203 .362
Shell #12  (qg = 1.350, A= 7.47, a/h = 684, o = 9.24°
no slope, imp. none)
a .4582 211 .355 -
b .466 .211 371 -
ave .456 L2311 .363
Shell #13 (g = 1.352, A = 7.34, a/h = 693, X = 9.08°

no slope, central hcllow)

a .4586 .213 .388 --
b .459 .210 .381 -
ave .458 212 .385
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Shell

Shell

Shell

Shell

Shell

Shell

Shell

#14

ave

#15

OTWw

ave

#16

(e JNK - g

ave

#17

6o

ave

418

o

ave

#19

ave

#20

ave

(ap = .189 psi, A=5.2, a/h = 1735, ot = 4.03°

(ap

G

(ap

(ap

slope
.428
.485
.472
.462

= £.02, imp. = .01" at m, 1" dia. bump)

.333
.315
.338
.329

.404

.432
.418

[+
m
m

= .209 psi, A= 5.1, a/h = 1740, o = 3.94°
slope = £.02, point imp.)

.544
.515
.494
.518

377
.396
.323
.365

.467
.462
.428
.452

= .663 psi, A= 7.03, a/h =

no slope, imp. = .023"

.425
.468
.460
.451

.269
.263
.260
.264

.362
.381
.381
375

n
m
m

977, ot = 7.27°

at m in symmetric ring)

e
n
n

= .629 psi, A = 6.87, a/h = 1000, < = 7,02°
no slope, point imperfection at c)

.493
.496
.480
.490

L] 238
.240
.240

.239

.388
372
.387
.382

= .638 psi, A = 6.86, a/h =
no slope, imp. = .01" at e,

.535 .253 .417 n

.500 .238 .402 n

.493 .229 .389 n

.509 .240 .403
= .518 psi, A= 5.76, a/h = 1105, X = 6.57
slope = £.03, hollow at c)

.447 .272 .394 m

.515 .269 .405 m

.490 .292 417 m

.484 .278 .405
= .522 psi, 2\ = 3.31, a/h = 1100, & = 3,32°
slope = 0.4, imp. = .01" at n)

.549 .549 - c

.571 .571 -- c

.560 .560
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Shell #21 (a_ = .582 psi, A = 12.0, a/h = 1040,
' no slope, imp. = .013" at m)
a 514 .155 .302
b .512 .154 .286
¢ .833 .187 .296
ave 520 .1865 .298
Shell #22 (g, = 1.620 psi, X = 16.1, a/h
slope = -.015, imp. .01" at c)
a8 .325 .148 .230
b .317 .147 .226
c .330 .153 .225
ave .324 .149 .227
Shell #23 (qT = 1.535 psi, A= 16.1, a/h = 642,
no slope, imp. = ,01" at c¢)
a .459 .135 .236
b .463 .143 .235
c .460 .142 .2.3
ave .461 .140 .238
Shell #24 (q. = .495 psi, A = 9.85, a/h = 1130, X = 9.48°
slope=-.015, imp.=.02" at e)
a .525 .184 .270
b .472 .187 .338
c .492 .187 .350
ave .496 .186 .319
Shell #25 (g, = .481 psi, A = 9.9u, a/h = 1145, & = 9.48°
no slope, hollow at ¢ of unknown magnitude)
a .259 .234 .238
b .313 .271 .296
ave .286 .252 .267
Shell #26 (qT = .221 psi, A = 11.6, a/h = 1695, &
no slope, imp. = ,006" at m)
a .328 .187 271
b .291 .157 174
ave .309 172 .222
Shell #27 (qT = .228 psi, A= 11,7, a/h =
no slope, imp. = .003" at e)
a .421 .228 .340
b .446 . 205 .350
c .404 .169 .314
ave .424 .201 .335
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A i g

Shell #28 (qT = .233 psi, 2= 11.8, a/h = 1645, o¢ = 9 .42°

no slope, imp, = 003" at e)

I e e

*

a .412 .162 .262 e
: b .352 160 .268 e
k c 474 .219 .369 e
: ave 413 .180 .300
§ ’ Q
: Shell #29 \dp = .232 psi, A= 15.2, a/h = 1650, X = 12.2
H

no slope, imp. = .008" at e)

a .448 .150 .247 m
b .433 .148 .239 n
¢ .418 .146 .238 n
¢ ave .433 .148 .241
t Shell #30  (qy = .223 psi, A= 15.7, a/n = 1680, of = 12.4°
§ ho slope, imp. at c, bump)
i a .483 .141 .245 m
H b .518 .104 .195 m
: c .454 .099 .207 m
§ ave .485 .115 .216

. W”r’.%ﬁ‘ e

Shell #31  (a; = .606 pst, A= 20.5, a/h = 1020, o = 21,1°

! no slope, imp. = .02" at ¢, rise)

: a' ,366 .085 - n
3 a .246 .131 .174 e
é c .390 .098 .200 e
b d .347 .092 .182 n
3 g .382 .104 .196 n
g ave .346 .102 .188

4 a'(air) 377 -~ -- n
: b(air) 384 ~- -- n
ke c(air) .352 —-— - e
: c'{air} 392 - - e
£

Shell #32 (qT = 606 psi, A= 20.6, a/h = 1020,

21.2
no slope, imp. = 015" at ¢, rise)

{

7Ty CRRY Byt (AR 20y

a .422 .092 .211 e
b .427 .084 .208 e
> e .452 .084 .184 e
& a' 470 .097 216 n
: ave .443 .089 207
3 a{air) 452 -~ -~ e
s b{air) .448 -- ~~ e
: c{air) .470 ~~ -~ e
§
: 124
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o,

Shel? #33

a
b
ave

(q

b(air)

Shell #34

a
b

c
ave

i(q

b(air)
c{air)

Shell #35

(e 2 = g o -

ave
Shell #36

a
b
c
ave

(ap

T

A

(a,

a(air)
b(air)

Sheli #37

a

b
c
ave

(q

a(air)

Shell #38

a
b
c
ave

T

(a,

= .616 psi, A = 20.2, a/n =
.015" at ¢, rise)

no slope,
.339
.450
.395

.432

imp. =
.115
.104
.109

-

- .626 psi, X = 20.3,

1o slope,
.319
.421
.409
.383
.415
.411

imp. =
.109
.099
.100
.103

.02"

= .243 psi, A = 25.6,
no slope, imp. =

.277
.283
.329
.331
.305

.033

.107
.105
.082

. 02'!

= .243 psi, A\ = 25.6,

no slope,
.259
.310
-293
.287
.315
.349

imp. =
.054
.042
.037
.045

. 02"

.192
.203
.197

-——

a/h =
at c,

.184
.207
.182
.191

a/h =

at c,

.116
.181
.182
.160

a/h =

at c,

.135
.141
.124
.133

1015, o = 20.9°

- -

n
e

1020, o« = 20.9°
rise)

1615, of = 20.9°
rise)

85 0 3

o]

1615, > = 20.9°
rise)

= .272 psi, A= 24.7, a/h = 1525, x = 20.8°
.02" at ¢, rise)

no slope,
.406
.335
.352
373
.390

imp. =
.119
.121
.082
.107

.206
.171
.139
172

= .600 psi. A= 12.4, a/h =

slope = -011, imp.
.148
L1530
.165
.154

.510
.289
.957
.552

at e)
.262
.274
.300
.279
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Shell #39 (qT

a
b
ave

Shell #40 (g

a
b
c
ave

= .700 psi, A = 12.6, a/h = 950, = 13,3°

glope
.308
.267
.288

= .616 psi, A = 12.4, a/h
no slope, noc imp.)

.425
.436
.440
.434

= -,0U6, no imp.)

.116
.128
.122

.144
.137
.130
.137
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.170
.169

.209
. 208
.197
.204

m

1010, o= 12.6°




Modulus and Creep Coefficient Determination

APPENDIX B

Beam Tests

Samples of the shell material, cut to 6" by 13", were tested

as simple beams to determine the modulus of elasticity.

The sample

numbers correspond to the shell numbers since they came from the

same sheet.

No. Thickness Width

L L0828
S +0830
6 0777
7 0829
8 .0783
9 40512
10  .0508
11 .0508

laliks"
1.L4L8
1456
1.429
leLki6
lel22
1.510

1.477

Ey» psi

495,000
500,000
189,000
477,000
532,000
191,000
492,000

479,000

Nos
12
13
1k
15
16
17
18
19

Table 2 -~ Modulus from Beam Tests

Thickness Width

«0504"
«0500
0l9
<0427
«0L29
«OL19
-0h2h
-0L19

1.490"

1.456
1515
1.460
1.519
1515
1.h37
1.420

Ey, pst
503,000

500,000
509,000
94,000
4190,000
198,000
502,000
524,C00

The average value of By is 198,000 psi and the standard deviation

of this value is l.L%
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Tensile Tests
The tensile tests were run using SR-i strain gages and a
dead weight. The pages and the glue attaching them to the specimens
taks a certain amount of load. To take account of the added

stiffness, the apparent modulus can be modified according to equation

B
5 Eapparent(l area )
in which B describes the gage stiffness., If B and E1 are assumed

to be constants for the tensile specimens, a least squares formula-
tion can be used to give

E, = 514,000 psi

B = ,00687

The standard deviation of the value for Ey is 1.8%.

Table 3 - Modulus from Tensile Tests

No.  Tuckness  Width  E_ ... B = E (- 2%00
5 «0829 1. Ll7 556,000 524,000 psi

6 .0789 1.L57 5L5,000 512,000

8 0770 L. liki§ 539,000 506,000

9 0512 1.k1k 578,000 523,000
16 «0L29 1.528 556,000 198,000

17 0428 1.L462 583,000 518,000
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The adjustment for rage effect is from 6 to 11% and suggests
that this tensile modulus is rather questionable.

Gages placed crosswise on some of the specimens gave a value
for Poisson's ratio of O.Ll.

Creep Coefficient

The curve of strain versus time for the tensile specimens

follows the equation

£=Z[1#g9h(tr2)]

fairly well in the range of interest, Denoting the strain at one
mimte by &, , and that at 10 minutes by &,o , the value of g

can be found from

glo ../

_  E
J /n /O

The tensile tests then give the values found in Table L

Table s - Creep Coefficient

No. Ero/E, £ Nos €.0/F, g
5 1,022 «00955 9 1.01 00511
6 1.020 +00867 16 1,039 401690
8 1,029 +01255 17 1,026 ,01128

The average value of g is ,0113.
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Ba:m Bnd Rotation

Since the simply supported beam used in the modulus deter-
rination undergoes cconsiderable deflection, the end rotation ey ba
a nonlincar function of load. To determine this relationship, let

P = load on the beam

1= length of beam between su/,orﬂ' , /,xa/

M = moment in beam

J, J, 4, = rotation, rotation at ends, rotation in the
linear theory

x = variable horizontal distance measured from center

8 = variable distance along beam from center

31 = value of 8 at x -’(/2

d’x = co:)’ﬂ./r

x =)0- 4 )5
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In the nonlinear term let 1/5’.1'
integration and '{(’ = z‘—f for evalustion. Using these

approximations in the equation for x gives

&4

. s - L
Therelore :. y
/
f = f’ / 7. ol
& /5 e‘f ?7 6-2
but 2
AR

Then the first nonlinear approximatior. is

3
/2-:)2"‘_2_"_‘,
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APPENDIX C ENERGY EQUATION

The energy equation is
— a
T7 = £, oty + &, ptgth # oy e 24 bga ] > Lyl ” (5-34)

This equation is obtained by performing the integrations of Eq. (5-25),

rearranging, and eliminating terms which cancel with the aid of

If the integrals of Eq. (5-26) were evaluated exactly, many
terms would ke obtained which are as small as those neglected already.
Retaining such small terms is unreasonable and so a criterion was
set up to eliminate them. The eivaluated energy function contains the

foilowing types of terms:

_ﬂvéaﬂ
‘1h and L€
b bﬂ-l

These two types are basically different since the exponential is not
readily compared with l/b angd also because the exponential term increases
on differentiation while the other decreases. Therefore the highest
order terms of each type were retained. This criterion allowed for
liberal use of approximaticns in evaluating Cg since this whole

term is essentially of second order.

The E's of the equaticn will be defined below in the same

manner as they were for the Fortran statement used in their evaluation.

132




£E,=/8506 -~ 2857 sina tma (B + B 55)
E,=/857 &, -2.857 sinattanat (BB B Fa) # 2
£, 20857 €3-L 429 sina tana B 7 2225
£.,21857 Gy -2850 sinat fwa A 5,
£ ;=850 Gy - L9239 sinet Tomot /3.
The G's and P's are given by the following:
C, =R, (R, +Ry) ~4#H, (Roq # Rp3) + '?2:(4"'.!:'%&’)0—“‘“)
P26 R Ryl ~cosot)+ S,
6, =28, (Roy # Ryy) # Rog (- 2652 )1 coce) - 49K (Ron # By3)
#26 R Rgy (1 ~cosay) -.?,?3_7(: PHycosat v 2 My X1-cosd) + &,
Gy = 26K Ry # LEF Ry (V=cosa) + 5
Cy = 2K, (Ryy # Kz ) # 26 Ry Ry (V~cosa) - Yhyy Ky (7~CoSel)

fS’y
b = (Roy ~ Ry X/-cosct) + S

g =13(7- -2, 4

Cspol 2 2:,./)] 2.0

5 = L. 3feosba v sinde #4 CoshacotoJo 8 - ..:’295_‘3‘_ - Hyeos , Rz }
28 s p /#cos ol
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-26
g __ ..?8;33"' _ 'éBZaA/z _ /X—?ézc" o d:’//?a( G(c- ~b)sixbe -2 - 2@+ 75) cesdy
¢ ¢ z

COSN( f5(2c™ 704 %:S'/v

s 2Ac=38)5nba +2(3c-94) cosbat 4 CsrnIbot - 24 cox e ”co.s'.%d
I (P Gk p5dd) v (c™= v6+)

~. 02225/, TN 4 5 si0 Pl / 3 R 7R Cafld /4¥case
(J)/Co:d (/rcos ) / i 72)

/7"'0.3‘0(
-f/y/?{;‘ "7/’%.//(0;d//_

/4 ¥gosal )
C / ¥+ coSR

_2./69 4, 4_4/- ¥ o5

r. 2, LEC __.Ccosa-./05cos #é 74 oSl
Sl /yrcoset

- 2564 /fggaz/) -2k 473

v 57¢./§; m.ra)

.2 2
S/ N _, g t & 7"0:0‘ "o/Cot of
cos

= /26 # 66'_”"/-.7& Ina +bcos2bat sinct + v el s

~cosa +3‘Car£-1 @S ol 4 75‘/‘/)23« o -//-—;f:/kk - Ico.rlu

-S4 b mx:ua) - &M, - L4 @™ % i bot 510 Iut
é
r Y, e /ﬂqédfcaré-z)cor of «f—-—-# % -cost)

@ = ,005 carat » Ko 7*Fa,

S~ Cosex
Fo = 7cb ootoombflc ~4) cosi 2 (ctb)siabel v 9 4, (5rnéa - w-f‘c{)]
crr &b
-7 H, Ca.f‘d// - """"’) v Koz *Kyq
g A CoSed
2 =

S e0b oS 4 b c""z‘;d/-—/ - .f‘i"_f.". # COS 2bot .’;2 stir Dht o 4
5777 %




‘,é CO324a ot + 2, 2Ecoséa » I & s Bal o+ 2 7(0.\‘.7‘( -fJ.Z)’/fr?‘d)
/s s 2

*A, € “d[-?.&.r/oo’a sipa —. Plcasbo r.sw;&«)cosd,/ "_2_64_9'2’.'2&

b2simr %
a
214 (0,759 5in % » Sx2C05 2) # Kapt R
2 /¥ cos = / » cosal
The H'!'s and R's and S's are in turn defined as followa:
A, = ZA . CoSX
Cc 2c™
Ho = 24 spbac™ %™
s A
- - { S/ X
#s (-7 simol / /- cosat
3
‘V// = (C—é)
d(c-4)%
k4
A". = ‘C—Qé)
Vlc-24)%7/
F
V(2c-4)%¢/
Moz = (sinda + Car/dzlc’"q - M cosct
35 ~det .
k’ =" é"/; - d"("/‘”d(/‘?J(ded-—I/h‘d&?fdft‘of!dco{oly

135 My sin'e #2 M (7-cosat)

Mz =

‘2//__“‘_0/)[ -/re f/od/?érarla/-rm/dwfd.,,w.&,m/d]

v .65 Ay (V¥ cosot)




ST AR

RV
¥
)

CSmma - cos o

% V7 -~ cosar)

'4’49 = Céb sy A o Botf-(-8) oshey ~(crL) sirrdo

/= cos o c?*rdt

+# 5’/% /('04‘1./ - S/‘r)éd_)/? WA

C'/—Cara')

= L Sl
/@3 = -‘/__:_‘:s_d /«- ~;éc'o.r-?Jd f.é:/,,zld " _Lfd /u‘yc’d‘d

7 4 . -dat
Y/~ cosay) » 4y (14 cas il sip bun fcorl.// e

X
o 74 / 5 ~cosat 4 COSAN )
207 -cosat) 4
s, = ./?.f"c’o.rav//,_ )
/= cCosx

- Cos oY 4‘,’2

” . 7/(/?_/4/, cosol

/- cos o

(o = .Jch cosae / -2cé M 2 (& Dsirder , A ﬂaiy
7

/= cos

bt
K? ';;/é COSIEA o .gf‘é cosbet v ;:.!’?‘4‘&"

o . 4 -t
T;_;? S0 ot oY 1‘3?}- cosdetcornt % f/#.?&:{('ﬁ‘o{( -+ i‘l oS et )

- 089 . 35S 35 €T f s di 2y 301
/-cosa '{/-corat) é’(/—'mr-')

~5/ndat cosI? 4 Cosbet cos “?d) - l3/235/ /4 /o5 a

/-cosat .-_%__Bd 8:)

-,¢7c @osa & /fzé,l,/cé:méu é(orjdjf

Cr*r4?
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Ve . . s .
+ 74, Aﬁ/( C-5EN 5 der —cosdoa) 4 (TS cosh oo v

2ot 2ch ~4 2

K2 -2)co5 ot = (¢ + 2 symbu 4 36*_(Cr8)cordu = (c-blsinés
V(Fcrr 2 (c* 8N T2 b))

rLOSH A cosal - L2254 (‘c/dﬂ'/k.?d - f_ge_“_'?.e!
c

~L T Ay casal (7 - 5;27‘01)

S5y = —A %% na | (o0 - %)cosdn 1 (Ve pd) sinda
/T2 2ch s TEY)

4 (Pc-B)osds 4 (¥ -28) sim bot » (€ —28)cos2ba ¢ (cv24)5/934y
5202 Gk o543 FF(cr s véY

n B [cos2bos 5 s51ip 2B j] w94 e g Jy/fc‘vlkut’ldg (cvd)ssnbal
/2 R(cr b2

* 2K, (cos bot fs/aj‘.g] * 06135 4, 73,4,/ - :z;-:'sa ”~ gcar.y
c?®

#. VPehcoroe 2 (cr3céd -28 Y carba - (C*-3c b -24Y) 5/r3d0

Ce*dNcr w6
P I K, Hy (COF 2ot - 55 24a) :&.ﬁ@
c& 4t

A LT Ky Ay 510300 @ 4t ch pbcosdu v ¢ "://:JZ/]
c AL

S =./p23 f-,/ﬁpa’c’":éo}'fba 2D Acasho r w2y v cO-
R e

«’-?24— cos 2ol co?x ~ j_’g‘é{‘é /—e"‘(d/é'r/);-?d cordat —

V47




5

-/—7/% _,//(' fé)/}zn&d ((u"&(a(/) (“*“)405'4:11:__62.. 7y

2ol 2ch ~42

W2 -24) 05 et - (¢ #7h) sy du -y 2 _(crdlordu = Lc-blsiads
VCVc*r E2) (#4322 s 3)

ALOSH K, cora - L2254 co/d/:/:':d - 224:/2-_“_-29!
c

=L T My casal (7 - .52-07‘01)

= ~/ 9% e | L2c - %)cosdet ¢ { ¥c L) sinda
IF (R~ 2ch A T

4 Pc=Blanids 1 (¥c-28) sinbet , (€ ~28)cor2be p (Cr24)5 5234y

/(2" Gk p 54 FEcrp VY
” /‘/ 72 //('ofu%/-/ r//pJJo:j/ .,c,”?/y e At,‘??/[" -d)ccrdet # ¢ "I“L‘/_!‘d
R(cr* 442

* 2K (cosbo »5inda)] #1254 Y34 - 23 . Icos)
c

. YIchcorore Y (c?r3cb -24)carrbet - (CP-7c b -36Y) 55934
(c* N c s véY

e /‘ /yl/ ((Nﬂd -rﬂ)xdj -
c¥ét

» /L9 &_/V// SN &~ ‘7( Ccéd pb¥osdu 4 ¢ ":/b&]
c*r s>

- LR
=,/P375 - ,/_9)3'55 mm/:,‘m.w rSn2hot » ;ﬁz‘._,(
2

,4’?2 cor Bacorst — ‘;i‘é/—e’&/d.wb)d cordat —




#156 fy - 025898 4 £ Y Bhsin 20t + 20830

4 ’g ?76"2// 4 cosbeor r.?ér/}r/d)f/}v‘g( f/ Fsirbot 465 wr/.t)/ rol -

-24al

tos 3o1)] + =) 94 cos 2hee srr r2 2 (cos o511y 2bes Yeos d - cos:?oly

/ ?.?

ff'?/é/ﬁ TS

3 s
’ agosyf_zﬁé Coshet &% (g Sot - 257 30t) */;.._;’Z M (- Feoset

:.‘d
K" 7 Cos 2ot 4 sy 2bet ) cos Yy r//.n_c]

f{car.?d -./ o5 ot ¥ -‘!?-'?z-') ~ L 9% ,4{, 3“3“[:' Y o 5.2bet srM2el
——ff 12 2Bn COr el 4 /1S Sty Odhot 579 300 — & o8 2ot cos I ) 96
+ (34 coslat 5in 201 - 3-(_',— sinba coS ol ~ bs/nbe sin 2ol ";{:m‘d cor-’d)%

-( Fhcosha 320 + 34319 bt 3/n el + DcosThat aa.r:)d) ;‘l;;]

In all of the above, Poisson's ratio has been taken as O.3.
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APPENDIX D ANALYTICAL RESULTS

The analyses outlined in the Solution Section was performed on
five shell configurations. The results of Table 5 are for buckling

loads which were obtained. The deflection amd the value of b at

buckling were also listed.

Table §

P v, -wo4w,  bfc
16.i 20.8° 1.368 .000 37  .001 31 .83
16.1 13.0° 1.27 .000'373 .000 73 .87
20.0 26.0° 1.372 .000 413 .001 35 .97
25.c 20.0° 1.31  .000 085 .000 46 .93

14,0 18.0 1.20 .000 45 001 27 .83
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