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SUMMARY

A study of the aluminum alloy 2024-T4 under random and con-
stant amplitude axial faiigue loading, was undertaken using 15.00 unnotched ex-
truded bar specimens. In the constant amplitude test series, it was dis-
covered that the stress amplitude - endurance (S-N) relation is well repre-
sented by two separate failure distributions such that, as the stress amplitude
is lowered, the one distribution recedes while the other distribution becomes
predominant. The knee of the S-N curve is then considered as a transition
from endurances predominantly of the one distribution to endurances pre-
dominantly of the other.

A series of two-level "single-jump" constant amplitude tests
were also carried out. It was found that for the low pre-stress - high test
stress tests, the linear rule of cumulative damage could be used, while for
the high pre-stress - low 'runout' stress tests, the ideas of Corten and Dolan
appear to work well.

In order to apply random amplitude loads to specimens, a
fatigue machine was specially designed, having a 600 lb electromagnetic
shaker driven by random noise as its prime mover. By placing a lever be-
tween the shaker and the gripping jaws for the specimen, it was possible to
apply large Rayleigh peak distribution fatigue loadings to the specimens.

When the test results were compared with various cumulative
damage theories, it was found that the linear rule of cumulative damage was
entirely inadequate and unsafe. The best representations of the Rayleigh
endurance curve were obtained using Freudenthal's rule and Fuller's rule.
An attempt to obtain a Rayleigh prediction from the application of the linear
law to the two distribution interpretation of the S-N curve was only partially
successful.

By adding a second lever to the machine, it was possible to
test using the complex wave obtained when two degrees of freedom are ran-
domly excited. Fuller's rule, modified to some extent, gave reasonable pre-
dictions of the resulting endurance at the intermediate RMS levels.

After the above series of fatigue tests were carried out, with
the RMS stress level held constant to failure, a number of single degree-of-
freedom tests were performed using a "program" of RMS levels obtained
from random numbers. These test histories were called Quasi-Stationary
Random Fatigue. While most of these tests were performed using a rectangular
distribution of RMS stress, a few tests were performed using truncated
Gaussian and truncated Exponential distributions. Fuller's method, suitably
modified, resulted in a fairly good prediction of the test results, while
Freudenthal's rule and the linear law were quite unconservative. A new
technique for prediction based on a linear summation of "cycle ratios" of
RMS stress, and using the experimental Rayleigh endurance relation is
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suggested, andý this gives fair results. for programmed RMS tests of this type.

An interesting series of tests were conducted to obtain the con-
stant amplitude S-N relation with specimens having fixed amounts of random
preloading. In all cases the random preloading resulted in a uniform trans-
lation, at all but the lowest stress levels, of the virgin S-N curve to lower
endurances.

A. significant observation from the random load tests has been
the appearance of visible secondary cracks on the unnotched axially-loaded
specimens. The number of these cracks increases by orders of magnitude
as the RMS level increases for a given load configuration. Also the number
of cracks other than the failure crack is greater with complex-wave (two-
lever) loading than with the single lever, and greatest with the quasi -stationary
type of loading. This effect. was not found to any appreciable extent in any con-
stant amplitude tests except in a small series of specimens tested with a very
large fluctuating compression loading. It was not determined if the secondary
cracking was from the same mechanism in the fluctuating compression tests,
as in the random tests.
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NOTATION

T. N. 35 UTIA Technical Note No. 35, which contains a substantial
amount of the constant amplitude test data used in this report
(Ref. 1).

ANC-5 "Strength of Metal Aircraft Elements", used jointly by the
U. S. Departments of the Air Force, the Navy and.Commerce,
March, 1955.

kcs thousands of cycles (fatigue)

ksi thousands of pounds per square inch (unit of stress)

CG centre of gravity

CA constant stress amplitude

RA random stress amplitude

VA variable stress amplitude

CD cumulative fatigue damage

QS Quasi..- stationary (random process)

S-N general expression used to'denote ,the stress-amplitude,
logarithm -of-endurance relation in fatigue

RMS root mean square

UTS ultimate tensile strength

STF short term fatigue (Section 2. 5)

LTF long term fatigue (Section 2. 5)

a exponent governing rate of increase of crack propagation
with number of cycles (Section VI); also distance from lever
fulcrum to specimen axis on the fatigue machine (Appendix A),
inches

b . curve-fitting constant in expression for STF line (Section II)

c curve-fitting factor for expression used to define LTF line
(Section IT); also cycles
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d slope parameter of fictitious S-N curve used in the Corten-
Dolan hypothesis, i. e, change in log N divided by (-change in
log S); also curve-fitting constant in exponent of expression
for LTF line (Section II)

e base of natural logs (2. 7183)

f frequency, cps (Section IV)

fl, f2  number of degrees of freedom, used in comparing two
stochastically independent sets of observations containing
nI and n2 items respectively (Ref. 48, page, 395)

g gravity units of acceleration

g, h parameters used in assessing linear cumulative damage with
two semilog-linear endurance relations, for a. Rayleigh load-
ing spectrum (Section III)

i statistical order number in ranked data

kd, ksp, kh stiffness, pounds per inch (Appendix A), of the driver coil,
the specimens and the gripping jaws. respectively.

kf effective stiffness of the single-lever configuration of the
fatigue machine for purposes of specifying resonance
(Appendix A).

m slope of straight line obtained by a linear regression analysis
of data by least squares (Section II); also number of initial
active crack nucleii formed in a fatigue process (Section VI).

n number of specimens in a sample; also number of fatigue
cycles endured

P, Pi probability density function, and proportion of test time
spent at a given RMS stress level (Section V), respectively.

r coefficient of crack propagation, modified by the occurrence
of a maximum stress peak during crack initiation (Section VI).
Also correlation coefficient for least squares linear regression
analysis (Section I), and proportion of negative-valued maxi-
ma in a stress history (Section IV),

rd, rf damping constants for the driver coil and shaker table
flexures - see Ref. 50

s seconds (time)
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tI duration of preload fatigue cycles (Section VI), minutes

w power spectral density function. (Section IV)

x symbol used-to denote a variable integration limit

xT displacement at the shaker table, inches (Appendix A)

D fatigue damage parameter used in Section VI

Fsp force or load, lb, applied to the specimen in the fatigue
machine .(Appendix A)

G maximum permissible shaker table acceleration in
meter/sec/sec (Appendix A)

Id current, amperes, applied to the shaker driven coil
(constant amplitude) - see Appendix A

K, Kt factor used to obtain equivalent truncated distributions from
asymptotic distributions (Section V); also number of turns in
an electro-mechanical transformer representing the shaker
(Appendix A) ; theoretical stress concentration factor, respectively

Kv slope of line representing a variable. amplitude endurance
relation, using a semilog (S-logN) plot

KSN slope of basic S-N (Stress-log endurance) relation in Fuller's
hypothesis.

K*0 OrKRMS slope of line representing Fuller's prediction of VA endurance
using the semilog ( o- -log N) plot

K O-p Fuller's slope for the line predicting fatigue endurance using
the semilog (C-p - log. N) grid

K(g, cr ), terms used in the application of the linear cumulative damage

K(gl, o-) law to two distributions (STF and LTF) (Section III)

L distance from shaker table axis to lever fulcrum, inches

LI, L 2  First (main) lever, second lever

M equivalent mass of mechanical system under vibration, for
purposes of defining resonance (Appendix A)

N number of observations (Section II), also number of cycles to
failure
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Nf, Ng total number of cycles to failure in a fatigue test

Nge, Ngt cycles to failure of specimen under variable amplitude loading
obtained experimentally, and the theoretical prediction,
respectively, in the Corten-Dolan hypothesis (Section VI).

Nfr Number of cycles to failure using .random amplitude loading

No number of zero crossings with positive slope for a stress
N history per second, on the average

N1  number of peaks in a stress history per second, on the average

P, Pi cumulative probability function (general), and specifically for
the ith item to fail, respectively.

R, Rl/a irregularity factor (NO+ IN 1 ) used in Section IV, and the
Corten-Dolan stress interaction parameter used in Section
VI, respectively

R(b, 0 ) term used to denote the analytical endurance relation obtained
when the linear cumulative damage rule is applied to the STF
endurance line (Section III)

S, Sa Sm stress amplitude ksi, alternating stress amplitude, and mean
stress amplitude respectively

So, SS2 datum stress amplitude, peak or maximum stress amplitude
achieved, and runout stress amplitude respectively (Section VI)

T, Texp,
TF, TF 1 life or duration of a fatigue test in seconds; actual, experi-

mental, predicted by the linear law, and predicted by
Freudenthal's theory respectively

Vd voltage applied to the shaker driven coil (peak, constant
amplitude)

weighting factor for two-distribution cumulative damage
analysis (Section III); also proportion of preload cycles in
a two-step test (Section VI)

(3Fuller's distribution parameter in VA cumulative damage
analysis, also factor in exponent used in the expression for
the weighting function < 1

slope of the straight line used to represent the logS-logN
relation, measured similarly to d
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Elcomplex wave spectrum-width parameter (Section IV)

non-dimensional peak stress amplitude (Section IV)

crack nucleii parameter discussed in Section VI and Ref. 34.

(5Slope of straight line suggested by Freudenthal for endurance
under Rayleigh loading (Section III); also derived crack growth
rate parameter used in Section VI,

RMS stress amplitude, ksi

RMS stress peaks, ksi

0- 'first and second derivatives of RMS stress respectively,
with time

Freudenthal's stress interaction parameter

F rx the complete, and incomplete gamma function, respectively.

damage function discussed in Section VI and Ref. 34 .

symbol used to denote summation

4), (4" • 4)o•) Rice's notation (Ref. 39) for the spectral distribution
functions defined in Section IV. Note that YL ý -

Subscripts

a alternating

m ean mean value

p peak or maximum

Superscripts

A, hat symbol is used to denote peak values

bar symbol is used to denote mean values

inches
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I. INTRODUCTION

This report describes an investigation into the nature of fatigue
damage when a typical metal is subjected to random loading. It is now becom-
ing increasingly evident that actual service loadings for a wide variety of
structures - aircraft, engines, turbines, farm machinery, road vehicles,
railway rolling stock etc. - can be simulated satisfactorily by random-process -

generated load histories. In the past there seems to have been no real effort
made to simulate such loadings in themselves, but rather to reply on theoretical
estimates of what effect varying load amplitudes would have on the fatigue life
of a structural member.

It is absurd, however, to speculate on a cumulative fatigue
damage law to apply to variable amplitude loadings without having at least
some accurate fatigue data on this type of loading. All commercial fatigue
machines presently available employ principles of operation which make it
extremely difficult to test under random or even variable amplitude conditions.
As a result, they are unable to prove or disprove any practical cumulative
damage rule, since the crucial test must lie in accurate simulation of actual
operating conditions. For the most part, these operating conditions are the
outcome of random processes disturbing the structure under consideration.

It is demonstrated in this report that such simulation of random
loadings is not only feasible, but can be carefully controlled to supply funda-
mental fatigue data pertaining to a wide variety of operations involving repeated
loads. In Appendix A, it will be shown that a large electromagnetic shaker
driven by amplified random noise can be integrated into a testing system
capable of applying carefully controlled random fatigue loads to test specimens
and structural components. Using this axial load apparatus, shown in Fig. 1,
a study of both constant and random amplitude fatigue was undertaken, with
unnotched 2024-T4 Aluminium Alloy extruded bar specimens (Fig. 2). Nearly
all tests in this investigation were carried out using a tensile mean stress of
16, 000 psi. This choice was based on factoring the Ultimate Tensile Strength
of 86 ksi (Ref. 1) for these specimens by the ultimate load factor of 5. 25 typical
of utility aircraft which use this material in great quantities.

The random amplitude tests discussed in Section III were per-
formed using a Stationary Random Process; i. e., the statistical mean values
(such as the RMS stress) remained constant throughout the test to failure. For
the majority of the Random Amplitude tests, the machine was used; in its
simplest configuration - a lightly damped single-degree-of-freedom system
utilizing a single lever, so that the stress output at the specimen constituted
almost a pure Rayleigh density distribution of stress peaks. (Figure 28).

The only exception to the above was the program of tests des-
cribed in Section IV, in which a second lever was attached by a spring to the
first, resulting in a two-degree-of-freedom system. The density distribution
of stress peaks. now becomes a combined Rayleigh-Gaussian form described in
Section IV.



As a further attempt to simulate ideally the service conditions
existing for fatigue-sensitive structures, a series of tests were performed
using a manually:-produced Quasi-Stationary Random process. The results
of these tests are discussed in Section V. They arise essentially from dis-
crete-value random programming of the RMS level of the stationary random
process used in the previous sections.

To investigate certain features of Cumulative Fatigue Damage,
a series of tests were performed in which fixed amounts of Stationary random
amplitude preload cycles were applied to the specimens before they were used
to obtain constant amplitude endurance curves. These tests provided addition-
al insight into the distinction between nucleation and propagation of fatigue
cracks (see Section VI).

Due to the fact that the data obtained in this program constitute
the results of the first experimental fatigue program in which random loads
were applied using a uniform stress field (unnotched axial loading) with a
non-zero mean stress, their effect on existing cumulative damage theories
is discussed throughout the report.

Nearly all cumulative damage theories put forward thus far
require the establishment of constant amplitude parameters for the given
material. In a preliminary program described in the first section and Ref. 1,
about 1000 specimens of the original population of about 1400 specimens from
the same melt were tested under constant amplitude conditions, the majority
of these tests being carried out using an Amsler Vibrophore. The remaining
400 test specimens (representing about 250 million test cycles) were used in
the Random Load Fatigue machine to obtain the data for the main body of this
report.

In Appendix B, an attempt has been made to clarify the concepts
and terminology used in this report, as they apply to fatigue analysis for both
constant and random amplitude loadings. This appendix is intended for readers
perhaps unfamiliar with the statistical and metallurgical terms currently in
vogue in fatigue analysis.

II. ANALYSIS OF THE CONSTANT AMPLITUDE FATIGUE DATA

2. 1 Introduction

In any development of fatigue parameters, the problem of statis-
tical scatter in the individual test results presents itself. The approach
followed throughout this report has been to use a reasonably large number of
tests (usually at least 6) to assess the mean value for any given test condition,
and to establish the general nature of the underlying population (e. g. approxi-
mately log-normal or 2-distribution). Then linear or exponential regression
techniques were employed to obtain the most objective values of the overall
fatigue parameters necessary for the study of cumulative damage.. Where
significant discrepancies were observed between the assumptions used in such
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'smoothing' procedures, and the test results, these were then discussed, in
detail. The most significant discrepancy consists of a distinct bimodal be-
havior in the specimen endurance distributions at low constant amplitude
stress levels, and the associated appearance of a discontinuity in the constant
amplitude S-N relation immediately above these stress levels.

The log-normal distribution can be shown to be a natural one for
fatigue behavior since such failure is a gradual phenomenon (Laurent, Ref. 2).
The plotting procedure used for all results presented on log-normal probability
paper was

n~ -t-f 40

This rule is suggested by Weibull (Ref. 3) as the best rule for obtaining un-
biased estimates of the standard deviation from the slope of the test result line.
The rule used in Reference 1, Pi = i/(n + 1) results in a slight overestimate
of the standard deviation. This difference in plotting procedures does not, of
course, affect the qualitative ideas first developed in Reference 4 and discussed
in this section.

2. 2 Regression of Test Results

Assessment of the Constant Amplitude parameters necessary for
certain cumulative damage theories requires that the data be plotted on Log S -
Log N coordinates. However the bulk of S-N data (with which a comparison
may be made with the S-N curve obtained in this project) has been presented
on the semilog plot; i. e. S-log N. Therefore the regression analysis des-
cribed below, which assumes the underlying process is log S - log N linear,
is presented without intending to imply that the fatigue mechanism has been
established to be log S - log N linear. In this analysis two further assumptions
are made:

a) Each endurance mean value has equal weight

b) Values of log S are more "accurate" than values of log Nf

The slope of the straight line yielding the least squares for the residuals (i. e.,
the regression line) is

Where x = log1 0 (Stress Amplitude)

y = loglO(Nfail)

N = total number of observations

Normally if there are no other restrictions on the position of the regression
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line, it will pass through the "centre of gravity" defined by

t\) J

In order to assess the degree to which the data correlate with the above
straight line representation, a correlation coefficient can be derived as follows:

r=

For a given set of test data the above quantities can be used to
define the least squares straight line by obtaining the C. G. and the slope m.
The correlation coefficient r then is a measure of the quality of this repre-
sentation.

Weibull, (Page 201 of Ref. 3) discussing Least Squares states
"This principle can be justified if it is assumed that the measures are normally
distributed, which is very often a dubious assumption". Here we use the
logarithms of lives which are assumed normally distributed. Figures 3 and
:9 show this assumption to be justified. A more comprehensive technique des-
cribed by Weibull in this reference uses an analysis giving minimum variance
(method of linear estimates), and leads to exactly the same equations if the
observations are independent of one another. This also is a reasonable
assumption in the present work.

2. 3 Comparison with Other Sources

In order to confirm that the Constant Amplitude S-N curve ob-
tained in the present study is a reasonably accurate one for the material a
brief literature survey revealed four other sources of data, for axially loaded
unnotched 2024-T4 extruded bar specimens. The results are presented below:

Fatigue Strength Sa at
Reference Diameter of Specimens 105 cycles 106 cycles 107 cycles

Present .282" 33.0 ksi 23. 5 ksi 18. 0 ksi
study
(T. N. 35)

Items 212, . 30" 36. 8 ksi 26. 1 ksi 20. 7 ksi
213, P. 326
Ref. 5

Items 216 - .20" 28.7 ksi 22. 9 ksi 17. 9 ksi
223. P. 326
327. Ref. 5

Ref. 6, Fig. 7 .285" 31.0 ksi 21.7 ksi 19..5 ksi

Ref. 7 . 20" 31. 8 ksi 24. 0 ksi 18. 8 ksi
(also in
Table 3. 112(d)
ANC-5)
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In each case, the source data were used to interpolate graphically for values at
a mean stress of 16 ksi (tension). In general the present results compare well
with previous data.

2. 4 The log-log Slope Parameter

The sample test data from TN 35 for the single level endurances
have been used to obtain the slope parameter by the method of least squares.
This parameter, S = 5. 54 with a regression correlation coefficient of 98. 5%.
The resulting least squares straight line representation of the data is given by
the equation

This value compares with 5. 4 obtained by Liu and Corten in Ref. 8, and 5. 73
obtained by D'Amato in Ref. 9. Due to the 2-Distribution behavior at low stress
levels, only the top twelve stress levels (24 ksi •' S • 52 ksi) were used to de-
termine this parameter.

The corresponding Constant Amplitude tests using the Random
load fatigue machine are presented in Table 1. These tests were carried out
to check if any variation in the Constant Amplitude parameters established by
the Vibrophqre occurred due to the change in testing machines. The results
obtained are illustrated in Fig. 3 which shows the ranked results plotted on
log-normal probability paper. The slope of the lines on these graphs is a mea-
sure of the standard deviation of the sample, and in general, at high stresses,
the dispersion.of±he UTIA results in somewhat less than those obtained on the
Vibrophore (Ref. 1).

At low stresses, where the distributions are bimodal, the
difference in standard deviation is less noticeable, particularly in the component
distribution having the shorter mean life. Due to the presence of both the dis-
continuity effect and the "bimodal" effect, the results using the Random Load
fatigue machine were not regressed in themselves to obtain a separate value of

S but their mean values are shown in Fig. 4 with the TN 35 values. They
show that within the accuracy possible at present with statistical scatter,
there is no reason to believe a significant difference in the 'machine-factor'
exists.

2.5 The 'Bimodal' Phenomenon

It was found that for stress amplitudes above about 20 ksi (with
a mean stress of 16 ksi) the test endurances were well represented by the single
symmetrical log-normal distribution. However, as the stress amplitude was
lowered, the endurance data departed from linearity when plotted on log-normal
probability paper, and, if assumed to be the result of a single mechanism or
population, the dispersion increased in the manner shown in Fig. 5. This is
a common observation in constant amplitude fatigue testing.
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At first, an attempt was made to fit these data to the (skew)
extreme value distribution. While a reasonable fit was usually obtained, the
method appeared to yield little fundamental insight into the action of fatigue
at the knee of the curve. Since the distribution of ranked test results on log-
normal probability paper deviated in a manner vaguely like that which one would
obtain if a separate distribution were to intrude upon the first (unsuspected by
the analyst) and finally become predominant, this line of reasoning was pursued.
By grouping the data visually into the two distributions suggested from the
shapes of the curves of ranked data on log-normal probability paper, a logical
pattern developed over the stress range (Fig. 6).

The distributions usually exhibiting the smaller standard devia-
tions (steeper slope in Fig. 6) were found to be the logical linear continuation
of the intermediate stress distributions. These are called Short Term Fatigue,
STF. The distributions with the larger standard deviations seemed to indicate
the emergence of the line of the single distributions characteristic of stress levels
well below the knee of the S-N curve. These distributions are called Long Term
Fatigue LTF.

This 2 -distribution interpretation was thus used with the data
of Ref. 1, and rather than rely on a visual estimation of the mean life positions,
a least squares exponential regression was carried out with the aid of an IBM
650 Computer on the 15 sample means, using the expression 0 = _e-S+- c e.S

where N are the cycles to failure, S is the stress amplitude, and, a, b, c, d
curve-fitting, constants obtained by iteration to a Least Squares minimum. *
The resulting S-log N curve (Fig. 4) is not only an excellent fit of the test
data over a greatly enlarged range of stress amplitude, but it was possible to
identify the first term a iý-- as passing through the STF means and the inter-
mediate stress means, while the second term a e was representative of
the LTF and low stress means (Fig. 6).

While the data used by the author involved the testing of only 9
specimens at each of 15 levels of stress amplitude, the test results of Ref-
erences 10 and 11 have been similarly re-examined, having sample sizes of
approximately 20 and 100 specimens, respectively. These data give striking
confirmation of this behavior. (See Reference 4 for typical distribution shapes.)
The increase in sample size (especially for ± 40, 000 and + 35, 000 in Reference
11) allows one to suspect that both the LTF and STF distributions appear to
follow a log-normal probability of failure. Also it is apparent that this be-
havior is unaffected qualitatively by the type of loading, the mean stress or
the presence of notches. At present these observations appear limited to
materials with no well-defined endurance limit.

* The author is greatly indebted to Dr. B. Worsley of the University of
Toronto Computation Centre and to Dr. L. Lax for generous assistance in
this phase of the work. The program, developed for the field of medicine,
is described in Reference 12.
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In general, the ends of the distributions seem to fade rapidly and
the STF and LTF lines terminate within the transition region. Possibly a
great deal of the usual jaggedness of the line joining the endurance means near
the knee of the curve would be removed if a metallurgical and/or statistical
study were to separate single endurances arising from the non-zero probability
of second-distribution failures.

It is possible of course, to obtain component distributions as the
result of inaccuracies in amplitude setting and "inherent scatter". However
the standard deviations are usually quite similar, and the distributions over-
lap within the sample range of probabilities. In the separation of the data of
References 1, 10 and 11 no overlap occurred, and there was an obvious diff-
erence (by a factor of about 3 in Reference 1) in the standard deviations of the
component distributions. Also the means were separated by as much as one
cycle (or more) of log N requiring an amplitude error far too great to be re-
solved by inaccuracies. Inaccuracies in settings would result in a random
arrangement of distributions rather than the orderly continuation of straight
line segments observed here. Nevertheless, the sequence of events in the
transition from one distribution to another occurs in an extremely small
interval of stress amplitude (6 ksi in Reference 1).

While a great number of specimens in the present study were
used in the preparation of Reference 1, a small number of specimens from the
same melt of material were set aside to be tested on the Random Load Fatigue
Machine to explore further the bimodal behavior of fatigue endurances at low
stress levels. By careful choice of stress amplitude it was possible to obtain
a wide separation between the two test result groups at a given stress level
(notably 19. 5 ksi. See Fig. 3). This was a significant finding since it follows
that representation of the results at such a stress level by a single-mode dis-
tribution of any type would erroneous.

One of the earliest thorough statistical studies emphasizing the
dual mode behavior of endurances at low stress levels is reported in Reference
13. In this program 216 unnotched extruded steel specimens were tested from
one billet at about 15 tons per square inch stress amplitude, while the U. T. S.
for the material was about 34 tons (mean stress zero). The resulting distri-
bution of failures plotted against the logarithm of the cycles to failure was
described as a double-humped skew distribution with the major peak at approxi-
mately 1. 2 million cycles and the minor peak at about 20 million cycles.
Possibly this level of stress represents a level at which the STF mechanism.
is just beginning to decrease in prominance while the LTF mechanism has
increased to be responsible for a significant proportion of the endurances.
The authors quote earlier evidence of this behavior given by R. R. Moore in
Vol. 23 Part II of the ASTM Proceedings, June 1923.

The plotting of the ranked data obtained from five studies (Refs.
1, 10, 11, 14 and the present tests) shows that both distributions appear linear
on log-normal probability paper. While this is not conclusive evidence that
both distributions are inde ed, log-normal, it shows that such an assumption
would be adequate to describe the results at the present time.
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Webber and Levy, in Reference 15, present normal probability
plots of rotating beam constant amplitude endurance data for the British Alumi-
num Alloy DTD683, at three different stress levels (their Figure 13(b) ). A
study of these three curves shows that the 50 ksi level is probably 100% STF,
while the specimens tested at 40 ksi are STF to 532, 700 cycles and then LTF
for the remaining 42% of specimens tested at that level. At the lowest level,
35 ksi, the first 10% of the results can be considered STF with the remaining
results exhibiting the increased standard deviatidn.characteris.tic, of the LTF
family. The authors identified the fractures as being of two types:

a) side-type - single-point crack propagation, with the final break to
one side of the cross-section

b) ring-type - multiple circumferential crack nucleii surrounding the
final central break

The ring type was found predominant at the 40 ksi level and above.

The test data taken from Ref. 14 is also of particular interest
due to the extensive statistical coverage of the low and intermediate stress
levels. Forty-eight tests were performed at each of 12 stress levels for the
Hard Temper Phosphor Bronze Strip, with 48 tests at each of 8 stress levels
for the Spring Temper strip. The means obtained are shown in Fig. 7 and
appear to follow the trends indicated in Fig. 6. Figure 8 of Ref. 14 shows
the results of considering the data as arising from a single distribution. The
authors state that "neither the log-normal nor the extreme value distribution
fits the data for the ± . 300 inch deflection level". An attempt was made to fit
these and other low stress level data into log-log normal distributions. This
of course results in a more linear grouping of data, but it is felt that this is
due more to the lack of sensitivity of the distribution than to a real understand-
ing of the basic patterns of behavior.

In the present work, all the specimens tested in the random
load machine were coated with an inert grease to prevent further exposure to the
atmosphere past the date of greasing. This presents specimens to the machine
with approximately identical periods of corrosion. The similarity in the results
at 19. 5 ksi and 22. 5 ksi given in Figure 3 with the results at 20 ksi and 22 ksi
given in Reference 1 shows. that this factor is probably not a significant one for
the existence of the "bimodal" phenomenon.

Little mention was made in Reference 4 of the possible differences
in fatigue mechanisms which could cause the two-'distribution behavior aside
from the suggestion that the STF mechanism may consist of the creation of a
great number of crack nucleii with the development of more than one final crack,
while the LTF mechanism may consist of the exclusive propagation of a single
crack as indirectly suggested by Webber and Levy. In the STF mechanism,
nucleation may be so fast that the development of fatigue areas occurs in a
relatively spontaneous manner, while the LTF mechanism required the develop-
ment of localized stress concentrations ahead of a single crack nucleus for its
growth.
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While metallurgical examination of the specimens in the present
study has been inconclusive, there does appear to be a transition of this kind
over a wide range of stress (45 ksi to 19 ksi). Further research on this point
is presently being carried out at the Institute of Aerophysics. However, the
statistical duality of the fatigue mechanism as exhibited by Constant Amplitude
test results below the 'plasticity' range can be considered consistent with
metallurgical observations of two fatigue processes discussed by Freudenthal
(Ref. 16), Wood (Ref. 17) and Lazan (Ref. 18).

Feltner and Morrow, in Reference 19 discuss the two-mechanism
phenomenon in terms of hysteresis energy conversion. In the low-stress
region this energy is due to "anelastic dissipating mechanisms" which are
essentially non-damaging such as magneto-elastic coupling and atomic diffusion.
The presence of this anelastic hysteresis energy in this region is apparently
the reason why very large amounts of total energy may be measured. In the
high-stress region the hysteresis energy is due to plastic deformation which
is damaging in a fatigue sense. They state that between these two distinct
regions (near the fatigue limit), a transition zone exists in which the energy per
cycle is composed of both anelastic and plastic hysteresis energy. These
workers then describe the identical (qualitative) behavior in the stress-inelastic
strain.relation, and relate this behavior with fatigue performance correlating
the high stress fatigue region to the region of predominant plastic strain, and
the low stress region to an area of predominant "anelastic" strain. For
stresses near the fatigue limit, the authors state that the two may be combined
to form the curved (transition zone) portion of the stress-strain curve. The
present study relates this behavior to the fatigue endurance curve in like manner.

Figure 4 shows the sample means for the endurances obtained
in the construction of the semilog S-N relation for the subject material. Note
that the endurances at 34 ksi and 32 ksi are both greater than the endurance
at 30 ksi. Similar behavior has been noted by Williams using L65 Aluminum
Alloy (Ref. 20) and V. I. Shabalin (Ref. 21) using 'Dural' specimens. In the
latter work the discontinuity was observed at cycling such that the maximum
stress was 32 kg/mm 2 (45. 5 ksi). Assuming 30 ksi as the position of the dis-
continuity in Figure 4 this corresponds to a maximum stress of 16 + 30 = 46 ksi.
Also the endurance at which this phenomenon occurs is roughly 100, 000 cycles,
which corresponds to the life obtained with the second set of Dural specimens
(Fig. 2, Ref. 21). The Russian report then concludes: "A suggested explana-
tion of the form of the curve lies in the theory of crystal dislocation, which points
to a difference in the mechanism of fatigue failure in the cases of high and low
stress. Above the yield point, the major failure mechanism is the coagulation
of vacancies on the planes of maximum shear stress, while for lower stresses
the build-up of vacancies occurs on planes of maximum normal stress". While
the Dural specimens were tested up to their yield point (which was given as
33. 4 kg/mm 2 = 47. 5 ksi), the yield point for the 2024-T4 alloy (0. 2% Proof
Stress) is about 68. 5 ksi (Reference 1) so that the correlation in Stress levels
may not be so simply explained.
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The L65 material used by Williams, reveals the discontinuity
between 21 and 22 tons/sq. inch with zero mean stress i. e., 47 ksi to 49 ksi.
This correlates well with the two previous values. The rotating cantilever
specimens show a change in fracture appearance from a crescent-shaped
fatigue crack path below the discontinuity to a concentric path above the dis-
continuity, i. e., single-crack to multi-crack propagation.

In the present study it was found that for amplitudes above the
discontinuity the distribution of the log-endurances was approximately normal,
while the endurances below this stress level were essentially of the 2-distribu-
tion type discussed earlier. The "discontinuity" described above can be ex-
plained logically using the two distributions of endurances, if one considers
the effect of the continuation of the LTF line ahead of the STF family (level b
of Figure 6). When this occurs, the single mean of the two distributions will
shift to lower endurances than for the all-STF populations immediately above
this level. At still lower stress levels, this single mean will move through the
intersection of the two distribution lines and its position will become more and
more dictated by the LTF distribution. An interesting result of this approach
is that it provides a logical explanation for the 6 test results rejected by Weibull
(Figure 4 in Reference 10). When plotted log-normally as a second component
distribution, the standard deviation was found to be greater than that of the main
distribution while the mean life was less. It thus appears that the LTF line of
distributions can extend across the STF line and yield a small LTF distribu-
tion preceding the STF or intermediate stress distribution.

All the UTIA Specimens used in the complete test program were
inspected at failure for cracks using the Dye Penetrant technique specified in
the American Military Specification MIL-I-6866 A (ASG) Type II (nonfluorescent
Methods). This technique involves the application of a penetrating red dye
solution to the cleaned specimen with a brush, and a 20 minute immersion period
before excess dye is removed with a wash and the specimen dried with a clean
cloth. The specimen is thenpainted evenly with a thin coat of developer
solution, a white solution. After a period of at least 5 minutes, the developer
will cause the dye in the cracks to come to its surface and reveal defects as red
markings on a chalky-white background. It was found that, for all constant
amplitude tests with tensile mean stress, failure of the constant amplitude
specimens usually proceeded uniformly from a single crack as can be seen in
Figure 11, which shows typical UTIA specimens tested at 16 ksi ± 34 ksi.

III. STATIONARY RANDOM (RAYLEIGH) TESTS

3. 1 Introduction

Ideal simulation of most service fatigue loads involves a close
study of the process forming the disturbance. An investigation of the random
process responsible for most of the fatigue loading of aircraft (Ref. 22) reveals
that a given patch of turbulence has a marked similarity with random noise as
obtained from a thyratron in a magnetic field, when observed as! a continuous
trace. Examination of short time. traces of either process reveals that the
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distribution of vibration amplitudes is roughly Gaussian, and neither process
shows periodicity in the input exciting function. That is, while the instantaneous
values of the functions are unpredictable, both processes have the same
statistical property, that they possess a close approximation to a Gaussian or
Normal distribution of probable values.

The distribution of peak values in the structural response time
history is of prime importance if the general analysis objective is the predic-
tionofstructuralfatigue life. With a Gaussian noise source, a linear system
will respond with~a strain peak distribution which may range from Gaussian to
Rayleigh-, with all possible combinations in between, depending on the number
of modes which are excited to a significant degree. When the random load
fatigue machine used in this project is in the single-lever configuration, there
is a single mode of vibration with a peak centred at the resonant frequency (in
this case about 45 to 50 cps).

The analytical form of the Rayleigh Distribution of peaks is,
of course, the exact formulation only for an ideal case where the bandwidth at
the resonant frequency is negligible. It was necessary early in the testing
program with the machine to assess the degree to which the strain history
was of the Rayleigh type. The simplest experimental procedure was to take
sample traces at various RMS strain levels and determine experimentally the
sample irregularity ratio R by actually obtaining the ratio of zero crossings to
peaks. This resulted in an average value of R = . 96 for samples involving about
250 cycles. Then the individual peak strains were tabulated, ranked and plotted
on Rayleigh Probability Paper. This paper was constructed using the procedure
described on Page 22-12 of Ref. 54. It was found that, for the trace samples
studied, no appreciable falling off or "clipping" in the strain peak. distribution
occurred up to almost 3.6 x RMS, as shown in Figure 8. This clipping implies
that all values of stress peak greater than 3. 6 rms will be given the value 3. 6
rms. Considering the probability of all such peaks, this error is considered
negligible in the assumption of a Rayleigh Peak distribution.

3. 2 Test Results

The simplest utilization of a Fatigue Machine employing a Gaussian
Noise input is to test at constant RMS stress (i. e., a Stationary Random Process)
to failure and thus obtain a Random Fatigue Curve of RMS Stress versus en-
durance. Since the test machine in the single-lever configuration is lightly
damped, the output stress history has been shown to be well represented by the
Rayleigh density distribution of peak stresses. It is therefore possible to use
the resulting test curve to check damage accumulation with Rayleigh density
distributions of stress peaks. As in the case of Constant Amplitude testing the
endurances have inherent statistical scatter (see Fig. 9) so that it is necessary
to test a similar number of specimens to obtain a mean endurance under Random
Amplitude conditions, as it was under Constant Amplitude conditions, to obtain
meaningful correlations.
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The 'Rayleigh' endurance curve was obtained by testing, to
failure, at least 6 specimens at each of seven RMS levels. These endurance
data appear in Table 2. A linear regression was performed on all the test
data, in the log % - log N form with the following results:

Comparing this equation with the least squares straight line from the Constant
Amplitude tests

it is interesting to note that the application of Rayleigh variable load history
results in a clockwise rotation of the Constant Amplitude line about a cycle
value of approximately unity. This experimentally-obtained 'rotation' of the
endurance curve has been observed by Fuller in Ref. 23, and Schjelderup and
Galef in Ref. 24. It also agrees with the ideas of Corten and Dolan and
Freudenthal in that extensive damage occurs below the Constant Amplitude
endurance limit from prior load history above the endurance limits resulting
in finite lifetimes well below the Constant Amplitude endurance limit. It
supports the general finding that a linear accumulation of damage based on the
fraction of cycles endured at a given level, compared with the available Constant
Amplitude cycles, cannot account for the Random Amplitude curve since it will
be shown that no rotation of the straight line would occur on the log-log plot
when deriving the Random Amplitude line from Constant Amplitude line. Also
the Random Amplitude line will not exhibit endurance limit effects due to the
asymptotic nature of the Rayleigh distribution, due to the presence of some
probable loads above the endurance limit, which would give the low stresses
nucleii to work on.

A dye-penetrant study of the unnotched specimens used in the
determination of the experimental Random Amplitude curve revealed a signi-
ficant change in the accumulation of fatigue damage. Figure 10 shows repre-
sentative specimens tested at 6 = 18 ksi. The presence of a great number
of small cracks on these specimens when tested at higher values of a,- , and
which were manufactured identically to those used for the Constant Amplitude
tests (Figure 11) was quite unexpected. Re-examination of the actual crack
number was carried out and the results included in Table 2. The variation of
visible crack nucleii with endurance at a given or appears random; however,
the variation with RMS stress level is quite marked. Figure 12 shows the
variation iin mean crack number with RMS level for these tests.

It appears that, while the Constant Amplitude specimens and
Random Amplitude specimens were randomly taken from a population of
identically-manufactured specimens, the numerous cracks found under high-
level Random Amplitude testing do show a preference to occur at surface
irregularities resulting from the turning down of the waisted sections. Random
sample specimens of the UTIA test series were examined to determine the
RMS micro-inches roughness in this waisted portion of the specimen. This
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was accomplished using a commercial apparatus known as the Profilometer,
manufactured by Micrometrical of Ann Arbor. The results of these tests indi-
cated that the RMS micro-inches roughness varied only slightly (15 to 30 Micro-
inches). The specimens therefore had a uniform RMS roughness of fair manu-
facturing quality.

3. 3 The Linear Law of Damage Accumulation

3. 3. 1 Log-Log Presentation

The Rayleigh- distribution is given by Equation 16, page 41,
Ref. 25. s(S = 0- 7)

where p(s) is the probable number of stress peaks between s and s+ ds.

Considering the linear accumulation of damage with a Rayleigh
distribution of stress cycles, the equation for Random Amplitude endurance
is given by the expression for the number of random peaks to failure:

where N

For the present value of the Constant Amplitude line = 5. 54

,2 o)
Thus for linear damage accumulation we obtain a straight line parallel to the
Constant Amplitude line, but below the Constant Amplitude line such that

t - (N) ) for a given stress level. This line is

plotted as a curve on the semilog presentation of data in Figure 4. It must be
remembered that the Constant Amplitude line used is the straight line passing
through to the endurances above 22 ksi, and as such, it is quite inaccurate in
the low stress region. A numerical integration at these levels might be better,
but would yield endurances even greater than those Obtained from the above
equation.

3. 3. 2 Linear Damage Accumulation with Two Distributions

Consider the accumulation of fatigue damage under the action
of two semilog-linear (S-Log N) damage relations N = ae-+ ce-d' as dis-
cussed in Section II.
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a) If the STF mechanism were the predominant fatigue mechanism
with the LTF effect negligible, and Short Term Fatigue were effective through-
out the stress range (from zero to, say, - = 20 ksi) then, for a Rayleigh peak
distribution, CIO

from which " i

b) If the STF and LTF mechanisms both contribute to the accumu-
lation of damage, and each contributes according to a weighting function C<
such that at a given stress level

Nmean =( - •)NSTF +O NLTF (I-)

then a more complex empression will result for the Rayleigh Life,

Q ý l( LTs (F)4

i) Assuming 0< e

where i C , W • • 0% (with the substitution -

and R (K L r ( i with the substitution

ii) Assuming c<

where_-• -

and •( I'• Ž9 /K ( c• substituting dforb

and 4-
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Determination of •<

There are two ways to obtain c< from the test results.

a) Use cK as the proportion of test results which were designated
as the LTF group at each of the four stress levels where the results were
separated into 2 distributions.

This derivation of ;< will be called 0<

b) Find o( as the unknown in the equation:

Nmean = (I - 0< ) NSTF + c< NLTF and obtain

NSTF and NLTF from their "regressed" values from Ref. 1.

NSTF =7.86x 10 6 e-",113 S

NLTF = 1.74 x 1011 e 5325

Nmean is the logarithmic mean of all test endurances at the given S. This
derivation of X will be called <

From these two sources we have:

18 1.000 0 0 .654 .024 .0013

19.5 . 170 .091 .0047 .154 096 0049

20 .131 .102 .0051 .125 .104 .0052

22 .124 .095 .0043 .333 050 0023

22.5 .338 .048 .0021 .836 .080 0004

28 0 co .C 700 013 0005

30 0 co co .219 051 0017

average 0. 1 average .0023
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The predictions of endurance are given below.

O-ksi d6p ksi (Nfr) STF (Nfr) ='.1 (Nf) .0023
only

0 0 7.86 x 10 6  1.74 x 10 1 1  1.74 x 10 1 1

2 2.83 5 55 x 10 6  2.38 x 107  2.65 x 108

4 5.66 3.78 x 10 6  8.77 x 106  3. 96 x 107

6 8.48 2.48 x 10 6  4.18 x 106  1.09x 107

8 11.31 1.57 x 10 6  2.09x 106  3.44 x 106

10 14. 14 . 942 x 106 639, 280 771,000
12' 17.00 .541 x 106 18,879 96, 500
14 19.80 .295 x 10 6  130 10, 900

Comparison with test results (Fig. 4 ) shows that the evaluation of the Rayleigh
curve with the STF line only is a very poor prediction while the use of (3
appears quite promising. The use of (./ is less promising possibly due to the
scatter of the values of 11<r which formed the basis for its use.

Like Fuller's rule discussed in Section 3. 5, these methods are
invariably unrealistic at low stress levels since they are restricted to the zero
stress intercept of the distribution lines.

An examination of the 2-Distribution linear cumulative damage
rule just developed reveals that the good agreement at high stress .levels is
almost entirely due to the contribution to Nfr-1 from the LTF distribution.
While it was noted in Section II that an instance has occurred where the LTF
distribution has appeared ahead of the STF results (as indicated at level b of
Fig. 6) this agreement is probably spurious since it has already been observed
that the high stress level Rayleigh results contain a significant proportion of
stress peaks exceeding the upper limit of the STF or "macro-elastic" stress
region.

3. 4 Freudenthal's Prediction of Endurance

Experiments by Freudenthal and Heller (Ref. 26) have indicated
that the linear CD rule is unconservative and that a safe life would be one-
tenth that indicated by the linear theory. Smith and Malme (Ref. 27) and
Fralich (Ref. 28 and 29) report similar results. Their findings are therefore
in agreement with the author's. It is noteworthy that the loading used by
Freudenthal and Heller is essentially multilevel (Randomly applied) programmed
Constant Amplitude, rather than a random-process-generated loading.

In their theory of cumulative damage, the total cycles to failure

where •g is the relative frequency of cycles at stress Si
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and CA_ is a stress interaction factor for the given stress level, deter-
mined from experiment, and dependent on the load spectrum
and the material.

In. Reference 30, Freudenthal illustrated how his Rayleigh curve
with stress interaction can be obtained from the Rayleigh-Miner line by the
ratio , c

Freudenthal suggests the slope for the Rayleigh curve will be = 4 from
"*rotating bending data. This agrees well with the present axial data (4. 22) and

4. 0 will be used in the evaluation of the above ratio. Smith and Malme, in
Ref. 27 obtain = 3. 9 for random tests using bending cantilever specimens.
Thus

If we use S1 = 51 ksi, the stress amplitude for 10 4 cycles, as suggested by
Freudenthal in Ref. 26 we obtain: F T,

The accurate selection of a unique maximum stress level as a demarcation

between fatigue and alternating plasticity is quite difficult, and wide variations
in life can be obtained from relatively small variations in stress. level. How-
ever, agreement with test results (Fig. 4) is quite good when one considers

the usual test scatter.

3. 5 Fuller's Predicted Endurance Line

The principal advocate for Cumulative Damage to be studied us-
ing semilog (S-log'N) format has been Fuller (Ref. 23). In this reference he
outlines the application of his method to cases where the load pattern is purely

Rayleigh. The crux of his method lies in the observation that the slopes of
Constant Amplitude endurance curves, and those arising from programmed
Constant Amplitude testing exhibit slopes which are only a function of the

load distribution and not of the magnitudes of the loading parameters. Using
his nomenclature, the distribution coefficient (I A,'J/k, is a function

only of load pattern where KSN is the slope of the S-N curve, and KV is the

slope of the maximum stress VA curve. Both of these parameters are
based on the semilog slopes. If, for instance, the values of the minimum

stress amplitude in a programmed Constant Amplitude test are changed and

a variety of maximum stress amplitudes is considered for each minimum

stress amplitude having the same distribution, the result is a number of
parallel straight lines for the Programmed Constant Amplitude endurances

terminating at the respective minimum stress amplitude as given by the virgin

S-N curve.

Fuller also found that for values of minimum stress amplitude
(in a Programmed Constant Amplitude test) below the so-called fatigue limit,
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the correct VA endurance lines could be obtained by extending, the "sloped-leg"
portion of the S-N diagram to the required value of minimum stress amplitude
and drawing the VA line with slope KV upwards from this point. It is interest-
ing to note that in Levy's Cumulative Damage analysis (page 751 and Figure
3. 136, Reference 18), Levy tried extrapolating the "falling portion" of the
S-N curve to the minimum stress of the programmed Constant Amplitude test
(in log-log presentation) after the manner of Fuller, and found surprisingly
good agreement in endurances with experimentally obtained data for VA type
loadings.

For reasons discussed in the preceding section of this report,
this "sloped-leg" portion is assumed to be the STF endurance mechanism.
From Ref. 1, the semilog equation for the STF distribution is
Nf= 7. 86 x 106 e-" 133S. Thus the zero-S intercept is 7.86 x 106 cycles.
This is point D in Fuller's notation. The slope of the STF line using the S-log
N grid is -. 133 x . 4343 = -. 0577.

Now ( ( ) Rayleigh = . 667 when one arbitrarily uses the cumu-
lative distribution of 1000 cycles. This is due to the ratio of the area of a
parabola (formed by the cumulative probability function plotted logarithmically)
to its enclosing rectangle being 2/3. Therefore the value of KV = -. 0667 x
.0577. This VA line passes through D with slope -. 0384. In order to apply this
VA line to the Rayleighresults it will be noted from Figure 8 that no appreciable
'clipping' of the Rayleigh signal occurs to at least 3. 6 RMS. There is reason
to believe however, that clipping does occur just above this level, from an
examination of two long-term traces.

The operative Rayleigh line using Fuller's method is then a
line with slope -3.6 x . 0384 =- 138 if the ordinate is the RMS stress, or
-. 707 x . 138--. 097 if the ordinate is the RMS peak stress, with the line ter-
minating at Point D. Figure 4 shows the representation of the Rayleigh re-
sults obtained with the Fuller method. The lack of correlation of high values
of RMS peak stress can be expected from the assumption that the STF mech-
anism is the operative one, since in Constant Amplitude testing the STF is limit-
ed to the elastic fatigue range. RMS peak stresses above 16 ksi are considered
to contain a non-negligible amount of alternating-plasticity cycles causing
abnormally low endurances.

Fuller concludes that high cycles of stress are "not. remembered"
by the material if the probability of occurence is less than . 001 and this is his
basis for the arbitrary selection of 1000 cycles.

The lowest RMS stress Rayleigh endurance was also used in an
attempt to obtain a second line based on Fuller's technique using the equation
for the LTF distribution

Nf = 1. 74 x l0ll e-" 532S
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However the results did not correlate with the lower stresses of the Rayleigh
curve. This lack of correlation is considered not due to lack of accuracy of
LTF data (the test results follow the line well) but rather due to possible
differences in damage accumulation with the LTF mechanism compared with
the STF mechanism, if indeed the former has a cumulative damage mechanism
at all.

IV. STATIONARY RANDOM (COMPLEX WAVE) FATIGUE

4. 1 Introduction

The problem of fatigue behavior when a structure possesses
multi-mode response to excitation, is one of extreme practical importance, since
most structures experiencing fatigue are more or less flexible, and hence possess
more than one degree of freedom. Fortunately, in many cases, a simple two-
degree-of-freedom system is capable of simulating a wide range of structures,
due to the fact that often fatigue stresses are developed to a significant extent
in only one or two predominant modes of vibration. An aircraft wing is a good
example of this, since it is usually excited to any extent in only the rigid body
and fundamental wing bending mode. This is due to the spectral characteristics
of the atmosphere, which result in a concentration of turbulent energy in the
lower frequencies only. Recently the multi-mode vibration model has also
been applied to nautical problems involving the pitching and rolling motion of
a ship due to the action of sea waves (Ref. 31).

A logical extension of the single-lever fatigue testing of the pre-
vious section was to incorporate a second lever in the random load fatigue
machine elastically attached to the first, and excite the first lever, as before,
with wide-band random noise. It would then be possible to discover what
differences in endurance ensu:e at the same RMS stress, with the resulting
change in wave-form, The direct use of a multi-mode loading arrangement for
the specimen carries with it the vital advantage that the fatigue loading is not
restricted to the traditional concept of "cycle".

A fatigue cycle is only clearly defined when the response is
Rayleigh or when the forcing function is a single sine-wave. Various workers,
such as Schijve (Ref. 32)have examined the problem of equating complex wave-
forms to equivalent fatigue cycles. It will be seen in this section that a more
rational approach is to analyse the spectrum of the load and then to simulate
this loading. The cumulative damage analysis can then be kept in terms of
spectral quantities.

Cumulative damage theories which examine the non-cyclic
character of truly random load-time histories are very rare. The work of
Torbe (Ref. 33) and its extension by Poppleton (Ref. 34) appear to be the only
serious analysis of this problem. Kowalewski, in Ref. 35, has carried out
what appears to be the first instance of random load testing with broad-band
excitation, using a shaker connected to a cantilever. A fixed configuration of
a single complex .nycle:has.beenrepeatedlyappl.ied to specimens (Ref. 36), but
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no experiments have been carried out under conditions of a random input to a
multi-degree-of-freedom system. Marco and Starkey (Ref. 36) applied a con-
stant phase angle relation to failure in each test, using angles 00 and 900.
While this work was perhaps the first attempt to study complex-cycle fatigue,
the complex and random load traces taken from aircraft show no such perio-
dicity.

4. 2 Evaluation of Spectral Quantities

An examination of a typical load trace resulting from a random
noise excitation of the 2-lever configuration is shown in Figure 13. The RMS
stress of the traces was obtained for a number of samples (see Table 3) by
assuming the cumulative distribution of.amplitude to.be Gaussian (in contrast
to the density distribution of maxima which is combined Rayleigh and Gaussian).
Since the machine is linear in response, this is equivalent to assuming the
input process to be Gaussian. The percentage of time the loading exceeds the
given load level is then a function of the RMS, and can yield the function through
the intermediate parameter, the normal deviate (using Table II of Ref. 37).

The basic power spectrum for the two-lever.configuration of the
fatigue machine used in the fatigue tests may be derived from Figure 14, which
is the dimensional form of the frequency response function one obtains from
sinusoidal excitation of the structure over the frequency spectrum. Figure 14
is only the power spectral density for the particular noise input used in carrying
out this sweep.

The spectral density function arising from the energy distribution
over the frequency domain will be used in this report, although it is of course
possible to use the time domain and analyse the phenomenon using the auto-
correlation function. Reference 38 discusses the relation between the two
methods. The spectral density is defined as the mean square stress per unit
bandwidth(whose units are ksi 2 /cpý. Sinsuoidal excitation to include all signi-
ficant values of spectral density, therefore allows determination of the fundamental
and higher moments of the spectral density distribution about the zero frequency
axis.

In order to obtain the spectral quantities necessary for load
analysis, the second and fourth moments of this distribution must be evaluated.
They are, using Rice's notation (Ref. 39):

His Eq. 3. 1-2: -Z)

S0 •[ by integration of Figure 14
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His Eq. 3.3-14:

0

- LJ7 ~TWr c:

(4)11(4.

Y O1 . /__ C_ ,o (-/s

Some workers have expressed difficulty in 'closing' the inte-

gration of the moment distributions due to the frequency factor in the inte-
gration (Ref. 32). This problem is minimized by using the equivalent forms

removing the frequency factor from the integrand as suggested to the author
by Poppleton, for the graphical integration usually required. .Almost
invariably there is no simple analytical relation between the basic spectrum

and its moments.

The experimental value of 6-- is of course very large due
to the method employed in obtaining Fig. 14 (a frequency sweep using an
oscillator with constant output volts to drive the power amplifier and machine).

It is only necessary to factor down this value to obtain the correct RMS stress
levels in order to apply these quantities to the fatigue tests. ý, and (• are

factored identically since the stress term is unchanged in the integrands.

In the following calculations it is assumed that the frequency
characteristics of the input are 'white', i. e. , uniform over the frequency
range of operation for the fatigue machine.
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Configuration RMS Stress P0 A L" cl'(u )

I-Lever 13.8 ksi 190.6 -17.84 x 106  1. 793 x 1012

2 -Lever 10.4 ksi 108. 6 -2.54 x 106 . 181 x 1012

8.8 ksi 7.7.4 -1. 82 x 106  .130 x 10 1 2

7. 9 ksi 62.4 -1. 47 x 106  .105 x 10 1 2

From Rice's paper two more quantities of interest are obtain-
ed from the basic spectral moment functions. They are:

a) Number of peaks (maxima) per second, (on the average)

His Eq. 3.6-6: -

- a). = 50. 6/sec. for L-Lever configuration

= 42. 5/sec. for 2-Lever configuration

b) Number of zero crossings with positive slope (on the average)

His Eq. 3. 3 -10 j ( Y" 11 Y-)L

NO = 48.7/sec. for 1-Lever

= 24.4/sec. for 2-Lever

From the ratio of these two quantities, two commonly-used
spectral parameters are obtained:
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a) The Irregularity factor R

- / = .96 for 1-Lever*

= . 57 for 2-Lever**

*which is in agreement with the value obtained directly from the trace.

(Section III)

** With the power spectrum shown in Figure 14, the machine was
used to obtain single-RMS endurances at three separate RMS levels.
Oscillograph traces of the strain taken at each of these levels with about
300-400 peaks, were analyzed to obtain the ratio of zero crossings with
positive slope to the total number of peaks. A portion of one of these traces
is shown in Figure 13. The experimental results were (average from at least
3 samples )as follows:-

RMS Level IRREGULARITY FACTOR R

10. 4 ksi .568

8.8 ksi .573

7.9 ksi .578

As expected there is no significant variation with stress level since this para-
meter has been show.n.to depend only on the power spectrum and its moments.

b) The Spectrum-width parameter G.

I -•u = .28 for 1-Lever

= . 82 for 2-Lever

Either the Irregularity factor or the spectrum width parameter,
may be used in Rice's equation. Using E , it becomes:

N)77

Since it is simpler to work with non-dimensional parameters,
we:define = as employed in Ref. 31.

Then (Eq. 1. 17, Ref. 31)

Thus
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i) Setting o = o R R z

~f

which is the Rayleigh Distribution used in the previous section.

ii) Setting E : I (N o) i. e. , two spikes in the frequency spectrum with
the ratio of the lower frequency to the higher approaching zero for equal
energies at each.o _L_

which is the Gaussian Distribution

Near e 1, the trace will have about the same appearance as at C- = 0 except
for a very small high frequency ripple superimposed on the main low frequency
fluctuating stress.

iii) For a flat frequency response (such as one obtains with a low-pass filter)

One of the main differences in the distribution of peaks for the
two-degree-of-freedom configuration, in contrast with the Rayleigh distribu-
tion, is the occurrence of negative-valued maxima. This can be seen to re-
sult from the introduction of the 'normal' component, which is symmetrical
about zero peak stress (or the mean stress). The proportion of negative
maxima, is given in Reference 31 (Eq. 3.4) as r.

where
r = ½ (l-R)

r = 2% for the 1-Lever case

r = 21. 5% of the maxima for the 2-Lever case

In Reference 28, Fralich gives the equivalent peak RMS
equation

as

I+ g?_ - \4 - 4 Y XL if pure Rayleigh

Thus

, 1-Lever

S, 2-Lever case
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This peak RMS value occurs at the mode of the Rayleigh
component distribution.

As pointed out in Reference 31, the distribution of minima is the
reflection of Figure 15 about ý = 0.

Using the non-.dimensional stress parameter ' with R = .57
(the two-lever case)

This relation is plotted in Figure 1 5 r

4. 3 Test Results

The single RMS (Stationary) fatigue endurances are given in
Figure 9. The mean values in this plot are based on 50 cps as a -reference
frequency. See Table 3.

10.4 %900 123, 250 70 760 145,000

8.8 9500 403, 750 231, 800 475, 000

7. 9 24,600 1, 045, 500 600, 240 1, 230, 000

A crack detection study of the two-lever test specimens revealed
crack nucleation similar to that observed with the single-lever Random
Amplitude tests. Figure 16 shows the cracks on the specimens tested at the
level ( V'7•= 10. 4 ksi). The mean number of cracks for each of the three stress
levels is shown with the corresponding stress level value from the single lever
tests in Figure 12. It can be seen that the introduction of a second degree of
freedom accelerates the nucleation process.

The discovery of visible crack nucleii on the specimens used in
the random load tests led naturally to a re-examination of the specimens tested
under Constant Amplitude conditions. All the Constant Amplitude specimens
tested with the Random load machine exhibited negligible crack nucleii apart
from the failure crack. A random sampling of the earlier Constant Amplitude
test pieces tested in the Amsler Vibrophore confirmed this finding. From the
proportion of negative maxima r mentioned in this section, it appeared that
possibly the value of the "oscillating mean stress" may affect the appearance
of crack nucleii. Accordingly three widely-spaced values of mean stress
were used to augment the data obtained with Sm = 16 ksi. For all these tests
the Constant Amplitude alternating stress was 34 ksi. The results are given
in Table 8. It can be seen that the number of crack nucleii is small for all
mean stress levels except for the compressive mean stress case S = -34 ksi +
34 ksi, a fluctuating compression test. These tests revealed an astonishing
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average crack nucleii of 15 per specimen. A sample of these specimens is
shown in Figure 27. Unfortunately there were no tests performed between
zero mean stress and this very high compressive mean stress. Certainly
this would appear a worthwhile future project utilizing Constant Amplitude
test equipment.

4.4 Application of Cumulative Damage Laws

4. 4. 1 The Linear Law

In order to apply the linear or, Miner Law to the results from
a flexible or multimode structure, it is necessary to obtain the cycle ratio
at each level of stress. The number of stress peaks lying between s and ds is
T p(s) ds~where T is the mean duration of the test in seconds, is:

OU\C~~(-q = r stb ý

Thus we have, for the three test points

10.4 ksi 11, 850 p (i,)

8.8 ksi 4 5, 8 8 0 p )

7. 9 ksi 132, 340 p ( )

The abscissa of Figure 15 is a stress parameter. For the
linear rule, the S-N curve of the material is used to obtain the cycles to
failure Nf(s) for evaluation of the cycle ratio at all stress levels. From the
S-N data for the material used in these tests, Nf(s) is greater than 10 million
for s ,18 ksi, or a value of /L = 1.8 at least, for the test RMS levels con-
sidered. It can be seen from Figure 15 that as E, increases, a larger pro-
portion of peaks will occur below the endurance limit, as the normal com-
ponent increased in proportion for a given RMS stress level. Now at '. = 1. 8
for S = . 82, the Rayleigh component is greater than 85% of the total distri-
bution, and only peaks above this r\ level need be considered in the linear
summation. Consider the Rayleigh term in the basic equation

Note that if the error function term in brackets were replaced
by unity at = 1. 8, the error would be a 12% increase. In other words,
using the simplified expression 7
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as the effective Rayleigh distribution for the 2-lever case, the error at
= 1. 8 is only 4%, decreasing to zero at q increases. This equivalent

Rayleigh distribution is also shown in Figure 15.

An analytical evaluation of the equivalent Rayleigh fatigue curve
may now be carried out using the procedure of the previous section

The mean time to failure, in seconds is

-I

Lpeaks or cycles I

If we use the number of peaks Nito determine the cycles to failure:

- -

While this results in an accurate representation only of the
high values of 'j , at the expense of all but neglecting the lower stresses, it
can be seen that the contributions to the linear summation at low stress levelsis negligible. Since •o' € (0_) d •, = R, we are omitting 100 (l-R)% of the
peaks from the calculation, which is quite a high percentage. An alternative
procedure would be to use the exact p (iQ ), but the result would not be much
different. Thus an equivalent Rayleigh distribution for R <.1 is obtained by
dividing the Rayleigh line for R = 1 by (R)complex.

When R = . 57 this factor for the Rayleigh endurance is 1. 75.
Alternatively, the equivalent Rayleigh endurance will be exactly equal to the
predic~ted cycles to fail from Section III, if the number of zero crossings
with positive slope, N•Ji+ is used to assess the cycles endured.
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4. 4. 2 Fuller's Technique

As described in Ref. 23, the application of Fuller's cumulative
damage rule involves the calculation of the cumulative probability.

For the present case (2 . 774 for F = . 82 and Fuller's
endurance line can be found as before. This value of ( was obtained by
using the probability limits P = . 003 and P = . 999 in the analytical expression.
The former value is dictated by the clipping limit (3.6). The latter occurs
at about = -2. 5. Thus kw .774 X .0577 and kRMS = -. 160

= 0446

The resulting random load fatigue line is shown in Figure 4.

4. 4. 3 Results of Cumulative Damage Analyses

12. 0 123, 250 10. 6 x 106 164, 000

10. 1 403,750 27. 2 x 106 303, 000

9. 1 1, 045, 500 44. 5 x 106 420, 000

As in the single-lever case, Fuller does not predict the rapid
increase in endurance at the lowest stress level. It would be interesting to
test at different values of R to assess further the comparative merits of these
two techniques.

V. QUASI STATIONARY RANDOM AMPLITUDE FATIGUE

5. 1 Introduction

The importance of the assumption of stationarity in the random
process being considered is clearly shown in the interesting discussion of the

occurrence of very large peaks in ocean waves given in Ref. 40. It has been
found that, while the wave peaks can be well represented by the Rayleigh distri-
bution, the low frequency of the waves makes the problem of accurate assess-
ment of the maximum peak difficult, due to violation of the requirement of
stationarity for the 'sea' considered. The general statistical level of the waves
usually changes before the rare values predicted by the Rayleigh probability
law can occur, Longuet-Higging gives a typical example where it takes i11
days for the (mean)occurrence of a peak at 3.5 RMS and concludes that it is
unlikely that the sea state would be stationary for such long periods of time.
It is, therefore, important to assess the statistical behavior of the mean
intensity, to obtain the compound probability of the 'instantaneous' peak values
at all levels.
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A disadvantage to the use of stationary random noise to generate
fatigue loads is that there is no control over the probability density of the
maxima of the function. It will be demonstrated in this section that the appli-
cation of programmed random loading not only overcomes the above restric-
tion, by allowing almost any form of peak frequency distribution to be generated,
but also is highly representative of the random load history actually encountered
by such structures as aircraft wings.

Throughout the life history of an aircraft for instance, the
structure experiences a discrete change in random load intensity when the
pilot flies from onepatchof turbulence (shown to be effectively stationary by the

work of Ref. 22), and abruptly enters another path of turbulence, either of
greater intensity or less. When the discrete nature of this transition from one
stationary turbulence patch to another is appreciated, it can readily be seen
that discrete programming of the RMS level of stress intensity with the random
fatigue machine is not an approximation to an actually continuous variation
(as Programmed Constant Amplitude tests are), but a satisfactory simulation
of the actual service history. The gust history is then reduced to the specifica-
tion of the probability distribution of the RMS gust velocity in each stationary
section. It has also been found that, over the service life of a great many
structures other than aircraft, the actual periods of use are discrete intervals,
and as such the loadings in the long run can be represented by a Quasi-
Stationary Random Process.

Two conditions are required to simulate such a Quasi-
Stationary random process. They are:

1. Control over the 'patch RMS level and avoidance of any
appreciable non-stationary behavior in this quantity.

2. Control over the final distributionofipatch RMS stress levels,
so that the overall stress history closely resembles the de-
sired one.

A knowledge of the service load distributions arising from a
quasi-stationary load history is important to obtain not only the probability of
occurrence of extreme values for static design considerations, but also the
occurrence of the most probable (and therefore the most frequent) loadings for
fatigue studies of both the structure and its occupants.

Considerable work has been done by the NASA to establish the
distribution of RMS gusts. The results of their work (Ref. 41) have been
incorporated into a military reliability specification (Ref. 42). The distri-
bution agreed upon is a dual exponential distribution to include both 'storm,
and 'non-storm' turbulence. In their notation:
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A
where - ( > is the probability density distribution of 6 , the root-
mean-square gust velocity and P 1 , P 2 are parameters representing the pro-
portion of time in non-storm and storm turbulence respectively. The scale-
parameters bj and b2 represent the relative scale for the individual probability
distributions for the two types of turbulence.

In England, Raithby has described a similar dual exponential
relation (Ref. 43) for discrete gusts in the form

where F is the number of gusts " 'Y for each gust >, 10 fps and
"gust velocity, fps.

In performing random programmed RMS Random Amplitude tests
with the fatigue machine, it is also possible to simulate the change in RMS
stress level which occurs dynamically on an aircraft wing when the aircraft
abruptly enters a new patch-of turbulence. This change is quite similar to the
change in specimen stress history obtained when the RMS level of the machine
is abruptly altered manually from one level to another. Figure 17 shows an
example of manually increasing the true RMS level of the machine from 5. 3 ksi
to 11. 0 ksi. The sample trace at the top of the figure was taken at slow speed
(5 mm/sec) while the lower trace shows the continuous dynamic nature of the
change in detail, by running the trace at high speed (625 mm/sec). Since no
appreciable 'clipping' of the process occurs over the range of RMS levels
considered, the variation of the single parameter, patch RMS stress level,
is adequate to specify the changes in load history completely.

5. 2 The Rectangular Distribution

As a preliminary step to the simulation of such a process, con-
sider the application of a Quasi-Stationary process in which the frequency
function of RMS Stresses is rectangular; i. e., every value of RMS stress in
the range considered is equally probable. The endurance curve shown in Fig.
19 was arrived at by the application of successive RMS stress levels for one
minute each, following, the percent values given by Hald's Table of Random num-
bers (Table XIX, of Ref. 37 beginning on Page 93) and partially reproduced
in Table 4.

One minute corresponds to about 3000 cycles during which, on
the average, a stress of 3. 6 RMS is exceeded once. Consequently the speci-
men.issubjected to a good sample of the random process at each value of RMS.

Values were taken reading down the first column of numbers,
then down the second column etc., until the specimen failed. The range of
RMS stress levels was. specified as 0 e Ir '. Since the distributionu1m
used is rectangular, the Overall RMS depends only on the maximum RMS
stress level in the range.
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The overall. RMS stress level for a. Rectangular Distribution of
RMS stresses ranging from zero to •- ,in terms of •-

AL

is 3 )

Thus .577 6-

The probability density of half-cycle stress peaks for this distribution can be
obtained by assuming the Rayleigh distribution of peaks within a given patch
of turbulence.

If Nf is the number of cycles to failure, then the number of
cycles spent with a value of RMS between 0- and o- --4 0- is ,k ';-•;.
If this is a sufficiently large number to be fully representative of the process,
then the number of cycles during which S has a maximum between S and
S + dS while T- lies between 0- and + -is 1

d'-

Consequently, the number of cycles having a stress maximum between S
and S + dS during the lifetime is 5 - _ S_ i ___

and the probable density of stress maxima is thus:

then(J\- F( L ]

Where , is the incomplete Gamma Function evaluated to z#- This
can be carried out using Pearsons Tables (Ref. 44) by putting the above equa-
tion in the form S L

using Pearson's notation for I.

This distribution is shown in Fig. 18. The distribution con-
tains an extremely large number of small half-cycle stress peaks, compared
with the rare occurrence of high stress levels. The expression for the
cumulative probability

A (- SK
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where 3. 6 is the clipping ratio for the signal. Since r is not a simple
analytical function of Si, this integration would be difficult in an analytic form.
Since it is required to obtain n(s) for the Miner calculation in any event, the
density distribution of stress will be evaluated instead, and a numerical cumu-
lative integration carried out to obtain the Cumulative Probability needed for
Fuller's treatment, using the logarithm of the cumulative probability function,
as described in Section III.

5. 3 Test Results - Rectangular Distribution

Test Results

The overall RMS achieved with a given range of stresses used
will have a significant variation due to the fact that one specimen will have a
different endurance than the next, and consequently experience a different dura-
tion of the random number sequence. For the tests described in this report
the lives were sufficiently short (less than 400 minutes) for a calculation of
overall RMS to be performed for each specimen endurance. It was found, as
can be seen from Fig. 19, that this refinement greatly reduced the apparent
scatter, since a pronounced correlation existed to yield high endurances for low
overall RMS levels, and vice versa. Due tb this effect, it was found that, by
specifying only three values of 8 , 10 ksi, 10, 8 and 11. 7 ksi (with overall
RMS kcs = 5. 77, 6. 24 and 6. 75 respectively) and testing about 4 specimens
with each range, a continuous line of endurances was obtained over a wide
range of overall RMS stress levels. See Table 5.

This endurance curve obtained for the rectangular Quasi-
Stationary process using unnotched specimens, exhibited surprisingly low
endurances when compared with the Rayleigh curve. Also the mean number of
crack nucleii for the low overall RMS stress level is comparable with the
highest RMS stress level results from the stationary random amplitude program
(Fig. 12). It is interesting to speculate whether the great number of fatigue
cracks found in aircraft structures in service is probably not entirely due to
stress concentrations alone, but also due to the Quasi-Stationary nature of
service loadings, since the specimens tested in this manner were unnotched.
A sample of Rectangular Distribution specimens is shown in Fig. 20.

5. 4 Cumulative Damage - Rectangular Distribution

5. 4. 1 The Linear or Miner Law

From inspection of Fig. 18, it can readily be seen that the vast
majority of stress peaks for such a distribution lie below the S-N curve. For
example, consider ý" = 11. 7 ksi. From Table 3, Ref. 1, a stress level of
18 ksi represents a life of about 12 million cycles, so that all the stress peaks
yielding significant cycle ratios will lie a5bve s4- = 1. 5. The area under the
curve in Fig. 18 is Unity. One million cycles would therefore be distributed
as tabulated below, for 1 = 11. 7 ksi.
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Sksi S 2 -Slksi Cycles>. 5. Cycles in (N failure)s . x 103

18 17-19 80, 000 25, 000 12, 704, 000 1. 97
20 19-21 55, 000 19, 000 4, 682, 900 4. 06

22 21-23 36, 000 13, 000 1, 845, 900 7. 04
24 23-25 23, 000 8, 700 81ý, 400 10. 70

26 25-27 14, 300 5,300 416, 000 12. 74
28 27-2,9 9, 000 3, 700 247, 300 14. 96

30 29-31 5, 300 2, 200 164, 800 13. 35

32 31-33 3, 100 1, 370 117, 800 11. 63
34 33-35 1, 730 830 87, 300 9. 50

36 35-37 900 450 65, 900 6. 83
38 37-39 450 250 50, 100 4. 99

40 39-41 200 146 38, 300 3.81

Total . - • 0. II (54 cycles - 41 ksi)

Now from Section IV, the number of maxima per second,

N 1 = 50. 6/second for the single-lever configuration. Therefore 1 million
cycles will take about 20, 000 seconds or about 5 1/2 hours. From the above

calculation the endurances for the quasi-stationary loading using the rec-
tangular distribution ( o = 11. 7 ksi) will be of the order of 50 hours. The
average endurance from Table 5 was about 1 1/2 hours. Clearly the linear

rule is inadequate to predict life using realistic load distributions, since,

aside from stress interaction, the calculation has ignored a very large num-

ber of cycles, viz. 92% of the total applied to the structure.

5. 4. 2 Fuller's Method

Replotting the distribution shown in Fig. 18 to obtain the cumu-
lated distribution of peaks (on a logarithmic scale) versus the stress peak

level, one obtains a value for Fuller's parameter (3 =. 58 when considering

one thousand peaks. Using this value, and following the method outlined in

previous sections, Fuller's line underestimates the intermediate stress level
endurances.

A re-examination of Fuller's treatment for the stationary

Rayleigh distribution suggests that possibly the criterion implied by the use
of 1000 cycles may have been fortuitous, in that it gave the same result as one

would obtain using an alternative criterion; i. e. that the Cumulative Probability
function be plotted to the maximum stress peak value for the test. When this

is done, one obtains (S = . 665. That is, plotting the cumulative probability
distribution to S = 3. 6 • results in ( = . 665.

33



The ratio of maximum stress peak to the overall RMS will then

be given from
A Overall RMS Overall

6- ksi Sksi = 0. 577 - RMS peak

10.0 36.0 5.77 ksi 8. 165 ksi
10.8 38. 9 6.24 ksi 8. 825 ksi
11.7 42.1 6.75 ksi 9. 546 ksi

A

Thus S = 4. 4 (Overall RMS peak)

The slope of Fuller's line is thus (from Section III)

-4.4 x 0. 0384 = -0. 169

This line is shown in Fig. 19 with the experimental data from Table 5. The
result is in reasonable agreement with tests carried out at the intermediate
levels of stress. The modification of Fuller's rule to depend on the occurrence
of the maximum stress peak is anticipated by the theory proposed by Freu-
denthal, as described in the next sub-section.

5. 4. 3 Freudenthal's Method

Since each turbulence paatch.hasthe Rayleigh distribution

where

and cb
(Page 31) Section 5. 2

A numerical evaluation of the damage using Freudenthal's S-N equation

can be carried out using the million-cycle load spectrum as shown in sub-
section 5. 4. 1, but including the lower stress levels. The value for the
summation Z -/W with a rectangular distribution was

,.44

For this value, the predicted endurance (from Section 5. 4. 1) is about 11. 0
hours. While this isstilla ten-fold increase over the observed value, it is
certainly a better estimate than the linear rule.
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5. 4. 4 Life Prediction Using Units of RMS Stress

Since we have the Stationary Rayleigh endurance curve
(Fig. 4), it would be interesting to attempt a life prediction for the rectangular
Quasi-Stationary tests, which are essentially a programming of discrete RMS
levels, using a linear summation of cycles at a given RMS divided by the cycles
to failure at that RMS, from the Stationary Rayleigh curve.

This procedure was carried out using a linear interpolation
between the stationary Rayleigh mean endurances obtained from testing.
These values are given in Section 5. 5. 3, where this technique was applied to
an arbitrary RMS distribution. For the present case, the Rectangular distri-
bution, the results were, using 1 minute (3, 036 cycles) per RMS level:

A g N
T- Time • Nf predicted

11. 7 117 minutes .364 974, 550
10.8 108 minutes .225 1, 285,750
10. 0 100 minutes .186 1, 630, 330

It can be seen from Fig. 19, that this method is not very pro-
mising on the face of this example, which is probably an unsafe over-
simplification of the effect of the Quasi-Stationary load spectrum. However,
it does yield predictions which are closer than the more conventional tech-
niques discussed elsewhere in this report.

5. 5 Tests with Other Distributions

5. 5. 1 Transformations to Other Distributions

When. considering the transformation of a rectangular distri-
bution set of random numbers to another distribution whose form is asymp-
totic with increasing stress level, it is necessary to employ truncated distri-
butions with the maximum RMS obtainable set at some realistic value, such
as, say, the (static) limit load. The respective values of the rectangular dis-
tribution are then used to obtain random values of the upper limit in the cumu-
lative probability function of the new distribution, as indicated in Ref. 45, i. e.

Sp(x)dx = D

where D = random number in the rectangular distribution

and p(x) = probability density function in the new distribution
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5. 5. 2 Tests with the Truncated Gaussian and Truncated Exponential
QS Distribution

a) Truncated Exponential QS Distribution

The integral of the truncated probability density between trunca-
tion points is

rc~~ k(44)
C-

where K is the amplification factor applied to all values of the basic asymptotic
distribution to obtain values in the truncated distribution. For the maximum
value of the RMS, x to be 1.7 times the overall RMS level (here denoted asr),
i. e., for 1-o" = 1. 7, K= 0. 612. The overall RMS level of the quasi-
stationary process is obtained from the equation

AA

Thus S = 0. 7709 r where 6 is such that 1. 7 o = , i.e., the overall RMS
level for the truncated distribution is 77 percent the value for untruncated dis-
tribution. A sample set of random numbers obtained using the truncated
exponential distribution is shown in Table 4.

b) The Truncated Normal Distribution

The cumulative distribution P(x) for the truncated normal dis-
tribution is

The second term = 0. 04457 when "/•- = -1. 7, as shown in Table II of Ref.
37, and the -numbers are generated by evaluating the integral in the first
term from Table II. A sample of these numbers is given in Table 4.

Unfortunately, it was not possible to test extensively with these
two extremely interesting load histories. However, two specimens were used
for each of these two quasi-stationary loadings and are shown in Table 5. If
anything, these sparse results indicate lives of the same order of magnitude,
or less, than obtained using the rectangular RMS distribution. This is not
unexpected since an attempt was made to test at close to the same overall RMS
for these distributions as for the rectangular, with similar values of maximum

A
RMS, - . It is obvious that such restrictions result in severe truncation,
with the distributions approaching the rectangular. A more interesting test
would have been to use a lower RMS and hence obtain a greater contrast in
distribution. (The final distribution of stress peaks for these loadings is
shown in Fig. 18 for a test duration of 200 minutes each.
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However, the endurance line for these QS tests appears to be
characteristically flat, 'and since the application of RMS levels was manual,
this innovation was not attempted.

5. 5. 3 Arbitrary Distributions of RMS Levels

In order to obtain the distribution of stress peaks from a given
arbitrary Quasi Stationary Distribution of RMS levels, a computer program
was developed which obtained the proportion of stress peaks at each of a large
number of stress levels, assuming 100% Rayleigh distribution for a given
RMS level. These proportions were then obtained for all RMS levels desired.
By storing this information, all that is required is the relative proportion of
time spent at each RMS level for a summation to be carried out yielding the
final stress peak density distribution. That is;

where final proportion of total time spent at RMS level

As an example, a series of tests reported in Table 5 had the
following average measured values of , (where total time is unity)

N /!2ýeI ~J ~ k%~j
5.3 ksi 7,000 139 0199 7.1 857 .014 0163 9.0 500 003 0060
5.4 6, 500 .090 .0138 ý7. 3 806 .012 .0149 9. 1 490 .017 .0347
5.5 6,000 058 00966 7.4 7.80 009 0115 9.2 480 003 00625
5.6 5, 500 034 00618 7.5 754 013 0173 9.3 470 002 00426
5.7 " 5,000 033 0066 7.6 729 019 0261 9.4 460 005 0109
5.8 4, 600 034 0074 7.7 703 021 0299 9.5 450 010 .0222
5. 9 4, 200 028 00667 7.8 677 013 0192 9.6 440 019 .0432
6.0 " ,800 048 0126 7.9 651 007 0117 9.7 430 002 .00465
6.1 3,400 017 0050 8.0 626 002 0032 9.8 420 008 .0190
6.2 3,010 027 0090 8. 1 600 012 020 9.9 410 005 .0122
6.3 2, 600 029 0111 8.2 588 020 034 10.3 370 015 .0406
6.4 2, 190 027 0123 8.3 577 006 0104 10.4 360 003 00833
6.5 1, 780 026 0146 8.4 566 008 0141 10.8 320 014 0438
6.6 1,370 032 0234 8.5 555 006 0108 10.9 310 005 0161
6.7 960 020 0208 8.6 544 006 0110 11.3 270 005 .0185
6.8 " 934 019 0204 8.7 533 007 0131 11.6 206 004 .0194
6.9 " 908 010 0110 8.8 522 012 .0230
7.0 " 883 016 0181 8.9 511 006 0107

A linear summation of fatigue damage was calculated assuming

a) Total time 1 million cycles (5- hrs. ) and

b) Using RMS levels as units, with failure times from the Rayleigh
(Stationary) curve.

37



Using this technique, the mean endurance is predicted as 6. 6
hours, whereas the average test duration was of the order of 2 hours (see
Table 5).

Returning to the more conventional method of life prediction,
we can apply the Linear law and Freudenthal's rule to the final distribution
of stress peaks as shown in Fig. 21. We obtain, in one million cycles

0 0 )L •I•

2 93,000 0o C4
4 159, 200 - 0 -

6 182, 200 - 0 0

8 168, 200 0 16,480.000 0102
10 133, 600 0 6, 765, 000 0198
12 95, 200 0 3, 264, 000 0291
14 62, 600 0 1, 755, 000 0356
16 39,000 0 1,034, 000 0377
18 24,000 12,704,000 1.890 641, 600 0374
20 14, 380 4, 682, 900 3. 070 423, 300 0340
22 856 1, 845, 900 .4640 289, 500 0030
24 502 813,400 .6170 203, 800 0025
26 28 416, 000 .0670 147, 500 00019
28 12 247, 300 .0485 109, 700 00012
30 6 164, 800 .0364 83, 500 .00007

32 4 117,800 .0340 64, 000 .00006

34 2 87, 300 .0229 50,600 00004
36 0 - 0 -

38 0 - 0
40 0 - 0

The overall RMS level for these tests was 6. 92 ksi.

Using the linear law 0 _ 1 million - 150 million

r..,., 6.25x10-
3  cycles

34 days

Using Freudenthal's fictitious S-N curve:

(Ný 1 1million 4.78 million
F'', .21 cycles

- 26 hours

compared with the average experimental life, which was about 2 hours.

A qualitative survey of the secondary cracks in the failed speci-

mens revealed fewer cracks in general than was the case with the Rectangular
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distribution. Possibly the relative lack of very low stress cycles, which
appears to be the essential difference between the two RMS distributions
(see Table 5), would account for this behaviour. The secondary crack pop-
ulation is similar to that for the Stationary Rayleigh results. Indeed, the
final peak distribution with the arbitrary RMS history (Fig. 21) is closely
akin to a Stationary Rayleigh distribution of the same value as the overall
RMS level.

VI. ENDURANCE BEHAVIOR WITH CONSTANT AND RANDOM AMPLITUDE
PRELOAD

6. 1 Introduction

In this section a study of the effect of preload on Constant
Amplitude endurance will be presented, using the test results obtained in
this program. The test results involving constant amplitude preload are
presented in Ref. 1, while the random amplitude preloading results are con-
tained in Table 7 of this report.

The resulting plots of the Constant Amplitude endurances when
given a preload, (either Constant or Random Amplitude) exhibit a truncated-
log-normal probability pattern, due to the fact that the extent of fatigue damage
due to preload is itself a random variable, rather than being a uniform quantity;

as inFig. 24. The constant ampli'tude endurances represent an overlapping of
the constant amplitude population on the preload population of partially-damaged
specimens. The most significant effect of such overlapping is the greatly in-
creased probability of very short and very long constant amplitude endurances
due to the cases where preloading causes above-average andbeloww-average damage
respectively. Hence the endurance curves show a large drop-off at the low
probability endurances. This effect sometimes appears in two-level single-
jump constant amplitude tests shown in TN 35 (see for example Fig. 12, Ref.
1) where although the number of cycles of prestress are fixed, damage is still
a random variable. Another example of this "asymptotic" behavior of such
results in Fig. 14 (b) of Ref. 15.

Of course, the truncation phenomenon complicates the choice
of a mean endurance for the test configuration. Keeping in mind the uniform
slope of the intermediate probabilities, the natural choice appears to be the
intercept with 50% probability, of the best straight line through the endurances
which are least affected by truncation.

6. 2 Endurance Behavior with Constant Amplitude Preload

The two-level tests reported in TN 35 (Ref. 1) were not
analysed in detail in that note. Basically the method employed was that
referred to as the Equivalent Fatigue Damage Method (EFD) in Ref. 46, which
is itself a genera,lization of the two-level technique originally used to obtain
French's 'Damage line' (Ref. 23).
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6. 2. 1 Low Prestress - High Test Stress Results

In order to establish the statistical significance of these two-
level fatigue tests, use is made of the fact that two separate samples were
obtained of the single-level endurance at the 'test stress', 34 ksi, and as such,
constitute two sets of "Stochastically Independent" observations. Since both
samples 34 and 34a obviously come from the same population, the F-test for
variance (Ref. 47) and the t-test for difference in means (Ref. 48) will be used
to assess the significance of these tests.

From Table 3, Ref. 1

Test Sample Sample mean Standard
Sa number cycles Log mean Deviation

34 n1 = 9 100, 000 I1 = 5. 000 sl = . 179

34a n 2 = 9 157, 000 Y2 = 5. 196 s2 = . 273

The variance ratio F is (. 273/. 179)2 = 2.33. From Fig. 8, Ref. 47, F = 3.4
for 95% significance. Since our value is less, the variances do not differ
significantly.

The variance of the S2 distribution (using the notation of Ref. 48)
is therefore

The resulting t-distribution is

and f = 16, the degrees of freedom. 0 - (• -

FromFig.. ,5,Ref. 47, the significance level is 91% (i. e., less than 95%) hence
the difference is, not significantly demonstrated. Hence it can be assumed
that the samples are from the same population.
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However this criterion can also be applied to the two-level

results to define the range of the Damage parameter

D=>- I - -

within which the prestress cycles have been of negligible effect within the
scatter of the test results. Consider the difference in the means of the log-
endurances between the prestressed specimens (samples usually contain 9
specimens) and the virgin specimens n = used at 34 ksi:

log r)- -log =log LI-_D)

Thus if t g -

Then
log (1-D) 5 .815 S

From the average standard deviation O-est given in Table 8 of TN 35 (. 167),

the average value for the pooled standard deviation S =. 212, approximately.

Thus if I o C ' <

the results will indicate that the prestressing had very little effect on the test
endurance. Since in nearly every case where the prestress level was higher
than the test stress level, the prestress cycle ratio was very small, this re-
sult would indicate that the linear rule was adequate for the prediction of life
for these cases within the scatter of the test results. The condition on log

(I-D) means that prestress causes no significant damage if -0. 5 <D< 0. 33.
Referring to Fig. 19 of Ref. 1 it appears that the majority of the low prestress
test results fall within this range. This inability of the low prestress to
affect the endurance at a higher test stress significantly not only indicates
validity of the linear rule for the small values of cycle ratio used, but also
is consistent with the assumptions contained in the Corten-Dolan hypothesis
(Ref. 49). Figure 15 of TN 35 shows that the two lowest levels of the high-
prestress test results also fall into this category. This latter finding will be
confirmed in the following treatment of the high prestress-low test stress
test results.

6. 2. 2 High Prestress - Low Test Stress Results

For the high-stress-to-low-stress tests, there is a possibility
that some other rule than the linear rule may be more representative, such as
the Corten and Dolan hypothesis. It must be kept in mind in the following that
the Corten-Dolan hypothesis was first developed with a repeated two-step load
history, whereas the TN 35 tests w6re concerned with the effects of prestressing
at one stress on the subsequent constant amplitude endurance at a second 'test'
stress.
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The cumulative damage rule put forward by Corten and Dolan
is a modification of the linear rule and has the form

where N = total number of cycles to failure in a variable stress
spectrum

K Ng number of cycles applied at stress amplitude Si

d reciprocal of the slope of the modified S-N relation
(on a log-log plot)

S1 = maximum stress peak experienced in the test

d is derived from the results of two-step cumulative damage experiments
and the stress interaction parameter RI/a is defined as

(S-~3)

Let total number of cycles r 1- Y1 -J

and h,
N))

Since ii/T4)> y

Now from TN 35

Thus

R __
In Ref. 49, Liu and Corten have studied the dependence of RI/a on the stress
ratio $2/S1 where S1 is the prestress and S2 the test stress. From the
generally linear log-log behavior they have obtained the relation (their Fig. 9a).

S (2024-T4 Aluminum wire)

In order to assess the corresponding value of the slope for the
test results of TN 35, a modified least squares regression of the data was
performed utilizing the fact that the limiting point (RI/a = 1, S2/S 1 = 1) must
be on the regression line. The 59 different values of Rl/a and corresponding
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$2/S1 taken from TN 35 have been tabulated (see Table 6) and the resulting
slope value d = 5. 67.. The plot of this relation is given in Fig. 22. Using
this relation, the predicted fatigue life ratio under this type of load sequence
is given in Table 6, using Eq. 8 of Ref. 8.

i. e.

Thus

+ __ &, a'l

Note that the basis of the method may be taken to be the use of a fictitious
S-N curve. It reverts to the linear Law (or Miner Law) if

A comparison of the Corten-Dolan Life ratio with the linear
summation of cycle ratios is also given in Table 6. The test point designa-
tions are as given in Tables 5, 8 and 9 of TN 35. It can readily be seen that the
linear rule usually overestimates the remaining life, while the Corten-Dolan
life prediction is usually conservative for low prestresses and close to correct
for high prestresses. (See Fig. 23). There is close qualitative agreement
here with the Corten-Dolan results shown in Fig. 8, page 615 of WADC
Technical Report 59-507. At low prestress levels there is little to choose
between the two methods. The deviation of the Corten-Dolan life ratio at
very high prestress levels is to be expected when it is remembered that the
theory is limited to the elastic (pure) fatigue area of long lives.

6. 3 Constant Amplitude Endurance Behaviour with Random Preload

6. 3. 1 Introduction

It has been pointed out by many workers that the higher stress
levels seem to have the predominant damaging effect in variable amplitude
fatigue. Indeed, in the most prominant cumulative damage theories which
exist so far (aside from the linear law), such as those of Freudenthal (Sec-
tion 3. 4) and Corten and Dolan (Section 6. 2. 2) the maximum stress peak of
the fatigue history forms the cornerstone of their analyses.
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In order to shed more light on the role of the higher stress
peaks in damage formation under random loads, a series of tests were con-
ducted in which the Rayleigh fatigue history was interrupted, and the subse-
quent test pattern made constant amplitude to failure. By varying the runout
stress level, randomly - preloaded S-N curves were obtained as shown in
Fig. 25. The statistical behavior of the endurances at a given stress level is
shown for one of the two pre-stress RMS levels used, in Figure 24. The 50%
probability position was usually taken as the mean value. The shape of the
curves in Fig. 24 is as expected when one recalls that the damage from the
random pre-load will be a random variable.

6. 3. 2 Evaluation of the Maximum Stress Peak SI from the Slope of the S2 - N
Curve

In Ref. 34, Poppleton extended the work of Corten and Dolan to
study the Random Load endurance relation. Using Corten and Dolan's notation,
their damage equation is:

0,

from which Poppleton uses the derived expression

A. (IA,

-_ - at failure

The value of Ak- is a measure of the active damage nucleii, while /0 is a
damage rate parameter. The maximum of k- appropriate to Si is/Ac. With
a random loading /, and Si, will increase on the average to the final values

lb,, and Si dictated by the clipping characteristics of the signal.

If the partial damage due to random preload is designated as
Dl (t), then the complete damage equation is

Since it is assumed that the rate parameter lo does not vary with cycles, its
value at failure in a single level test at S2 can be substituted in the equation
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Consider the value 'of tk in the above equation. For the run
out history there are two alternatives:

a) If 5 S

4-4
.4tL N~

and the Aequivalent to the higherS 2

P1, =stress achieved, is operative

This is essentially the linear damage hypothesis and gave good agreement
for the low CA pre-stress tests discussed in Section 6. 2. 1.

b) If

and the higher pre-stress peak S1 dictates ¢.

If we introduce a reference stress SR with damage parameters
and note that:

i)

ii)A _

from the work of Corten and Dolan (Ref. 49), the general equation developed
above becomes

Taking Logs:

If S1 < S2

If S1> S2

b) 1If

45



From these equations it is observed that a fundamental change
in the slope of the run-out S2 - Nf relation will occur, most notably in Log-Log
co-ordinates. If the maximum pre-stress S1 is less than the run-out stress
amplitude S2 the slope will be S , the same as that of the virgin S-N curve.
This is a natural consequence of the application of the linear law (see Section
3.3.1).

If the pre-stress level S1 is higher than S2, the former dictates
the slope and it will be d, the value obtained from a consideration of the mix-
ing of the two stress levels S1 and S2 according to Corten and Dolan (Sec. 6. 2. 2).

If the range of stresses used as run-out stress levels are such
as to 'bracket' the value S1 then the S 2 -Nf curve would consist of two straight
lines meeting at a 'kink' (at SI = S2) such that the higher stress leg would
have slope S while the lower leg would have slope d .

From Section II the regressed slope of the log S-log N curve
was= 

5. 54

while from Section 6. 2. 2
d =5, 67

The results of the Partial Damage tests are given in Table 7.

Regressing the data, we have:

CA Levels Correlation
(5- tI Used in Regression Slope Coefficient

13. 5 ksi 30 minutes 5 -4. 96 .994

13. 5 ksi 60 minutes 5* -5.42 . 998

16. 0 ksi 30 minutes 6** -5. 04 .920

16. 0 ksi 15 minutes 5* -5. 68 . 999

* lowest (6th) CA level, excluded

*- lowest (7th) CA level excluded

It is immediately apparent ihat the scatter in slopes is such
as to preclude detecting the small difference in slopes necessary to establish
S11 It should be noted, however, that the low-stress-level endurances
excluded in the above regressions fall generally to the right of the regression
line, which would be correct if d > . This would suggest that a low value
of S1 fixes the number of active damage nucleii.
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To examine this further, we introduce a reference stress
level SR into the Rayleigh-Miner endurance relation:

070)

Using the Corten-Dolan framework and writing Eq. 20, Ref. 34 in, the
simplified form:

AR Nj'I
we have the general endurance relation for the Rayleigh distribution of stress
peaks.

To obtain an idea of the correct value of u to use, consider
the use of a mean value, ,t with the results of the Rayleigh tests (Table 2).

If SR = 51 ksi NR = 104 cycles

d=5.67 and rc I+ = 4. 9

We have

Evaluating this expression: A

9 2,400, 000 5.67 18,300 15.5

9. 5 960, 000 5. 37 13,600 28. 9

11. 5 600, 000 4.43 4,600 15.6

13. 5 450, 000 3. 77 1,870 8. 5

16.0 270, 000 3. 19 720 5.4

17.0 120, 000 3.00 510 8.7

18. 0 58, 000 2. 83 365 12.8
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These results demonstrate unequivocally that a large ratio of
is needed to make the above equation agree with the experimental

results.

Consider the stress peak needed to obtain these ratios of nucleii.
From Eq. 12, Ref. 34 we have

For the present case

This result points to an extremely low value of S1 fixing the nucleii. This
confirms the trend exhibited by the slopes of the random preload curves.

6. 3. 3 Intuitive Values of S1 from the Probability of Occurrences

Since all these tests were carried out using the single-lever
configuration, it is not difficult to estimate the maximum stress peak which
is likely to have occurred under conditions of Pure Rayleigh behavior unclipped
to 3. 6 RMS (see Fig. 8). The value of maximum stress peak depends funda-
mentally on the duration of the test. The cumulative Rayleigh distribution states:

The value of Sl which is to be used in the cumulative damage theories may be:

a) Occurrence of a single peak greater than S1 .

The number of cycles before the maximum stress S1 is exceeded once is,
on the average,

C. -7-

Assuming 50 cps frequency

16.0 15 mins. 45,000 10. 71 256. 00 2741.76 52. 35

16.0 30 mins. 90, 000 11.41 256. 00 2920. 96 54. 05

13. 5 30 mins. 90, 000 11.41 182. 25 2079.47 45.60

13.5 60 mins. 180, 000 12. 10 182.25 2205. 23 47.00
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Note that all the theoretical values of peak stress S1 exceed the values of
constant amplitude stresses used as run-outs (S 2 ). It may be argued that to
obtain a kink in the Constant Amplitude slope as discussed in the previous sub-
section it would be necessary to set S1 = 28 ksi, which is about the mid-
position of the range of CA stresses (S 2 ) used as run.-outs. For example,
using S, = 28 ksi and o-, = 9 ksi, the pre-load test time to obtain S1 = 28 ksi
would be about five minutes, and 20 secondssusing the above equation.

b) The stress threshold at which the stress is exceeded only 10
times during the pre-load, on the average;

16.0 15 mins. 4,500 8.41 2153 46.4 4. 10

16.0 30 mins. 9, 000 9. 10 2330 48.3 4.27

13.5 30 mins. 9, 000 9. 10 1658 40.7 4.26

13. 5 60 mins. 18, 000 9.80 1786 42. 3 4.45

It appears that this criterion for establishing S 1 will suffer
from clipping effects. Also the . 2% Proof stress for this material is 52. 5 ksi,
since these tests are all, carried out at Sm = 16 ksi (Table 1 of Ref. 1). The
fact that the four Partial Damage constant amplitude curves lie close to one
another may be the result of all the values of S1 being equal to 52. 5 ksi
(Fig. 25).

It has been suggested by Corten in Ref. 30 that the yield stress
is too high to use for SI, and where possible, an estimate of the "maximum
stress encountered" should be employed.

The value Corten suggests is within the range of S1 specified
by the stress peak which is equalled or exceeded once in 1000 cycles do=n.to
the S1 specified by the peak equalled or exceeded once in 100 cycles. This
range was obtained from a series of repeated block experiments, and Corten
advises that "it is desirable to inspect the final results to determine the
reasonableness of the results in relation to the properties of the material and
any previous service experience. " (SESA Design Clinics, SESA Annual Meet-
ing, Detroit, Michigan, Oct. , 1959).

This rather wide range of stress levels from which to specify
Sl, coupled with the method used to establish the slope parameter d has
discouraged the use of this hypothesis for predicting the random load test
results in this project.
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6. 4 Discussion of Partial Damage Results

In the equation relating the nucleii ratio to the stress ratio, used
in Section 6. 4. 1, it must be kept in mind that the exponent ý - d represents
the difference between two experimentally obtained slopes, either of which is
difficult to determine accurately. The value of this exponent is therefore,
subject to sizeable errors, especially when T i d as in the present case.
However, the usual result is that the value of S1 is very small under these
conditions. Such a result would indicate that the conditions fixing the ratio
of nucleii are quite different from those suggested by Corten in Section 6. 3. 3.

Possibly the technique used to obtain d results in a spurious
value for this parameter. It was obtained using a single step test, whereas
Corten and Dolan used a repeated block program. However, the range of
values of d obtained in various experiments (reported by Corten) would
suggest that a similar trend would occur frequently, using this approach.

As an incidental observation, it might be instructive to recall
the occurrence of a large number of secondary cracks in Random Load test-
ing using load histories which contain a large number of small stress level
cycles (the rectangular QS tests in particular). Possibly the very short lives
obtained in the QS tests is due to the great increase in the crack nucleii para-
meter. See Figure 12. If the appearance of secondary cracks is indicative of
a large number of crack nucleii available for possible propagation, then the
trend exhibited by the above approach may be correct i. e, a large proportion
of low stress amplitudes will increase the number of crack nucleii.

However, for a given type of Random Loading, Figure 12
shows that the number of secondary cracks increases with RMS level. This
would suggest that within a given type of Random load, the occurrence of the
higher stress peaks has the effect of increasing nucleii. However, in this
latter case, the reasoning discussed in subsection 6. 3. 2 would not apply, and
indeed is opposite to that which forms the basis of many cumulative damage
hypotheses (section 6. 3. 3).

The Partial Damage test results, when compared with the
Rayleigh curve of Section III would lead one to conclude that Random preload
will shorten the CA endurances uniformly, without altering the rate of de-
crease of endurance with stress level. However, continuing the Random
loading to specimen failure will produce the interaction effect described by
Freudenthal and Heller in Ref. 26, i. e., increase interaction effect at low
stress levels, resulting in a clockwise rotation of the S-N curve when mov-
ing from CA testing to RA testing.

An examination of the specimens used in the Partial Damage
test program for cracks revealed little or no secondary cracks apart from
the main crack. A representa~ti-e group is shown in Fig. 26. From this
result it can be concluded that the increasednumhe.r of nucleii generated by
the Random Preload (and probably responsible for the translation of the CA
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curves shown in Fig. 25) are not developed under the action of repeated CA
stressing.

VII. CONCLUDING REMARKS

7. 1 The present investigation of fatigue under random loading has
been possible through the design and development of an axial load
fatigue machine capable of either constant amplitude or random ampli-
tude testing, the latter having the added feature of an adjustable power
spectrum. The direct attachment of the shaker to the specimen may
account for the lack of progress in random load fatigue testing to date,
as this severely limits the load capability of the shaker. The intro-
duction of flexure-pivotted levers presents a versatile load-shaping
arrangement to the fatigue test engineer, since the intermediate
structure is able to simulate dynamically a wide range of fatigue-
sensitive structures.

7.2 By inspection of the distribution of constant amplitude fatigue
results obtained at low stress levels in this project, it was possible to
separate these endurances into two separate log-normal distributions.
This discovery has statistically identified the two fatigue mechanisms
responsible for the two types of failure previously reported from
metallurgical investigations (Section II).

7T 3 Through the use of the random load fatigue machine developed
in this project, it was possible to conduct random amplitude axial load
fatigue tests for the first time to the author's knowledge. The applica-
tion of a non-zero mean stress to random load testing has been a further
step to simulate aircraft (and possibly other) service load conditions

adquately for the first time (Section III).

7.4 With the use of this machine in its two-lever configuration, it
was possible to study random amplitude fatigue with a wide-band power
spectrum on unnotched specimens for the first time. While the analysis
of this type of loading is tractable from the power spectrum. point of
view (which avoids the 'cycle' concept), the application of cumulative
damage rules to this type of loading points to the general inadequacy of
such rules at present when applied to complex wave fatigue (Section IV).
The test results were of sufficient numbers to state that the introduction
of a second degree of freedom results in an altogether different shape
to the endurance curve (versus RMS stress or stress peak).

7.5 It has been possible through random-number programming of
the "short-time" RMS stress level of the Random Amplitude loading
to apply experimentally Quasi-Stationary fatigue loads to test pieces
for the first time. This type of loading is not only the ultimate simu-
lation of service loading for aircraft, ships and other vehicles, but also
is demonstrated in this report to be quite a feasible testing procedure.
In principle, Quasi-Stationary random fatigue testing permits the
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application of random loads having any reasonable final load distribution
whatever. The application of the linear cumulative damage rule, and
also Freudenthal's cumulative damage theory, again reveals basic
inadequacies in their ability to predict realistic fatigue endurances
(Section V). If, as a final refinement, this type of testing is coupled
with the two-lever configuration of the test machine a wide variety of
structures could be represented dynamically and fatigue tested with
loadings closely approximating those encountered in service.

7. 6 A series of 'partial damage' tests, involving the determination
of the constant amplitude endurance relation for specimens with random
amplitude preloading, were carried out to investigate the rate of
damage accumulation during fatigue testing at random amplitudes. The
analysis of these results has been a formidable problem and, probably,
will not be capable of satisfactory study until the development of more
satisfactory theories of cumulative damage.

7.7 Throughout this work various cumulative damage rules have
been examined in the light of the Random Load Fatigue results from
the various load configurations described above. While an attempt
has been made to use statistically adequate numbers in these tests,
the conclusions enumerated below must, of course, be considered
tentative.

a) The Linear or Miner Rule

The linear rule of damage accumulation with the summation of
cycle ratios has been shown to be consistently inadequate and indeed
dangerous to apply to random amplitude fatigue loadings. The intro-
duction of realistic service loadings (complex wave and quasi-stationary
testing) aggravates this inadequacy, with larger and larger proportions
of the load spectrum being ignored by this damage calculation.

b) The Linear Rule Applied to Two Distributions

It had been hoped that accurate prediction of the stationary
Rayleigh test results would have been possible using the two-
distribution interpretation of constant amplitude endurance data.
The use of the STF mechanism alone appears entirely inadequate.
A more accurate determination of the proportion each distribution
contributes to the endurance patterns will be necessary before two-
distribution linear damage accumulation can be accurately judged.
This is certainly an interesting approach to fatigue prediction since
it involves no real stress interaction in the accepted sense, but rather
the interplay of two separate fatigue mechanisms.
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c) Freudenthal and Heller (Ref. 26)

Freudenthal's rule of cumulative damage, while sensitive to
the selection of the maximum stress peak in the load history, never-
theless, gives quite a good representation of endurance for the
stationary Rayleigh tests.

For the Quasi-Stationary results, where the linear hypothesis
fares badly, the use of Freudenthal's rule, with the marked decrease
in endurances associated with the slope of the fictitious S-N curve,
provides somewhat better estimates of life although still unconservative.

d) Fuller (Ref. 23)

Fuller's rule, when the procedure for obtaining 0 is
modified from his. original criterion of 1000 cycles, to the number
of cycles for the single occurrence of the maximum stress peaks,
appears to offer an excellent and simple design rule for random
amplitude loadings in the intermediate stress regime. This rule
need only have accurate STF data and a knowledge of the clipping
characteristics of the random signal. Its use with the Quasi-
Stationary history points out its main problem area; the establish-
ment of a reliable and unequivocal method for obtaining

e.) Corten and Dolan (e. g., Ref. 49)

The establishment of the all-important maximum stress peak
S1 and the derivation of the slope parameter d discouraged the use
of the Corten-Dolan Hypothesis, except as a framework to study the
active crack nucleii parameter, as it was affected by random preload.
This led to the qualitative explanation for the short QS endurances as
the result of an increase in active nucleii caused by the large number
of small stress cycles prevalent in such tests.

f) Linear Summation of RMS Stress Units

It is suggested in this report that a prediction of endurances
under Quasi-Stationary Random Loading may be obtained from the
linear summation of the ratios of time spent at a given level of RMS,
divided by the Rayleigh Life atthat level of RMS. This approach has
met with moderate success, but is quite likely a gross over-
simplification of the damage accumulation process associated with this
type of loading.
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7.8 METALLURGICAL FINDINGS

Figure 12 presents. a summary of the observations of secondary
cracking, which seems to be a feature of random load fatigue. It
appears that the mixing of low stress cycles with high stress cycles
introduces this phenomenon, and, the greater the proportion of the former,
the greater the number of secondary cracks which occur. The only
constant amplitude tests to show similar cracking (but in great profusion -

see Table 8) were a very large fluctuating compression type of fatigue
loading. It has not been determined if a correlation exists between the
constant amplitude secondary cracks and the random amplitude cracks.
Further study of the effect of random amplitudes on the development
of cracks in unnotched specimens under axial loading may shed light
on this phenomenon. Studies of the primary (failure) cracks in the pre-
sent project have been inconclusive and a research program has been
initiated at the Institute of Aerophysics into the correlation of two dis-
tribution endurance behavior with metallurgical examination of the
resulting primary fatigue cracks. Further work along these lines may
produce an accurate correlation between number of crack nucleii and
stress level to incorporate into a cumulative damage theory such as
that advocated by Corten and Dolan.
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APPENDIX A

The Random Load Fatigue Machine

Introduction *1

Constant-Amplitude fatigue testing machines are almost uni-
versally employed in fatigue testing at present. They are not difficult to
construct, and have been diligently used over the past 100 years to amass
an enormous sufeit of fatigue data based on this somewhat trivial load pattern.

The unfortunate aspect of the almost exclusive use of such
fatigue machines which are limited to constant amplitude loading patterns was
pointed out by A.M. Freudenthal in 1959. He stated "Since it appeared much
more difficult to reproduce the actual variable-load service conditions than
to apply constant-amplitude load cycles, this variability was conveniently
overlooked as long as this seemed practically feasible, that is, as long as
design for fatigue could be either completely disregarded, or based on the
results of constant-amplitude tests under the expected maximum load ampli-
tudes". He then asserted "the variability of stress-amplitudes in relation to
fatigue can no longer be disregarded in the design of aircraft, ships, motor
vehicles, bridges and various other types of structures". (Ref. 16)

Despite the fact that nearly all machinery and structures
experience loadings which are usually aperiodic and of variable (random)
amplitude, only a half-dozen investigations into actual random load, testing
have been carried out to our knowledge.

A brief chronological summary of these random fatigue experi-
mental projects up to the present follows. All of these previous projects
involve the use of geometric and/or loading stress gradients to obtain rea-
sonably short specimen endurances with small capacity shakers. This intro-
duction of stress gradients not only prevents accurate assessment of the
loads or stress levels, but brings into the test an additional factor which has
a significant effect on endurances, and even possesses a 'size effect' in the
results.

(1) 1956. Australian tests by A. K. Head and Hooke reported in
the 1956 London Conference on fatigue (Ref. 18).

First recorded random load fatigue tests. These tests involved
the direct attachment of a small shaker to a 1/2" diameter 2024 aluminium
alloy bar as a cantilever loaded in plane bending. A circumferential groove
at the root of the cantilever bar formed a stress concentration with Kt = 1. 3.

(2) 1956.

American tests by McIntosh and Granick (Ref. 53) in which
small unnotched free cantilever beams were loaded at their centres by a
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small shaker. This type of bending load introduces resonance difficulties,
since the random signal can result in an uncontrolled combination of the funda-
mental bending mode and higher order modes. The later work in 1961 of
Smith and Malme (Ref. 27) was along similar lines.

(3) 1958.

American tests by W. D. Trotter of Boeing Aircraft (Test
Report T2-1601) using a shaker to supply bending loads to 0. 040" 2024-T3
sheet specimens (unnotched and notched) to establish both random (Rayleigh)
and constant amplitude S-N curves.

(4) 1959.

German tests by J. Kowalewski at DVL, Germany, and reported
at the 1959 Amsterdam Conference (Ref. 35), in which a cantilever bar of
extruded 2024 aluminium alloy with a deep circumferential notch (kt = 1. 77)
was directly loaded by the vibrator.

(5) 1959 and 1961.

American (NASA) work by Fralich in Refs. 28 and 29, working
with 7075-T6 aluminium plate and SAE 4130 normalized steel plate respectively.
In these tests the notched plates (Kt = 4) act as cantilevers directly loaded by
a small vibrator.

(6) 1959.

A testing program carried out by Lockheed Aircraft Corpora-
tion (Ref. 52). This project involves the use of an aircraft load history trace,
which is followed rapidly by servo-controlled hydraulic jacks (by means of
magnetic tape). These actuators axially load 3 inch wide coupons of 7075-T6
aluminium sheet, which have elliptical-hole notches yielding a theoretical
stress concentration of 4 or 7. The complex load trace is used in the normal
'forward' sequence for a number of tests and then the sequence is reversed
to study the influence of load sequence on the endurance.

(7) In the study described in this report axial loadings of compara-
tively large magnitude, applied to quite large test specimens, were obtained
by placing a lever arrangement between the specimen and a relatively large
capacity shaker. A spring device connected to the main lever permits the
application of both tensile and compressive mean stresses. Addition of a
second lever permits testing with two resonances. The decision to design
an axial loading machine is based on the conviction that it is only by knowing
accurately the stresses imposed on the specimen during, random fatigue tests
will a start be made on a fundamental study of fatigue damage accumulation
under simulated service conditions.
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It will be seen that this facility is of extremely simple design;
all the electronic equipment being readily obtained commercially. In fact,
the majority of it is commonly available in a modern vibration laboratory.
The only special feature is the mechanical load-shaping structure, which can
be cheaply and easily made to suit any desired combination of shaker and
specimen. However, because of the lack of familiarity with this type of test-
ing to most readers, it was considered desirable to describe its operating
principles in this appendix in order to appreciate more fully the test results.

1. Principle of Operation

In Random amplitude testing as in Constant amplitude testing,
there are various parameters which may be altered to suit the particular ob-
jectives of the experiment. For instance, a choice must be made between the
inclusion or exclusion of the phenomenon of resonance. Normally sub-resonant
techniques are employed if resonance is to be avoided, Reference 50 des-
cribes the performance of the Random Load fatigue machine over the complete
frequency range of practical interest (0 - 100 cps). Reference 55 describes
the design of a 500 lb. RMS thrust moving-coil vibrator with flat response, and
concludes that the adaptation of a vibration system for random motion can be
a simple process if the vibrator characteristics are satisfactory.

Since the present project was concerned with the behaviour of
aero structures, it was decided to include and exploit the phenomenon of re-
sonance, since in aircraft structures the atmospheric (input) load spectrum is
able to excite at least one of the natural frequencies of vibration, and fatigue
failure is possible due to the resulting excitation of rigid body and fundamental
wing bending modes (. I to 5 cps).

The elements of the dynamic system are shown
in Figure 28. It consists of the shaker, the levers L 1 and L 2 , the interlever
spring, the mean stress spring (Sm), the 'Moving Head' in which one end of
the specimen is gripped, the (elastic) specimen, and finally the 'Fixed Head'
by which the other end of the specimen is rigidly connected to the foundation
of the machine.

By varying the stiffness of the interlever spring and the inertias
of the levers about the fulcrum of the lever L 1 , a variety of power spectra
between the random (white noise) input and the specimen may be achieved.
A general description of this random load test facility has recently been pub-
lished - see Ref. 51.

The single-degree-of-freedom configuration is obtained when
the interlever spring is disconnected from lever L 1 . For the specimen used
in this program the resulting resonance occurs at 45 cps (as shown in Ref. 50).
When the lever L 2 is connected to Ll using the interlever spring, a typical
power spectrum as shown in Fig. 14 is applied to the specimen, due to the
resulting two degrees of freedom for the structure. The location of the input
of the exciting force remains a rigid connection between the shaker table and
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the lever L, for both configurations. The mean stress is applied by means
of a yoke or 'C' spring shaped like a 'C' to deflect in a manner similar to the
rotation of the lever L 1 . The fixed base of the spring consists of an elevator
mechanism operated on two vertical threaded spindles. This elevator plat-
form can be raised or lowered by means of interconnected worin gears. The
specimen static mean load and the dynamic loads are measured, calibrated
and controlled by a strain gauge bridge located on the flexure plate connecting
lever L 1 to the 'Moving Head'. The main structure is made entirely from
standard rolled beam sections, and the machine is isolated from the floor
(and the electronic equipment) by six seismic suspension springs with tele-
scoping pipes to give lateral stability. All moving parts are mounted on spring
steel flexures or flexure pivots. The dynamic component of the strain signal
is used to monitor the test. When the specimen breaks, the change in re-
sonance is always such as to reduce this component appreciably. When this
happens a photoelectric controller (normalled used to control temperatures in
industrial applications) switches off all power. This control is two-sided so
that any excursions above the set level of alternating strain will also shut down
the machine.

2. Performance of the Machine

While the general operating performance of the machine over
the frequency range of interest is described in Ref. 50, the performance at
resonance is of interest when considering the capability of the machine over
a wide range of lever inertias and specimen resonances. In the following
paragraphs this behavior at resonance will be examined in detail. For any
given configuration, however, the off-resonance characteristics will be
qualitatively similar to those shown in Ref. 50. While the following on-
resonance calculations are for the single-degree-of-freedom system., the
extension of these calculations to the two-degree-of-freedom system may be
obtained using the relevant equations from Ref. 50.

The force applied to the specimen can be considered. to arise
directly from the position of the shaker head, since the lever L 1 is assumed
rigid. Using the notation of UTIA TN 54:

lFst T

since the stiffness of the grips is 'in series' with the specimen stiffness.
From equations Al and A2 of UTIA TN 54:

T since & 3 k at resonance

and
- +r4/ ] z'
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also -

Therefore at resonance:.

k-

L k, +k 1J4

Now by noting the following independent limitations on the shaker operating
characteristics:

a) Table displacement xT not greater than . 0127 meters ( ")

b) Amplifier frequency not less than 15 cps

c) Maximum driver coil current Id = 11. 3 amps RMS

d) Maximum driver coil voltage Vd = 286 volts (peak)

e) Maximum table acceleration G = 261.8 meters/sec/sec (26. 7 g's)

f) Maximum rated force = 650 lbs.

g) Maximum amplifier power = 2 KVA (at present)

an envelope of operating frequency-load combinations can be obtained. This
envelope is shown in Fig. 29. It can be seen that any given combination of speci-
men stiffness and lever inertia automatically fixes both the ordinate and the
abscissa and the loading can be easily compared with the capability of the
machine at the given frequency.

3. Accuracy of Loading

The 'Moving Head' is supported by four vertical spring steel
strips or flexures in a manner similar to that used with the NASA fatigue
machine (N.A.S,A,rTND-1253). The bendingloadsdue to the 'sink' of the head
due to axial movement are negligible (less than 100 psi for the specimen
used) for most specimen stiffnesses.

When the 'Moving Head' was positioned during erection of the
machine considerable care was taken to remove as much of the bending, loads
arising from axial misalignment of gripping heads as possible. To measure
the bending loads one of the fatigue specimens was fitted with four metal-foil
strain gauges in a Wheatstone bridge, such that the active gauges would mea-
sure only bending (strain differences). The specimen was gripped in the fixed
head and the position of the moving head adjusted to minimize bending strain.
Once located vertically, the specimen was rotated through 90 degrees and
the procedure repeated. The residual bending stress due to head misalignment
was calculated by hanging weights on. the end of the instrumented specimen
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when held as a cantilever. The corresponding cantilever weight was 30 grams
which results in a maximum bending stress of less than 100 psi. (vertical).
The horizontal misalignment load was much less than 30 grams. It was
found that when the Moving Head was fixed in its final position, that the varia-
tion in bending loads due to the collets and the gripping procedure was of the
same order as this residual bending. That this bending load has. remained
negligible is borne out by the Random Amplitude testing, especially with
respect to the phenomenon of crack multiplicity. Under random loading, the
random nature of these nucleii and the randomness of the final crack position
lead us to believe that the residual bending load due to misalignment has not
increased significantly.

Since the shaker constitutes a constant-.load testing arrangement,
monitoring the strain level is sufficient to yield reasonable accuracy in the
alternating loading. The mean stress mechanism is essentially a constant-
displacement apparatus, and the tensile mean stress usually decreased somewhat
in the course of the longer tests. Care was of course taken in the fatigue tests
to ensure that the mean stress load remained constant. For the low stress-
long life cases, the mean stress was periodically checked at least once every
30 minutes. For higher stress levels, this practise was found unnecessary as
very little variation occurred in less than one hour of continuous testing. Also
the results of the mean-stress-variation tests described in Section 'IV. indicate
that small inaccuracies in mean stress would have a second order effect on the
endurances.

The frequency of testing, being less than 3000 cpm is considered
to have an insignificant effect on the fatigue properties as concluded by Ref. 5.6.

Since the specimen dynamic load was essentially constant to
failure, the final cracking of the specimen took place in a very short time.
During this period the increased flexibility due to the cracking resulted in a
dr1op-off of the resonant frequency. However the input power spectrum (under
Random Amplitude conditions) was always wide enough to maintain the RMS
level almost to the minute of failure. Under Constant Amplitude conditions
the stress level was effectively maintained right up to failure due to the sudden
nature of the failures. In any event the photoe-lastric strain monitor was set
to cut off the main power at quite small drop in stress level merely by position-
ing the cut-off needle immediately below the RMS needle. This prevented, the
appfication of spurious cycles at reduced stress level.

The arrangement for gripping the specimen is similar to that
employed by other researchers, (see page'104, 258 and 515 of Ref. 1,8.), and
is shown in detail in Fig. 30 and 31 of this report. The gripping jaws are,
however, made from standard "rubber flex"' collets, (Fig. 31), the smooth
faces of which have been specially hook-serrated to give a firm positive grip
on the end of the specimen. To insert a specimen in the machine, the sliding
block (Fig. 30) holding the compression pin is partially withdrawn from the
moving head to allow the specimen to be inserted into the collets. With about
0. 1 in. of the specimen protruding from the collet, the locking disk is rotated,
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compressing the collet into thehardened steel cone, and causing the internal
serrations to grip the end of the specimen. The sliding block is then returned
to its central position anda compressive force applied to the end of the speci-
men by rotating the compression pin. This causes the serrations to "bite," into
the specimen while the collet is forced still further into its conical seating.
When the compression pin is fully tightened against the 'proud' - end of the
specimen, it is locked in position by means of a free spinning locknut. Before
gripping the specimen in the fixed head, the main pin holding this head to the
foundation is loosened to allow it to move freely in the axial direction. The
locking procedure described for the moving head may now be used, without
any danger of inducing large compressive forces in the specimen.

4. Analysis of the Specimen Strain Traces

Before beginning the analysis of the strain traces obtained on
an oscillograph from a Random Noise fatigue test, the accuracy of these traces
with respect to the actual loads at the specimen will be discussed. These strain
recordsr (shown in Fig. 13) are obtained from a 4-gauge bridge mounted on the
steel strip connecting the Moving Head to the Main Lever L 1 . To calibrate
these readings, a fully instrumented specimen was inserted into the machine
and, using a separate bridge-amplifier circuit the statically-calibrated output
from the specimen was then compared with the machine output, using both
channels of the Two-Channel Oscillograph. The steps in this static and
dynamic calibration are:

1. Statically calibrate the specimen strain bridge by loading the
specimen in a commercial tensile test machine of known load
accuracy. The strain bridge consists of a) two active gauges
mounted on opposite sides of the specimen in the centre parallel
section and longitudinally aligned with the axis of the specimen,
and b) two dummy gauges also mounteid on the waisted parallel
portion of the specimen transverse to the specimen axis. The
resulting bridge is compensated for temperature, transverse

loading and bending effects.

2. Place the calibrated specimen in the fatigue machine, and cross-
calibrate the similar 4-gauge bridge mounted on the steel plate
connecting the lever L 1 to the Moving Head. This is done by
applying various Constant Amplitude levels with an oscillator,
and measuring the resulting double amplitudes observed on the
oscillograph for both the specimen and the machine.

It was found that the resistance of the moving head to axial move-
ment results in a small (almost negligible) variation in the static strain reading
for a given specimen strain depending on the angular position of Lever Li.

Because of this the test procedure was standardized to always return the lever
to a datum angular position at the beginning of each test. It was found that while
a small static error resulted from using positions other than the datum position,
the actual gradient in strain (slope of the load-strain curve) between the speci-
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men load and the transfer plate strain remained the same over a wide range
of lever angles about the datum angle. This angle was measured by means of
a dial gauge mounted between the shaker casing and the lever LI. The dial
plunger was retracted for all dynamic tests after the static loading is applied.
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APPENDIX B

Discussion of Principles and Terminology Used in the Report

Since 1959 a number of technical papers dealing with the fatigue
of metals under random loads have appeared in fatigue literature, often with
inadequate discussion of the new terminology and principles necessary for a
complete description of "random" loads. At the risk of over-simplification
the basic ideas will be discussed in this appendix.

To begin with, consider the usual representation of constant
amplitude fatigue behaviour of a metal. Wohler observed 100 years ago that
when metal experiences sinusoidal stress histories with large amplitude the
fatigue endurance was. short, while at low amplitudes of stress, the endurances
were orders of magnitude longer. Because of this universal characteristic for
materials, the usual presentation of endurances is made using a vertical
linear scale of maximum stress amplitudes, and a logarithmic abscissa, the
number of cycles to failure N.

This semi-logarithmic plot is by far the commonest layout used
to present fatigue data and the resulting relation with stress is called the
"S-N" curve, although sometimes more properly, it is called the "S-logN"

curve. A number of cumulative damage theories presently put forward make
use of parameters obtained from a log. S-log N presentation of fatigue results
with logarithmic scales for both the ordinate S and the abscissa N. However
this type of presentation is usually explicitly stated where used.

Fatigue is a 'statistical' phenomenon, at least in all practical
cases where it is encountered. This fact is probably largely due to the
heterogenious nature of metal on the microscopic scale, where fatigue cracks
begin. This characteristic manifests itself immediately when any fatigue
test is repeated with exactly identical 'macroscopic' test conditions.

For instance, by continually repeating a test at a given level of
stress amplitude S, one obtains a group or sample of endurances with scatter
about the mean value. In fatigue analysis it is nearly always the practise to
carry out statistical operations on these samples of endurances using their
logarithms rather than their actual values. Thus, for instance, the 'mean
endurance' nearly always refers to the geometric mean of the endurances,
since this is the arithmetic mean of the logarithms. This has become the
practise due to early observations of the samples of endurances obtained at
the intermediate stress levels (stress levels for which failure occurs between,
say, 1000 cycles and 100, 000 cycles). While the distribution of sample en-
durances seemed to represent an underlying skew distribution, the logarithms
of endurances exhibited a symmetrical pattern. Indeed this pattern usually
could be well represented by the distribution of quantities one obtains from the
Law of Errors, or Normal Law or Gaussian Distribution. This is the familiar
single-hump bell-shaped distribution (as drawn at several stress levels in
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Fig. 6) with the maximum number of quantities falling at the mean value, and
only a very small number of quantities exceeding,, say, three times the
Standard Deviation (The standard deviation is the square root of the mean
value for the squares of all quantities involved. ). Returning to the case where
the quantity in question is the logarithm of the endurance, the endurances are
said to form a log-normal distribution.

When one groups the endurances into a histogram over the
range of logarithms involved such that all endurances falling within a small
log interval are represented by the ordinate, the resulting distribution is
usually referred to as the probability density function, representing as. it
does the density of endurances at every interval of logarithms of cycles to
failure.

The probability density function for a Gaussian distri-
bution is

where
Sis the variable involved, such as the logarithm of endurance,and

- is the root mean square value for all values of S

Since S only appears as a squared term, the distribution is
symmetrical about the zero value for S. It can be shown that the variable
S has values within unit RMS of the mean (or zero) 68% of the time in a given
random history.

Another way to present the distribution of endurances is to
consider the cumulative effect of fatigue; e. g., half the endurances will be
less than the mean endurance. Two alternative procedures are available
using the cumulative approach. For instance in a given sample the endur-
ance level at which 10 percent of the specimens have already failed may be
considered the 10% failure probability level, or the 90% survival probability
level. There is available cumulative probability paper made to order for
various distribution laws. In this report, use is made of log-normal cumu-
lative probability paper. Experimental results, properly sorted or 'ranked'
from the lowest endurance to the highest endurance, will exhibit log-normal
statistical behaviour only if they plot linearly on such paper. The slope of
the straight line representing any log-normal distribution is a direct mea-
sure of the scatter or standard deviation or dispersion of the test results.

In order to arrive at some idea of the relation between en.-
durance and stress level, a statistical technique known as Regression
Analysis has been applied in this report. It might be intuitive to reason
that if one has a sample of endurances at each of a series of stress levels
more information may be obtained about the stress-endurance relation by
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considering all test results than by merely joining the mean values obtained
at each stress level by, say linear segments..

It must be noted, that a sample of test results at a given stress
level is only an indication or estimate of the underlying:'1 population". The
exact. statistical mean values and standard deviation for the underlying
"population" could only be obtained by testing an infinite number of specimens.
For this reason the mean value from the samples is only an estimate of the
population mean.

Regression analysis is the mathematical technique of obtaining
the line or curve (with an assumed stress endurance relation) which results
in the minimum total deviation from it, for the test results. Since test re-
sults usually follow symmetrical distributions, it is necessary to square the
deviation, or difference between the test point and the value given by the
assumed line or curve. By using the calculus of minima and maxima, a
unique line or curve (called the Least Squares curve) can usually be obtained
for a family of points. Inthis report use has been made of a Least Squares
Dual Exponential regression for the constant amplitude results plotted on the
S-Log 'N grid, while a Least Squares linear regression has been applied to the
same test results when plotted on LogS-logN co-ordinates simply because
these were assumed the underlying stress endurance relations in each case.
The dual exponential regression assumes the underlying population to be
bimodal (i. e., two humps in the probability density curve).

The random amplitude test results discussed in this report
were obtained using a random process, random noise, as the source of the
load history. Many processes such as the thermionic electron bombardment
which occurs in a thyratron tube, or the flow of air in atmospheric turbu-
lence can be described as random processes. This means that the instant-
aneous value of the quantity measuring such a process such as voltage or
gust velocity is unpredictable (random). However in a manner analogous to
a study of the heights of adults in a given group, while the heights are ran-
domly distributed throughout the group, there exists an underlying
statistical relation such that there are many heights near the average and
few far from the average. Similarly while the load experienced by a structure
under loading from a random process is unpredictable at any given moment,
over the course of time, the density distribution or histogram of loads ex-
perienced, will stabilize to follow a statistical law such as the Gaussian law.

When a Gaussian random process is applied to a linear system,
the response of the system will also have a Gaussian distribution of loadings.
This refers to the instantaneous values of the input and response quantities
involved. In fatigue, fundamental studies have shown that the fatigue pro-
cess is characterized by the cyclic or to-and-fro action of loads, and dis-
locations within the metal. While it is outside the scope of this appendix to
elaborate on the characteristic, the important fatigue unit is therefore the
occurrence of a local reversal in loading during the load history. These
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occur, of course, at the maxima and minima of the stress or load history.
This is possibly the most difficult point to appreciate in a study of random
fatigue loading, because while the distribution of instantaneous stresses in
a linear system remain Gaussian when excited by a Gaussian disturbance,
the distribution of maxima or peaks will depend on the frequency response
characteristics of the system. If the system has a single (lightly damped)
degree-of-freedom the density distribution of peaks r cs)with time will
approach the Rayleigh distribution

A

where 'S is the peak value of the variable and - is the root mean
square of the instantaneous value of the variable.

The shape of this distribution is shown qualitatively in Fig. 21.
Note that it is not a symmetrical distribution and is positive-valued only.
If negative valued or even zero-valued peaks occur in the history the distri-
bution is no longer Rayleigh (see Section IV). Since the distribution is
essentially describing the envelope of the signal, it can be appreciated that
its statistical parameters will be of greater magnitude than those of the in-
stantaneous values of the signal. For instance, the root mean square of
will be ý-2 times the root mean square of the instantaneous values of S,
and the maxima. S will have values less than the root mean square of the in-
stantaneous value of S, i. e., O- only 39 percent of the time. The maxi-
mum value of P(&) will occur at a- , and the mean value of § is 1. 15 :-.
This distribution of peaks is also characterized by the zero probability of
peaks occurring at the mean (or zero alternating stress level), and as the
frequency response of the structure broadens, a second Gaussian distri-
bution of peaks emerges while the Rayleigh distribution recedes. In the
limiting case, a structure with an infinitely broad and uniform frequency
response will have no effect on the peak distribution of the Gaussian input,
and the Rayleigh component will have vanished. Most structures, however,
do exhibit the mixed Gaussian-Rayleigh peak distribution obtaining between
these two limiting cases.

Since the distribution of peaks is of interest in fatigue, a non-
zero measure of the intensity of a symmetrical random process is the Root
Mean Square value of the peaks which is exactly analogous to the standard
deviation for the Law of Errors in measurement studies. The RMS Peaks,
as mentioned earlier, will be F2 times the RMS instantaneous stress for
a pure Rayleigh distribution. However, as the frequency response charact-
eristics broaden, the factor will, of course, approach unity.

In statistical terminology, a random process whose statistical
properties (such as mean value, RMS, etc) remain invarient with time is
referred to as a Stationary Random Process. While this assumption of
stationarity is good for short durations in random processes occurring in
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nature, the intensity level usually will be altered either continuously or dis-
cretely over long. periods of time, such that. while the final overall distri-
butions of loadings approach an invariant form asymptotically, the RMS
level at least, will violate the stationarity requirement.

When this happens the process is described as Quasi-
Stationary. Certain processes exhibit non-stationary characteristics; for
instance, in cases where the RMS level of a random process is either mono-
tonically increasing or decreasing such that the overall.RMS is not approached
asymptotically. The overall RMS level must, of course, be explicitly re-
lated to either the instantaneous stress or to the distribution of peaks when
it is used in random load fatigue.
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TABLE.3

2-LEVER RANDOM LOAD TEST RESULTS

Sample kcs Final Secondary Cracks
RMS O-p ctrace Specimen (50 cps) Large.. Small Total

10.4 12.0 187 88.2 9 8 17
181 108.0 5 5 10

10.83 176 146.7 6 2 8
10.05 179 168.5 10 16 26
10.36 178 171.6 14 10 24

180 173. 9 8 12 20
185 253.5 7 2 9

Average 8.43 7.85

8.83 10.1 172 307 0 6
170 360 1 9

8.84 177 399.8 5 2
9.06 168 420 0 1
8.73 169 481 2 1

173 633 0 1
174 1013 2 2

Average 1.43 3. 15

7.92 9.1 182 791 0 7
7.35 186 1064 0 0
8.07 188 1073 3 2
7.29 175 1293 1 3
8,39 184 1405 0 1
8.57 183 1530 1 2

171 1929, 0 1
Average .715 2.29



TABLE 4

SAMPLE OF RANDOM NUMBERS EMPLOYED IN
QS TESTS

Each RMS held for 1 minute before next value set

Number Basic Rectangular set
in page 93, Ref. 37 Truncated TruncatedA

Sequence Rect Rect with Normal x = 1. 7r = Exponential
AA

to 100 = 11.7 ksi 12 ksi x = 1.70-

0 = 10 ksi (d-max = 12.54
ksi

1 1.5 1.8 6.3 6.1
2 7.7 9.1 4.8 4.4
3 1.8 2.1 5.6 5.3
4 0.8 .9 8.3 8.4
5 1.6 1.9 6.1 5.8
6 5.4 6.4 .7 .6
7 9.5 11.2 9.6 10.0
8 2.2 2.6 4.8 4.4
9 6.9 8.2 3.2 2.8

10 7.5 8.9 4.4 4.0
11 0.8 .9 8.3 8.4
12 0.4 .5 9.7 10. 0
13 9.7 11.5 10.5 11. 0
14 5.3 6.3 .6 .4
15 2.6 3.1 4.0 3.6
16 4.9 5.8 .1 .1
17 0.3 .4 10. 1i 10.5
18 2.1 2.5 4.9 4.6
19 5.6 6.6 1.1 .8
20 7.2 8.5 3.8 3.4
21 9.7 11. 5 10.5 11.0
22 1.8 2.1 5.6 5.3
23 5.3 6. 3 .6 ... 4
24 6.0 7.1 1.7 1.4
25 0.9 1.1 7.9 8.0



TABLE 5

QUASI-STATIONARY TEST RESULTS

a) Rectangular Distributions

Overall Secondary Cracks
Peak Speci- Life Overall Total
RMS men kcs RMS Number Large Small

9.63 228 157.5 6.81 6 4 2
9. 01 230 313.25 6.37 9 5 4
9.55 231 215.0 6. 75 25 5 20
9.05 232 340.75 6.40 28 6 22
9.28 233 359.75 6. 56 13 4 9
8.43 234 525.0 5. 96 17 7 10
8. 19 235 399.75 5.79 3 2 1
8.73 236 516.0 6. 17 14 5 9
8.71 237 475.0 6. 16 14 3 11
8. 37 238 480.0 5. 92 15 4 11
7.85 239 704.5 5.55 9 2 7
7.85 240 709.5 5.55 10 3 7

b) Truncated Gaussian Results

Spec kcycles Overall Secondary

RMS Cracks
241 653.75 5.66 sevs
242 455.0 5.82 l+sevs
245 540.75 5.80 S

c) Truncated Exponential Results

243 499.25 5.82 ls
246 315.25 5.79 0-

d) Arbitarary Distribution

213 268.75 7.02 2+sevs

217 269.5 7.05 S
214 339.75 6.95 1+1c
218 365.5 6.97 1lc
220 369.15 7.01 S
222 400.75 6.71 S- 3
224 400.95 6.71 3- 0
223 435.15 6.78 S-0
215 435.35 6.99 1-Sevs
219 435.75 6.99 0 -3s
221 452.50 6.75 S-2
210 477.4 6.99 2-1
216 498.75 7.04 S-2
212 540.9 6.97 S-is
225 541.15 6.79 S-2+sevs
211 740.0 6.91 l14s - 1
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TABLE 7

SINGLE LEVER RANDOM PRELOAD TEST RESULTS

Prestress RMS = 16 ksi (peak)

Secondary Secpndary
tI S2 Spec kcs Cracks ti S2 Spec kcs Cracks

Large Small Large Small
¼hr 34 19 17.1 1 - 0 ½ hr 34 85 22.4 0 - sevs

20 23.3 sevs - 1 77 26.5 sevs - 0

28 25.5 0 - sevs 87 32.2 Is - is
22 27.1 0- 0 30 33.9 0 - ic

-18 30.3 1+lc-lc 94 67.6 i+Is+ic-0
Mean .5P 25.5 152 6.0 S - l+ic
(graph) .5P 30.0

i-hr 28 49 56.3 ic - 0 ½ hr 28 91 18.6 0 -0
65 73.4 Is- 0 151 57.5 ic 1
66 74.3 is - 0 29 67.8 2+sevs-lc
41 75.5 sevs-0 42 72.1 Is - 0

23 78.5 1+1s-0 89 85.2 0 - 0

.5P 75.0 93. 148.7 0 - 0
.5P 70.0

¼hr 22.5 38 152.1 0 - 0 ½hr 22.5 150 24.0 S - 0
34 186.3 sevs+Ilc-0 71 158.1 0 - 0

57 214.6 0 - is 33 192.6 0 - 0
39 226.9 lc - 0 69 236.0 0 - 0
43 232.0 2s - 0 60 332.2 0 - 0

.5P 210 70 379.5 Is - l+lc
.5P 215

¼hr .40 164 2.4 ic-ic ½hr 16.7 101 262.0 1 - 1
115 11.5 0 - 0 103 750.4 Is - 0

163 11.7 1 - 0 100 825.8 0 - 2c

165 5.5 2s - 0 96 1,334.1 0 - 0

166 16.7 is - is 108 3,492.2 ic - 0

.5P 9.0 149 487.1 0 - 0
.5P 820

¼hr 19.5 121 431.6 2c - 0 ½ hr 40 106 2.3 0 - ic

118 584 1 0 - 0 97 4.9 1 - 1
128 597.8 0 - 0 105 6.6 0 0
140 607.9 is - 0 107 10.31 is - Ic
127 674.9 0 - 0 98 21.36 3s - 1
.5P 600 .5P 6.6

¼ hr 16.7 111 10,024.2 0 - 0



TABLE 7 (con'd)
Prestress RMS 13. 5 ksi (peak)

Secondary Secondary
S2 Spec kcs Cracks t S Spec kcs Cracks

Large Small Large Small

I hr 34 13 4.6 1 - 0 ½ hr 11.1 102 3,946.6 0 - 0
1 ii 10. 9 sevs-0 104 10,000.0 (not failed)
12 11.0 0 - 0
95 26.0 i+sevs-0 ½ hr 19.5 146 78.5 0 - S
15 34.7 1+sevs-0 145 136.4 0 - 0
56 52.8 is -0 144 275. 1 0 - Is
.5P 21 147 331.3 0 - 0

142 492.0 0 - 0
1 hr 28 76 50.6 0 -0

3r2 7 50.6 0-0 hr 34 73 20.6' 0 - ic
48 28.9 0 - 0

78 58.6 0 0 84 30.4 0 - ls+lc
79 107.8 1 - 0 90 30.9 0 - ic
82 132.5 1 - 2 92 38.2 0 - 1

155 107.3 0 - 1.5 31
156 8.4 is-ic
.5P 69.0 ½ hr 28 86 51.1 2s - Is

45 96.1 0 - 1
1 hr 22.5 40 236.2 2 - 0 68 124.4 0 - 1

52 251.9 0 - is 75 163.6 0 - 0
27 270. 2 0 - 1 83 223. 1 0 - 0
74 323.1 1 - 0 .5P (75)*

72 443.1 0 - 0 ' hr 22.5 37 104.8 Ic - 0
158 207. 7 0-1+2s 25 180. 6 2s+lc - 0
.5P 260 16 230.6 0 - is

1 hr 16.7 110 7,554.2 0 - 0 26 261.4 2c - 0
35 307.9 0 - 0

1 hr 40 114 4.38 0 - 0 .5P 230
112 8. 18 1+lc-lc
113 12.60 0-1+1s ½ hr 40 160 3.6 ic -0
125 14.90 1c-0 154 7.3 is -0
116 17.10 S-0 159 12.7 2+sevs ic
.5P 12.3 109 25.3 ic-ic

161 17.1 2s 1+ic

I hr 19.5 122 373.6 0 - ic ½hr 19.5 141 412.6 0 - 0
143 475.7 0-0 120 414.2 0-0
117 515.3 0 - 0 126 420.7 Ic - 0
130 538.3 0 0 129 569.8 0 - 0
123 573.1 0 -1 119 678.0 0-0
.5P 510 157 277.1 0 - 0

.5P 470

Note: Legend for Secondary crack column - as Table I
* These tests carried out with prestress RMS = 16 ksi (peak)
,* Value used for regression of test results (actual mean appears affected

by"discontinuity phenomenon" discussed in Section 2. 5)
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Fig. 13
COMPARISON OF FATIGUE SPECIMEN STRAIN TRACES

USING A SINGLE LEVER USING TWO LEVERS
TRACE 178

SINGLE RESONANT FREQUENCY TWO RESONANT FREQUENCIES
f = 45 CPS R.M.S. 10.4 ksi

SINE WAVE RANDOM NOISE RANDOM NOISE INPUT
INPUT INPUT THREE CONSECUTIVE SAMPLES

FINISH

START

SPEED OF TRACE 62.5 CM PER SECOND
LOAD 1,740 LBS PER CENTIMETER
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SPECIMEN GRIPPING MECHANISM
using RUBBER FLEX COLLETS

with Hook-serrated edges

The standard rubber flex collet
is made up of fully hardened --______

alloy steel jaws separated by
synthetic rubber, forming an
integral mould.

The collet fits into a hardened

steel cone and the specimen is

Specimen .- P positioned to leave about . 10 inch
_clear to apply locking action by

means of the compression pin.

The hook serrations shown A variety of collet sizes are

below pull the collet into commercially available allowing

the cone when a force is the gripping of specimens from

applied by the compression 5/8" to 1 3/8" in diameter
pin.

The illustrations are taken

from a brochure of The
Jacobs Manufacturing Company
West Hartford 10, Conneticut
U.S.A.

FIGURE 31
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