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MEMBRANE AND BENDING STRESSES 

IN SHALLOW,   SPHERICAL SHELLS* 

ABSTRACT 

The present work is concerned with the nature of the interior solution 

and the influence coefficients of shallow, spherical, thin, elastic 

shells (or equivalently a shallow, thin, elastic, paraboloidal shell of 

revolution) which are homogeneous, isotropic, closed at the apex, 

and of uniform thickness. The investigation is carried out within the 

framework of the usual shallow shell theory for small displacements 

and negligible transverse-shear deformations. Exact interior solu- 

tions are obtained for shells acted upon by edge loads and edge mo- 

ments. The constants of integration associated with these interior 

solutions are expanded asymptotically in inverse powers of a large 

parameter. Retaining only the leading term of these expansions leads 

(in most cases) to known approximate results. Explicit expressions 

for the second-order terms are obtained. It is shown that these 

second-order terms play a significant role in a certain class of prob- 

lems. The relative importance of the membrane and inextensional 

bending stresses in the interior of the shell is discussed. The exact 

and asymptotic influence coefficients are obtained. The interior 

stress state of shells subjected to polar harmonic axial surface loads 

is also investigated by the same procedure. 
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NOMENCLATURE 

x,y Cartesian coordinates in base plane (plane tangent to apex 
of undeformed middle surface of shell) with origin at apex 

z Distance between base plane and a point on undeformed 
middle surface 

i" Distance between a point on undeformed middle surface to 
axis of revolution 

9 Polar angle in base plane measured from positive x-axis 

io Circumferential base vector of undeformed middle surface 

i Meridional base vector of undeformed middle surface r 

n Unit normal of undeformed middle surface, positive inward 

F Stress function from which in-plane stress resultants are derivable 

w Transverse middle surface displacement 

u Meridional middle surface displacement 

v Circumferential middle surface displacement 

N  , N_, N  _           In-plane stress resultants r      9 rG 

M  , M„, M  ~ Moment resultants r       9 rG 

Q  ,  Q_ Transverse-shear resultants 
^r    ^6 

B ,   fl„ Rotations of middle surface 
r      9 

P Normal component of surface load intensity 

P Meridional component of surface load intensity 

P„ Circumferential component of surface load intensity 

P Component of surface load intensity in direction of axis of 
revolution, i.e., the axial component 

D Bending stiffness factor 

1/A Stretching stiffness factor 

v Poisson's ratio 

h Wall thickness of shell 

E Young's modulus 

a Value of r at edge of shell 

u r 9r 

() =^ K' e 99 

,2,, _,,       ^,/_/v     ^w-2/ Vz() =()rr+l/r()r + l/r()ee 

vn 



ov, Bending stress 
D 

a Direct or membrane stress 

( ) Particular solution for quantity in bracket 

R Radius of spherical middle surface or twice focal length 
of paraboloidal surface of revolution 



MEMBRANE AND BENDING STRESSES 
IN SHALLOW, SPHERICAL SHELLS 

I.      INTRODUCTION 

One of the characteristic behaviors of shell structures is the coupling between their bending 
and stretching actions.     Through this coupling,   a shell offers more resistance to transverse 
loadings than,   say,   a flat plate of the same dimensions and with the same material properties. 
However,   accrued to this structural advantage is the price of mathematical complexity.    Even 
in a linear theory,   it is often necessary to introduce additional assumptions based on plausible 
arguments,   if the statics problem of thin elastic shells is to lend itself to manageable solutions. 

The membrane theory of shells,   for instance,   assumes that,   away from its edge(s),   a 
shell prefers to carry the applied loads by the development of the in-plane stress resultants 

rather than by the transverse-shear and moment resultants;   hence,   an approximate interior 
solution can be obtained by neglecting terms associated with the bending action in the differential 
equations of equilibrium.    Such a procedure does,   in fact,   lead to a good approximation of the 
interior stresses for several types of shells of revolution under rotationally symmetric loads, 

and loads varying sinusoidally in the circumferential direction with period Zir (Refs. 1-3).   On the 
other hand, the correspondence between the interior stress state and the applied loads recently 

4 5 established by E. Reissner   '    for shallow,   spherical shells shows that this is not always true 
for self-equilibrating loads.    More recently,   the same correspondence for shells of revolution 

was discussed by C. R. Steele. 
The present work pursues further this subject of membrane vs inextensional bending 

interior stress state and examines a larger class of boundary value problems associated with 

small deformations of shallow,   spherical,  thin,   elastic shells (which is the same as shallow, 
thin,   elastic,   paraboloidal shells of revolution) than those explicitly investigated hitherto.    My 
analysis differs from the earlier writers in that the boundary value problems will now be solved 

exactly to obtain the constants of integration associated with the interior solution in terms of 
the geometrical and material properties of the shell and in terms of the prescribed loads and/or 

constraints.    These constants will then be expanded in inverse powers of a large parameter to 
unveil the nature of the interior stress state. 

5 7-9 Some known results for small deformations of shallow, spherical shells   ' needed in the 
subsequent development are recapitulated in Sec. II.    Sections III,   IV,   V and VI deal with shells 

without surface loads.    The shells are subjected to edge loads and edge moments in such a way 

that the over-all static equilibrium of the shell is maintained.    In Sec. Ill,   shells with prescribed 

edge loads and edge moments are considered.    Once the asymptotic interior solution is 
established,   a comparison of the corresponding membrane and inextensional bending stresses 

shows how the nature of the interior stresses may vary with the prescribed quantities.    The 



exact and asymptotic influence coefficients are then obtained.    To do this,  we need the explicit 

expressions for the constants of integration associated with the edge zone solution.    Since we 

have the explicit expressions for all the constants of integration,  the stress boundary value 

problem is now completely (and exactly) solved.    As a side result,   it is shown that the membrane 

and inextensional bending solutions,  obtained by way of a set of contracted stress boundary 
10 

conditions established by M. W. Johnson and E. Reissner      for shallow,   spherical shells,   and 
11 

later by E. Reissner      for general shells,   are the leading term of the asymptotic interior 

solution.    Shells with prescribed edge deformations are studied in Sec. IV.    Section V deals 

with shells whose tangential edge displacements and transverse edge load and moment are 

prescribed.    Shells with a different type of mixed boundary conditions are treated in Sec. VI. 

There,  the tangential edge loads and transverse edge deflection and moment of the shells are 

prescribed.     We then turn to shells with surface loads.    In Sec. VII,   shells subjected to axial 

surface loads in the form of polar harmonics are considered.    The nature of the interior stress 

state for shells with various types of edge support are investigated. 

II.     FORMULATION OF PROBLEM 

A.   Differential Equations in Polar Coordinates 

The system of differential equations governing the small deformations of an isotropic, 

low, 

bility is 

shallow,   spherical shell with constant wall thickness and negligible transverse-shear deforma- 
.  7-9 

AV2V2F + 4  v2w = -A(l - v) V2fi       , (II-l) 

where 

w = the transverse component of the middle surface displacement, 

F = a stress function representing the direct stress resultants, 

R = the radius of the spherical middle surface, 

P    = the transverse component of the surface load intensity vector, 

v
2o - in +1 an + _L in -< >    +1 (>   + * < > V  ( ' -     „  2   +   r    dr   +     2    „2       U, rr +  r  U, r 2  y >, 0G      ' 3r r      o(3 r 

l/A = E  h,   the stretching stiffness factor, 

D = E,h3/l2(l — iv2),  the bending stiffness factor, 

v = Poisson's ratio, 

h = shell thickness, 

r, 6 = polar coordinates in the plane tangent to the apex of the shell, 

and where it is assumed that the meridional and circumferential components P    and P_ of the 

surface load intensity vector are derivable from a load potential  Q   in the form 

P    - _ §£? p     - _ I  i?n (II-2) 

Some degree of nonhomogeneity is included in the above formulation by allowing an independent 

choice of bending and stretching stiffness factors.    If the shell is completely homogeneous,  then 



Efa = E    = E,  where  E  is Young's modulus.    The geometrical properties of the shell are shown 
in Fig. 1. 

The relevant stress resultants and couples are given in terms of F and w by the following 
relations (Fig. 2): 

N    = - F      +4jFQ„ + £2 r      r     , r 2        99 r 

9 ,rr ' r9 r      , 9 , r 

Qr = -D(V2w)r      , Q8=-F(v2w),9       ' 

M    = -D| w + v (— w      +AwQo) r I    , rr \r      ,r 2      , 9 9/1        ' 

Me=-D["w
frr 

+ (7 w,r + 72 w,ee)]      • 

Mr0 = -D(l-»)  (i   we)r       . (II-3) 

The meridional and circumferential middle surface displacement components  u and v are 
related to  F  and w  as follows: 

U,r~l  =A(Nr-,NG)       , 

FV,9 + 7U"I  =A(NQ-,Nr)      , 

- u   „ + r(- v)       = 2(1 + v) AN  _       . (II-4) r     , 9 r     , r r9 

B.   Boundary Conditions 

To complete the description of the problem,   we must supplement the differential equations 
with an appropriate set of boundary conditions.    Throughout the present investigation,   the shell 
is to be closed at the apex and is to extend over the region 0 ^: r-$ a,   0 .$: 9 .$ 27r.    At the apex 
r = 0,   the shell is to have finite stresses and displacements.    At the edge r = a,   four consistent 
and independent conditions must be prescribed.    Among the possible combinations of edge 

conditions are the stress conditions 

N=N      N„=NC.M=M      R=R (II-5) r r,      r9 r9,       r r,      r r. 

where 

9M  r 
"r " "*r  '   r      39 R   = Q„ + 4 -£r <n-6> 

and N ,   M ,   N  „,   and R    are the applied edge loads and edge moment;   and the displacement 

conditions 

w = w      , u = u      , v = v      , w      =(3 , (II-7) 

where w,   u,   v,   and /3    are the prescribed linear and angular displacements at the edge.    In the 
subsequent development,   other possible combinations are also considered. 



Fig. 1 .    Geometry of middle surface. 

Fig. 2.    Forces and moments. 



C.   Solution to Homogeneous Differential Equations 

The solution of the homogeneous system (II-l) is given by 

wH = i|> + X      , FH=<p + RDV2
X      , (II-8) 

where   <p  and  >p  are harmonic functions,   i.e., 

V2«p = V2i/, = 0       , (II-9) 

and  x   satisfies the equation 

V  V  X +  p   X = 0       • (11-10) 
DAR 

Since the shell is closed in the circumferential direction,   the relevant displacement components, 

stress resultants,   and moment resultants must be periodic functions of 9  with period 2n7r, 

n= 0,1,2,3...   .    Retaining only that portion of the solution which leads to the desired finiteness 

at the apex,  we have 

w -     7,    r  (A    cos n9 + D    sinnG) Y        <-> n n 
n=0 

and 

where 

ip =    ]]    r^B    c°sne + K    sinn9)       , (11-11) 

n=0 

X =    X    [C  J   (kr) + H  J  (kr)] [F    cosnG + G    sinnG] A        Lj    l   n  n n  n        J L   n n ' 
n=0 

iir/4 -ITT/4 

k=—2— —       , k =    6 , (II-12) 

-^/DAR
2 *JDAR

Z 

and where A.,   B ,   C,   D.,   E.,   F.,   G.,   H.,   and K. are arbitrary constants.    J   (x) is the Bessel 
i'      i'      l       l       l       1111 J n 

function of the first kind and of order  n.    Properties of these functions can be found in Refs. 12 

and 13. 

For the present investigation,   it suffices to consider only a special case of (11-11);   namely, 

w - A  r    cos nO      , i> = B  r    cos n9      , 
^ n ' n 

v = [H  J   (kr) + H  J   (kr)] cosnO       , (11-13) A      l   n n n  n        J 

where A    and B    are real constants;   H    and H    are complex constants with H    as the complex 
n n n n n 

conjugate of H    to ensure real solutions.    In the subsequent development,   we shall replace   r 

by a dimensionless variable p   defined by 

p =   a 
(11-14) 



so that 0 ^ p <: 1 and take (11-13) in the form of 

2 A      n c w = a  A p    cos n0 
IT 

a2B 

D(l - v) 
n        n _ 

p    cosnG 

X   =    [C  ber  (Xp) + D bei  (Xp)] cosnG      , 
\T5 

(II-15) 

where 

A  = 

if 
(11-16) 

DAR 

ber    and bei    are the n     order Thomson functions and C    and D    are real constants, 
n n n n 
For shallow shells with sufficiently small bending-to-stretching stiffness ratio DA,   the 

dimensionless number  A   is large compared with unity.    For an isotropic homogeneous shell of 

constant wall thickness, 

X = \/l 2( 1 - if' 
Tlh 

') (II-17) 

and i-» ash- 0.    In the present work,   we shall be concerned particularly with shells for 

which X » 1.    It is known (Ref. 5) that for this range of X,   the effect of  x   is confined to a narrow 

zone near the edge of the shell;   it is therefore referred to as the edge-zone solution.    Away 

from the edge,   <p   and  4<  become dominant;   together,   they are referred to as the interior solution. 

Corresponding to (11-15),   we have [cf. (II-3),  (II-4),   and(II-6)] 

2  A n 

a  A p 
n 

1 
[C  bei  (Xp) - D ber  (Xp) 1   n      n   ^ n      n   ^ 

cos n© 

a2B I 
TTT.—°-r   p" + —=-   [C   ber   (Xp) + D   bei   (Xp)] }   cos nG 
D(l — v)  * JJT   

l    n       n    H n      n    H  J 

9w 
dr 

naB , 
r-j-—°-r  pn_1 + —^- [C  ber'(Xp) + D  bei'(Xp)]     cos n6 
D(l — v) JJJ       n       n    H n      n    ^  ' 

1 a3fin 
na( 1 + v) AA p        +  „„,     ;   .•. ,.        ; n^ RD(n + 1) (1 — v) 

n+1 

X(l + v) 4A  .      b   . 1(     } _ D ber ,(Ap)]l   cosnG 
a l   n      nx  ^' n       nv  ^"( 

/„   ,     \   A A     n-1   i a  Bn n+1 na(l + v) A A p +   „„, ;—. w . r  p 
tr RD(n + 1) (1 — v) 

n(l + v) \TA 

ap 
C  bei  (Xp) - D ber  (Xp)]     sinnG 

Q    = —      C  bei'Xp   - D ber'Xp     cosnG 
^r _,    rr n        n n n 

aR\IA 

Q     = 2   (C  bei  (Xp) - D  ber  (Xp)] sinnG 
° RNTA (ap)       n      n n       " 



N    = -    n(n- 1) A pn~2 + r n " 2       lCnfrc(Ap)_D«f^Up,n  COSn9 

vA (a p) nrd1 

X, 

rG 

M 

n(n-l) Anpn-2--^        ICnfec(Xp) + Dnfed(Xp); 
\l A a 

cos n9 

n(n - 1) A./1"2 __"X
2       'CnfscUp) "DnfsdUp)M   slnn9 

4~K (a p) 

•n(n - 1) B pn~2 + —^— [Cg    Up) - 
R -/A 

nsrd 

M e n(n - 1)  B pn"2 + —*— [Cg     Up) - DngfiH(Xp)] 
R \/A 

nK9dv 

111 re n(n- 1)  B pn"2 +     n(^   V)    [Cngs(Xp) + D  g     Up)] 
n R 4A(\p)      n SC n sa 

sin n6 

In (n- 1) B. 
- pn  3 +  [C  f    Up) - D  f   ,(Ap) ]     cos n6 

aR \l A 
(11-18) 

where 

frc(x) = bei^x) - — bein(x) 

f    ,(x) = ber' (x) — — ber  (x) rd n x n 

fec(x) = bern(x) - i [bei^x) - \ bein(x)] 

fed(x) = bein(x) + 1     ber^x) - IL- bern<x) 

f     (x) = bei' (x) - - bei  (x) sc n x n 

f   ,(x) = ber' (x) ber  (x) sd n x n 

fnc(x) = bei^(x) +   "  (12    v)   [ber^(x) - i bern(x) 

fnd(x) = ber;(x) - S-ilyJ^   [be^(x) - i beijx) 

g     (x) = bei  (x) +       ber' (x) - — ber  (x) 8rc'  ' n x n x n 

g   ,(x) = ber  (x)       bei' (x) - — bei  (x) ferd n x       I       n x n 

gec(x) = ,bein(x) - L_!L      ber^fx) - fL ber^x) 



ged(x) = ,bern(x) + i^i bei' (x) bei (x) 
n x n 

g    (x) = ber' (x) ber (x) 6sc n x n 

1 
g   ,(x) = bei' (x) bei  (x) &sd n x        n 

III.  PROBLEM OF PRESCRIBED EDGE  LOADS AND EDGE MOMENTS 

A.    Prescribed Conditions at Edge 

In this section,   we consider a shell without surface loads acted upon by the following system 

of edge loads and moments at p = 1: 

N    = N    cos nG 
r n 

N   ^ = S    sinnG 
rG        n 

M    = M    cos nG 
r n 

R    = R    cosnG 
r n (III-l) 

where the fixed integer  n  is greater than unity.    A suitable solution to this problem is that given 

by (11-18).    The boundary conditions (II-5) become 

n(n - 1) A    + i1  [C  f     (X) - D  f    .(A)] 
n 2   r-r-  '    n re n rd      ' 

a    \< A 
•N 

n(n - 1) A 
nA 

\TK 
[C  f     (A) - D  f    ,(A)] = S 
'    n sc n sd      ' 

•n(n - 1)  B    +   (C g     (A) - D  g    .(A)] = M 
n      R j-jr '   n6rc n6rdv   " n 

n2(n-l)B   + ——[Cf    (A) - D f   .(A)]   = aR 
n      R N/A       

n nC n nd      ' n 
(III-2) 

Solving (Hi-2) for A    and B ,  we get fe n n' ° 

A    = ~^-A—7T   [S  X, - N  X, +    (aR    + nM  ) X, ] 
n      2n(n — 1)       n   1 n   2 oa n n      3 

Bn =   ,   2,   2 
n + 1 

2n  (n    - 1) 
S    + N ) X. + ^-^   (aR  X, - nM   X,) 

n n      4 aa n    1 n   2 

(III-3) 

(III-4) 

where 

R 

X 
1                1 - v   I            n(n + 1) ,   n3 ll 

1 = S[ ^~   [a2 A—   a3+^2   a4J| 

(III-5) 

„ 1      I . n(1 — y) n+1 n X2 = ^7      ! A     K--T-   "3+"2   a4 
1 I A 

3       A, 



with 

x4 = -L U-LzJL 
2 2 2    2 

2n ,   n n  (n    — 1) (1 - v) 

A A 
(III-6) 

A1=   1- (n +!)(!- v) 
2A 

I 2n ,   n2 \ 
(a2_ — a3+7Z a4J (III-7) 

i      /3, 
(i = 2,3,4) 

(III-8) 

0.  = ber  (A) bei' (A) - bei  (A) ber' (A) 1 n n n n 

/32 = [ber^(A)]2 + [bei^A)]2 

/?, = ber  (A) ber1 (A) + bei  (A) bei1 (A) ^3 n n n n 

/34 = bern
2(A) + bei^A) (III-9) 

It is clear from Fig. 1 that  a   is the slope of the middle surface at the edge of the shell relative 
2 

to the base plane.     By the definition of a shallow shell (Ref. 7),   a    « 1 so that 

2 1 + a    si 

B.   Some Relevant Asymptotic Relations 

(111-10) 

For large values of A,   we have the following asymptotic expansions for ber  (A),   bei  (A), 

ber'(A),   and bei' (A) (Ref. 12): n     ' n 

ber  (A) n 

bei  (A) ~ 

ber' (A) ~- 

H^-i*¥)-^Hw-^•M^)] 
N/2TTA 

iX/4*    f       /  A n   .   n,r\ 

\ ZITX     I        N2 ' 

\/\[2 

(4n    - 1) 
8A (£ - * + ¥) > oft)] 

'2TTA 

X/^2 

cos I )-^»(i-M)-W] A 7T n7T 

^8      2T   ~K- W-V^ 

4n2 + 3 (III-ll) 

From these,  we get 

-l'-^r°(?)l 



a3 - 

a4 ~   41 

+ O 
2A m 

H®] (111-12) 

We shall have occasions to use these results in the subsequent development.    A new parameter 

M-  is defined at this point to take the place of A  in all subsequent asymptotic considerations. 

M =        • (111-13) 
41 

C.   Asymptotic Interior Solution 

For n » n > 1,   the following asymptotic expressions for the X.'s may be obtained with the 

help of (111-12): 

(n-1)i (l-„)   ^ 
1 2|i 

x, ~ i + (n+1),(1--) + O 

(7) 

(?) 

°(?) ' 
(n- -1) (1- -v) 

2^ 

(n- - 1) (1 - -v) x. ~ 1 + ^—^—- + ° 4 Z|j. (7) (111-14) 

Correspondingly,   we have for M » n > 1 

1 
A 

n       2n(n — 1) 
It   <"-!)(*-">   +0 

2M (?)K- _(n-lMl-^)   +Q 
2(1 (7)1 N» 

n^l    f1 +   (n+l)(l-„)   + 0/l \1    {aR    + nM  ,1 
cva 2(i \  2/1 n n 

+ (n-l)(l-,) + 0/l\] +N n±l 
2M. \   2/J       n       n'       aa 

(111-15) 

n      T   2,   2     ., 
2n  (n   —1) 

x   [lt 15=^ t0£)]   ^-^[.-15=^ •<>(£)]    nMnj.      ,„,-«, 

If only the leading terms of the expansions for the X.'s are retained,   (III-15) and (III-16) are 

further reduced to 

A    -   ir~ 7T     [(S    - N  ) +    (aR    + nM   )] 
n       2n(n — 1) n n a a n n 

n       T   2.   2        . 2n  (n    — 1) 
((S    + N ) + ^^—^  (aR    -nM  ) 

n n a a n n 

(111-17) 

(111-18) 

Equations (III-17) and (III-18) are exactly those obtained by Reissner    for the same problem 

(the discrepancy in the sign associated with  a   is due to choice of the direction of the positive 

middle surface normal).    Equations (111-15) and (111-16) show that (111-17) and (111-18) as well 

as their consequences are significant only if 

-   I  (S    + N ) + ^-^  (aR    + nM  )   I  «  I  (S    - N  ) +    (aR    + nM  ) 
fi|vn        n a a n n    ' '      n        n aa n n 

(111-19) 

and 

-   I   (S    + N ) + 2-±-i  (aR    + nM )   I  « I  (S    + N  ) + £ii  (aR    - nM  ) 
n   '  v  n        n aa n n1 '      n        n aa n n 

(111-20) 
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D.   Interior Membrane and Inextensional Bending Stresses 

To examine the relative importance of the membrane and inextensional bending stresses in 

the interior of the shell,   it suffices to consider two representative quantities a^^ and a  „ eiven 
^ 6D rB 6 

by 

N 
9       n(n - 1)    .      n-2 

6D        h h n 

6M 
 r 

TrB ~     ,2 h 

6n(n — 1)   „     n-2 
—;—,—-   B p cos nG 

a„ /hA  \ 

From these,   we get 

,hA 

= °( 
B ' ~n 

For [i. » n > 1,  we have 

hA 
n  _  n(n + 1) h 

15 

(111-21) 

1 + O (?)1 (Sn " Nn> +   '"      V  ' "   I1 + °<? 1 <Sn 
+ Nn> 

    [1 + O(-)] (aR    + nM  ) 

+  ("-*>(*-">   [1 
2^ l 

®] (s„ • -y • =£1 [. • 0(4,)] 1 + O 

X (aR    - nMJ +  i^ *Hi v-±   [1 + O(-)] (aR    + nM  ) 
n n Z|j. ' M- n n (111-22) 

For a given set of N   ,   S   ,   R   ,  and M   ,  the relative order of  magnitude of a„ and  CT„ can be b n     n      n n 6 B D 
obtained by way of (111-21) and (111-22).     In what follows,  we shall restrict our attention to an 

isotropic and homogeneous shell so that [cf. (III-5) and (11-17)] 

ft a  _  a 
h   "   Rh 

slm -v' 
(111-23) 

For the class of problems for which R    = M    = O,   (111-22) becomes 
' n n 

hAn       n(n + 1) \/3(l ) \/3(l -v  ) 
B 

'['•°ft)]   ^-"n^tJ^T —^   [1 + O(-)] [S    + N  ] ' v       n       n 

[1 + O(-)] [S    + N   ] 1 V ' l   n nJ 
(111-24) 

Clearly,  the nature of the interior stress state depends on the relative magnitude of (S    + N ) 

and (S    — N  ).    We now consider the various relative magnitudes and their consequences, 
n n a 

(1)    If  | Sn — Nn |  «  |Sn+Nn|/fi,   we may write (except for higher-order 
terms) (111-24) as 

hAn  _   n(n2 - 1) (1 - v) ^3(1 - vZ) 
B 

(111-25) 
2u" 
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Therewith, 

°(?) (111-26) 

The membrane stresses are therefore small compared with the bending 
stresses in the interior of the shell. 

(2)   If |Sn — Nn|  and | Sn + Nnl/n are of the same order of magnitude,   both 
terms in the numerator of (111-24) are equally important.    Nevertheless, 
we may still conclude that 

5 • °(xf) • o(M 
which is the same as (1). 

(3)    If (Sn - Nn) and (Sn + Nn) are of the same order of magnitude,   we may 
write (111-24) as 

hA ,     ,   ,.    /„,, 2,   ,S    - N  n  _  n(n + 1) \1 
B n \x x   n n' 

S-°(?) (111-29) 
B 

Although the bending stresses still dominate in the interior of the shell, 
the relative order of magnitude between membrane and bending stresses 
is not the same as that of (1) and (2). 

(4) If (Sn + Nn) = 0([Sn - Nn]/V),   (111-28) continues to hold.    But now we have, 
instead of (111-29), 

^n 1 
— = OR       . (111-30) 
aB » 

(5) If (Sn + Nn) = 0([Sn-Nn]/^
2), 

°n 
— = O(i)      . (111-31) 
aB 

The interior of the shell is therefore in a mixed stress state;  that is,  both 
the membrane and bending stresses are equally important. 

(6) Finally,   if (Sn + Nn) « (Sn - N )/\iZ, 

CTn — » 1 (111-32) 
aB 

The interior stresses are predominantly membrane stresses.    In particular, 
if Sn + Nn = 0 (keeping in mind that Rn = Mn = 0),  there would be no 
inextensional bending action in the shell interior [see (III— 3) and (III—4)]. 
On the other hand,   it should be noted that it is not possible to have no 
membrane action for R    = M„ = 0. n n 

For the class of problems for which S    = N    =0,   (111-22) becomes r n n 

12 



hA r 
B 

n(n 1) N/3(1 - v' 

[1 + O(-)] faR    + nM   1 

[l+0(-|)](aRn-nMn)+<"-^l-,)[1+0(l )] (aR    + nM   ) (x'J        n n' 

(111-33) 

(1)    If  | aRn + nMn | /y. «  | aRn - nMn |,   (111-33) reduces,   except for higher- 
order terms,   to 

hAn  _  n(n- 1) V3(l - vZ) 
B 

laR    + nM   ] 
n n | 

laR    - nM 
n n 

(111-34) 

Therewith, 

°«± (111-35) 

In particular,   if aR    + nM 0 (keeping in mind that Sn = Nn = 0), 
there would be no membrane action in the interior of the shell [see 
(III-3) and (III-4)]. 

nMn) are of the same order of magnitude, (2)    If (aRn + nMn)/n and (aRn 
both terms in the denominator are equally important.    If their sum is 
again of the same order of magnitude as each of the terms,  then 

-5 = O(i) 
ffB » 

(III-3 6) 

d) 

Otherwise,  we must investigate the higher-order terms in the asymptotic 
expansions for X^ and X2 to determine whether the interior of the shell 
is in a mixed stress state or a membrane stress state. 

If | aRn - 
we have 

nMr «  | aRn + nMn |/|a,   except for higher-order terms. 

hAn  =   2n(n- 1) ^3(1 - vZ 

B HI n 
(111-37) 

Therewith, 

^ = O(l) 
ffB » 

(111-38) 

Thus,   for the class of problems in which the contribution of S    and N    to A    and B    are negligible, 

the interior of the shell is almost always in a state of inextensional bending.    The only exception 

occurs when (aR    + nM  )/V and (aR    — nM  ) are of the same order of magnitude and 

|(aR    -nM  ) +   (— %^ ^  (aR    + nM  ) I  «  I aR |V     n n 2p. n n ' •      n 
nM (111-39) 

For this exception,   the relevant third-order terms of the asymptotic expression for B    must 

be considered in order to determine whether the interior is in a mixed state or a membrane 

state of stress.    In short,  we may say that,  while self-equilibrating tangential edge loads 

alone may lead to any one of the three possible interior stress states,   it takes a rather special 

13 



combination of transverse load and moment (without tangential edge loads) to induce an interior 

state other than an inextensional bending state. 

E.    Membrane and Inextensional Bending Solution 

If only the membrane and inextensional bending components of the solution are used to 

determine the interior state of the shell without explicit reference to the edge-zone solution, 

the number of constants of integration available for the satisfaction of prescribed conditions at 

the edge is reduced to two:   A    and B  .    Correspondingly,   a reduction of the total number of 

boundary conditions to be satisfied is necessary.    It has been shown that the appropriately 
10   11 contracted stress boundary conditions at the edge p = 1 are     ' 

(N   -N ) + -   (R    - R  ) +  —   (M    -M)Q=0       , r r        ct       r r        aa        r r ,96 

(N c - N Q) --   (R   - R )   _ + —  (M   - M )       = 0      , (111-40) r0 r©        a        r r , 0       aa        r r , 6 

where the quantities N  ,   N   „,   M  ,   and R    must now be taken as the sum of the solutions -i r       rG        r r 
obtained by a membrane consideration and those by an inextensional bending consideration. 

For the present problem,   (111-40) leads to the following expressions for the constants A    and B : 

1 
(S    - N  ) +   (aR    + nM  )]       , (111-41) n      2n(n — 1) n n a a 

B    =   5-^|     [(S    +  N  ) + •S-t-i   (aR    - nM  )]        . (111-42) 
n      «   2.   2      ..   ll  n n aa n n 2n  (n    — 1) 

A comparison of (111-41) and (111-42) with (III-17) and (111-18) shows that the interior solution 

obtained in this way is just the leading term of the asymptotic expansion of the exact interior 

solution.    In view of the discussion of Sec. III-D,   this simple interior solution may not be an 

adequate first approximation of the exact interior solution,   if (III —19) and (III-20) are not 

satisfied. 

F.    Influence Coefficients 

The deformation at the edge of the shell will now be expressed in terms of the applied edge 

loads and edge moments.     From (11-18),   we have,   for p = 1 (or r = a), 

a2B , 
-   + ——  [C  ber  (\) + D  bei  M] w n      D(l — v) rpr       n       n n      n 

naB . 
pn       D(l - v) r^  L   n       n n      n      ' 

a3B r- 
un  =  -na(l + v) AAn +   RD{n + ^ _ u)   *  

(1 + ^A"^   [Cnbei^ M - Dter^M] 

v    =   na(l + v) AA    +   pr^,    x  .."  ;   - "(1 + v) ^A  [C  bei^(A) -D  ber  (X)]       .        (111-43) n n      RD(n + 1) (1 — v) a 'nn nn1 
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where w ,   u      and v    are the three edge displacement components and /3    is the meridional slope 

change at the shell edge.    In order to get the influence coefficients,   we need C    and D    in addition 
n n 

to An and B  .    To compute C    and D      we observe that A    and B    can be eliminated from (III-2) 

to yield 

-5^  {C   [f     (A) + nf    (X)] - D   [f   ,(X) + nf  JX)] }  = -(N    + S  ) 2   r-r-       nl re sc      '        nl rd sd      ' ' n        n 

-^= (Cn[ngrc(X) + Afnc(A)] - Dn[ngrd(A) + Xi^X)]}  - (nMn + aRJ (111-44) 

Solving (111-44) for C    and D  ,   we get b n n 6 

R \TK C    = - n [(aR    + nM  ) (f   . + nf   ,) + aa(S    + N ) (f    , + £ g    ,) A n n      rd sd n n      nd      X  srd (111-45) 

D    =-IL^A[(aR    + nM  ) (f      + nf    )-aa(S    + N ) (f      + £ g    )] n A, n n      re sc n n      nc      X  src ' (111-46) 

where A} was defined by (III-7).    Substituting (III-3),   (III-4),   (111-45),   and (111-46) into (111-43), 

we get the following matrix equation 

KwR        KwM        KwN        KwS 

K/3R K/3M K/3N K/3S 

KuR   KuM   KuN   KuS 

KvR   KvM   KvN   KvS 

\1 

N 

(111-47) 

where the elements of the influence coefficient matrix are 

/a, ., t 1 — v  I 2n n 
KwR = (n> K/?M =  A;    Y - XX   \aZ ~ X a3 + 72  a4 )] 
KwM = V = <IXX) K,N = (2XX> V = ^ KuM - ^ KvM 

n    t     I ,       n(l - v)   I n +  1 n 
 T~     I 1 !—^ L    I a ~> —       a 1   + —7   a A a At   I X \    2 a 3A2      4 )1 

a        t     I , _  I —v   I        _ n(n + 1) _n_ 
"wN " 'wS " "\iR " "vvR ~  n + 1  A1 X       [°2 X        a3       ^2  a4 K   NT = K   C, = K„ = K 

K   .,  = K „ = ( uN vS ^M2^   |[ 

,   2 2 
>   I 2n     -      ,   n \ 
-   (ff2~Xr  «3 + XX4) 

2n2(n +!)(!- vZ) - n2(n2 - 1) (1 - v)Z 

n2(n + l)2 (1 -PZ
) 

IS 



KuS ~ KvN ~ (n + 1}    A, 
L _ n2(nZ - 1) (1 - v)Z + 2n3(n +!)(!- vZ)] 

[1^) «2   [, _ n3(n+l)2
4(l-,

2)j   +   2n2(l-,)   ^    T _ n(n + I)
2 (1 - ,) 

l A. J A I A 

,   n2(l -K) f, _ n3(n+ l)2 (1 - vZ) 
,3     "   ff3 4 

with 

t = (111-48) 
2n (n - 1) (1 -v) D 

For (i » n > 1,   we have the following asymptotic expressions for the flexibility matrix K: 

K 

where 

K ~ t 

a     m 
(n^l)Kp 

a      m <-)2K a'       p 

K na i_a_)Z 
n + 1   "p        (n + 1) a  ,vm n +  l'       p K 

n + 1     p 
na 

K (-^T)
2
 K_ (n + 1) a      m n +  1 

<nfr>K
P 

(n +  1) a     m        (n + 1) a     m 

<irfi>2 \ 

(r^r)K. vn + 1 

*°fe) 

K    = 1 + 
P 

K     =  1 m 

(n - 1) (1 - v) 
Zy. 

(n- 1) (1 -v) 
2ji 

(111-49) 

It should be pointed out that the last two columns as well as the last two rows of the matrix above 

are the same.    So,   we must consider either the higher-order terms in (111-49) or return to 

(111-47) if we want to invert  K to get the stiffness matrix. 

IV.    PROBLEM OF PRESCRIBED EDGE DISPLACEMENTS 

A.    Prescribed Conditions at Edge 

In this section we shall again consider a shell without surface loads.    The shell is subjected 

to a system of edge loads and moments at p = 1 to produce the following edge deformations: 

v    sinnG 
n u = u    cos n6 

n 

w = w    cos nS 
n 

/3     - R    cos nG (IV-1) 

where n ^2.    Again the solution to this problem is given by (11-18).    The boundary conditions (II-7) 

become: 

a2B 

D(l -v 
-  +——   [C  ber   M + D  bei  (\)]   = w 

rrr       n      n n      n n 
VD 

lb 



2„ 
na  B 

D(l -v) + —   [C  ber' (A) + D bei1 (A)]   = a/3 
^Q       n       n n      n Hn 

a3B 
na(l + K) AA    + n(l + v) \I~K 

n      RD( n + 1) (1 - v) [C  bei   (A) - D  ber   (A)]   = v 
'   n      n n       n     J n 

a3B 
na(l + v) A A    + n      RD(n + 1) (1 - v) +   (1 + ^' AN/X   [C  bei' (A) - D  ber' (A)]   = u a l   n      n n       n     ' r 

Solving for A    and B  ,   we get & n n e 

(IV-2) 

A n      ZnaA( 

D(n +!)(!- v) B    = n 

7-7—r  {u  Y, - v  Y, - 2a(l + v) [w  Y, - a/3   Yj) 1 + F)   
l  n   1        n2 '    n   3        Hn   4'' 

^(un+ V Y
5^

Za{i + "]  lWnY6-a/3nY7lj 

2a a 

(IV-3) 

(IV-4) 

where 

1       A.,   l 
n(n +!)(!+ v) 

[«3-r«4]} 

v           !     N       (n +  !)(! + !/) n        n 
Y2=A^  <* A    la2~ A   "311 

Y3       A^2   [°2       A  «3 A3 

'^ih1'^ n(n + 1) (1 + i>) 

'5       A. 

(a. 6       2AA2   *    2       A      V 

•J7 1 / n 

Y7 = 2    (a3 ~ T °U 7       2A^A,        J       X     4 
(IV-5) 

with 

(n + 1) (1 + v)   I 2n ,   n2        \ 
A2 = * 2A    \aZ ~ X a3 + "2  a4J (IV-6) 

The quantities a- and  A  are defined as in Sees. (III-A) and (II-B),   respectively. 

B.    Asymptotic Interior Solution 

For p. » n > 1,   the following asymptotic expressions for the Y.'s  can be obtained with the 

help of (111-12) and (111-13): 

+  (n+l)(l + ,)  +Q 
1 2(j. & 
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'r-jl"r"'0(i) 

^ [(n - 1) + (n + 1) (1 + v)) + o(~) Y, ~   ~     1 + 3       £y. 

4       (2,)2 
'i + Y  [(2n- 1) + (n+ 1) (1 + v)] + O (7)1 

^-(fz)] Y6 ~   2]I   ' 

Y? ~   —^   I1 "  2TI   [(2n + i] ~ (n + 1( (1 + ")] + ° 
(2,x) 

Correspondingly,   we have. 

(?)\ (IV-7) 

1 
n       2naA(l + v) 

2a (1 + v) w 

L _ (n + !)(! + v)   + 

2|i °(^)]*„-h,i±1^1 '^N 
2^ 

2a (1 + v) a/3 

1 +  (n - 1) + (n + 1) (1 + v)   + Qij_ 

(2|x)' 

n  L +  (2n-l) + Ml)(tM  + omjj (IV-8) 

B    ~ n 
D(l - 

2aa I L V   'J 

(7)1 
 n   L  +   (n+i)u   + 0 

2u 2(0. 

2a(1 + P) apn   L   ,   <n + 1) (l + „)-(2n + 

(2H,)
2 I 2fi (IV-9) 

If the contribution from terms associated with w    and /?    can be neglected and if terms of the 

order l/u in the remaining expression for A    and B    are also discarded,   (IV-8) and (IV-9) are 
° n n 

further reduced to 

A 
(u    -v  ) 

n       n 
n 2na(l + v) A 

B n 
D(l-">("+l>   (U   +v) 

(IV-10) 

(IV-11) 
2aa 

respectively.    Equations (IV-10) and (IV-11) are exactly those obtained by Reissner.    From 

(IV-8) and (IV-9),   it is clear that (IV-10) and (IV-11) are valid if 

SI r,  ,   (n + 1) v,      alin  .,   ,   (n+ 1) (1 + v) - (2n + 1) 
w     1 +  5 5—    1 +   n ' 2|a        '        2jx     ' ^T 

«    u    + v 1   n        n1 (IV-12) 
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and 

|u   + v   | 1   n        n 
«    u    - v 1   n        n (IV-13) 

C.   Interior Membrane and Inextensional Bending Stresses 

To examine the relative importance of the membrane and inextensional bending stresses in 

the interior of the shell,   we consider the ratio 

°o / B   \ 

4 • °k) (IV-14) 

From (IV-8) and (IV-9),   we have 

n(n + 1) (1 -v2) a2 

hA
       " A    4t>U n 4(j.  Rh 

1 + (n \ i] v  + o 

li      x.      \ ,A x n/'i,      a(l + v)     \( a/3n\ I (u    + v  ) [ 1 + 0(—)   — —!     {( w    - -=— ) 
\     n        n   l V ' H \    n       2^ J 

2n 

(n + !)(! + v) 

m na/3 

(2|a) 
2   t1+°^l 

2^ (u  +v ) [i +o(l)]- «(n-y) 
n        n    ' M- M- 

+ O (?)1 
na/3 
-j-2 [1 + o( 2(i p. H) 

u    - v  )     1 + O 
n        n 

n       2^ /   | 2p. 
D 

(IV-15) 

For a given set of u  ,   v  ,   w  ,   and B  ,   the relative order of magnitude of a^. and cr_ can be 6 n'     n       n' Hn 6 B I) 
determined by way of (IV-14) and (IV-15).    In what follows,   we shall restrict ourselves to 

isotropic and homogeneous shells so that 

a 
Rh 

\/3(l -vZ) 

Consider the class of problems for which w    = B    = 0 so that (IV-15) becomes r n     rn 

B  n_ 
hA 

= O 
(u    + v  )  [1 + O(-)] 

n        n   ' V 

(u    - v  ) 
n        n 

1 + °®\ +  ("+l>(* + ">   (u    +v )[1 + 0(i)] 
2p. n        n   l V 

(1)    If I u    + v   |/V «  lu v     ,   we have 
n' 

n <• |JL     
x   n        n'J 

.   (IV-16) 

(IV-17) 

Therewith, 

The interior of the shell is therefore in a membrane stress state. 

(2)    If (un + vn)/V and (un — vn) are of the same order of magnitude,   unless 

(IV-18) 
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(u V  )+   (n+D (! + »>)   (U    +V)|«|U    +v   | 
n 2^ n        n  ' '   n        n' (IV-19) 

we have 

-5 = O(i) 
CTD * 

(IV-20) 

For the exception (if (IV-19) holds),   we must consider the relevant 
third-order terms to determine whether the interior stress state is a 
mixed state or an inextensional bending state. 

(3)    If I u    - v   I  «  lu    + v   l/V, \   i i   n        n i i   n        n' 

—  = O(^) (IV-21) 

and again we have a membrane interior stress state. 

The above results should be compared with those given in Ref. 5. 

Consider the class of problems for which u    = v    = 0,   so that 
n        n 

1?  n 
hA = O K-£)h^-°fr)l-$•'•«*' 

("»- *r) I 1 + 2n + (n + 1) v 
2n 

+ °(J2-)1    -^   (1 + 0(1) 
V/J (2u)2 ^ 

(IV-22) 

It is not difficult to see [with the help of (IV-22)] that the interior of the shell for this class of 

problems is almost always in a membrane stress state.    The only exception occurs when 

w_. — (a/3  /2(JL) and a/3  /2p.    are of the same order of magnitude while n ii 

(wn - ifr) 
na/3 

n 

(2HL)
; 

a/3 
*n 

(2M.)2 
(IV-23) 

For this exception,   it may be necessary to ascertain the relevant third-order terms in the various 

asymptotic expansion in order to determine the interior stress state. 

V.    PROBLEM OF PRESCRIBED TANGENTIAL EDGE DISPLACEMENTS 
AND TRANSVERSE  EDGE  LOAD AND MOMENT 

A.    Prescribed Conditions at Edge 

Consider now a shell without surface loads but with the following constraints at the edge 

p = 1: 

v    sinnG n u    cos n6 
n 

M    = M    cosne 
r n 

R    = R    cos n6 r n 
(V-l) 

where n >2.     Substituting into (V-l) the appropriate expressions for u, v,  M  , and R   from 

(11-18) evaluated at p = 1,  we get 

a3B 
na(l + v) A A    + n      RD(n + 1) (1 

_ n(l + ^)NfA bei  (   , _       ber  (   )} = 
o In n* n nJ r 

2() 



- na(l + v) AA    + 
a3B 

n      RD(n + 1) (1 - v) + (i±idWA[Cnbei.U,-Dnber.U,] = ur 

- n(n - 1) B   +  — [C  g     (X) - D  g   ,(A) j = M 
n      R^A n6rc nsrd 

n2(n - 1) B    + —  [C  f    (X) - D  f J\)] = aR 

Solving (V-2) for A    and B ,   we get 
n n & 

A    =   5—— fnM   Z, + aR   Z_ +   -r-rr-,—r  fv  Z0 - u   Zj] n      2naa   l      nl n2      A(l+c)ln3        n   4J; 

=  (n+ 1) (1-JLi   [nM  Z, - aR  Z, +   ..."     .   (u    + v ) ZJ 
n 714 n   5 n   6      A( 1 + v)      n        n      7J 

(V-2) 

(V-3) 

(V-4) 

where 

with 

Z 1      A. 

Z2 " A3 

[l _ n (n   - 1) (1 -vZ)\  +  n(l - v)   t 

n2(n2- 1) (1 -vZ)\       \ -v   \ 

,   n — 1 n 
a2 + ~1^~ ai~ ~2  ai 

n(n — 1) n 
 A    a3~ 71 aA 

k(\> 2n2(n2 - 1) (1 -u)]       1 -v   |        f,       n2(n + 1) (n2 - 1) (1 - y2) 

2nf f   _ n(n+ 1) (n2 - 1) (1-,)2|      j/ 
X M 2A4 J        A2 

•*([' 
2n2(n2 - 1) (1 -v) nla    [1       n(n + 1) (n2 - 1) (1 -/)] 

X       3 I 2A4 I 

,   n2 f,       n2(n+ 1) (n2 - 1) (1 - vZ) 

A2     M A4 

„    _    1    I,      n(l -y)   r (n + 1) ,   n 
Z5 = A^  j1 A    'a2 A"   a3 +  X  "4' 

„ 1     I 1 — y n(n - 1) n 
Z6= A"     * "   "X~   [a2-        A a3~T % 

,    _    1      If,       n2(n2- 1) (1 - v)Z\       l-v   /. 2n2 n2        \ 

[' 
_ 2n2(n2 - 1) (1 -v)\        1 -v   j       f, _ n2(n2 - 1) (n +  1) (1 - vZ) 

A4 \~       X       j    2l ^I4" 
2n2 f,       n(n2 - 1) (n + 1) (1 - vZ)\   ,   n2 f,       n2(n

2 - 1) (n + 1) (1 - yZ) 

~ff311 2? r^°<11 27^  
(V-5) 
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B.   Asymptotic Interior Solution 

For u » n > 1,   the fol 

help of (111-12) and (111-13) 

For JJL » n > 1,  the following asymptotic expressions for the Z.'s may be obtained with the 

„ ,   ,   2(n+ 1) (1 -v)   ,   _ 
Z. ~  1 +   ^    + O 

1 2u 

_ 2n(n + 1)(1-,)   + 

ft) 

ft) 

z    ~  i +  4n2(n+ l)2 (n-1) (1 - v)Z (1 + v)  + 0/_l_\ 

(2|x) V 

z    ^  1 _ 4n2(n + l)2 (n- 1) (1 - v)Z (1 + v)  ^ 
4 (2u)5 ft) x  LI       ' 

2(n-l)(l-,)   + 

5 (2|i) 

_ 2n(n+l)(l-,)  + 0 

6 (2u)2 

z 4nV-!)(!-,)   4 
7 (2n)4 

ft) 

ft) 

ft) 
(V-6) 

At least two terms have been retained from the expansions, regardless of the order of the 

second term. It was shown earlier that these second terms may become significant under 

certain circumstances.    Correspondingly we have 

A    „   _L_   (aR     I _ lnHUi) (1-„)|  + nM +   2(n+l)(l-„) 
n       2noa   1       n   [ (2   ) ^ 

4n2(n + l)2 (n- 1) (1 - v)Z (1 + v) KU        r 

yVn        \.   .   4n2(n+ l)2 (n - 1) (1 - u)Z (1 + »)] 
1 + ">   I <2u)5 I 

I? 

A( 

-2(n + 1) (1 -v  ) 

(2i*)' 
aR       1 - n 

2u) 

2n(n +!)(!- f) 

(2u)2 

a(u„ + v„) 

(V-7) 

- nM    II - 
n l 

2(n-l) (1 -v), L  4n2(n2- 1) (1 - vZ) 
2a A(l + v) 

1 + 
(2u) 

(V-8) 

We 'shall also include for later reference the expressions for A    and B ,   retaining only the 

leading term from the expansions for the Z.'s, 

A 

B 

,        r a(u    — v  ) 1 
T

2—     (aR    + nM ) -     .," ,    ? 
n       2naa   [       n n A(l + v)   \ 

-.i i v / J 2,   r a(u    + v  ) 
-2(n+1)'1-^   ]     (aR    - nM  ) -     .  " +    " 

(2a)4 I       n " A(1 + V) 

(V-9) 

(V-10) 

Clearly,   (V-9) and (V-10) are valid only if 
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n(n + 1) (1 - v) 
2fx 

:\i 
 n       2n(n    — 1) (1 + v)  a   , , 
    +     3      ~r    (U       +   V     ) 

<• (aR    + nM  ) n n 

a(u   — v ) n       n 
A(l + v) (V-ll) 

and 

n(l - v) 
2^ 

(n + 1) aR -   ,   2      ,, 
(n _ 1) M S _ 2"("   T1*  «   (u   + v ) 

p (2^3        A      n        n> 

u    + v 
(aR    - nM T-     .     —r- n n        A     (1 + i> (V-12) 

C.   Direct Derivation of Interior Solution 

Although the particular problem under consideration has not been solved explicitly,  the 

procedure described in Ref. 4 is clearly applicable.    In this section,   an approximate interior 

solution will be obtained by the aforementioned procedure to see its relation to the exact solution 

given in Sec. V-A. 

The meridional and circumferential displacement components   u  and  v  can be expressed in 

terms of the stress function  F  and the normal displacement  w  by way of the strain-deformation 

relations (II-4) as 

u = ~  \    ipdr - A(l + v) F  r = u1 - (1 + v) RAD?; 

nlKWefl A(l + u) F  „ (t + v) RADf   Q , c* 1 , f  !     =   v    —  

where 

r =v2
x 

The quantities u   and v ,   which are the portion of u  and  v  corresponding to the interior state, 

are given by 

+ v) <p u1 =  ^ I    #dr - A(l 

'' = -il(I'*)e; 

, r 

A(l + v) <p 

Corresponding expressions for M    and R    in terms of <p,   ip,   X and  t   are 

M 

= NT- D   \t-(i-v) 

"(r w,r + 7 w,ee)] 

\7 x, r + ~~2 x, eejj 

R    =-D[(VZw)       +  -    (- w   _)      ] r ' , r r        r     , © , r 

R*-D[t   r+   '—^ (U   a) 
r x.  e',rJ (V-13) 
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r=-D[*.rr + ^7*,r + J2*,ee)] 

where 

M r 

and 

Ri=-D[^  (i *#e)<r] (V-14) 

are the portion of M    and R    corresponding to the interior state.    We now approximate M    and 

R    by discarding all terms involving x  explicitly and we are left with 

M    »Ml-Df       , R    ~R1-Dt . (V-15) r r ' r r , r 

(For a justification of this approximation,  the reader is referred to Refs. 4 and 9.)   At the edge 

p =  1,   we have then 

u'-d + i/lRADf       =u    cosnG      , yi_  (1 + v) RAD y    gin n9 
, r        n a ~ , B        n 

Mi-Dt = M    cosn9      , Rl - DK       =R    cos n0       . (V-16) r n ' r , r n 

Now t   can be eliminated from these relations and we are left with 

RA(1 + v) R1 - u1 = [RA(1 + v) R    - u   ] cos nG r n        n' 

and 

D ...   ,     , rRA(l ti;)nM i 
RA 1 + v) ,.. l. l In I ~ ,,r   ,-,\  !  M  )   _ — v   = I v   I   sinn©       . (V-17) a r , 6 a nl 

Substituting into the above two relations the interior portion of the solution listed in (11-18) and 

upon solving for A    and B ,   we get 

i    — v   ) 1 _n rr 
(1 + v)   \ 

f «(u    — v   ) ' 
A    =  ^—     (aR    + nM  ) .  "        "   | (V-18) 

n      2naa   In n A{1  A 

-,i        , i / A 2. r a(u    + v  )i „ -2(n+l)(l-p) I,   _ ... n        n I ,,,   .Q, 
Bn = "        —f 2,   2      4. M 2TT   (aRn ~ nMn] ~    A(l + .) (V"19) 

I (2n)Z J 
Suppressing terms of the order l/p. in the presence of unity,   (V-18) and (V-19) are exactly the 

same as (V-9) and (V-10). 

D.   Interior Membrane and Inextensional Bending Stresses 

Although a detailed discussion similar to that given in Sec. IV-C can be carried out for 

homogeneous and isotropic shells,   we shall limit ourselves in what follows to two special cases 

for the purpose of comparison with the earlier problems. 

For a shell which is free from transverse edge load and moment so that R    = M    =0,   we 

have,   from (V-7) and (V-8),   for (n » n > 1), 

a-r, I B    \ I   ,[(u   -v  ) „    1 -1) 
.B  =0(    ")   =oL2    .   "        Y+ -M . (V-20) 
^D VhAn' I      IK + V       (2HL)

5J      j 
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where 

K = n2(n + l)2 (n - 1) (1 - v)Z (1 + v) 

Thus,   similar to shells with only prescribed tangential edge loads (Sec.III-D),  the interior of 

the shell may be in a membrane,   a mixed or an inextensional bending stress state depending on 

the relative magnitude of the quantities (u    + v  ) and (u    - v  ). b M n        n n        n 
On the other hand,   if the shell is constrained in the tangential directions so that u    = v    =0 

n        n 
we have (for ji » n > 1) 

'B = O O 
(aR nM  ) +  n(i~u) [(n n (JI l DM- ^-i^   aR   ] n 2(x nJ 

(aR    + nM  ) + n n 
n(n +  1) (1 - v) K - V 

(V-21) 

Thus,   similar to shells with prescribed transverse displacement and meridional change in slope 

at the edge (along with vanishing tangential edge displacements),  the interior of the shell is 

almost always in a membrane state (Sec. IV-C).    The only exception occurs when 

aR    + nM 
n n 

() 
/M   \ 

(V-22) 

and 

|(aR    + nM  ) +   n(n+ 1] (1~F)  (M    - ^) |  «  |aR 1        n n [i \    n       Zy.   / ' '       n 
nM (V-23) 

in which case the relevant third-order terms in A    may have to be considered in order to n        J 

determine whether the interior is in a mixed or an inextensional bending stress state. 

Note that these results are in agreement with our earlier observation (Sec. III-D).    They 

demonstrate once again that while self-equilibrating tangential edge loads alone may lead to 

any one of the three possible interior stress states,   it takes a rather special combination of 

self-equilibrating transverse edge load and edge moment to induce an interior stress state 

other than an inextensional bending state. 

VI.    PROBLEM OF PRESCRIBED TANGENTIAL EDGE  LOADS 
AND TRANSVERSE   EDGE  MOMENT AND DEFLECTION 

A.    Prescribed Conditions at Edge 

In this section,   we consider a shell with the following edge conditions at p =  1: 

\ N    cos n0 
n 

\ r6 S    sinnG n 

M M    cosnG 
n 

w = w    cos n0 n 
(VI-1) 

where n > 2.    Note that (VI-1) differs from (III-l) only in the last condition;  the prescription of 

the transverse force R    in (III-l) is now replaced by that of the transverse deflections  w.    For 

fixed values of N  ,   M   ,   and S  ,   the results of this section and those of Sec. Ill are identical,   if 
n        n n 

the R    is taken to be exactly that amount of transverse force needed to produce the transverse 
n 

displacement w  .    On the other hand, the explicit asymptotic interior solution for (VI-1) will 

make some rather interesting conclusions easily accessible. 
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Observing (11-18),   (VI-1) becomes 

2 
frrr \   B    + —  [C  ber  (A) + D bei  (X)] = w D(l — v)      n        rjr l   n       n n      n     ' n 

-n(n - 1) B    + ;—  [C  g    (X) - D  g   ,(A)1 = M 
n      R ^  l   nsrc nsrd     ' n 

n(n - 1) A   + — 
\TA 

[C  f    (X) -D f   ,(X)] 1    nrc n rd      ' 
•N 

nA 
n(n - 1) A 4^— [C  f     (X) - D f   ,(X)] = S 

n 2   r-^  '   n sc n sd      J        n 

Solving (VI-2) for A    and B ,   we get 

where 

A [M    t   n(n-l)(l-,)D  w   1  T 
I    n aZ nl      1 

n(n    - 1) 
|(nN  ) T, -S  T   " 1       n      2        n   3 

. _      r(n + 1) Dw 1 
B    =  ^-rr      5 - T, t M  T. - aa(S    + N  ) T, nn+ll 2 4 n5 n        n      6 

(VI-2) 

(VI-3) 

(VI-4) 

1       A. 

with 

T 1     fi - 1^ L- 24-1 a_ + 4 a^l 
2      A4   I A \    2 A 3       A2      4jj 

T    .    1     L       1 -v \ n(n + 1 

1 -v I n(n +  1 
--5T [a2" x— 

) .   nJ 

"   a3+~2  a4 
X 

T    = — L4      A 

T5-^-<«3-r«4) 

-   a5+-?a4 
A I! 

6       X3A. 

(1 -v). 

B.   Asymptotic Interior Solution 

For \x. » n > 1,   the fa 

help of (111-12) and (111-13) 

2n n \ 
a2~ — a3 +^2  a4j 

(VI-5) 

For \i » n > 1,   the following asymptotic expressions for the T.'s may be obtained with the 
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T   ~ 1 + ^V1^  * 1 Z|ji (*) 

T2 ~  1 - Ztn-DM-,)  4 

T3 ~   1 + 

(2M.) 

2n(n - 1) (1 - v) 

(2ji)2 

(7) 

+   2n(n-l)(l-,) + Q/ 1  \ 

(2^) V   ' 

T ^-2     1 -7-  [(2n-l) + 2H + O ft)] 
T,~  -i,     1+ ^ +0 

6       (2H)3    I 2M Wl (VI-6) 

Correspondingly,   we have 

A    - ±   (L    +  n(n-l)  (1-,)D  w   1  [t +  2(1-,) / 1 \] qa 
ffa   \l    " a2 °J  I 2^ V2'i        n(n2-l) 

nN     11 -  2(n ~ *>  <* ~ v)   + O 
"   ' (2M)

2 yi +   2n(n - 1)  (1 - ,)   + 0^J_ 

and 

(VI-7) 

II' - „) +   2n(n - 1) (1 - v)   + Q 

2M   ! 
n 

(2u) 

(2M)' 

4aa 

m &> 1 - 2"-<^-2-' + o (7)] 

(n + 1) (2M)' 
-^^(-yj^v (VI-8) 

If only the leading term of the expansions is retained,   (VI-7) and (VI-8) become 

_L   |[n(n-l)(l-,)D +M   1   + aa 

«a    I I a
Z n nJ       n(n2-l) 

(nN    - S   ) n        n' (VI-9) 

and 

H    -(!_„,  |DW    +   2'"+;)   M 
n Ian ,.,   ,2 n 

4a a 

(2M)" (n+  1) (2M) 

respectively.    Clearly (VI-9) and (VI-10) are valid as long as 

^   (S    + N ) 3      n        n (VI-10) 

I A\   lA \    n (S       +    N    ) .. n(n — 1) (1 — v) D aa n n 
n 2 n       n + 1 2u 

a 

aa 

« M    + n 
n(n - 1) (1 - v) D 

-   (nN    - S  ) ,2        . n        n n(n    - 1) 

n(n - 1) (1 - F) D 2n - (1 - 2v) w    — n 2M 
M    -   "a'1--)    (S    + N  ) 

n      2M2(n+l)       n n 

(VI-11) 

-.v D w    +  2(n±l)   M 
a      n ,,   ,2 n 

4aa 

(2M) (n +  1) (2M) 
^   (S    + N ) 3       n n (VI-12) 

Z7 



C.    Interior Membrane and Inextensional Bending Stresses 

From (VI-7) and (VI-8),  we have 

 n    _ _ aa(l — v) 
hA h 

v) n _ 2n - (1 - Zv) 

a 4|JL 

x [1 +0(i)] + - 
n(n    - 1) 

x (N    + S )  (1 + O(-)] 
n       n   l M- 

R *=% [• • °G)]+ ^ x a 2(JL '    l V 'J 2p. 

/||n(n-l)(l-,)DWn + Mnj 

"Nn"V  [- O^)]  -ffff^ l V /J        2|a  (n + 1) 

X M — 3   (S    + N  )   [1 + O(-) 
(n + 1)  2\x r 

(VI-13) 

A rather unique feature of the present problem now reveals itself.    In all the problems considered 

earlier,   if we set all but one of the prescribed quantities equal to zero,   the interior stress state 

remains the same for each problem regardless of which quantity is nonzero.    This is not so 

for the present problem. 

If M    = N    = S    =0, 
n n        n 

B 
n 

hA 
n n(n - 1) '73(1 -e2) 

(VI-14) 

whence cr,, » a^ in the interior of the shell. 

If w    = S    = N    =0, 
n        n n 

[1 + O(f)] 

<7r> and CT    are of the same order of magnitude in this case. 

If w    = M    = S    =0, 
n n        n 

B n 1 - V 

n 
N/3(1 -v1) 

(VI-15) 

H 

hA ~v)  [i + CX-) 
n       p. ^3(1 -»' 

(VI-16) 

Therewith, 

(7 

— = CX1) (\ 1-17) 

and we have a membrane interior stress state. 

In arriving at (VI-14),   (VI-15),   and (VI-16),   we have assumed that the shell is homogeneous 

and isotropic so that 

2 
aa 

-7" 3(1 -vZ) 

(VI-18) 
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Under the same assumption,   we now consider the class of problems for which w    = M    = 0 
n n 

For these problems,   (VI-13) reduces to 

 n_  _   n(n — 1) (1 - i<) 
hA 

^3(1 -v' 2(i V3( 

(S    + N  ) [1 + 0( -)] n         n                   |j 

^n-V^^j-^^T-^^n^n' [1 + O(i)] 
(VI-19) 

All three stress states are possible in the interior of the shell, depending on the magnitude of 

(S    + N  )/(nN    — S  ).    Equation (VI-19) should be compared with the corresponding result given 

in Ref. 4. 

VII.   SHELLS WITH  POLAR HARMONIC AXIAL  SURFACE  LOADS 

A.    Solution to Differential Equations 

Let the surface load intensity vector be axial with magnitude 

P  (r, 9)   = Pnpn cosnG (n >1) 
z u 

Within the context of shallow shell theory,   an axial and a normal surface load are completely 

equivalent.     Thus we may write 

P    =   P    = PQpn cosnG (n > 1) 

P    5 P_  = 0 r       e (VII-1) 

The particular solutions to (II-l) with P    as given in (VII-1) are 

Fp       " 4(n + 1) 

P„a2R ., 0 n+2 _ 
p cos no 

w    = P„AR p    cos n6 
P ° 

(VII-2) 

Although the particular solution for  w  has the same form as the inextensional bending component 

of the homogeneous solution,   and therefore may be omitted from further consideration,   it will 

be kept throughout the subsequent development to facilitate later comparisons with existing 

results. 

The corresponding particular solutions for the resultants,   couples,   tangential displacement 

components,   and meridional slope change are: 

n - 2 
X 

rp 
P„Rp    cos n0 N6p =   ILT^   P0Rp" cosnQ 

r9p -r PQRP    sinnB "rp      ^Gp 

\l 
rp 

AI eP 
/         ,\ / ,        \   DAR     T-,     n-2 ^, 

-n(n - 1) (1 — v)   5—   Pop cos n 
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2 
MrQ    = n(n- 1) (1 -v)  2^L_  P0pn-2 sinnG      , 

2 
•n 2. ,\ i,        \   DAR     „     n-3 _ 

rP = n  <n_1Ml -^l    3— PQP cos n6 
a 

n(l + v) AD   n+1 Q v    - — T7—r~rT  P^aAHp sinnG p 4(n + 1)      0        r ' 

(n + 2) (1 + v)   „     AD   n+1 _ 
up = 4(n + 1) P0aARp cos n9      , 

9w ?        , 
-gjB = £ P0ARp"      cosnG (VII-3) 

The complete solutions to the problem can now be obtained by summing these particular solutions 

and the corresponding homogeneous solutions given in (11-18).    The four constants of integration 

which appear in the resulting expressions are to be determined by the constraints at the edge 

p = 1.    For n = 1,   our results are just those obtained by Reissner.5*    Observe that in this case, 

the particular solutions for the transverse shears and the bending moments vanish identically. 

Moreover,   the interior solutions for these quantities and for the in-plane stress resultants also 

vanish identically. 

In the next few sections,   the nature of the interior solution for shells with various types of 

support will be considered.    In particular,  we shall show that,  to the first approximation,    the 

interior stresses of a shell with a clamped edge and one with a simply supported edge are the 

same,   and that the results from a membrane and inextensional bending analysis are equivalent 

to this first approximation of the interior solution.    For n = 1,  the membrane solution turns out 

to be the exact solution to (II— 1) for a shell fixed tangentially but free otherwise.    The interior 

of the shell in all cases is dominated by the membrane stresses.    On the other hand,   for n > 2, 

the interior of a shell with free edge is primarily in a state of inextensional bending. 

B.   Clamped Edge 

Consider first a shell with a clamped edge so that 

u = v = w=|^=0        (atp = l)       . (VII-4) or 

Substituting into (VII-4) the appropriate expressions for the four displacement quantities,   we 

get 

=^-.—^-r  + —— (C ber  (X) + D bei  (X)]  = - PnAR D(l - v) rpj  '    n       nv n      n 0 

2 
na  B . -, 

=j-. —,  + -*- [C  ber' (X) + D bei' (X)]   = -nPnAR D(l - v) i-pT       n       n n      n      J 0 

a3B 
-*1 + ") AAn +   RD(n+l)n(l-,)  " n(1*a')V*   l^be^X) - Dnbern(X)]   = ^^>   P0ARa 

* The particular solution given in Ref. 5 for the radial displacement component is actually the expression for the 
meridional displacement component. 
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a3B 

-na(1 + V) AAn +  RD(n+l)"(l-,)  + ~   V' ^ lCnbein(A> " ^ber^X)] 

Solving (VII-5) for A    and B ,   we have 

An=   M7TT7)   !(n+ 2) Yl + nY
2-

8(n+  D (Y3 -nY4)l       , (VII-6) 

P„a2(l -vZ) 
B

n = - — 4    |Y4-4(n+ 1) (Y6-nY  )]       , (VII-7) 
(2(i) 

where the Y.'s are just those given by (IV-5).    If \L » n > 1,   we have 

A„ ~ ^   [l " V  + O^)]        , (VII-8) 
M 

P„a2(l -./2) 

If terms of the order l/(j. are also suppressed,   (VII-8) and (VII-9) become 

P0R 1 
An~  -fa- [1 + CK-)]      , (VII-10) 

Pa2(l-K2) 
Bn~-— 4    (l + 0(i)]       . (VII-11) 

For |JL » n > 1,   we have 

rofk^) <VII-12> D x n 

2 2 
If the shell is isotropic and homogeneous,   a  /Rh = 0{\i  ),   and therefore 

£-°(?) (VII-13) 

Thus the interior of the shell is in a membrane stress state. 

C.   Simply Supported Edge 

If the shell is simply supported,   the conditions (VII-4) are replaced by 

u = v = w = M    =0 (at p = 1) (VII-14) 

Substituting into (VII-14) the appropriate expressions for the displacement components and the 

bending moment for the present problem,   we have 

a2B 
+ —— [ C  ber  (A) + D bei  (A)] = -P.AR2 

D(1~")       N/D       
n       n n*",nw,J 0 
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, n(n- 1) (1 - v) P_a 
n(n - 1) B^ — [C  g     (A) - D g    ,(A)] = ^— 

R \I~A n6rd      ' 4 

na(l + v) AA   + 
aa\                n(l + ,)VA   rr,K„.   „,      nh..   mi      

n(1 + ^)P0ARa 

n •    D(n+  !)(!-,)  "  1  lCnbeinU) ~ D
n
bein(X)l = "      4(n + 1)  

-na(l + v) AA    + 

2 
aa  B ,,.   ,     ,   nr 

•   r^(     .   ,> ,. ; + —-    C  bei' (A   - D bei'A) n      D(n + 1) (1 — f) a '   n      n n J 

(n + 2) (1 + v) PQARa 

4(n"TTT~ (VII-15) 

Solving (VII-15) for A    and B ,   we get & n n 6 

A 
P0R 

n      8n(n + 1) A, nK, + (n + 2) K2 - 
4("x

+  1}   K3 
+  4n(n    - 1) (1 -v)   K (VII-16) 

Pna
2 (1 -v1) 

Bn = - -^ (K  )       , (VII-17) 

where 

f(l -v) + (n +  1) (1 + v),      (n +  1) (1 -v   )   , n        . 
K,  = a „ — [ r ] +    j    (a -, — — a -,) Ll     "4 2       A   "3' 

i<-    - „ 1 - "        n(n +  1) (1 - v   )   . n        . 
K2 " °4 " — "3    (fV3 - A   °'4) 

EC, L _  n  (n    - 1) (1 -/)]   _   l^jj   f n(n — 1) _ n 
2 A     "   a3      ~Z   a4 

A 

N      °3       A      4 2 

5 4 
2n  (n + 1) (1 - v)\        1 2(n +  1) (1 - v) 2n 

:2        A   "3J 

1+n
2(n+l)(l-,2)j   _j,[(1_,) +  (n+lHl + ,_). 

,  (n + 1) (1 -v   )   , 2n        . 
 1?    [a2-lTa3]        • 

The a.'s are defined by (III-7). 

For (i » n > 1,   we have the following asymptotic expressions for A    and B 

A   ~ ^ li-li^ln 
n 4n 4^ 

$>\ • 

(VII-18) 
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PQa
2(l -v2) 

(2u)4 
1 - (n + 1) (3 -v) 

4K 
+ O m (VII-19) 

If terms of the order l/u are also neglected in comparison with unity,   (VII-18) and (VII-19) 

become 

A   ~ n 

P0R 1 
-r— [1 + OR 
4n     l (j, (VII-20) 

and 

B 
P0a

2(l v   ) 

Uji) 
o(i)] (VII-21) 

A comparison of (VII-18) and (VII-19) with (VII-8) and (VII-9) suggests that,   to the first 

approximation,  the interior state of the shell is the same whether the edge of the shell is 

clamped or simply supported.    To say it in another way:   for shells with a small bending-to- 

stretching stiffness ratio so that n » n ^ 1,  the interior of the shell is rather insensitive to 

the difference between the two types of edge supports.    It is interesting that the second-order 

correction terms in (VII-18) and (VII-19) are exactly half the corresponding terms in (VII-8) 

and (VII-9). 

D.   Membrane Analysis 

Since both types of edge support considered in the last two sections lead to a membrane 

interior state,   we might suspect that the corresponding solution obtained by way of a membrane 

analysis would provide a good approximation to the exact solution for shells with a clamped or 

simply supported edge.    We shall presently show that this is so. 

Let us consider now a shell with vanishing bending stiffness.    The governing equations for 

this membrane shell can be obtained from (II-1) by setting D = 0.    Thus we have 

V2F      =-RP m n RPnp    cos nG 

V2
W •RAV2V2F (VII-22) 

The solutions to (VII-22) for F     and w      are (keeping in mind that the shell is closed at the apex m m r    " 
and that the stress resultants and displacements are finite there) 

a2A      pr 

mn 

PAa2R ^,i 0 n+2 
4(n + 1)   P cos nG 

a2B n AD2  n 
p    + PgAR p cos nG 

(D(l 

Correspondingly,   the tangential displacement components are 

3„ n+1 
A a  B      r 

na(l + y) AA 

(VII-23) 

n-1  , 
RD(n +  1) (1 

n(l + v) aPQARp 
n+1 

4(n + 1) 
sin nG 

33 



3-c n+1 
a B      p n-1  , miv u     = I —na(l + v) AA      p        + „„, m miv RD(n + 1) (1 — v) 

_n+ln 

cosnG      . (VII-24) 
(n + 2) (1 + v) aP„ARp 

+   
4(n + 1) 

The constants A        and B        are determined by the usual membrane (tangentially) fixed edge 

conditions (Fig. 3). 

The result is 

um = vm = 0       (at p = 1)       . (VII-25) 

A       -P»R 

mn        4n 

„     2,, 2, -TI-I7ZZ 
Pa  (1 - v   ) 

B       = - — -.        . , (VII-26) mn ,,   ,4 
(2fi) 

Fig. 3.    Tangential support. 

Thus we see that,   except for the forces and moments associated with the inextensional bending 

of the shell (which are identically zero since the shell offers no resistance to bending),   the 

membrane solution provides a good first approximation to the interior solution.    If the portion 

of the above results associated with B        is regarded as the inextensional bending component 

of the complete solution so that the transverse shears and bending moments can be derived from 

the expression for  w  (D ^ 0 fot this purpose),   a comparison of (VII-26) with (VII-10) and 

(VII-11) or with (VII-20) and (VII-21) shows that the result from such an analysis is,   in fact, 

the leading term of the asymptotic expansion of the interior solution for shells with either a 

clamped edge or a simply supported edge. 

E.   Shells Fixed Tangentially But Free Otherwise 

In this section,   we show that a membrane interior state is still ensured if the last two 

conditions in (VII-4) are replaced by R    = M    =0.    Moreover,   if n = 1,   we have the interesting 

result that the membrane solution turns out to be the exact solution of (II-l).    Inconclusive 

though they may be,  these results provide at least a partial and quantitative substantiation of 

the appropriateness of the edge support used in the membrane theory of shells. 

Consider then a shell with vanishing tangential displacements and transverse-shear 

resultant and moment (Fig. 3). 

u = v = M=R=0       (at p = 1)       . (VII-27) 

For the present problem,   (VII-27) takes the form 
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«<' + » AAn +   RD(n'lMl-,)  " ^^  ^bei^X) - D^e^X,,   .  *I±Z>   P()ARa 

a3B 

-na(1 + "' AAn +   RD(n+l)V,)   +  X(1 + ^)VX   l^be.MA) - D^er^X)] 

_ _ (n + 2) (1 - y) 
4(n + 1) ^0^«a 

P a2 

-n(n - i) B   + — [Ce    (x) - D g   ,(x) ]   = n(n - 1) (1 - p) n     R^      nrc ~n»rd•'      "'"     " *'     "'      4 
X 

P a2 

n (n-1) B   + -A- [C fncU)-D f    (X) ] = n2(n - D ii - v) -\-     . (VII-28) 

Solving (VII-28) for A    and B  ,   we get 

An •  S^iy  f4"2'"2-^ (1-}   <*, •  Z2) * ^ + (n + 2, z,] (VII-29) 

Pna    (1 — i;   )   r      _   2.   2       ..  , . , l 
Bn = - ^T—   [- 2n("   -A:

)(1
-^   (Z5 - Z6) + Z7] (VII-30, 

where the Z.'s were given by (V-5). 

If (A » n ^. 1,   we have 

(VII-31) A    ~ 

B    ~ 
n 

PQa2 (1 -i>2) 

(2K)4 «*)] 1 + 0(—4 )| . (VII-32) 

For a homogeneous and isotropic shell (again (i » n > 1 

CTr, /_2 

i 
D v        u V 

which is the first part of our contention.    Note that correction terms in (VII-31) and (VII-32) are 

0(l/|j.  ) while these same correction terms are 0(l/p.) in Sees. VII-B and VII-C. 

For n = 1,  (VII-29) and (VII-30) become [cf. (V-5)] 

PR 
A1 = -*j— (VII-34) 

and 

-Pna
2 (1 -vZ) 

B,  =  y z        • (VII-35) 
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respectively.    Moreover,  the last two conditions of (VII-28) become 

C.g     (A) -D.g    ,(A) = 0 l6rc l°rd 

C.f    (A) -D.f   ,(A) = 0 1 nc 1 nd (VII-36) 

Of 

C1 = D1 = ° (VII-37) 

Equations (VII-34),   (VII-35),  and (VII-37) constitute the second part of our contention.    It is not 

difficult to verify that the shell is still in a state of over-all static equilibrium. 

F.   Shells Fixed Transversely But Free Otherwise 

As a contrast to (VII-27),   we consider next a shell supported in such a way that (Fig. 4) 

N=N„=w=|^=0       (atp = l) r r6 3r ^ 

Observing (11-18),   (VII-38) becomes 

n(n - 1) A    + —^—  [C  f    (A) - D  f   .(A)]   =  ^-^- PnR n 2   r-r-  l    n re n rd1     ' 4 0 a    v A 

(VII-38) 

n(n - 1) A ^    [C  f    (A) - D  f   ,(A)]   = ~ PnR n 2   nr        n sc n sd     '       4     0 
a    v A 

a2B , ? 
^rr,—°-r  + -1- [C ber  (A) + D  bei  (A)]   = -PnAR 
D( 1 — v)       . I~FZ      n       n n      n 4D 

na  B , ? 
7^ °-r   + -*- [C  ber' (A) + D bei' (A)]   = -nPnAR 
D(l — v)       .rw      n       n n      n 

(VII-39) 

If n > 2,   we may solve (VII-39) for A    and B    to get 

A 
P0R                        2(n + 1) ,   n(n + 2) 

n "   4(n+  1) AQ    \a 2 A"   a3 +  ~2~   °4 
(VII-40) 

P0a
2(l-^)      r 2(n+ L)   / 2na3       n2«4 

Bn =   ..3,    +  .. A      V A—   (a2 ~ ~1T   + -72- 2A   (n +  1) A_    I V A )] (VII-41) 

with 

2n ,   n 
A8 = a2" — a3+7Z-°'4 

A 

•71-1723 

(VII-42) 

Fig. 4.    Normal support. 
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The a.'s are defined by (III-7).    For |x » n > 1,   we have 

n       4(n + 1) (VII-43) 

n        (n + 1) (2u.)3    I Zjx V   2/J (n+ 1) (2^   I ^ V 

For n = 1,   (VII-39) becomes 

2^— {C1[bei^(X) - { beijU)] - D^ber^A) - A ber^X)]} 
a    ^A 

A 

a2^ 
{C^beijfA) -l-bei^XJl-D^ber^A) - A ber^X))} = A PQR 

a2B 
5<nV) ^(^ber^X) + Dlbeil(A)] = -PQAR2 

a2Bl A 7 
D(l - „)   +-—IC^erjtX) + D^ei^A)]  = -PQAR . (VII-45) 

\l D 

The first two conditions of (VII-45) are the same; we are then left with three relations for the 

three unknown B,, C, and D. appearing in these relations. The solution for B is again given 

by (VII-41) with n = 1. 

With all the prescribed edge constraints satisfied,  we are still left with an arbitrary 

constant A.  which appears only in the expressions for the tangential displacement components 

u  and  v.    A closer examination,   however,   reveals that the contribution of the terms associated 

with A. to  u  and  v  is exclusively in the nature of rigid body motion. 

In all cases,   as long as n » n > 1,   we have,   for a homogeneous and isotropic shell, 

— = °(^ ~K)   = O(-) (VII-46) 

Although the membrane stresses again dominate in the interior,   the relative importance of the 

two stress states as given by (VII-46) is more marginal than that exhibited by the shells 

previously considered in this section. 

G.    Free Edge 

Since several types of edge constraints have all led to a membrane interior state for the 

axial surface load under consideration,   we would naturally ask whether there is any set of edge 

constraints which would lead to an inextensional bending interior state.    To answer this,   let us 

consider a shell with a free edge so that 

N=N„  = M=R=0       (at p =  1)       . (VII-47) r rb r r 

Clearly,   this is a permissible set of edge conditions only if the applied load is self-equilibrating. 

Therefore,   we must restrict the integer  n to greater than unity.    Observing (11-18) and (VII-3), 

(VII-47) becomes 

n(n - 1) A    + —~    [C  f    (A) - D  f   .(A)]  =  5-JZ-2- P  R n 2   r-r-   '   n re n rd      ' 4 0 a    \l A 
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n\ 
'' "n        2   r-r- a    vA 

— n(n - • 1) B    +        1 

n      R^ 

n  (n — 1) B    +        1 

n      n.rr 

'Cnfsc(A) - Vsc(X)I   " T P0R 

[C„grn(A) - D„g   ,(X)]   = n(n - 1) (1 - v) 
P a2 

Oa 

'n6rc n6rd ->4 

A 

P a2 

[CnfncU) _ DnfndU) ]  = ~n2(n " *> (1 - •»)  "\-      . (VII-48) 

Solving (VII-48) for A    and B ,   we get s n n' s 

PR 
An =  8n(n-l)   'nXl + (n " 2) X2] <VII"49> 

2 

Bn = -T7-   [X4 - — (n2-4
1)(1-^   (X1 + X2) I       , (VII-50) n      4n''(n<i - 1)  I   4 A

4 12| 

where the X.'s are just those given by (III-5).    For |a. » n > 1,  we have 

An ~   ^   I1 +   (A2~   * 

m 2 

Bn^7^T.   [^-(n"1U1"',)+0l-T»l 4n (n   — 1)   l r V|JL 

If,   in addition,   the shell is homogeneous and isotropic, we have 

a.o^).o(4,)    . 
Thus the interior of the shell is primarily in a state of inextensional bending. 

VIE.    SUMMARY AND REMARKS 

In the foregoing,   we have solved a series of boundary value problems exactly and investigated 

the corresponding asymptotic behavior of the so-called interior solutions subject to the assump- 
4 5 tion [i » n.     For shells without surface loads,   the present work supplemented known results, ' 

with the explicit determination of the second-order corrections to the leading term of the 

asymptotic interior solutions.    These correction terms enabled us to establish the conditions 

under which the leading terms provide an adequate first approximation to the exact interior 

solutions.    They also led us to some refinements of the correspondence between the interior 

stress state and the boundary conditions.    Exact and asymptotic influence coefficients were 

obtained.     For shells with polar harmonic axial surface loads,   our results showed that the shell 

interior is in a membrane state for the various types of edge support considered.    On the 

other hand,   if the edge is free,   the interior of the shell is in a state of inextensional bending. 

It is hoped that these results may contribute to a better understanding of the interplay between 

the interior membrane and inextensional bending stresses. 
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