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MEMBRANE AND BENDING STRESSES
IN SHALLOW, SPHERICAL SHELLS"®

ABSTRACT

The present work is concerned with the nature of the interior solution
and the influence coefficients of shallow, spherical, thin, elastic
shells (or equivalently a shallow, thin, elastic, paraboloidal shell of
revolution) which are homogeneous, isotropic, closed at the apex,
and of uniform thickness. The investigation is carried out within the
framework of the usual shallow shell theory for small displacements
and negligible transverse-shear deformations. Exact interior solu-
tions are obtained for shells acted upon by edge loads and edge mo-
ments. The constants of integration associated with these interior
solutions are expanded asymptotically in inverse powers of a large
parameter. Retaining only the leading term of these expansions leads
(in most cases) to known approximate results. Explicit expressions
for the second-order terms are obtained. It is shown that these
second-order terms play a significant role in a certain class of prob-
lems. The relative importance of the membrane and inextensional
bending stresses in the interior of the shell is discussed. The exact
and asymptotic influence coefficients are obtained. The interior
stress state of shells subjected to polar harmonic axial surface loads

is also investigated by the same procedure.
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the Department of Mathematics at the Massachusetts Institute of
Technology on 17 May 1963, in partial fulfillment of the requirements
for the degree of Master of Science in Mathematics.

iii



I1.

III.

Iv.

VI.

VII.

VIII.

TABLE OF CONTENTS

Abstract
Nomenclature

INTRODUCTION

FORMULATION OF PROBLEM

A. Differential Equations in Polar Coordinates

B. Boundary Conditions

C. Solution to Homogeneous Differential Equations
PROBLEM OF PRESCRIBED EDGE LOADS

AND EDGE MOMENTS

A. Prescribed Conditions at Edge

B. Some Relevant Asymptotic Relations

C. Asymptotic Interior Solution

D. Interior Membrane and Inextensional Bending Stresses
E. Membrane and Inextensional Bending Solution

PROBLEM OF PRESCRIBED EDGE DISPLACEMENTS
A. Prescribed Conditions at Edge

B. Asymptotic Interior Solution

C. Interior Membrane and Inextensional Bending Stresses
PROBLEM OF PRESCRIBED TANGENTIAL EDGE

DISPLACEMENTS AND TRANSVERSE EDGE LOAD
AND MOMENT

A. Prescribed Conditions at Edge

B. Asymptotic Interior Solution

C. Direct Derivation of Interior Solution

D. Interior Membrane and Inextensional Bending Stresses
PROBLEM OF PRESCRIBED TANGENTIAL EDGE LOADS
AND TRANSVERSE EDGE MOMENT AND DEFLECTION
A. Prescribed Conditions at Edge

B. Asymptotic Interior Solution

C. Interior Membrane and Inextensional Bending Stresses

SHELLS WITH POLAR HARMONIC AXIAL SURFACE IL.OADS
A. Solution to Differential Equations

B. Clamped Edge

C. Simply Supported Edge

D. Membrane Analysis

E. Shells Fixed Tangentially But Free Otherwise

¥. Shells Fixed Transversely But Free Otherwise

G. Free Edge

SUMMARY AND REMARKS

iii
vii

Ugow NN

10
11
14

16
16
4T
19

20
20
22
23
24

25
25
26
28

29
29,
30
31
33
34
36
31

38



<

Z
Z,
Z;

NOMENCLATURE

Cartesian coordinates in base plane (plane tangent to apex
of undeformed middle surface of shell) with origin at apex

Distance between base plane and a point on undeformed
middle surface

Distance between a point on undeformed middle surface to
axis of revolution

Polar angle in base plane measured from positive x-axis
Circumferential base vector of undeformed middle surface
Meridional base vector of undeformed middle surface

Unit normal of undeformed middle surface, positive inward
Stress function from which in-plane stress resultants are derivable
Transverse middle surface displacement

Meridional middle surface displacement

Circumferential middle surface displacement

In-plane stress resultants

Moment resultants

Transverse-shear resultants

Rotations of middle surface

Normal component of surface load intensity

Meridional component of surface load intensity
Circumferential component of surface load intensity

Component of surface load intensity in direction of axis of
revolution, i.e., the axial component

Bending stiffness factor
Stretching stiffness factor
Poisson's ratio

Wall thickness of shell
Young's modulus

Value of r at edge of shell

(

r

~
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9
Z2s)

(2]

@

O 1 * UT0 L+ 1220 g

vii



9B
D

O

Bending stress
Direct or membrane stress
Particular solution for quantity in bracket

Radius of spherical middle surface or twice focal length
of paraboloidal surface of revolution
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MEMBRANE AND BENDING STRESSES
IN SHALLOW, SPHERICAL SHELLS

I. INTRODUCTION

One of the characteristic behaviors of shell structures is the coupling between their bending
and stretching actions. Through this coupling, a shell offers more resistance to transverse
loadings than, say, a flat plate of the same dimensions and with the same material properties.
However, accrued to this structural advantage is the price of mathematical complexity. Even
in a linear theory, it is often necessary to introduce additional assumptions based on plausiblc
arguments, if the statics problem of thin elastic shells is to lend itself to manageable solutions.

The membrane theory of shells, for instance, assumes that, away from its edge(s), a
shell prefers to carry the applied loads by the development of the in-plane stress resultants
rather than by the transverse-shear and moment resultants; hence, an approximate interior
solution can be obtained by neglecting terms associated with the bending action in the differential
equations of equilibrium. Such a procedure does, in fact, lead to a good approximation of thc
interior stresses for several types of shells of revolution under rotationally symmetric loads,
and loads varying sinusoidally in the circumferential direction with period 27 (Refs. 1-3). On the
other hand, the correspondence between the interior stress state and the applied loads recently
established by E. Reissner‘l’5 for shallow, spherical shells shows that this is not always true
for self-equilibrating loads. More recently, the same correspondence for shells of revolution
was discussed by C. R. Steele.6

The present work pursues further this subject of membrane vs inextensional bending
interior stress state and examines a larger class of boundary value problcms associated with
small deformations of shallow, spherical, thin, elastic shells (which is the same as shallow,
thin, elastic, paraboloidal shells of revolution) than those explicitly investigated hitherto. My
analysis differs from the earlier writers in that the boundary value problems will now be solved
exactly to obtain the constants of integration associated with the interior solution in terms of
the geometrical and material properties of the shell and in terms of the prescribed loads and/or
constraints. These constants will then be expanded in inverse powers of a large parameter to
unveil the nature of the interior stress state.

»7=9 hecded in the

Some known results for small deformations of shallow, spherical shells5
subsequent development are recapitulated in Sec.Il. Sections 111, 1V, V and V1 deal with shells
without surface loads. The shells are subjected to edge loads and edgc moments in such a way
that the over-all static equilibrium of the shell is maintained. 1n Sec.Ill, shells with prescribed
edge loads and edge moments are considered. Once the asymptotic interior solution is
established, a comparison of the corresponding membrane and inextensional bending stresses

shows how the nature of the interior stresses may vary with the prescribed quantities. The



exact and asymptotic influence coefficients are then obtained. To do this, we need the explicit
expressions for the constants of integration associated with the edge zone solution. Since we
have the explicit expressions for all the constants of integration, the stress boundary value
problem is now completely (and exactly) solved. As a side result, it is shown that the membrane
and inextensional bending solutions, obtained by way of a set of contracted stress boundary
conditions established by M. W. Johnson and E. Reissnerio for shallow, spherical shells, and
later by E. Reissner“ for general shells, are the leading term of the asymptotic interior
solution. Shells with prescribed edge deformations are studied in Sec.IV. Section V deals
with shells whose tangential edge displacements and transverse edge load and moment are
prescribed. Shells with a different type of mixed boundary conditions are treated in Sec. VI.
There, the tangential edge loads and transverse edge deflection and moment of the shells are
prescribed. We then turn to shells with surface loads. In Sec. VII, shells subjected to axial
surface loads in the form of polar harmonics are considered. The nature of the interior stress

state for shells with various types of edge support are investigated.
II. FORMULATION OF PROBLEM
A. Differential Equations in Polar Coordinates

The system of differential equations governing the small deformations of an isotropic,

shallow, spherical shell with constant wall thickness and negligible transverse-shear deforma-

Bl
i TR 20
DVVW—RVP-Pn+ R
AVEV2E 4 % Touwr =l — e (I1-1)
where

w = the transverse component of the middle surface displacement,
F = a stress function representing the direct stress resultants,
R

= the radius of the spherical middle surface,

Pn = the transverse component of the surface load intensity vector,
2 2
2 a7() ., 1 a0) 1 97() 1 1
o b r2 2 L2y v () = () g9
arZ 5 {OF r‘2 892 P o 4 of Py I_2 , 0
1/A = E_h, the stretching stiffness factor,

D= Ebh3/12(1 —v2), the bending stiffness factor,

v = Poisson's ratio,
h = shell thickness,
r, © = polar coordinates in the plane tangent to the apex of the shell,

and where it is assumed that the meridional and circumferential components Pr and Pe of the

surface load intensity vector are derivable from a load potential £ in the form

- _ 9% s 45 -
B Py===os - (II-2)

Some degree of nonhomogeneity is included in the above formulation by allowing an independent

choice of bending and stretching stiffness factors. If the shell is completely homogeneous, then



Eb = ES = E, where E is Young's modulus. The geometrical properties of the shell are shown

in Fig. 1.
The relevant stress resultants and couples are given in terms of F and w by the following

relations (Fig. 2):

=L 1
Nr—rF‘r+r2 LT
N,=F __+8 N _=—(1F )
(SIRENEN, o ) 4 ro T =
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r - ,rr VAT Y r I.2 Y g6 2

B = — D= ) (—f; o (I1-3)
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The meridional and circumferential middle surface displacement components u and v are

related to F and w as follows:

W
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B. Boundary Conditions

To complete the description of the problem, we must supplement the differential equations
with an appropriate set of boundary conditions. Throughout the present investigation, the shell
is to be closed at the apex and is to extend over the region 0 < r g a, 0 £ © < 2r. At the apex
r = 0, the shell is to have finite stresses and displacements. At the edge r = a, four consistent
and independent conditions must be prescribed. Among the possible combinations of edge

conditions are the stress conditions

Nr = Nr‘ Nre = Nre‘ Mr = Mr‘ Rr = Rr, (II-5)
where
oM
_ 1 ro -
R.=Q.* 7 56 (11-6)

andN,M,N
r r

conditions

re’ and ﬁr are the applied edge loads and edge moment; and the displacement

w=w |, u=u |, Gi= Y 5 wr=Br s (11-7)

’

where w, u, v, and Br are the prescribed linear and angular displacements at the edge. In the

subsequent development, other possible combinations are also considered.
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Fig. 1. Geometry of middle surfoce.

Fig. 2. Forces ond moments.



C. Solution to Homogeneous Differential Equations

The solution of the homogeneous system (II-1) is given by5
2
W =B ER . Fj =@ +RDVy (11-8)
where ¢ and ¥ are harmonic functions, i.e.,
2 2
V(p:Vzl):O (11-9)

and y satisfies the equation

2.2 1
vvixt 5 x=0 . (II-10)
DAR

Since the shell is closed in the circumferential direction, the relevant displacement components,
stress resultants, and moment resultants must be periodic functions of © with period 2nm,

n=20,1,2,3... . Retaining only that portion of the solution which leads to the desired finiteness

at the apex, we have

o0
_ n .
Q= Z r (An cosn® + D sinn®)
n=0
o0
=y n . o _ 2
P = Z r (Brl cosne+Ln sinn®) (I1-11)
n=0
and
o0
X = L [Can(kr) + Han(kr)] {Fn cosno + Gn sinn®] ,
n=0
where
ir/4 _ -in/4
k= ——0 |, K= S {11-12)
YDAR? YDAR?

and where Ai’ Bi’ Ci’ Di’ Ei' Fi’ Gi' Hi’ and Ki are arbitrary constants. Jn(x) is the Bessel

function of the first kind and of order n. Properties of these functions can be found in Refs. 12
and 13.
For the present investigation, it suffices to consider only a special case of (II-11); namely,
@ = Anrn cosno o= Bnl"n cosn®

X = [Han(kr) + Han(kr)] cosno® (I1-13)

where An and Bn are real constants; Hn and ﬁn are complex constants with }_{n as the complex
conjugate of Hn to ensure real solutions. In the subsequent development, we shall replace r

by a dimensionless variable p defined by

pE (II-14)

W



so that 0 < p < 1 and take (II-13) in the form of

2
B ZA n o = = Bn n o
¢ =a A p cosn 5 d)_—D(i—u)p cos n
il .
X = —\/B [Cnbern()\p) + DnbEIn()\p)] cosn® (11-15)
where
P (11-16)
4 2
DAR

ber'rl and beirl are the nth order Thomson functions and Crl and Drl are real constants.

For shallow shells with sufficiently small bending-to-stretching stiffness ratio DA, the
dimensionless number A is large compared with unity. For an isotropic homogeneous shell of
constant wall thickness,

X et lipi Py (11-17)

~NRh

and A -« as h - 0. In the present work, we shall be concerned particularly with shells for

which A >> 1. It is known (Ref. 5) that for this range of A, the effect of x is confined to a narrow

zone near the edge of the shell; it is therefore referred to as the edge-zone solution. Away

from the edge, ¢ and ¢ become dominant, together, they are referred to as the interior solution.
Corresponding to (II-15), we have [cf. (1I-3), (1I-4), and (1I-6)]

2 n 1 .
F=3{a"A p — — [C _bei _(Ap) — D _ber ()\p)]l cos n®
n ’\/X n n n n
= ﬁ— i i (G Bor Bio) & B bt el eosan®
A D(i—V)p \/T)—[nernp n I‘lp <
ow naBn n-1 A
e, T L] !
e - [Di )P + e [Cnbern()\p) + Dnbeln()\p)] cos no
3
a B
" n-1 n nt+1
u= {—na(1+ v) AAnp + RD(n + 1) (1_V)P
+ )\(1:1# [Cnbeir'l()\p) — Dnberr’l(xp)]l cos nO

a3B
n
RDn+ 1) (1 —»v) P

1

= +1
v = 1na(1 + v) AAnprl + .

_ n{4 +a:) NA [Cnbein()\p) = Dnbern()\p)]l s5inn®
A 4 sy = '
Q%= aR—ﬂ [Cbei’(rp) — D ber (rp)] cosn®
Q. =— —2 [C_bei (Ap) — D _ber (Ap)] sinn®
E RVA (ap) " " st



-2 A
N =-— n(n—i)Apn +———5— [C f (xp) =D f (Ap)]}] cosn®
n n Vo (azp) nrc nrd
n-2 )\2
N,=1inln—1) Ap - [C £, (Ap) + D f. (Ap)]} cosn®
(€] \/Kaz nec n 6d
. _ n-2 _ ni _ :
I\re =inln—1) Ap —A (azp) [Cnfsc(kp) ansd(xp)]} sinn®
-2 1
M_=1!-nn—1) B p" “+ [C g . (Ap) —D g _(Ap)]; cosn®
r n RaA g eole n®rd
-2 1
M, =inn-1) B pn + [C g, (Ap) — D g . (Ap)]] cosn®
(S} A n®6c¢ n°6d
M. = il = A E e o bl = b)) [C g (rp) + D g _(Ap)]] sinné
re R \/K()\p) n®sc n®sd
nz(n — i Bn n-3 A
A it i [C [ (Ap) =D f_4(Ap)]} cosn® ,  (II-18)
where
nZ
frc(x) = beir'l(x) S bein(x)
nZ
= t i s
frd(x) = bern(x) = bern(x)

]~

2
foc(¥) = ber {x) — [bei;l(x) — “7 bein(x)]

2
= bein(x) + [berr'l(x) — n_x bern(x)]

fi (%)= bei;l(x) - bein(x)

fsd(x) = berh(x) - % bern(x)

nz(i — ) 1
fnc(x) = beir'l(x) + X—Z [ber;l(x) ol bern(x)]
f g(¥) = ber (x) — %2_——") [beih(x) —% bein(x)]

2
(x) = bei (x) + 17" [ber;l(x) = “7 bern(x)]

1—v

2
grd(x) = bern(x) — [bei;l(x) - HT bein(x)]

2

=y [berr'l(x) _n? bern(x)]

‘(x) = vbein(x) =




2

= o n :
beln(x) b beln(x)

ged(x) = ubern(x) +

1
' L
bern(x) = bern(x)

rq
38
"

g_4x) = bei! (x) —% bei_(x)

III. PROBLEM OF PRESCRIBED EDGE LOADS AND EDGE MOMENTS
A. Prescribed Conditions at Edge

In this section, we consider a shell without surface loads acted upon by the following system

of edge loads and moments at p = 1:

Nr = Nn cosn® Nre = Sn sinn® .

Mr = Mrl cos nB s Rr = Rn cos no s (I11-1)

where the fixed integer n is greater than unity. A suitable solution to this problem is that given

by (1I-18). The boundary conditions (II-5) become

A e
n(n — 1) AI’] £ m [Cnfrc(}\) == anrd(}\)] = er
nA -
n(n — 1) An - az A [Cnfsc(h) - ansd(}\)] = Sn
1 N . _
—n{n—1) B_+ i (C 8o\ =D g (W) =M
nefn— 1 B, # —2 e f (&) —DL ] =aR. - (111-2)
n R~NA ‘n nc n nd n
Solving (11i-2) for An and Bn’ we get
B el [ N s Bl G Bt 956 ] (111-3)
n 2n{n — 1) n n2 oa n n 3
aa n+1
Bn D= - [(Sn + Nn) X4 + ~ (aRnX1 - nMnXZ)] s (I11-4)
2n {(n” — 1)
where
o= % (I11-5)
al 1—v n{n + 1) n3
X1=Z1'1— X [0‘2_ x '“3*’}\70‘4]

. 4 n(1 — v) _n+1 n_
e =5, '1_ T ’0‘2 T "at L E “4”



2 2 2, 2
1 1— 2 _ _
X4=_A_1_ li_ }\V [0‘2 ;\1 3+32__0z4+n(n 1;(1 V)]I , (I11-6)
A A
with
A e G Bt AY 1 = o) _2n +n2
i = 5 @, — 5o ay —)\—2-a4> (III-7)
By .
“i B, {i=23,4) (I11-8)
81 = bern()\) bei;l()\) - bein()\) ber;}()\)
By [berr’l(x)]z + [bei! (1))
By = bern()\) berr’]()\) + bein()\) bei;]()\)
B, = ber 2(A) + bei2(a) (111-9)

It is clear from Fig. 1 that « is the slope of the middle surface at the edge of the shell relative

to the base plane.

1+a251

B. Some Relevant Asymptotic Relations

By the definition of a shallow shell (Ref. 7), az << 1 so that

(III1-10)

For large values of A, we have the following asymptotic expansions for bern()\), bein()\),

ber;l()\), and bEI;l(}\) (Ref. 12):

A/NZ 2
ber (A) ~L [cos (—A e n7r) (4n )\_ ) cos(
L N2ma N2
A/NZ 2
bei (A) ~L [sin (~Z‘- ——g + %) (4n8)\— 2) sin(
n N27A NZ
A/N2 2
per!' (A) ~ & [cos (L+ 18’ + %)— 4n 8; = cos (L
vz 2 e
A/N2
bei! (A) ~ £ [sm(i gLy %’)
n N2mA N2
4n2 ES) A LA i RPN N
-7 8x Sm(__z_ﬁ T) ()\2

From these, we get

(II1-11)



= B [1 + o(:—z)] . (111-12)

We shall have occasions to use these results in the subsequent development. A new parameter

p is defined at this point to take the place of A in all subsequent asymptotic considerations.

A
I 111-13
N2 ( )

C. Asymptotic Interior Solution

For p >>n > 1, the following asymptotic expressions for the Xi's may be obtained with the
help of (I1I1-12):

- (n—1) (1 —v) e i (n—1) (1 —v) 1
Xy 1+ — + O( 2) 3 X2 1— =3 O(_Z) "
j M
N (n+ 1) (1 —v) 4 - (n—i)(i—v) 1 _
X, ~ 4+ D2V, 0( 2) B e R e o(—z) . (111-14)
M M
Correspondingly, we have for p >>n > 1
- 1 (n—1)(1—v 'S (n—1) (1 —v) 1
o iy [l R o], - == o (L) 8,
5 na—a1 [1 o e 1)2;(11 — ) o Lz)] (aR_ + nMn)| , (111-15)
B ~ oza “1+(n—1)(1—v 0(1_2)] (S +N)+n+1
nooon (n — ) R n n oa

(n—1)(1—v) 1 n+1 (n—1)(1—v) 1
X [1 +T+O(p_2)] aRn— Y [1— Zh +O(H—2)] nMnl. (1II-16)

If only the leading terms of the expansions for the Xi's are retained, (III-15) and (III-16) are

further reduced to

il

- 1 n-1
n 2n{n — 1)

A {(Sn - Nn) + (aRn + nMn)] E (I111-17)

aa n+1
Bn 2V .2 [(Sn o Nn)

(aR —nMn)] : (II1I-18)
2n"(n” - 1)

Equations (III-17) and (1II-18) arc exactly those obtained by Reissner4 for the same problem
(the discrepancy in the sign associated with « is due to choice of the direction of the positive
middle surface normal). Equations (11I-15) and (I11-16) show that (111-17) and (III-18) as well

as their consequences are significant only if

it 1 n—1

| (s +N)+ (aR_ + nM ) | << | (S, — N+ (aR_ + nMn)l (111-19)

F =

and

n+1

F o

) n+ 1
| 155, & Nk (aR_+nM ) | <=2 (S, L) o —nMn)l (I11-20)
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D. Interior Membrane and Inextensional Bending Stresses

To examine the relative importance of the membrane and inextensional bending stresses in

the intcrior of the shell, it suffices to consider two representative quantities %D and °.B given

by
N
__©6 _nn-1) n-2
%D Th T hn Anp cos nB
6M
_ r _ _ 6n{n—1) n-2
o.p= hz = hz Bnp cos nO

From these, we get

) hAn
e O(B ) (111-21)
B n
For p >>n > 1, we have
hA
(n+1) h 1 = Jona = 1
B o ntt) [1 + o(u—z)] (s, - Ny + 2= =) iy v odyis N
n—-1 1 1 n+1 1
el LR Pl (G nMn)}/ “1 3 O<:Z)] (S, +N) + = [1 + o(F)]
(111-22)

2
_ (n" —1) (1 —») 1
X (aRrl nMn) + n [1+ O(ﬁ)] (aRn + nMn)
I'or a given set of Nn, S , R, and Mn’ the relative order of magnitude of B and oy €an be
obtained by way of (11I-21) and (1II-22). In what follows, we shall restrict our attention to an

isotropic and homogencous shcll so that [cf. (I11-5) and (II-17)]

2 2
@a _ a~ e (I11-23)
h Rh
N3l - uz)
For thc class of problems for which Rn = Mn = O, (II1-22) becomes
hAL  nn+ D301 —03
B 2]
n n
il . (n—1) (1 —v) i
[1 + O( 2)] [Srl N ]+ % [1+ O(H)] (S, + Nn]
x = 3 (111-24)
1+ O(}_J.)] [Sn + Nn]

Clearly, the nature of the intcrior stress state depends on the relative magnitude of (Srl + Nn)

and (Sn = Nn)' We now consider the various relative magnitudes and their consequences.

(1) 1f |Sp— Np| << [Sh + Np|/u, we may write {except for higher-order
terms) (III-24) as

bAy _ amd-n 0 SR vy (111-25)

Bn 2p

11



(2)

(3)

(4)

(5)

(6)

Therewith,

ag
()
B "

The membrane stresses are therefore small compared with the bending
stresses in the interior of the shell.

If |Sp— Npl| and [Sp + Np|/k are of the same order of magnitude, both
terms in the numerator of (III-24) are equally important. Nevertheless,
we may still conclude that

which is the same as (1).

If (Sp — Np) and (Sp + Np) are of the same order of magnitude, we may
write (III-24) as

e _n{n+ 1) 304 — w2 5= Na
B - 2 S +N
n u n n
or
g
. of2)
B M

Although the bending stresses still dominate in the interior of the shell,
the relative order of magnitude between membrane and bending stresses
is not the same as that of (1) and (2).

If (S, + Ny = o({S, — Nn]/p.), (I1I-28) continues to hold. But now we have,
instead of (III-29),

a
1.
=2 - o)
B M

2
IS 4. = B8, ~ Nn]/p ),

T
U_D = 0(1)
B
The interior of the shell is therefore in a mixed stress state; that is, both
the membrane and bending stresses are equally important.
' . 2
F =
inally, if (S + N ) << (S, Nn)/p ,
’D
B

>>1

The interior stresses are predominantly membrane stresses. In particular,
if Sp + Nn = 0 (keeping in mind that Rn = Mp = 0), there would be no
inextensional bending action in the shell interior [see (III-3) and (III-4)].

On the other hand, it should be noted that it is not possible to have no

membrane action for Rn = Mn = 0.

For the class of problems for which Sn = Nn =0, (III-22) becomes
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(I111-26)

(I111-27)

(III-28)

(I1I-29)

(I11-30)

(I1I-31)

(I1I-32)



&_ n(n — 1) 3(1~V2)
B = 2
n "

[1 +O( )][aR +nM ]

, ; T (III-33)
ni= — V) 1
[1 + O(“Z)] (aRn — nMn) + 7 [1 + O(F” (aRn + nMn)
(1) If |aR, + nMp|/u << |aRp — nMp|, (III-33) reduces, except for higher-
order terms, to
+
% _ nln—1) 2 L s Wl (I11-34)
B_ aR —nM =
Therewith,
g
1
Ll (I11-35)
B K
In particular, if aR, + nM, =0 (keeping in mind that S = 0),
there would be no membrane action in the interior of the shell [see
(III-3) and (III-4)).
(2) If (aRn + nMn)/p and (aRn —nMp) are of the same order of magnitude,
both terms in the denominator are equally important. If their sum is
again of the same order of magnitude as each of the terms, then
o
1
2=od . (I11-36)
B K
Otherwise, we must investigate the higher-order terms in the asymptotic
expansmns for X4 and X, to determinc whether the interior of the shcll
is in a mixed stress state or a membrane stress state.
(3) If |aR, — nMp| << [aRn + nMp|/u, except for higher-order tcrms,
we have
hA 2
—n_2nn-19)N31-») (I11-37)
B m '
n
Therewith,
o
2ol . (111-38)
B K

Thus, for the class of problems in which the contribution of Sn and Nn to An and Bn are negligiblc,
the interior of the shell is almost always in a state of inextensional bending. Thc only exception

occurs when (aRrl + nMn)/p and (aRn — nMn) are of the same order of magnitude and
[(aR_—nM ) + B DU =¥ g 4 1M )| << |aR_-aM_| (I11-39)
n n 2u n n n n ’

For this exception, the relevant third-order terms of the asymptotic expression for Bn must
be considered in order to determine whether the interior is in a mixed state or a membrane
state of stress. In short, we may say that, while self-equilibrating tangential edge loads

alone may lead to any one of the three possible interior stress states, it takes a rather special

A3



combination of transverse load and moment (without tangential edge loads) to induce an interior

state other than an inextensional bending state.
E. Membrane and Inextensional Bending Solution

If only the membrane and inextensional bending components of the solution are used to
determine the interior state of the shell without explicit reference to the edge-zone solution,
the number of constants of integration available for the satisfaction of prescribed conditions at
the edge is reduced to two: An and Bn' Correspondingly, a reduction of the total number of
boundary conditions to be satisfied is necessary. It has been shown that the appropriately

contracted stress boundary conditions at the edge p = 1 are™ ™’

—_— = 1 = _
(Nr Nr‘) ta (Rr‘_ Rr') t aa (Mr‘ - Mr‘), 6o - LR
a 1 — 1 .
(Nr‘e = Nre) o (Rr Rr'), o af3 = (Mr‘ = Mr), o= o , (I1I-40)

where the quantities Nr' N Mr’ and Rr must now be taken as the sum of the solutions

ro’
obtained by a membrane consideration and those by an inextensional bending consideration.

For the present problem, (III-40) leads to the following expressions for the constants An and Bn:

R = n—1 )
A Bhn =) ({8 ~ N o ER, # nMn)] , (I11-41)
- aa n+1 _ B
B, = —3 > (s + W) + === {aR_ —aM L . (I11-42)

2n (n” - 1)

A comparison of (III-41) and (1II-42) with (I11-17) and (1II-18) shows that the interior solution
obtained in this way is just the leading term of the asymptotic expansion of the exact interior
solution. In view of the discussion of Sec. III-D, this simple interior solution may not be an
adequate first approximation of the exact interior solution, if (1II-19) and (1II-20) are not

satisfied.

F. Influence Coefficients

The deformation at the edge of the shell will now be expressed in terms of the applied edge

loads and edge moments. From (II-18), we have, for p =1 (or r = a),

aZBn 1 )
Wn = m + ,\/_B' [Cnbern()\) + Dnbeln()\)]
naBn A )
B = Ba—w) + 5 [Cnbern(x) + Dnbeln(k)]
a3B N
u, = —nall +v) AA_+ R ¢ YA (c bein(A) - D ber! ()]

3
aBrl
Vo = mallt +v) AA B T =) T

n{1 +au) NA (C bei (A) =D ber (\)] .  (l1-43)
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where W U and v, are the three edge displacement components and 'Bn is the meridional slope
change at the shell edge. In order to get the influence coefficients, we need Cn and Dn in addition
to An and Bn. To compute Cn and Dn’ we observe that An and Bn can be eliminated from (III-2)

to yield

A
m— {Cn[frc(x) + nfsc()\)] =D [f 4(A) + nf (\)] = —(N_+8)

1)
R~NA

{Cn[ngrc()\) + )\fnc()\)] = Dn[ngrd()\) + )\fnd()\)]} = (nMn a7 aRn) . (I1I-44)
Solving (III-44) for Cn and Dn’ we get

RNA

e J i _
C, = 5, (aR_ + nM ) (f  +nf )+ ealS + NI+ > g )] (1I11-45)
__RANA n
Dn S [(aRn + nMn) (frc + nfsc) - oza(Sn + Nn) (fnc + X grc)] s (I11-46)

il

where Ai was defined by (III-7). Substituting (III-3), (III-4), (III-45), and {III-46) into {III-43},

we get the following matrix equation

Yn KwF{ KwM KwN KwS Rn
] . M
Pn Ko Kgm Kgn Kps .
= ' (I11-47)
Yh KuR KuM KuN KuS Nn
Yn KVR KVM KvN KVS Sn J

where the elements of the influence coefficient matrix are

2 2
a _t 1 —v _2n n
Kwr = &) Kgm = 7, [1_ x ("‘2 T “4)]
| _n+1 n+ 1 _(nt 1
Kom = Kgr = T Koy = 57 Kgg = 57 Ky = 557 Ko

3
1—v n(n + 1) gl
1 - [az————)\ cy3+ 2a4]

t
KwN wS KuR_ VR " n+1a,

) 2
@ 2% B2+ A e 52— i — B AE — B
K =K ( y — 1+
ulN vS n+ 1 A 4
1 7y
' 2 2 2
1 —v _an. +nza 1_n(n+1) (1 —v7)
T T ¥ X %3 W2 4 %
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[1 _ nz(n2 —1) (1 —v)i + 2n3(n + 1) (1 — vz)]
A

3 2 2 2 2
1—v n(n+1)" (1 —v"7) 2n (1 —v) nn+1)"(1—v)
— ) a [1— ] + % [1——4—
2 )\4 )\2 3 X

2 3 2 2
n“(1 — ) n(n+ 1“1 —-v°
+—013 [1_ )\4 H

with

t= 5 : (111-48)
2n(n—1) (1 —v) D

For w >>n > 1, we have the following asymptotic expressions for the flexibility matrix K:

Ao o o
Kp a I\“m (n + 1) Kp (n f2 1) Kp
n n,2 _ ho no
aKm (a) Kp (n+1)aKm (n+1)aKm
t
K~1t +O(?)
a na a 2 o (2
n+1Kp (n+1)aKm (n+1) Kp (n+1) Kp
o no a 2 a
—E K
n+1Kp (n+1)aKm (n+1) Kp (n+1) P

where

K =1+ (n—1) (1 —v)

p 2y
_ (n—1) (1 —v)
Bm = ——am— (111-49)

1t should be pointed out that the last two columns as well as the last two rows of the matrix above
are the same, So, we must consider either the higher-order terms in (11I-49) or return to

(111-47) if we want to invert K to get the stiffness matrix.

IV. PROBLEM OF PRESCRIBED EDGE DISPLACEMENTS

A. Prescribed Conditions at Edge

In this section we shall again consider a shell without surface loads. The shell is subjected

to a system of edge loads and moments at p = 1 to produce the following edge deformations:

VAR sinnG 5 k= u, cos nG .

W =W cos no Br = Bn cos no " (1v-1)

where n > 2. Again the solution to this problem is given by (II-18}. The boundary conditions (11-7)
become:

aZB
n

D(1 —v) T —

= [Cnbern()\) + Dnbein(x)] =4
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2
na Bn A
+ — [Cnbern(h) + Dnbel;l(x)] = aﬁn

D(1 —v)
a3B
n n(1 + v) NA .
na(1 + v) AAn + RO =7 — —a [Cnbeln(x) - Dnbern(x)] = B
a3B NE
- n (1 +v) ANA . ~
na(1 + v) AAn + EDGE T @ =5 + e [Cnbel;](K) —Dnber;l(x)] =u
Solving for Arl and Bn’ we get
S o
An T 2naA(1 + v) {unY1 _VnYZ = 2a(t +v) [WnY3 - aBnY4]}
D(n+ 1) (1 —v)
B_ = _22_ {(un+ v) Yg —2a(1 + v) [wnYé—aBnY.?]}
aa
where
_ 4 nin+ 1) (1 +v) n
Yi_A_2{1+ 3 [y = 5 @yl
A
. A (n+ 1) (1 +v) n
Yz"AZ i = x [, =5 @3]}
1 n 04a 2 L £ o)
¥ o= ol [a F B ]
3 }\AZ 2 A 3 }\3
Y4= 21 [a3+£a4_n(n+1)2(1+u)]
AA A
2
1
Y, = =
5 AZ
Y, = o (@, - o
6~ 2an, (“27 X %3)
1 n
Yo = (a T oa,)
7 ZAZA 3 A 4
2
with
U4, 00 4 2n n’
Brg = 4= A '__(2_7“3+?“4)

The quantities a, and A are defined as in Secs. (III-A) and (II-B), respectively.

B. Asymptotic Interior Solution

(IV-2)

(IV-3)

(IV-4)

(IV-5)

(IV-6)

For p >> n > 1, the following asymptotic expressions for the Yi’s can be obtained with the

help of (III-12) and (III-13):

(n+ 1) (1 +v») !
v~ 14 20 +o(2)
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P (n+1) (1+w) 1

Y3~21_H li+21—p[(n—1)+(n+1) (1+V)]+O(é))
1 1 ’

Yo, 2e—— 1+_[(2n—1)+(n+1)(1+V)]+o(__)]

4 (zmzl 2 2

v ~1+(n+1)(1+v)+o_1__
5 2 HZ

1 vin + 1) 1
Y6 2 [1 + —— + O(_Z)]
M
1 1 1
Y7~_2 li—z—[(2n+ 1)—(n+1)(1+v)]+0<—)\ : (IV-7)
M 2
(2p) M
Correspondingly, we have,

N 1 (n+ 1) (1 +v) 1 (n+ 1) (1 +v) 1
An T |[1———2HL +O<F)] N = ’1+ ——oy v +O(—2)] u,

£

201 + v) w
= n’

1+(n—1)+(n+1)(1+v)+o(%)]

21 2u "
2a{1 + v) ap _
- ) 2 [1+ zn=1) ¢ (e 1) (1) +o(L2)” o
(2u) B

. D1 —v) (n+1) (n+ 1) (1 +v) dl
B ——2—2" “1 g MR T LA om L (—2)] (u, +v,)
aa v

_Za(1+u)Wn ’1+(n+1)u +o(’—)]
2p

2n ,_,_2
. 2a(1 + vz) ag ’1 RECERINE +2u) —f2n ¥ ) O(L)” : (IV-9)
M 2
(2p) H

If the contribution from terms associated with wo and Bn can be neglected and if terms of the
order 1/p in the remaining expression for An and Bn are also discarded, (IV-8) and (IV-9) are

further reduced to

=t
AL~ T Znatt +0) A (IV-10)
B_~ D(_il)(zﬁ’f_“ (w +v,) (IV-11)
2aa

respectively. Equations (IV-10) and (IV-11) are exactly those obtained by Reissner'.5 From
(IV-8) and (IV-9), it is clear that (IV-10) and (IV-11) are valid if

ap
glnt vy _n [ S G WA G+ ot i (IV-12)
" n 'n

Wi [1 2 o

TR
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and

lu + v, |
= |u =9 | (1V-13)

C. Interior Membrane and Inextensional Bending Stresses

To examine the relative importance of the membrane and inextensional bending stresses in

the interior of the shell, we consider the ratio
o B
B _ n
A O(hAn) : (1V-14)

From (IV-8) and (IV-9), we have

B 2, 2 af
i SR L Sl <(un+ vy i1+ oy - ety ‘(wn— —2—“)
n 4" Rh & B B
naf
x [1 DL R o(iz)] =0 [ e (u —v) [1 .3 o(iz)]
s R (2p) a5 R

2p R Zp Zp

> g (IV-15)

For a given set of Uy Vi W and Bn’ the relative order of magnitude of B and 0y can be

determined by way of (IV-14) and (IV-15). In what follows, we shall restrict ourselves to

D V) oy 1ol - a1t ‘(w _f_‘ig) [H(n+1)u+(n-1)
n n n n

1 nag 1
+()(:2)] = L G

isotropic and homogeneous shells so that

2 2
a M

ﬂ =
N3(1 —VZ)

Consider the class of problems for which B = Bn = 0 so that (IV-15) becomes

4l
B (u_+ v )1+ O=))
Ll I = — . (IV-16)
a6 L vy e of Y] ¢ mEB e oL edy)
Yn " Vn HZ 2p o A v
(1) If lun+ an/H << lun—vnl, we have
ri{l =O[Lz (——un+vn)] : (1V-17)
n ™ o Y
Therewith,
a
B el (Iv-18)
%5 "

The interior of the shell is therefore in a membrane stress state.

(2) If (up + vn)/p and (up — vp) are of the same order of magnitude, unless
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I(un — vn) + M—%LV) (un + vn)l << lun i i (Iv-19)

we have

oy 1
5 = O(H) 3 (IV-20)

For the exception (if (IV-19) holds), we must consider the relevant
third-order terms to determine whether the interior stress state is a
mixed state or an inextensional bending state.

(3) If lun—vnl << lun+ an/p.,

°B _ 1
o, - (IV-21)

and again we have a membrane interior stress state.

The above results should be compared with those given in Ref. 5.

Consider the class of problems for which S 0, so that
ag nag
(w __n) 1+(n+—1)"+oL = n [1+O(l)]
B n 2|J. 2u 2 2 [V
n _ 1 M (2p)
ha_ - Oz 38 R 55 . (1v-22)
n " (w_ n)[1+ n+n+1u+o(1)] D ooy
2 ~ag —Z)| — 2! ]
oo * " (2u) &

It is not difficult to see [with the help of (IV-22)] that the interior of the shell for this class of
problems is almost always in a membrane stress state. The only exception occurs when

e, = (aﬁn/Zp) and aBn/sz are of the same order of magnitude while

( aﬁn) naBn aﬁn
Wi k= =

— &< (IV-23)
A dadi® e

For this exception, it may be necessary to ascertain the relevant third-order terms in the various

asymptotic expansion in order to determine the interior stress state.

V. PROBLEM OF PRESCRIBED TANGENTIAL EDGE DISPLACEMENTS
AND TRANSVERSE EDGE LOAD AND MOMENT

A. Prescribed Conditions at Edge

Consider now a shell without surface loads but with the following constraints at the edge

P =t

<
1]

v_ sinn© u=u_cosn® "
n n

»

M
T

M_cosn® R_=R_cosn® (v-1)
n r n

where n > 2. Substituting into (V-1) the appropriate expressions for u, v, Mr’ and Rr from
(II-18) evaluated at p = 1, we get
a3B
“n
RD{(n + 1) (1 —v)

n(1 +v) VA

v . B
na{1 + v) AAn + - = [Cnbeln(k) - Dnbern()\)] = v
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a3B
n

_ (1 +v) ANVA .
na(1 + v) AA + RDin+ 1) (1—p) + ——a—— [Cpbei (X)) — Dnber;l(}\)] 2%
1
—n{n—1) B+ VA [Cngrc()\) - Dngrd(}\)] =L
08 — B B+t (B O~ DT ] = aR
n’ p A nnc n nd Jisad n (V-2)
Solving (V-2) for An and Bn’ we get
A =0 (M Z +aR Z, + 24— (v 2. —u Z |} (V-3
n 2noa n~1 n~2 A1 +v) n“3 n“4 -
(n+1)(1—v2) o
B = T I WM, 2y — aR 2z, + 2% (u) +v)) 2] (V-4)
where
2 2 2
1 A — Ak (4= =) n(i—v)( =4 n )I
Z, = — 1 - F d, t — a, - 5 «
1 A3‘ 2 x 2 x 3702 %a
Z=i|1—“2(“2—““"’2) 11— a_n(n—i)a_ﬁa”
27 3, A x 27 T X %37 7%
_— <1 2icins — =l d=p [1 n?(n + 1)(n2-1)(1—vz)]
37 A, - 4 s Sl Z
3 A ] A
Zn2 n{n + 1) (n2 —1) (1 —v)2 n2
== el = 3 t—7
2N A
z =_1_<[1_2n2(n2—1)(1—v) _t-v | 2n® [1_n(n+1)(n2—1)(1—vz)
4= B, ol A 2 a3 20
n? n’(n+ 1) (n®—1) (1 —vd
t=s o, |1 7
A o
| n(1 —v) (n + 1) n
Zs‘Zgii__x— Iy =~ =% 0‘3+>\“4]}
3
=y —v _n(n-—1) _n”
%6 = 3, ‘1 X [“2 A Z5C 0 CY4”
A I R e TR T
7% &, X % B 3 %87 g
with
. 2’2 - (t-n] 1-v n®(n® — 1) (n+ 1) (1 — %)
Ay= |t - a - (%2t 1
A 2A
2n® nn— 1) (n+ 1)U -vH] . n? n(n® -1+ 1) (1 —vH
- g |t 7] oy 8= 1
20 s 21

21
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B. Asymptotic Interior Solution

For p >>n > 1, the following asymptotic expressions for the Zi's may be obtained with the
help of (1II-12) and (III-13):

%, = 4§ SHEAE —p) +O(-1—)

i 21 HZ
2n(n + 1) (1 —v) 1)(1—u) 1)
Z,~ 1— =
2 (Zu) 3

2. = 4 an’n+ 02— 1-n*+y +O(L)
5 6
(2p) M

R i Gl (R N R L ) +O(L)
5 3
(2p) M

2(n —1) (1 —») 1
Z, ~ 11— =113 =7 +O(—2)

5 (2) "
2n(n + 1) (1 —v) (1)
Z, ~1— + O{—
. (Zu)z HZ
Z7 = gl 4 4n2(n2 — 12}(1 - V) + O(_1_5) ) (V-é)
(2) v

At least two terms have been retained from the expansions, regardless of the order of the
second term. It was shown earlier that these second terms may become significant under

certain circumstances. Correspondingly we have

2n{n + 1) (1 — ) 2in+ 1) (1 —v)
An~ 2noa aRn [1_————2—] +nMn (0 < __T—]
(2p)
%y, [1 4’ 0% -0 =Py u)l
A(1l + v) (ZH)S
oV 2, 2 2
i n 1+4n (n+ 1) (n—1) (1 —») (1+u)” ) (V-7)
A(1 + v) (ZH)S
B ~ —2nt 1)(1—V %) AR [1_ 2n(n + 1) (21—V)
n (2w* - (2p)
2n=1) (1 =v), _ 2 V) [ an®n? —1)(1—11) (Vs
~nM [1———————2}L ]__—A(i ) I (ZH) -8)

We shall also include for later reference the expressions for An and Bn, retaining only the

leading term from the expansions for the Zi's,

(lf(un—vn)
Ay~ Zna/a [(aR +nM ) - B icT N et
2 alu +v.)
_Z(n + 1) (‘l —p ) __I]___L )
Pn” (2™ [(aRn =m0 (V-10)

Clearly, (V-9) and (V-10) are valid only if
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aR 2
nins JU=v)y 0y It DU @,
(2n)
a(un-vn)
<< laR, + oM ) - —r 5 SIS
and
(n + 1) aR 2
n(1 —v) n_ 2nn"—1) ¢
(n—1) M - - — (u_+ v))
21 n M (2}1)3 A i o
” (un + vn)
<< (aRn - nMn) iy T TR (V-12)

C. Direct Derivation of Interior Solution

Although the particular problem under consideration has not been solved explicitly, the
procedure described in Ref. 4 is clearly applicable. In this section, an approximate interior
solution will be obtained by the aforementioned procedure to see its relation to the exact solution
given in Sec. V-A.

The meridional and circumferential displacement components u and v can be expressed in
terms of the stress function I and the normal displacement w by way of the strain-deformation

relations (II1-4) as

1 _ 4
_—ﬁj‘ Ydr — A(1 + v) F,r—u — (1 +v) RAD¢ %

=
) - 4 i A1 + v) F,G_ i_(1+u) RADt,e
VETR e I T
r
where
.r=V2x

The quantities u' and vl, which are the portion of u and v corresponding to the interior state,

are given by

i 1
ut = ESI pdr — A(1 +v) (p,r

. A(l +v) o
1 _ G dr ,0
v——ﬂ(ﬁdr) R
v M &

Corresponding expressions for Mr and Rr in terms of ¢, ¥, x and ¢ are

i 6l
Mr——D[w,rr*}‘u(?w r+;7w,96)]

i 1 di
_Mr—[) [r—('l—l/)(?x,r'*‘?x,ee)] 5

B 2 L e=aps e
Rr =-D v W),r ¥ r (r W, 9), r]
L S
=i, = €+ = (Tx o ¢l R
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where

-

1
Mrz—D[zp,rr+v( ¢'r+? d’,ee)]

and

1—~v
B

i

i 1
RI{ -D | = ‘!’,e),r] (V-14)

are the portion of Mr and Rr corresponding to the interior state. We now approximate Mr and

R. by discarding all terms involving x explicitly and we are left with

: R_~R!-Dt ] (V-15)

(For a justification of this approximation, the reader is referred to Refs. 4 and 9.) At the edge

p =1, we have then

i (1 +v) RAD
v — —— -

= u_ cosn® .
n a

t g =v,sinn®

’

ul—(1 + v) RAD¢? "

ot _ _
Mr — D¢ = Mrl cosn® R_—Dt = Rn cos n® . (V-16)

g Al

Now ¢ can be eliminated from these relations and we are left with
RA(1 +») R' —u' = [RA1 + ) R_— u_] cosn®
r n n
and

RA(1 + v) (Mi)

. RA(1 + v) nM
i n
—r s e—
a ()

= —vn] sinn© . (V-17)

Substituting into the above two relations the interior portion of the solution listed in (II-18) and

upon solving for An and Bn’ we get

1 alu, —vy,)
An © Z2naa [(aRn i nMn) TTA(T +v) (V-18)
2 aflu_ +v)
B -2(n+ 1) (1 —v") n n
B = [(aRn—nMn) — 'm_—v)— " (V-19)

n 2 2 2
4 —-1) (1 -
(21) [1—“‘“ e
(2p)
Suppressing terms of the order 1/u in the presence of unity, (V-18) and (V-19) are exactly the
same as (V-9) and (V-10).

D. Interior Membrane and Inextensional Bending Stresses

Although a detailed discussion similar to that given in Sec.IV-C can be carried out for
homogeneous and isotropic shells, we shall limit ourselves in what follows to two special cases
for the purpose of comparison with the earlier problems.

For a shell which is free from transverse edge load and moment so that Rn = Mn =0, we
have, from (V-7) and (V-8), for (p>>n> 1),

B (Bn) 2 (un_vn) K ]_1’
— = O |—= =0 v + »
D hAn (un + vn) (2“)5

(v-20)
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where

Kznz(n+ 1)2(n—1)(1—u)2(1+u)

Thus, similar to shells with only prescribed tangential edge loads (Sec. III-D), the interior of
the shell may be in a membrane, a mixed or an inextensional bending stress state depending on

the relative magnitude of the quantities (u + v )and (ol — i,

n

On the other hand, if the shell is constrained in the tangential directions so that Ml S T 0,

we have (for p >>n > 1)

n(1 —v) n+ 1
’B _ O( iy ) = Oi (@R, —nMy) + = — ln -0 M, - 5 aR)) (V-21)
c h 2 aR ’
D n [ (aR + nM ) T n(n + 1) (1 _V) M — n
n n o n 2p

Thus, similar to shells with prescribed transverse displacement and meridional change in slope
at the edge (along with vanishing tangential edge displacements), the interior of the shell is

almost always in a membrane state (Sec. IV-C). The only exception occurs when

M
aR_+nM_ = o(T“) (V-22)
and
1) 19 e aR
l(aR_+nM )+ “(“J’—&("_) (Mn - Zun) | << |ar —-nM_| , (V-23)

in which case the relevant third-order terms in An may have to be considered in order to
determine whether the interior is in a mixed or an inextensional bending stress state.

Note that these results are in agreement with our earlier observation (Sec.III-D). They
demonstrate once again that while self-equilibrating tangential edge loads alone may lead to
any one of the three possible interior stress states, it takes a rather special combination of
self-equilibrating transverse edge load and edge moment to induce an interior stress state

other than an inextensional bending state.

VI. PROBLEM OF PRESCRIBED TANGENTIAL EDGE LOADS
AND TRANSVERSE EDGE MOMENT AND DEFLECTION

A. Prescribed Conditions at Edge
In this section, we consider a shell with the following edge conditions at p = 1:

N =N _ cosn®© 5 N =S _ sinn® )
r n ro n

M
r

It

M _ cosn® w=Ww_ cosn® (VI-1)
n n

where n > 2. Note that (VI-1) differs from (III-1) only in the last condition;, the prescription of
the transverse force Rr in (III-1) is now replaced by that of the transverse deflections w. For
fixed values of Nn‘ M , and Sn‘ the results of this section and those of Sec. III are identical, if
the Rn is taken to be exactly that amount of transverse force needed to produce the transverse
displacement W On the other hand, the explicit asymptotic interior solution for (VI-1) will

make some rather interesting conclusions easily accessible.
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Observing (II-18), (VI-1) becomes

2
_a
D(1 - v)

—n{n — 1) Bn +

1

1 . ~
Bn + E [Cnbern(k) + Dnbeln()\)] =W

[C g (A) —Dngrd(k)] . Mn

n-rc

A

nn—1) A_+ = [Cf.A) =D f ,(M]=~N_
na
n(n~1) A - Z i [CofscN) =D f A =S,

Solving (VI-2) for An and Bn' we get

A -ty +0n=DU=v)D | ¢
n «a n aZ n 1
oa
+ —52— [(nN ) T, ~ S T,]
n{n~ — 1)
-y (n+1)Dwrl
B = n+1[ 22 Tyt M Ty —@a(B +N) Té]
where
1
==
1 A4
1 1—u( n+1 n )]
T, == 11— — a, +— «
2 A4 A 2 A 3 }\2 4
o= Lyt [a n(n+1)a+n_3a]
B 4 A 2 A 3 }\2 4
T = 1 1_1—» n{n + 1) +n3
4.7 x |%2 A G5 teeaty
4 A
1 n
) = (o, - —a,)
5 )\ZA 3 A 4
4
1 (1 —v)
I oo, — 7]
6 3 4 A
AA4
with
1—v n n'2
By =4= =¢ ("2‘T°‘3+?°‘4)

B. Asymptotic Interior Solution

(VI-2)

(VI-3)

(VI-4)

(VI-5)

For p >> n > 1, the following asymptotic expressions for the Ti's may be obtained with the

help of (III-12) and (III-13):
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I ~1+—2(—1_—'})+0(L)
1 21 P-Z

2{n—1) (1 — v) (1)
T, ~t-=——""' !+ 0l
(2)° i

Ty~ 14 2=l of L)
K

’ (2p)°
T, ~1+ Zn(n—(zi:)(zi—v) +o(#>
iy 2 (zi)z [1 - ZLH [(2n—1) + 2v] + o(ﬁ)]
Ty = ﬁ [1 i 12—Hv + O(#)l . (VI-6)

Correspondingly, we have
S nn—1) (1 -v) D 2(1 =) Jk aa
An P <[Mn + > Wn] [1 + T + O( Z)I t—
T n(n~ — 1

)
nN [1_ 2n=1) (1 -v) +O(¢>] e [1 , 2ntn—1) (1-v) +O(L>”> (VI-7)
n 3 n 2 H3

a

X
&
{2p) M (2p)
and
2n(n — 1) (1 — v) 1 i 2n — {1 — 2v) 1
B o =il frile s SRR AR N U it Ll (S )
n 2 2 2 Zp, 2
(2n) n a "
2M
x [ nZ] = 4aa : [1 + _12—v + o(%)] (S, +N_) (VI-8)
(2u) (n + 1) (2p) . n
If only the leading term of the expansions is retained, (VI-7) and (VI-8) become
n 1 nfn—1) (1 —») D oa
e [ 7 Wnt Mnl t———=— (nN - Sn)l (=3
a n{n” —1)
and
Bn~(1—u)[§ wo+ ot t oy __ fea g Nn)] . (VI-10)
(2p) (n+ 1) (2p)
respectively. Clearly (VI-9) and (VI-10) are valid as long as
(S + N )
1 nfn—1) (1 —v) D oa n n niln—1) (1t —v) D
m il 2 YnThn+1 2n S [ 2 Yn
a a
aa
+ —s (nNn - Sn) (VI-11)
n(n~ — 1)
iz n(n—i)z(i—v) Bf o Zn—(zi—Zv) M aalt—v) (s, + Nn)l
" a " “ T 2u%n+ 1)
< 2w+ 2—(1”—2” M- — e (s, + Nn)i . (VI-12)
@ (2p) (n+ 1) (2p)
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C. Interior Membrane and Inextensional Bending Stresses

From (VI-7) and (VI-8), we have

& _aa(l —v)
A T h
n

Dw M Dw
n n 1 n{n-—1) (1 — ) n 2n — (1 — 2v)
( + —) [1 + O(_“Z)l + = = 3

Zp.z a 4
XM - — @3 s N+ oY) [n(n—i)(i—u)DW+M
n oy 4 ) 2H3 n n v aZ n n

4 . B (1| _ aalt —)
X [1+0(3)) + P [nN, =S, [1 ¥ O(ﬁ)] 2l 1

=

a 2p

1
X(N_+8)[1+ 0(;)]] ] (VI-13)

A rather unique feature of the present problem now reveals itself. In all the problems considered
earlier, if we set all but one of the prescribed quantities equal to zero, the interior stress state
remains the same for each problem regardless of which quantity is nonzero. This is not so

for the present problem,.

IfM_=N_ =S =0,
n n n

Brl HZ
v (VI-14)

fl i A 83—y

whence g, >> ¢., in the interior of the shell.

Ifw =S =N_ =0,
n n 0l

Bn 1 —v 1
=——tr 1 +03) . (VI-15)
hAn 2 B
3(1 —v")
op and o are of the same order of magnitude in this case.

Ifw =M_=8S_=0,
n n n

B
ﬁ_ =(n—1)(1—l}) [1_{_0(%)] i (VI—ié)
N T
Therewith,
o
B _ 0(1) (VI-17)
25 .

and we have a membrane interior stress state.

In arriving at (VI-14), (VI-15), and (VI-16), we have assumed that the shell is homogencous

and isotropic so that

LU I (VI-18)

T
Sl — %)
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Under the same assumption, we now consider the class of problems for whichw =M = 0.
n n

For these problems, (VI-13) reduces to

By _ntn—1) (1w

hA
e B e

1
(S, + Ny [1+ O(:)]

(VI-19)
(nN_—S,) [1 5 0(1—3)] e DU -V s 4N+ 0(&)1

B 2p
All three stress states are possible in the interior of the shell, depending on the magnitude of
(Sn + Nn)/(nNn = Sn). Equation {VI-19) should be compared with the corresponding result given

in Ref. 4.
VII. SHELLS WITH POLAR HARMONIC AXIAL SURFACE LOADS
A. Solution to Differential Equations

Let the surface load intensity vector be axial with magnitude
Pz(r, o) = Popn cos n® {n >1)

Within the context of shallow shell theory, an axial and a normal surface load are completely
equivalent.5 Thus we may write
- AR n ~
Pn— Pz—Pop cos no (n > 1)

P.=z0 : (Vil-1)

Pr o 3

"

The particular solutions to (II-1) with P as given in (VIi-1) are

P.a R
_ 0 n+2
Fp ~3nt 1) p cos n©
2. 'n "
wp = POAR p cosn® . (VI1-2)

Although the particular solution for w has the same form as the inextensional bending component
of the homogeneous solution, and therefore may be omitted from further consideration, it will

be kept throughout the subsequent development to facilitate later comparisons with existing

results.
The corresponding particular solutions for the resultants, couples, tangential displacement

components, and meridional slope change are:

TR Cr n _n+2 n
l\rp S T PORp cos no© ) Nep 4 PORp cos no© B
T = — 2 n 1 = =
l\rep = y) PORp sinn® ; Qr-p = er =0 )
DAR® |, n-2
M ==—M =—n{n—1) (1 —v) P.p cos no X
rp Op a& 0
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2
DAR n-2 .
Mrep =nin—1) (1 —-v) —az Pop sinnB y
B e 5 G ) DR o
- a3 oP cosn )
__ n{1 ) n+t1 .
vp = 4 T POaARp sinn© :
- n+2)(1+v) n+1
up = TP POaARp cos n® s
aWp n 2 n-1
o PyAR"p cosn® . (VII-3)

The complete solutions to the problem can now be obtained by summing these particular solutions
and the corresponding homogeneous solutions given in (II-18). The four constants of integration
which appear in the resulting expressions are to be determined by the constraints at the edge

p = 1. For n =1, our results are just those obtained by Reissner 5* Observe that in this case,
the particular solutions for the transverse shears and the bending moments vanish identically.
Moreover, the interior solutions for these quantities and for the in-plane stress resultants also
vanish identically.

In the next few sections, the nature of the interior solution for shells with various types of
support will be considered. In particular, we shall show that, to the first approximation, the
interior stresses of a shell with a clamped edge and one with a simply supported edge are the
same, and that the results from a membrane and inextensional bending analysis are equivalent
to this first approximation of the interior solution. For n = 1, the membrane solution turns out
to be the exact solution to (II-1) for a shell fixed tangentially but free otherwise. The interior
of the shell in all cases is dominated by the membrane stresses. On the other hand, for n > 2,

the interior of a shell with free edge is primarily in a state of inextensional bending.
B. Clamped Edge

Consider first a shell with a clamped edge so that

o o W o -
u—v—w—ar—O (at p = 1) 3 (VII-4)

Substituting into (VII-4) the appropriate expressions for the four displacement quantities, we

get
-a——ZBn +—1—(Cb (A) + D_bei (A\)] =—P AR2
D(i == U) m n ern n e11'1 - 0
naZBn A 2
EES— T =\ ] P
Pi—u ' = [C ber!(A) + D beil(A)] = —nPyAR
ND
2B VA
n n(1 + v) VA g _ _ n{1+v)
na{1 + v) AAn + T T Bk ma [Cnbeln(}\) Dnbern(}\)] = et POARa

* The particular salution given in Ref. 5 far the radial displacement component is actually the expression for the
meridianal displacement campanent.
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3B
& B +>\(1+V)'\/_K
RD(n + 1) (1 —v) a

—na(1+v) AA_+ [Cbeil (A) = D _ber! (\)]

M

2) (1
(n_tl(n)T(i%V) PyARa . (VII-5)

Solving (VII-5) for An and Bn’ we have

POR

An = m [(n + 2) Y1 + nY2 —8(n+ 1) (Y3 - nY4)] . (VII-6)
Pyal(1 - v

Bn = — T [Y4 —4(n + 1) (Yé = nY7)] B (VII-7)

where the Yi's are just those given by (IV-5). If p >>n > 1, we have

P, R
0 =
e i welEl]
2 2
Pja™(1 —v"7) -
B,~- L [i- o ()] (V11-9)
(2u) M

If terms of the order 1/u are also suppressed, (VII-8) and (VII-9) become

P.R

B = =g [ 8 O‘ﬁ)] : (VII-10)
P0a2(1 - VZ) 1
B ~——2——— 1+0h7 . (VII-11)
n (Zu)4 [ b :

For p >>n 2> 1, we have

o 2
B _ a i\
e O<_Rh —4) . (VII-12)
D p

If the shell is isotropic and homogeneous, aZ/Rh = O(}.LZ), and therefore

B 1
By O<_2) : (VII-13)

Thus the interior of the shell is in a membrane stress state.

C. Simply Supported Edge
If the shell is simply supported, the conditions (VII-4) are replaced by

a2 =W 2N 200 (at p = 1) . (VII-14)

Substituting into (VII-14) the appropriate expressions for the displacement components and the

bending moment for the present problem, we have

aZB
n

1 ) B 2
DG o [C ber (A) + D bei (A)] = —PjAR

ND
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i n(n~1) (1 —v) Pya’

=y B, - ih [Cngrc()\) - Dngrd()‘)] aai e
aazB (1 +v) P,AR
n v a
1+ 4 n n(1 + v) VA . _ . _ 0
b & Ady D(n + 1) (1 —v) a [Cnbeln(x) Dnbeln(x)] 4(n + 1)
a/azB
- n A1+ v) NA . .
na(1 + v) AAn + D+ 1) (1 =) g [Cnbeln()\) = Dnb81 (A)]
(n+2)(1+v) PjARa
- a(n + 1) (VII-15)
Solving (VII-15) for An and Bn' we get
P R 2
_ 0 4(n + 1) 4n{n” — 1) (1 —v)
P = T A | MR G, = = A = K,| . (ViI-16)
Poa2 (1 —uz)
B - ——— (K) (VII-17)
(2}1) Aé
where
“ =m0, e =Y 0
1t gL x ] > @y =3 @4
1 —v n(n+1)(1—u2) n
L R i 3 =5 80
w ol e’ -nu-vi] 1w _nln-1) _ _n
B 4 R R x <3 z 4
A A
_ n _n{n + 1) (1 +v)
e T
A
2
_ 2n"(n+ 1) (1 —v) 1 2(n+ 1) (1 —v) 2n
Ks—a4[1+ }\4 ]—x[(i—v)+2(n+1)]+—- }\2—— [az—Try3]
nn+ 1) (1=v5] 1 (n+ 1) (1 +»)
A6=a/4[1+ 2 ]—T[(i_l’)+'—“—2'—]
2A
(n+1) (1 —v% 2n
s (o, — 5 a,]
2}\2 2 A 3,
The a,'s are defined by (III-7).
For p >> n 2> 1, we have the following asymptotic expressions for An and Bn
R-R
o0 B L .
A, ol +0( 2)] ! (VII-18)

"
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2 2
P.a (1 —-v")
S (i O (n+1) (3 -v) (1)]
B {1 + O{— . (VI1-19)
n (ZP-)4 Em P-Z

1f terms of the order 1/}1 are also neglected in comparison with unity, (VII-18) and (V1I-19)

become
POR 1
B s O(:)] (VII-20)
and
Pya’(t —v?) .
B & ———a—— el - Rl
(2p) i

A comparison of (V11-18) and (VII-19) with (V11-8) and (V1I-9) suggests that, to the first
approximation, the interior state of the shell is the same whether the edge of the shell is
clamped or simply supported. To say it in another way: for shells with a small bending-to-
stretching stiffness ratio so that p >> n > 1, the interior of the shell is rather insensitive to
the difference between the two types of edge supports. It is interesting that the second-order
correction terms in (V1I-18) and (V11-19) are exactly half the corresponding terms in (V1I-8)
and (VII-9).

D. Membrane Analysis

Since both types of edge support considered in the last two sections lead to a membrane
interior state, we might suspect that the corresponding solution obtained by way of a membrane
analysis would provide a good approximation to the exact solution for shells with a clamped or
simply supported edge. We shall prescntly show that this is so.

L.et us consider now a shell with vanishing bending stiffness. The governing equations for

this membrane shell can be obtained from (1lI-1) by setting D = 0. Thus we have
n
v'F_ = -RPn == RPOp cos nB

—RAVZVZFm . (VI1-22)

<
=
1

The solutions to (VI1I-22) for Fm and w  are (keeping in mind that the shell is closed at the apex

and that the stress resultants and displacements are finite there)

2
P.a R

2 n 0 n+2
Fm - [a Amnp “4mn+ 1 P ] eosne

2

a B

mn n 2.n
P o =2

Wi [D(1 =0 A P,AR"p ] cosn® . (VII-23)

Correspondingly, the tangential displacement components are

13 n+1 n+1
+ P
= a anp n(1 + v) a 0ARp

" TRDmTO(d—v) 4+ 1)

sinn®

W= [na(i + ) AAm
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3 n+1
n-1 & anp
" T RDm+ 1) (1-»)

u_ = f—na(1 +v) AA
m m

(n+2)(1+) aPOARp““

+ Ao+ D) cosno . (VII-24)

The constants Amn and an are determined by the usual membrane (tangentially) fixed edge

conditions (Fig. 3).

= e 0 (at p = 1) . (VII-25)
The result is

N ) POR

mn ~ 4n 4

-TI‘ITZZ
Pya’(1 —v?)

B = _-— . (VII-26)

mn (Zp)4 I o

7 ¥

Fig. 3. Tangential support.

Thus we see that, except for the forces and moments associated with the inextensional bending
of the shell (which are identically zero since the shell offers no resistance to bending), the
membrane solution provides a good first approximation to the interior solution. If the portion
of the above results associated with an is regarded as the inextensional bending component

of the complete solution so that the transverse shears and bending moments can be derived from
the expression for w (D # 0 for this purpose), a comparison of (VII-26) with (VII-10) and
(VII-11) or with (VII-20) and (VII-21) shows that the result from such an analysis is, in fact,

the leading term of the asymptotic expansion of the interior solution for shells with either a

clamped edge or a simply supported edge.

E. Shells Fixed Tangentially But Free Otherwise

In this section, we show that a membrane interior state is still ensured if the last two
conditions in (VII-4) are replaced by Rr = Mr = 0. Moreover, if n = 1, we have the interesting
result that the membrane solution turns out to be the exact solution of (II-1). Inconclusive
though they may be, these results provide at least a partial and quantitative substantiation of
the appropriateness of the edge support used in the membrane theory of shells,

Consider then a shell with vanishing tangential displacements and transverse-shear

resultant and moment (Fig. 3).

u=v=M_ =R =0 (atp=1) . (VII-27)

For the present problem, (VII-27) takes the form
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a3B
0]

i _n(1+v)\/X h _ _ n{1+v)
na(t +v) AA_ BB TD @egl - a1 — (C bei (A) D ber (A)] = a(n+ 1) PoAR2
a3B
_ n At + ) NA '
na(t +wv) AA_+ Rbm+n(-n * - (Cbeil (A} = D _ber! (A)]
o ) )
- Wit 4 ool
Poa2
—n{n — 1) Bn + [Cngrc(}\) - Dngrd(}\)] =n{n—1) (1 —v) }\4
2
nn—1 B + 2 (Cct q D f S 1 Fo? (VII-28)
s Rﬂ[nncm_ nnc(h)]—n(n—)(i—v) A4 &
Solving (VII-28) for An and B, we get
PR 22
_ 0 4n"(n” —1) (1 —v)
An = Saln + 1) [ }\4 (Z1 + ZZ) + nZ3 + (n + 2) Z4] (VII-29)
2 2
P.a”" (1 —v"%) 2 2
0 [ 2n(n“ = 1) (1 —v) ]
B =s————— |- — =V _z)+ 2 (VII-30)
n 4}\4 }\4 5 6 7
where the Zi's were given by (V-5).
If w>>n>1, we have
Pt 1
An ~ T [1 + O(—4)] (VII-31)
o
Poa2 (1 — vz) 1
Bil~h=i—————————— [1 + O(*)] . (VII-32)
n 4 4
(2p) (o
For a homogeneous and isotropic shell (again p >>n > 1),
g 2
B a 1 = 1 ¥
%-O(m —4)-0( 2) 5 (VII-33)
H o

which is the first part of our contention. Note that correction terms in (VII-31) and (VII-32) are
O(1/p.4) while these same correction terms are O(1/u) in Secs. VII-B and VII-C.
For n =1, (VII-29) and (VII-30) become [cf. (V-5)]

POR
A1 T (VII-34)
and
—Poa2 (1 — vz)
B1 = T , (VII-35)
(2p)
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respectively. Moreover, the last two conditions of (VII-28) become

Cigrc(x) - Digr‘d(x) =it

CyifpcA) =Dyf 4(A) =0 (VII-36)
or

C1 =D, =0 . (VII-37)

Equations (VII-34), (VII-35), and (VII-37) constitute the second part of our contention. It is not

difficult to verify that the shell is still in a state of over-all static equilibrium.

F. Shells Fixed Transversely But Free Otherwise
As a contrast to (VII-27), we consider next a shell supported in such a way that (Fig. 4)
- cw = W = =
Nr_Nre_W_ o =0 (at p = 1) . (VII-38)

Observing (11-18), (VII-38) becomes

A n—2
n(n—1) A_+ [Cf (A =D f (A)] = P.R
noog Ve nrc nrd 4 0
A n
sty = 4 Ay — — € B {0 —B F = PR
n aZ e n sc n sd 4 70
aZBn 1 . .
TR + _D [Cnbern(x) + Dnbeln(x)] = _pOAR
naZB A §
50 _n). + — [C_ber!'(A) + Dnbei;l(x)] = —nPOAR : (VII-39)
iy 0 @
If n > 2, we may solve (VII-39) for An and Bn to get
PHIRS
R R 2(n + 1) n(n + 2) )
S 4(n + 1) A8 [az - A gt 7\2 oy (VII-40)
2 2
P.a"(1 —v) 2no n o
B, = —(3)— [1 - Z(nx+ Y (“2_ ) = 24)] , (VII-41)
Toaatn+ 1) o, A
with
2
2n n
A, =0, —aa,t o ] (VII-42)
8 2 A3 72 4 E
n/ \

Fig. 4. Normal support.
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The ozi's are defined by (III-7). For u>>n > 1, we have

P.R
0 1 1

A~ Amr 1) [1 =, O(Hz)] (V11-43)
2

P.a"(1 —v)
.0 ’ 2n + 3 ( 1 )]
B = + 01— - (VIl-44)
B tn+ 1) (23 By u’

For n =1, (VII-39) becomes

—2—(c, beil(A) = £ bei, (A) ; L al L
aZ»\/X 4 [beiy ot ei,( ]—Di[ber1()\)—x beri()\)]} S -
e {C [bei!(A) — + bei {(\}] = D, [ber {A) — - ber, (A) ) e dip R
R L A 1 1 1 eyl = s By
D(1 — v} \/B( (ber (A) + D bei ()] = —P AR
a2B1 A 2
DI — 1) +Elciber{()\) Dy e = SEL AR ; (V11-45)

The first two conditions of (VI1-45) are the same; we are then left with three relations for the
three unknown Bi’ C1 and D1 appearing in these relations. The solution for B1 is again given
by (VII-41) with n = 1.

With all the prescribed edge constraints satisfied, we are still left with an arbitrary
constant A1 which appears only in the expressions for the tangential displacement components
u and v. A closer examination, however, reveals that the contribution of the terms associated
with A1 to u and v is exclusively in the nature of rigid body motion.

In all cases, as long as p >> n 2> 1, we have, for a homogeneous and isotropic shell,

% - o(;—i u%) = 0(&) . (VII-46)
Although the membrane stresses again dominate in the interior, the relative importancc of the
two stress states as given by (VI[-46) is more marginal than that exhibited by the shells

previously considered in this section.

G. Free Edge

Since several types of edge constraints have all led to a membrane interior state for the
axial surface load under consideration, we would naturally ask whether there is any set of edge
constraints which would lead to an inextensional bending interior state. To answer this, let us

consider a shell with a free edge so that

Nr = Nre = Mr‘ = Rr =0 (at p = 1) . (VII-47)

Clearly, this is a permissible set of edge conditions only if the applied load is self-equilibrating.
Therefore, we must restrict the integer n to greater than unity. Observing (II-18) and (VI1-3),
(VII-47) becomes

A
n{n — 1) An c m [Cnfrc()\) = anrd()\)]

=n—2P

3 PoR
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n aZ A n's 0
1 POaL2
—n(n—1) B_+ —— [Cngrc(x) —Dngrd(x)] =nn—1) {1 —v) X
2
poin =B =t G —D T = =i 4 [0 -] all (VII-48)
- - =—n(n-— —v -
n R VA n nc n nd >\4
Solving (VII-48) for An and Bn' we get
POR
AL Sam—p hXy +(n=2) X, (VII-49)
2
P.a 25
0 4n“(n“ = 1) (1 —v)
B =—5—5—— [X — (X, + X )] s (VII-50)
B gl L 2 o i+ 52
where the Xi's are just those given by (III-5). For p >>n > 1, we have
PLR
. _0 (1 —v) 1
An 4n [1 0 2p ’ O(:z)] (W TL=5)
2
P a
Bn - %_ [1 = %}_—_”) ¥ o(%)] ) (VII-52)
4n"(n" — 1) ke v
If, in addition, the shell is homogeneous and isotropic, we have
o
=B o(%“) = o(i) : (VII-53)
(og 2
B a N

Thus the interior of the shell is primarily in a state of inextensional bending.

VIII. SUMMARY AND REMARKS

In the foregoing, we have solved a series of boundary value problems exactly and investigated
the corresponding asymptotic behavior of the so-called interior solutions subject to the assump-
tion p >>n. For shells without surface loads, the present work supplemented known results,4’5
with the explicit determination of the second-order corrections to the leading term of the
asymptotic interior solutions. These correction terms enabled us to establish the conditions
under which the leading terms provide an adequate first approximation to the exact interior
solutions. They also led us to some refinements of the correspondence between the interior
stress state and the boundary conditions. Exact and asymptotic influence coefficients were
obtained. For shells with polar harmonic axial surface loads, our results showed that the shell
interior is in a membrane state for the various types of edge support considered. On the
other hand, if the edge is free, the interior of the shell is in a state of inextensional bending.

It is hoped that these results may contribute to a better understanding of the interplay between

the interior membrane and inextensional bending stresses.
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