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NOTICES

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procure-
ment operation, the United States Government thereby incurs no responsibility
nor any ooligation whatscever; and the fact that the Government may have
formulated, furnished, or in any way suppliedthe said drawings, speci® :ations,
or other data, is not to be regarded by implication or otherwise at in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

Qualified requesters may obtain copiea of this report from the Armed
Services Technical Information Agency, (ASTIA), Arlington Hall Station,
Arlington 12, Virginia.

This report has been released io the Cffice of Technical Services, U.S.
Department of Commerce, Washington 25, I.C., in stock quantities for sale
to the general public.

Copies of this report should not be& returned to the Aeronauticai Systems
Division unless return is required by security considerations, contractual
obligations, or notice on a specific document,
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ABSTRACT

Part I -~ The feasibility of using helium Jjets as a practical substitute for
actual rockets in scale model acoustic tests was investigated by conducting an
experimental program with four heated helium models. Sufficient evidence is pre~
sented to indicate that the substitute gas modeling concept is valid, i.e., simu-
lation of rocket noise can be achieved if the essential rocket flow parameters are
duplicated, Since it is not possible to duplicate all flow parameters simultan-
eously and still retain the essential feature of simplicity, some compromises must
be made. The helium model which provided rocket exit values of Mach number, veloc-
ity, and static pressure, and near duplication of density performed best. This
evaluation is based on agreement in sound pressure levels with a small solid propel-
lant rocket,

Part II -~ An investigation was made to determine the effect of flight venicle
motion on propulsion system noise which is propagated to parts of the vehicle lccated
in the near field. Following the selection of a working hypothesis, experiments
were performed using a O.6-inch diameter heated air jet operating in a l6-inch dia-
meter acoustically-treated wind tunnel. Experimental results compare favorably with
E‘~ predictions based on the hypothesis which explains the effect of vehicle motion by
two separate factors: (1) the noise produced by a jet in motion is dependent upon
i the relative velocity between the jet and the air through which it moves; and (2)
E a shifting of the noise radiation pattern toward the rear occurs because of the
g combined effects of vehiclas motion and the finite velocity of sound. A prediction
: method is developed which makes use of noise data frum a stationary jet operated at
F a velocity corresponding to the relative jet velocity of a moving vehicle. These
e measured data are then translated by a calculated amount to account for the rear-
ward shifting of the noise field due to motion.

t
[
|
F
L
)
[
9

I
{ 1

PUBLICATION REVIEW

This report has been reviewed and is approved.
FOR THE COMMANDER:

3 (Oalli,

5 ‘ WALTER \J,
Chief, Dynamics Branch
Flight Dynamics Laboratory

o ASD~TDR=62-787 i1




TABLE OF CONTENTS

PART I: ROCKET NOISE SIMULATION WITH SUBSTITUTE GAS JETS

Section

IO INTRODUCTIONQ > & o O @ [ ] » . e s @ 1) e o . . ] . 1] . . . 3

II, SELECTION OF EXPERIMENTAL CONDITIONS & & & & o o &

Ae Selection of Rocket Data o v o o o o o o o o s o o o o o
B, Selection of Significant Flow Parameters + o o ¢ ¢ o s
Co SElection of Working Fluids e @ o o © 8 e @ o . o o @

D, Flow Parameters of Model Solid Propellant Rocket and
Helium Substitute Gas Model ¢ 4 o ¢ o o ¢ o ¢ ¢ 0 ¢ ¢ ¢ @

IIT. APPARATUS, INSTRUMENTATION, AND OPERATING FRCCEDURES .+ o « &
IV, RESULTS AND DISCUSSION & 4 o ¢ o o o

g
o )
Vi oww o oo uEEE W@

A, Far Field ResultsS s o ¢ o ¢ o 06 ¢ ¢ o ¢ ¢ ¢ ¢ 0 0 ¢ 0 o »
B, Discussion of Far Field Results o« 4 o o o ¢ ¢ ¢ o ¢ o o o
Ce Near Field Results 4+ ¢ o o ¢ o ¢ o 6 6 ¢ ¢ ¢ 6 6 o o o o
D. Discussion of Near FiEId Results ® 6 o o 0 o ¢ 0 o o o o
Ee Summary of Performance o« « o o ¢ ¢ ¢ ¢ ¢ ¢ o o o s ¢ o o

v. CONCLUSIONS e & & 6 & ¢ 0 &6 o 0 4 & P & & o 0 o & o & > o »

—
\n

APPENDIX I '« o o o o o o « o o o o s o s o ¢ o o o o 6 6 s ¢4 ¢ 16

PART II, EFFECT OF VuUHICLE MOTION ON JET NOISE

Section Page
I [ ] INTRODUCTI ON L] * » * L) L] » L) * L ] ® * * . L] L] - . . [ ] . L] L] * L*S

II. HYPOTHESIS AND DISCUSSION 4 4 o o o ¢ o o ¢ o o o ¢ o o o o o K7
A. HypotheSiS e 6 8 ¢ 5 6 ¢ o 0 % 3 s 8 6 6 8 8 B 0 4 0 o o 47

BQ DiSCUSSion L] * ] * * * * . L] L] L[] * * L] L] L] . + » L] * L] L] u?

C. Procedure for Predicting Effects of Vehicle Motion o . o 48

III. TEST APPARATUS, INSTRUMENTATION, AND PROCEDURES ¢ o o o« o o 49
A. Selection and Description of Apparatus « o o o o s+ o o o« 49

Be Instrumentation o ¢ ¢ ¢ o ¢ ¢ ¢ ¢ 5 ¢ s o ¢ o s ¢ 6 o 2 o 50

¢ ¢ o ¢ o 8 @ 51

C. Wind Tunnel Performance and Operation , .

IV, RESULTS AND DISCUSSICON . .

§: A, Data PrOCESSing Method o ¢ o ¢ ¢ o ¢ ¢ ¢ 6 0 ¢ 0 ¢ 0 o & 53
b;: Be DisCUSSION o o o ¢ ¢ 6 o ¢ o 6 ¢ ¢ ¢ ¢ ¢ o o 8 8 6 ¢ & o 55
s" V [ ] CONCLUSIONS L ] L] * * . L[] * . * * L2 L] L] L ] L] L ] [ ] e . [ ] L] ~ . * * 60

APPENDIX II L] L] . . ® . . . - L] * L * L] . L] * [} L] © . * . * . * . 61

."-:‘ RHERENCB . * L] L] * * . . . L . L] L 4 L4 - ? . L ] . * . L] * L[] L] . . * L] * 92

.
e ASD-TDR-62-787 iv
>
o




S

Y 1R

- v _r

RERT N B

1A . vt -

o rldEB s 0 a4 s

l'l’l

D

LIST OF ILLUSTRATIONS

Figure
PART I
1. Flow and measurement systems for heated helium tests. « + &
2. Measurement locations for solid propellant rocket and
heatedheliumtests....................
3. Test apparatus and microphone array for heated helium
tests......l...l....t.....Il...l
L, Time variation of plenum pressure, plenum tcuperature, and
sound pressure level during a heated helium test. ¢« o« o + &
5. Sound pressure levels measured at 100 nozzle diameters
radius vs. angle for the solid propellant model rocket
and heated helium jets. * L] . L] L . L] . L] [ ] L . L] *® . L d L] L
6. Representative far field sound pressure levels for the
solid propellant model rocket and heated helium jets. « . &
7. Overall sound pressure levels measured at 100 nozzle
diameters radius vs. angle for the solid propellant
model rocket and heated helium jet Condition De o ¢ o o o &
8. Total radiated acoustic power levels of solid propellant
model rocket and heated helium jets o o« o« ¢« o ¢ o o o o o
9. Angle of half-power radiation vs. frequency for solid
propellant model rocket and heated helium jets: + o ¢ o« & &
10. Near field sound pressure levels for the solid propellant
moGel rocket and heated helium jets e & o & o & & o6 o o o @
11. Apparent source lccations for one-third octave bands of
noise as determined by microphones placed close to the
exhaust o« o« o ¢ ¢ o o o 6 0 8 e 6 0 4 6 . 1 e s e s s e s @
PART II
12. Geometrical relationship between angles [ & andf?
fora jet In mMotion + ¢ ¢ o o o s o s o 5 s o 4 o 6 o s s 0
13, Relationship between ( - o ) and /9 for a jet in
motion at various Mach numberss « o« ¢« ¢ ¢ ¢ o ¢« ¢ o o o & o
14, Schematic diagram of l6-inch wind tunnel assembly « « « o &
15, Photograph of l6-inch wind tunnel assembly. « o « o o o o o
ASD-TDR-62~787 v

..........
- - - o

------------------------

22

25

2k

25

26

31

32

33

35

h1

65

66
67
68

T .

-’y z-"l‘
LA

B Y L0

RIS
’ .'D__'l Al
s

-
Y WX P e

.
.
-

e
-
\.-‘

«




LIST OF ILLUSTRATIONS (Cont,)

'Y

Figure Page

16, Assembled and exploded views of Bruel & Kjaer Type 4134
microphone with probes « o o« ¢ ¢ ¢ ¢ ¢ e ¢ 6 6 ¢ 0 ¢ ¢ ¢ o & 69

17. Model jet placement in wind tunnel and microphone locations
used in obtaining noise data for both static and wini
conditions « o« ¢ o o ¢ ¢ o o o o o e & o o 6 o s o s 6 s & @ 70

18. Frequency response of probe microphone with electrical
equalization ® 6 06 6 6 6 ¢ ¢ 6 8 0 & 6 & 6 6 8 o & 8 s & & & ?1

19. Background noise in wind tumnel test section « ¢« ¢ « ¢« &+ « + 71 gk
P

20. Source locations for various frequency bands of noise S%
generated by the 0.6-inch model jete « o« o o o o o o o o o & 72 éﬁ

X

2l. Illustration of method of predicting the chauge in SPL é_
at a location due to vehicle motioRe ¢ « o o ¢ o ¢ o o ¢« o o 73 ﬁ

:
Ei
&,
N

.

22, Comparisons of measured and predicted SPL versus frequency
for various measurement Station8 s « « ¢ ¢ o o ¢ o ¢ o o o o b

23« Measured vs, predicted values of noise reduction due to
MOLION o o o o ¢ o @ o 2 4 ¢ ¢ o o s o 6 6 a o o o s & o o @ 84

24, Comparison of measured and predicted SPL versus station
for the 8000 cps band (one-third octave) o« « o o o o o« o o« o 85

25. Position shift of noise due to motion for various 1/3
octave frequency bands « « o« o« ¢ o o o o o ¢ ¢ s o 0o 000 86

26. Mathematical relationship between angles ol and fg for
the moving vehicle situation « o« ¢« ¢« o o s o ¢ o ¢ o o ¢ ¢ o« 91

T T e X v
i P

.-
e e o
Yl

PRI oS

RTERE

—
A 7 ey

~x

o

ASD~TDR~-62=787 vl




LIST OF TABLES

Table Page
PART I

I. Properties of selected £aSe€S « « o o o o o o o o o o o o o » 18

II. Flow parameters of solid propellant model rocket and
heated helium jets L * * L L] L] . L] * * L ] . . L] . * L] L] . L[] [ ] 19

III. Sound pressure levels for heated helium jet Condition De » «» 20

IV. Summary of agreement of helium and rocket data . . + + « « « 21

PART II

V. Jet fiow parameters and wind tunnel operating conditions . « 62
VI. Agreement of measured data with predicted values « « « « o o 63

VII. Estimated reduction in sound pressure level due to relative
velocity effects L] * L] * L] L] . ® . . . . » ® . . . L ] . L] L ] * 61{’

DMOMLA 10 2 cferaiiz b

.

ASD-TDR-62-787 vii

> o

VAT T T

...............................
.................




J I L L AV TR VL YL JNE DR DV B I RO R LR A L N A

LIST OF SYMBOLS ff
g
A cross-sectional area (fta) ;:;1
a acoustic velocity (ft/sec) Eg;f
g acceleration due to gravity (32.2 ft/seca) l?;
M Mach number, V/a or S/a
ND Nozzle exit diameters
P pressure (lb/ina)
PWL acoustic power level (db re: lO"13 watt)
R gas constant (ft-1b/1b-°R)
S vehicle (or wind) veliocity (ft/sec)
SPL sound pressure level (db re: 0,0002 microbar)
T temperature (°R, unless otherwise noted)
v jet velocity ( ft/sec )
W jet stream mechanical power: }€§V2 (ft-lb/sec), or 0.021 GVZ (watts)
w rate of weight flow (1b/sec)

a(){é? angles specifying receiver locations relative to noise source

ratio of specific heats, cp/cv

'0 density (1v/f t3)

:

Subscripts and superscripts:

Y
' e conditions at nozzle exit
a t total (plenum) conditions
k * conditions at nozzle throat for supersonic flow
r
"v-
' ASD-TDR-62-787 viii




PART I

ROCKET NOISE SIMULATION
WITH

SUBSTITUTE GAS JETS

:V -
o
i“~. R
L._: .
E ASD-TDR-62-787 1

'{'
'l\

1
.

PR st sun asar migr
L .




e U T TR RN S St S B SR AP UL AL S G S AP I 0 AL SR APNRDUL S SR )

e
s
e

(S

I, INTRODUCTION
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Scale model rockets are used during early design stages as a means of rredict-
ing ti.: acoustic enviromment associated with flight vehicles. The concept ¢f using
heated helium as a substitute for actual rocket fuel for scale model acoustic test-
ing was developed in the course of research performed under a previous USAF contract

(Reference 1), The objective of Part I of the present study is to investigate the
feasibility of such an approach.
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The fluid which is exhausted by any full scale jet or rocket engine will be
referred to as the '"full scale gas'" for that particular engine. Similarly, the
fluid exhausted by any model jet or rocket will be referred to as the "model gas"
for that particular model, If the model uses a gas which is different from the
full scale gas for the engine being modeled, then the model will be considered to
be using a "substitute gas'.,

The practical reasons for using substitute gas models are based on simplifi-
cation of scale model techniques., Model testing with even small rocket engines
requires extensive safety precautions., In addition, a failure of the rocket
apparatus results in costly repairs and delays in the test program., The ability
to conduct a model test with a convenient substitute gas results in considerable
savings and advantages. These benefits appear as reduced costs of test facilities,
apparatus, and operation through a reduction in the hazardous nature of the test
and the time required for testing.

The use of substitute gases may also assist in providing an understanding of

the theory of noise generation. TFor example, consider two similar experiments

which have common values for a limited number of parameters. Then if the same

noise field results in each case, it may be concluded that the parameters which

are not duplicated either do not significaatly affect the generation of noise or

the effect of one parameter is compensated by an opposing effect of some other
parameter. By use of substitute sases, the matching of parameters can be controlled
more readily and a systematic soriing of the important variables may be accomplished.

The principle of using substitute gases applies equally well to all classes
of jets, which include straight turbojets, afterburning turbojets, and liquid and
solid rockets. However, because of the greater apparent savings, the practical
emphasis will be placed on evaluating substitute gas models which might be used to
simulate rockets.

It is assumed that the noise generated by any exhaust stream is primarily
dependent upon stream parameters such as velocity, density, and Mach number which
can basically be evaluated by the measurement of pressures and temperatures. This
implies that the noise is not especially dependent upon inherent prope.ties of the
fluid being used, such as molecular weight and thermal capacity. This assumption

;‘ is fundamental to the validity of substitute gas applications in acoustic scale
o model experiments.,

S

3 | "

b Manuscript released by the authors 21 Decesmber 1962 for publication as an
"4 A3D Technical Documentary Report.
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IT, SZLECTION OF EXPERIMENTAL CONDITIONS

A. Selection of Rocket Data

Conventional models which use actual rocket fuels and differ from their full
scale counterparts only in size are known to duplicate full scale rocket noise
quite well. Considerable acoustic data were available for a solid propellant
rocket model*, having been obtained during a series of rocket firings conducted
by The Boeing Company for research purposes. These rocket noise data included
both near field and far field sound pressure levels generated by the rocket with
an undeflected exhaust. Sufficient data were available to determine power level
and directivity as a function of frequency, thus providing a convenient reference
on which to establish the validity of the substitute gas model through correlation
of experimental results. In addition, the same acoustic instrumentation used for

the reference rocket data measurements could be used for the helium jet surveys,
thus minimizing a possible error.

The reference model rocket used a single nozzle with an exit diameter of 2.33
inchesj it produced 430 pounds of thrust for approximately one second. Data ob-
tained for three firings of this configuration were sufficiently repeatable that
only the average of the data from the three firings is reported. The rocket ex-
hausted horizontally into a free field, the centerline of the exhaust being 26
nozzie exit diameters above the ground plane. Acoustic data were obtained in the
far field at a radius of 100 nozzle diameters from the nozzle exit and in the near
field along the jet boundary and forward of the nozzle,

B. Selection of Significant Flow Parameters

The initial step in design of an experiment is to select the parameters
which are believed to be significant. In some instances it is not possible to
simultanecusly provide the desired values of all parameters. Then it is necessary
to give preference to those believed most important or to perform successive ex-
periments to observe relative effects, It is desired eventually to accumulate
sufficient experimental evidence of the relative importance of the various param-
eters so that experiments may be designed on this basis. The present effort
represents the beginning of this accumilation of experimental evidence,

Previous work on the subject of substitute gases repcrted in Reference 1
was based on the assumption that jet exit velocity, density, and Mach number
were the most important parameters affecting noise generation. However, a
thorough study of the subject must include the consideration of additional

variables of possible significance., The additional variables considered are
discussed below,

*The solid propellant was a stanuard composition of polybutadiene-acrylic acid and
ammonium perchlorate with aluminum additive,
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(1) The work reported in Reference 1 was limited to ideally expanded jets. f
In the current study the possible effects of overexpansion of the nozzle '
are considered by including the static gas pressure at the nozzle exit
as a variable,

(2) For supersonic exhausts the exit velocity might be renlaced by the
acoustic velocity at the throat as a significant flow parameter.

(*) It may be appropriate also to consider the viscosity of the gas since
shear forces in fluids are dependent on viscosity.

(4) Since the acoustic power radiated by rockets appears to be directly
related to the jet stream mechanical power, it is appropriate to
consider the stream power as a variable to be investigated.

C. Selection of Vorking Fluids

The main problem encountered in using a substitute gas to model a rocket is
achieving the high exit velocities of rocket exhaust gases. Within a practical
range of plenum pressures, exit velocities of only a few times the acoustic velo-
city are possibla., It is therefore desirable that high acoustic velocity be a
characteristic of the substitute gas to be used. Ease of handling the gas (abseace
of explosive or toxic properties) is also an important consideration, and finally :
the cost must be considered. T

A comprehensive study of gases which might be useful in substitute gas models VY
has been made, resulting in the information included in Table I. Not included in '
this table are gases which are deadly poisons (chlorine, phosgene, etc.) and those
which are obvicusly much too expensive to consider using in quantity (krypton,
xenon). The indications of hazards associated with these gases are intended as

_gpproximations only., More detailed information may be found in References 2
through 8. The decision as tc whether a particular gas is safe t: use must be made
by the individual or group directly involved, because safety depends mostly on
the availability of proper facilities and exverience of the personnel,

The importance of Tablzs T is that it shovs only ten gases qualifying fox
widespread use on the basis of handling ease. These are the first ten of the
listed gases. Of these it is next approrriate to determine which have acoustic
velocities sufficiently high to allow their use at reasonably low temperature to
achieve cimulation of the rocket exit velocity.

Since the local velocity is the local acoustic velocity times the local
Mach number, wec may write

V=Ma= M ,[YgRT (1)

. Selecting velues of Y and R for a typical rocket, it is foundé that
VSFR = 7.6, The quantity VY'R has therefore been chouzn to be called the
7o
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relative acoustic velocity. This is then an index as tc how hot 4 gas must be in
order to provide a desire. acoustic velocity. For example, a gas having a relative
acoustic velocity of 2 would have the same acoustic velocity as a rocket at just
one-fourth of the absolute temperature. Although the temperature of concern is
usually the exit temperature, the plenum temperatures can ve used for the purpose
of surting out potentially useful gases. Taking 6000 °R as a typical rocket
temperature, it may be seen that the velocities could be approximately matched by
a gas heated to 1500 °R (the approximate limit of a simple burner) if it had a
relative acoustic velocity of 2. Of the "safe' gases only helium qualifies., If
the substitute gas could be heated to 3500 °R, gases with relative acoustic veloci-
ties of about 1.3 and greater could be included. Of the "safe'" gases only neon

and steam could then be considered in addition to helium, and for practical pur-
poses steam can be eliminated because of the excessive pressures which would be
required. Neon has no physical properties to make it preferable to helium, and

it is more expensive. Helium therefore emerges as the clear chnoice for a substi-
tute gas for modeling rockets. This conclusion might be altered if a less safe

gas were to be seriocusly considered, if the full scale exhaust being modeled
operated at significantly lower temperatures than conventional rockets, or if the
exit Mach numbers or exhaust velocities of the substitute and full scale gas flows

were permitted to be different by a large amount. ;f‘
D. Flow Parameters of Mod~l Solid Propellant Rocket and Helium Substitute Gas ?FA%
Mocel Loy
—— t' .‘:‘

]S.
i‘r ;
“

R
4
)
A

Table II lists significant flow parameters of the solid propellant mddel
rocket selected to provide reference data. Also listed in Table II are param-
eters of four helium flow conditions which were designed to have various flow
parameters numerically equal to those of the model rocket.

In Reference 1 exit values of Mach number, density, and velocity were
selected as being the most important parameters influencing noise generation.,
Linited experimental data presented there appeared to support this hypothesis
as applied to turbojets and jets operating in the afterburning range. As a
first attempt at making a substitute gas model of a rocket, the exit Mach number,
density, and velocity were therefore selected to be the same as those for the
solid propellant rocket, This is helium Condition A in Table II.

Rt e T
A
f <1 :
L K, Y

The work with substitute gas models reported in Reference 1 applies only to ol
fully expanded flows; however, wvirtually all rockets produce overexpanded flow A0
at the nozzle exit. A given rocket using a basic nozzle which varies only in the {}:Q
diameter of its exit will produce the same mass flow, and within a few percent w]

the same sea level static thrust, It does not seem reasonable, therefore, to

danlarte

f.“ oS
[.'

expect the noise to change by as large an amount as would be predisted by examin- i
ing veleocities and densities (or jet stream mechsnical power) calculzted for the "
exit, This effect for overexpanded exhausts has in fact been noted by NASA in tgﬁ
Reference Y. It will be considered sufficient to note that the degree of over- i§?3
expansion could logically have some influence on the noise generated. :qﬂ}

P

ku}
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For helium Condition A (Table II) the exit static pressure is significantly
lower than for the model rocket. It is therefore noted that in one possibly
important respect, helium Condition A is not the same as the model rocket. Of
the four flow parameters (Mach number, density, velocity, and overexpansion as
measured by exit pressure), it is possible to provide the desired values of only
three at any one time unless the ratios of specific heats ( ¥ ) for the substi-
tute and full scale gases are the same, Since Y for helium is quite different
from the rocket value of Y , the elimination of overexpansion as a variable from
the helium flow requires that one of the other parameters become a variable.

From the work of Reference 1 it was conclucded that the effects on noise of
varying density over a limited range were fairly predictable. Therefore, helium
Condition B (Table II) was calculated differing from Condition A in that the exit
density was allowed to increase so that the exit pressure would match the rocket
value., If the noise generated is assumed proportional to the first power of
density, the sound levels from Condition B will be 1.5 db too high.

The use of jet stream mechanical power, W, as an indication of the noise to
be expected combines flow velocity and density in place of separate consideration
of velocity and density effects., Helium Condition A matches the model rocket
values of velocity and density and therefore has the same value of relative jet
stream mechaniczl power (wrel). Helium Condition C was also selected to provide
the model rocket value of Wn,j, but with neither velocity nor density at the

rocket values. The Mach number and exit pressure were, however, maintained at
the rocket values,

Some data have been collected which indicate that for supersonic flow the
acoustic power generated is dependent upon a high power, possibly the eighth, of
the acoustic velocity at the throat, a*. The reason for considering this velocity
as a possibly importan®t parameter stems from the observation that most of the noise
generated by supersonic exhausts seems to come from well downstream of the nozzle
in the subsonic region of the jet., If it is assumed that there is no heat loss,
the sonic velocity downstream of the nogzzle is the same as the sonic velocity in
the nozzle throst. For helium Condition C, a* has the same value as for the
model rocket, This happened coincidentally, that is, a helium medel providing
desired values cf W, P, and M, can be found for any rocket, but usually a* will

then be different. As it turns out, Condition C can be interpreted to be testing

the importance of either a* or wrel"

Helium Condition D, using a different nozzle, duplicated P, and a*. By
almest any criterion Condition C would be expected to be a better model than

D, but D serves a useful function in further separating possibly significant
variables,

¢

To summarize the helium conditions chosen: (1) Condition A is expected to
produce noise different from the model rocket onl, because of different over-
expansion, but this effect presently is not predictable; (2) Condition B is
expected to produce the same noise as the rocket except that the density is high
by an amount that might increase noise levels by about 1.5 db; (3) Condition C
has erroneous velocity and density, these errors weing in amounts whicn might
cancel each other; (4) Condition D is related to the rocket only in that the
sonic velocity at the throat and the degree of overexhansion are the same as for
the rocket, so the resulting noise is not likely to be the same as for the rocket,
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In addition to the above there are other helium conditions of interest.
Orie o1 these would provide rocket values for all of the exit parameters believed
importar.t to the generation of noise except Mach number. However, the plenum
temperature required would have been somewhat higher than was possible to
attain with available facilities.

III. APPARLTUS, INSTRUMENTATION, AND OPLRATING PROCEDURES

Fignre L shiows schematically the apparatus used to produce the desired flow
of nelium and the instrumentation used to measure the flow and the resulting noise.
The source of helium is bottles at 2200 psi pressure, each containing 213 standard
cubic feet (arproximately 2.2 pounds). Since the rate of flow possible from any
cylinder is fairly smz1l, 28 cylinders are manifolded together. Four large
pressure regulators are operated in parallel to control the flow. The regulators
provide a large volume flow at a pressure slightly below the pressure provided to
the dome of the regulator. Bottled nitrogen controlled by a quick-acting valve
and conveniional regulator is used to supply the desired dome pressure. The
regulator therefore acts as the maiu helium on~off valve as well as a pressure
regulacor. The discharg: from the pressure regulators passes through a heat ex-~
changer to a plenum and nozzle. Placement of the pressure regulators upstream of
the neat exchanger is dictated by the inability of the regulator seals to with-
stand high temperatures. The pressure out of the regulators is maintained slightly
higher than the desir:d plexnum pressure *o compensate for the small pressure drop
across the neat exchanger,

The heat exchanger is of the cyclic storage type. Heated air passes through
a large cylinder centaining 221 thick-wail tubes of mild steel., Baffles position
the tubes inside the cylinder and force the hot air to cross the outside surfaces
of the tubes three times, assuring fairly even temperature distribution. The
helium flow is in parallel through the tubes along a path separate from the heated
air. Although this type heat exchange: is capable of continuous operation, it is
used only in & transient msnner, because relatively -aort duration helium flow is
required. An advantage of the trunsient type operation is that shutting down the
heated air flow prior to thz helium test prevents any extraneous noise from the
hot air exhaust,

Iron-constantan thermocouples inserted a few inches into each erd of one of
the helium flow tubes are ussd to determine the heua:¢ exchanger core temperature.
The outputs of the thermocouples used for mzasuring the helium flow temperatures
are recorded or. an nscillograph and the c¢orrespondiag temperatures are determined
from standard tables. The helium plenurm preseure is measured with a Statham
pressure transducer und recorded on the oscillograph.

Locations of the microphones for the heated helium tests and for the solid
propellant model rocket tests are shown in Figure 2, The noise data are recorded
on magnetic tape. Playback of tae data is through one-third octave hand filters
to a true rms graphic level recorder. One-third octave band filters are considered
sufficiently narrow to detect any anomalies in the data. The helium weight flow
which can be provided is not sufficient to operate a nozzle the same size as the
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model rocket nozzle. A ccale factor of 0.63 was chosen for the helium nozzle as a
compromise between near maximum possible size and ease of data reduction. This scale
factor requires exactly two one-third octaves shift in frequency. Measurements are
made at scaled distances so that no corrections in sound levels are required to
allow direct comparison of the helium and solid propellant rocket levels. The hel=-
ium data which are reported, however, have all been shifted lower in frequency by
the two-thirds octave required by the scale factor. The total acoustic power radi-
ated by the smaller helium nozzles is, of course, lower than that radiated by the
larger rocket nozzle. A correction of 4 db (assuming power proportional to nozzle
area) is included in the reported helium jet acoustic power levels. The operating
procedure for a typical heated helium test was as follows:.

l. The pressure regulators were pre-set to the desired value. Typically
the apparatus appeared as in Figure 3.

2. Hot air was supplied to the heat exchanger for a period of 3 to 15
minutes as necessary to heat the core to about 10° above the target
temperature. This target temperature was in turn 20° to 50° above
the desired helium plenum temperature,

3. Helium supply lines were ovened, the pressure regulators then acting
as the only helium valve.

Lk, At the time the thermocouples in the heat exchanger core indicated
temperatures had decreased to the target values, a ten-second countdown
commenced, At minus five seconds all recorders were started. At time
zero, regulated pressure was applied to the domes of the main pressure
regulators by opening the quick-acting valve, All recording channels
were visually monitored for overlcading. At plus two or three seconds
the pressure to the domes was shut off, causing the main pressure
regulators to close off the helium flow,

5. Necessary notations of attenuvator settings, etc. were made, and then
all recorders were turned off,

6. Valves of the helium supply bottles were turned off, and the pressure
in the main supply lines was relieved.

Using this procedure it was possible to perform helium tests with various plenum
conditions at an average rate of about three per hour., Three tests at each of
the four helium conditions were conducted with indicated plenum temperature and
pressure both within 3% of the target values. Complete data reduction was
carried out for the three tests at each condition. For 95% of the data points,
repeatability to within *1 db was observed. Variations of temperature, pressure,
and sound pressure level during one of the helium tests are shown in Figure 4,

IV, RESULTS AND DISCUSSION

A, Far Field Results

Far field overall and octave band sound pressure levels vs. angle for helium
Conditions A, B, and C and the solid propellant rocket are given in Figure 5.
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.. One-third-octave spectra for the above three helium conditions are compared with EF?
. the rocket spectra at two locations in Figure 6. Sound levels for Condition D o
*: are presented separately in Figure 7 and Table III. The acoustic power level of :ﬁ{
[ each octave band for all nelium conditions was computed from measured sound H;T
b pressure level data; the results are presented in Figure &, t;;
{
o The directivity of the noise for each helium jet condition and the rocket is ﬁj}
shown by octave bands in Figure 9; this is presented as a means of simplifying and N
, combining the information of Figure 5 and Table III. Since it is difficult to }fﬁ
& select by eye from Figure 5 a good representative value for the angle of maximum e
9 noise radiation, a graphical approach was used for finding the angle at which one- Zij
A half of the acoustic power would be radiated forward (upstream) of that angle. e
" This angle is referred to as the angle of half~power radiation. It is believed oo
: that this approach results in a more significant indication of directivity than ;pi
o by simply selecting the angle of maximum sound pressure level from Figure 5. This Ny
latter method gives too much weight to a single measurement which might have oY
: experimental error. oo

. :"4“.:‘~.:.
-

B. Discussion of Far Field Results

i General trends of agreement with the rocket data are seen for helium Condi-

: tions A, B, and C in Figures 5, 6, 8 and 9. The agreement is best in the aft

N aguadrant, where maximum noise is radiated. The major deviation of the helium
.8 data is that higher levels are consistently obtained in the forward quadrant.
-9 Each helium model differed from the rocket model in one or more possibly sig-

! nificant flow parameters; therefore, it is appropriate to investigate whether
' there are logical corrections which might be applied in each case. Since gross
effects of jet parameters are usually observed more uniformly in the far field
than in the near field, any proposed corrections should be applied first to the
far field data,

The agreement of sound level data between helium Condition A and the solid

. propellant rocket, in general, is reasonably good; average values of root-mean-
square deviations for fore and aft quadrants are 3.1 db and 1.8 db, respectively.
The total radiated acoustic power of this model very nearly matches that of the
rocket as shown in Figure 8 (a). Helium Condition A differed from the rocket

g primarily in having a low exit pressure and a high acoustic velocity at the throat.
R In view of the close agreement in power level, apparently no generally applied
correction in the sound levels to account for these differences is appropriate.

It may be seen in Figure 9 that the directivity of the noise for Condition A is .
shifted forward from that of the rocket at the higher frequencies. This result :
may possibly be due to the differences in either exit static pressure or throat )
acoustic velocity of Condition A.

The agreement of acoustic data for helium Condition B with that of the j*!
rocket is inferior to Condition A in the forward quadrant, The rms deviation N

- there is 5 db while in the aft quadrant the deviation is 2 db which is compar-

5 able to that of Condition A. The octave band power l:vel,; of Condition B are about

. 2 db higher than those of the rocket as can be seen in Figure 8, Helium Condition

ASD-TDR-62-787 10
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B duplicated the rocket values of Mach number, velocity, and exit pressure,
but both the density and throat acoustic velocity were high. Assuming a first
power correction is appropriate to account for the difference in density, all
sound levels for Condition B should be decreased by 1.5 db. Applying this
correction improves the agreement in sound pressure levels between Condition B
and the rocket and makes the acoustic power level curves of the two nearly
identical. (Condition B with the =1.5 db correction applied is called Condi-
tion B'.) The directivity of the noise for Condition B as shown in Figure 9
is shifted torward about 3° from that of the rocket at the higher frequencies.
This shift, however, is less than for Condition A so possibly the duplication
of exit pressure improved the agreement with the rocket.

The agreement of helium Condition C sound pressure levels with the rocket
is fair, the rms deviation being approximately 4 db and 3 db in the forward and
aft quadrants. Power level agreement between Condition C and the rocket is
inferior to that of both Conditions A and B as may be seen in Figure 8.

Neither velocity nor density was duplicated in Condition C, but these para-
meters were varied in such a way as to produce the same relative jet stream
mechanical power as the rocket. The rocket values of Mach number, exit pres-
sure, and throat acoustic velocity were also duplicated. Assuming the noise

is proportional tc the first power of density and the third power of velocity,
the corrections to be applied to the acoustic data fcr Condition C are approxi-
mately -5 db for density and +5 db for velocity. On this basis it would.be
expected that helium Condition C would provide reasonable duplication of the,
rocket noise. When judged, however, by the far field criteria (SPL, PWL, and
directivity), helium Condition C is inferior to Condition B', Helium Condition
C indicates an average shift in directivity of 4° in the aft direction when
compared with the rocket (Figure 9). This directivity shift is possibly due to
velocity or density differences which are not compensated for by maintaining
the rocket value of mechanical power.

From Figure 8 (d) it can be seen that the acoustic power level for helium
Condition D is much lower than that of the rocket. The design basis for Condi-
tion D was (1) to provide the same acoustic velocity as the rocket at the nozzle e
throat and (2) to provide the same nozzle exit pressure. It is apparent that ;ifﬁ
these criteria alone are not adequate to design a substitute gas model, The exit A
Mach number for helium Condition D was muchk lower than for the rocket. At present
there is no method available to correct for this difference. The density and
velocity (and the jet stream mechanical power) were also aifferent from the
rocket values., Applying corrections for these parameters, again on the basis
of first power of density and third power of velocity, a net of 7 db must be
added to the acoustic power level for helium Condition D. (Condition D with
the density and velocity corrections applied is called Condition D'.) With this
correction included, the ~greement in power level with the ro.ket is greatly
improved  but it is definitely inferior to Condition B!'.

ASD-TDR-62-787 11
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Of the various helium conditions evaluated it is concluded that B' (Condition
B with a -1.5 db correction for density) achieves the best simulation of the
rocket noise in the far field. This conclusion is based on an overall evaluation
of sound pressure levels, acoustic power levels, and directivity data.

In addition to evaluating the far field performance of the various helium
models, it is desirable to explore pessible causes for the general disagreement
with the rocket at locations forward of the nozzle. There appears to be a
definite possibility that the higher forward quadrant levels for Conditions A,

B, B', and C are caused by reflections from building stiracture in the vicinity of
the helium test area. Higher power is radiated at larger angles (e.g. 120°)

Tty ~ i

. relative to the forward jet axis than at smaller angles (e.ge 30°). If reflection E?i.
o from a wave is seen at the desired measurement position located at the smaller o
angle, then the reflected and incident pressures will combine to produce a higher g;:
sound level., A brief analysis of the present situation, considering the SPL &

differences and particular geometry involved, indicates that levels may be about

M

5 db high at the 30° measurement location; smaller increases are associated with iji
measurement locations at larger angles up to 90°, Since the rocket tests were ;}ai
conducted at a different test site which was well removed from buildings, the k{?
reference rocket data are not believed to contain this type of error. It appears, Ao

S
P
s
.
]

then, that a large part of the forward quadrant deviations of the helium data
relative to the rocket might be explained by the effect of reflections.
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C. Near Field Results

One-third octave band sound pressure levels for all near field microphone
locations for the rocket and helium Conditions A, B, and C are plotted in Figure
10 (a=i). Octave band data for helium Condition D are presented in tabulated form
only (Table III), Because the condenser microphones used at locations close to
the exhaust were limited in response at the high frequency end of the spectrum,
only the data in the frequency range 160-10,000 cps are reported., The higher
frequency capability of the M-213 crystal microphone would have been preferred,
but the approximately 140-160 °F, temperature limitation on these microphones
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L was considered to be too low in view of the proximity to the exhaust.

? Figure 11 shows the apparent source locations, as a function of frequency,
{ for the four helium models and the solid propellant rocket as determined from

F the near field data. These curves were obtained by cross-plotting the data of
N Figure 10 into a form which shows sound pressure level versus distance along the
o exhaust and forward of the nozzle. The apparent source location was determined
. by taking the mid-location of the region where the sound pressures were down 3 db
- from the highest level measured.
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D. Discussion of Near Field Results

~
.
a a2 a

t' -._ .

General trends in agreement with the near field rocket levels are seen for
helium Conditions A, B, and C (Figure 10, a=i). In contrast with the far field
situation, there is no strong *-ndency for th. helium levels to be higher than
those of the rocket for locatiuns forward of the nozzle.

:

For helium Condition A the agreement of near field sound pressure levels
with the rocket is reasonably good, except for microphone locations & and 9
(Figure 10, h and i). An average value of rms deviation computed for all near
field locations is about 3.5 db, this figure being strongly influenced by the
poor agreements at the two far downstream positions. ZLocation of the low fre=-
quency sources in the jet compared to the rocket is only fair as indicated in
Figure 11,
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Sound pressure levels for Condition B are in closer agreement with the
rocket, the rms deviation averaging slightly over 2 db for all nine near field
locations. Application of the =l1l.5 db correction for density to the SPL data
for Condition B does not significantly change the near field agreement. The
apparent source locations for Condition B are on an average closer to those of
the rocket than for Condition Aj; however, they do not appear to be distributed
over as large a region of the jet as are the rocket sources.

The near field agreement of sound levels for Condition C with that of the
rocket is comparable to that of Condition B and B'., The apparent source
locations for Condition C also exhibit a similar distribution in the jet as
shown in Figure 1ll.

Helium Condition D shows a distribution of apparent source locations greatly
different from that of the rocket. This feature eliminates any hope that appli-
cation of a general correction in SPL to Condition D will succeed in making
it a satisfactory model for simulating rocket noisze.

It is concluded that the best simulation of near field rocket noise is
achieved with helium Conditions B, C, and B' (B corrected for density) and that
there is little significant difference between these three conditions omn an “
overall basis. The reflectior problem discussed for the far field data does not
occur in the near field because the ratic of incident to reflected pressure is
much higher in the case of the near field.

BE. Summary of Performance

S Overall performance of the various helium models is suimarized in Table IV

< by showing deviations from the reference rocket for both near and far field

E{;: criteria. Rank orders of agreement with the rocket for the helium conditions are

pjf} indicated along with root-mean-square deviations from the rocket values.,
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Condition B' clearly ranks highest in its overall ability to achieve simu-
lation of rocket noise. This appears to be a reasonable result because Mach
number, velocity, and static pressure were duplicated, and density was accounted
for by a small correction, Condition B ranks second best, but there is no reason
to consider using this condition without the correction for density.

Helium Conditions A and C appear to rank next in their overall ability to
achieve rocket simulation; Condition A, however, is better in the far field, and
Condition C is better in the near field. Condition A lacks the duplicatien of
the rocket static pressure which Conditions B and B' provide. Condition C fails
to duplicate both velocity and density by rather large amounts; however, in effect,
compensating corrections for velocity and density are applied by maintaining the
relative jet stream mechanical power at the rocket value.

PR St 3o

Condition D clearly ranks lowest of all the helium models, Failure to
duplicate three important parameters (Mach number, velocity, and density) obviously
explains the lack of simulation. Application of SPL corrections to account for
differences in velocity and density (Condition D') makes the agreement with the
rocket better for far field locations., These corrections, however, do little to
improve the near field agreement apparently because the source locations of the
rocket are not duplicated, Conditions D and D' are considered to be unacceptable
models,

In summarizing the performance of the helium models, a brief discussion of
the significance of the deviations from the rocket values is in order. Experience
in making sound measurements around rockets and jets (full scale and model) has
shown that some inconsistencies appear in the data in almost uny measurement
program, For example, at cne or more microphone positions, sound levels may appear
incompatible with the remainder of the data, or a few frequency band levels may be
displaced from an otherwise smooth SPL versus frequency curve. Whether these
discrepancies are caused by instrumentation difficulties, faulty technique, lack
of free field conditions, faulty operation of the rocket or jet, or other causes,
they can usually be reduced considerably by acditional testing which is designed to
investigate the specific problem. Inconsistencies, which are often more noticeable
with cross plotting, are apparent in both the helium and the rocket data., The
problem is magnified in the present study because the helium data are necessarily
being compared with reference rocket values which may themselves include experi-
mental error. The inconsistencies frequently tend to disappear, however, if all the
test data are viewed as a whole rather than individually. For example, the mean
deviation in SPL from the rocket computed for all near field measurement locations
for Condition B' is ~0.8 db; whereas, the average value of rms deviation is about
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K 3 times as large, and individual frequency bands of specific test points show
N deviations up to %7 db.
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V. CONCLUSIONS

The substitute gas model technique shows good potential for becoming a ffﬁ!
practical method for experimentally investigating rocket noise. Sufficient R
evidence for helium models is presented to indicate that the substitute gas T
modeling concept is valid, i.e., if the essential flow parameters are dupli- ST
cated, rocket noise simulation can be achieved. The principal problem is in -
providing simultaneously the desired values for the essential parameters, or
in determining appropriate sound pressure level correcticns for unavoidable
deviations from these desired values.

0f the four helium models tested, the model which provided the rocket
values of Mach number, velocity, and exit pressure, and near duplication of
density performed best. This evaluation is based on agreement of sound pres-
sure levels with the reference rocket in both the near and far field., A small
correction to account for the difference in density is required.

Limitations of the present helium model data are (1) lack of sufficient
information to design an optimum substitute gas model, (2) lack of adequate
near field high frequency data to define the region at and beyond the peak of
the spectrum, and (3) larger sound pressure level deviations from the rocket
values than desired at some measurement locations.

Further investigations could result in (1) quantitative determination
of the effects of varying the different gas flow parameters, (2) selection
of a near optimum design for a substitute gas model ¢f a given rocket, and
(3) substantial evidence required to verify the ability of the substitute
gas model to duplicate rocket noise under a variety of conditions, i.e., at
numerous near and far field locations throughout the frequency range of
interest for various nozzle and deflector configurations.

ASD-TDR-62-787 15
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APPENDIX I

PROCEDURE FOR CALCULATING SUP:IRSONIC
HELIUM FLOW PARAMETERS FOR SUBSTITUTE GAS EXPERIMENTS
The fact that helium is very nearly an ideal gas allows its flow parameters

to be rradily calculated. Reference 10 lists important ratios of area,
pressure, etc. by increments of 0.0l in Mach number for supersonic helium flow.

These ratios and the perfect gas law are sufficient to allow calculation of )Sﬁtf
any helium flow parameter of interest; however, the following equations will -Eh;
simplify the calculation. In some of the equations constants have been introduced ﬁat{
in order to be consistent with the dimensional system used throughout this report Ff-;_
(see List of Symbols). In other cases numerical values have been assigned to i
physical constants for helium in order to simplify use of the equations. :
=VVTERT = 143.8 VT (2)
a* = 1245 V T, (3)
144 p P
@ =—fF7— =033 (%)
The additional equation
ad

may be useful when the problem is to evaluate weight flow and only the plenum
conditions are known.

The nozzle size will in general be limited by the rate of helium flow
which can be provided with the required plenum conditions. It is therefore
important to evaluate the rate of weight flow

AV =
ﬁa t

The latter expression utilizes the quantities which are most generally useful.

30 2 A* P (6)

Since jet stream mechanical power is customarily expressed in watts, it
may be evaluated as

w = 0,021 %vzz 0.021 (cuxv3 (7)

The usual problem in designing a substitute gas flow experiment using
helium will start with a complete description of the flow for the rocket to
be modeled. It is possible to duplicate all of the rocket parameters simul-
taneously only if the ratios of specific heats are the same for both gases.
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E} Since the ratio of specific heats is much higher for helium than for any
E} practical gas which it may be desired to model, it is necessary to compromise
L on the values for one or more flow parameters.

L

; It is usually possible and convenient to pre-select the Mach number of
the flow., If this is done, a tabulation should be made of the ratios P/Pt,
f?(t, T/Tyy A*/A, and V/a* from reference 10,

Once the Mach number and nozzle area ratio are determined, the exit
pressure is simply the plenum pressure multiplied by the tabulated pressure
ratio, unless the flow separates from the nozzle. Separation does not occur
if the exit pressure is at least 0.4 of the local ambient pressure, It may be
vossible to use lower exit pressures, but it would be necessary first to measure

pressures in the nozzle in order to detect the possible occurrence of flow
separation.

The exit velocity is the Mach number times the exit acoustic velocity.
‘ Once a Mach number is chosen, velocity is determined by temperature alone.
o Density is dependent on both temperature and pressure.

Illustration No. 1: Given Me and Ve for a helium model.

EREE
‘,"-'., $ 7, T
PR

vy

I
¢ Slas

1, Find a* from tabulated value of V/a*.

2, Calculate Ty by equation (3).

3. Select Pgj find Py from tabulated value of P/Pt.

ko, Calculatep, by equation (4); evaluate P, from tabulated
value of /Py, and then determine o* by equation (5).

5, Evaluate the rate of weight flow by equation (6), selecting
nozzle size in the process.

-

L S

(Steps 3 and 4 above could readily be interchanged.)

RSLIL su
':.‘ll

Illustration No. 2: Given Me and Pe for a helium model,

1, Find P, from tabulated value of P/Py.

2. Select a value ofézg; evaluate T, from equation (4),
3, Evaluate T, from tabulated value of T/Ty.

L, Determine a* from equation (3).

5. Find V_ from tabulated value of V/a*.

RS L

s lam D¢, !

(At step 2, the procedure could as well be reversed to first select
a velocity, and then find the necessary tempcorature and density.)
_ Illustration No. 5>: Given Ve and Pe for a helium model.
) 1. Selectf?e; evaluate T, by equation ().
\ 2+ Determine a, from equation (2)s
3. Determine M, as Vo/2ge
L, Tabulate the appropriate ratios from reference 10, and proceed
with evaluating other gquantities required.
¢
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Table III. Sound pressure levels for heated helium jet Condition D.

DN
s

Frequency Band | 150- | 300- | 600- | 1200- | 2400- | 4800- | 10k- | 20k~ &4
(cps) 300 I 6oo 1200 |awoo | 4800 | 10k | 20k | 4ok hi
i‘ggﬁzzsﬁa{ti‘i’: Far Field Survey - (100 Nozzle Diameters) r:
[
300 96.0 | 103.0 | 110.0 | 116.5 | 120.5 | 119.0 | 115.0 | 109.0 i
50° 97.0 ] 104.5 | 111.5 | 119.0 | 121.5 | 119.0 { 116.5 | 113.0 i‘“j
700 98.0 |104.5 |112.0 |219.5 | 121.5 | 120.5 | 119.0 | 116.0 ;\
90° 99.0 | 106.0 | 114,0 | 120.0 | 1240 | 124.5 | 122.5 | 127.0 ‘4
100° 99.0 |107.5 | 115.5 | 122.0 | 126.0 | 128.0 | 124.5 | 118.0 L;
110° 100.0 |109.0 [118.0 | 125.5 | 120.0 | 130.0 | 126.5 | 121.0 ‘
1200 103.5 | 114.0 | 124.5 |131.5 | 133.0 | 130.0 | 126.0 | 122.5 3
1300 106,0 |118.0 | 127.0 | 131.0 | 122.0 | 128.5 | 124.,0 | 117.5 fi
1400 111.0 | 119.5 }125.0 | 127.5 | 128.5 | 126.0 | 121.0 | 116.0 *§
150° 113.0 [ 121.0 | 125.5 | 126.5 | 126.0 | 122.5 | 118.5 | 113.0 J
170° 112.0 | 121.0 | 123.0 | 124.0 | 123.0 | 120.0 | - - _ '1
2
Test Locztion Near Field Survey _
1 104.0 |111.5 |120.0 |126.0 [129.0 |129.5 | - .
2 109.0 | 115.5 |123.5 |129.0 | 132.5 |134.0 | -
3 117.0 | 1240 [130.0 |136.5 | 12,0 | 146.5 | -
4 131.5 | 134.0 |140.5 |147.5 | 1540 |157.5 | -
5 137.5 | 140.0 |145.0 |151.5 | 154.0 | 1515 | -
6 134.5 | 1460.0 |145.0 |149.0 | 146.5 140 | -
0 7 130.0 | 135.5 |137.0 |133.0 |132.0 |131.0 | -
8 122,0 | 127.0 |128.5 [129.5 | 130.0 |128.5 | -
E 9 119.5 [125.5 [129.5 |131.0 |130.0 |127.0 | =
o
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Figure 5. Continued.
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PART II

EFFECT OF VEHICLE MOTION

ON
JET NOISE
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I, INTRCDUCTION

In recent years a concerted effort has been made to investigate the basic
mechanism of noise generation by aerodynamic flow. To a large extent, the results
of these investigations have beeu applied to stationary jet and rocket engines.
However, for a more couplete study of noise fields associated with flight vehicles,
the effects of vehicle motion must also be considered. Relatively little progress
has been made in obtaining sufficient experimental data which substantiate existing
theories on the effects of motion., It has been difficult to obtair measurements
of the type required to substantiate such theories during the course of normal
fiight test programs because of such problems as: (1) extraneous noise from
additional engines, (2) changing engine and flight conditions, (3) extraneous

noise from the vehicle boundary layer and noise generated by turbulence around
the microphone.

The purpose of this program is to investigate the effects of flight vehicle
motion on propulsion system noise which is propagated to parts of the vehicle
located in the near field of the jet or rocket engine. The major emphasis is
placed on obtaining controlled experimental data which can be compared with theory.

The approach taken in this investigation was as follows:

l. A study - as made of the various methods which might be used for
theoretically predicting the effects of motion on noise., Following
this study, a working hypothesis was developeda

2. A survey was made of various approaches which might be used for
measuring the effects of motion experimentally. A scale model jet
operating in a small wind tunnel was selected as the best approach.

3¢ A limited experimental program was conducted to obtain noise data at
various operating conditions of the wind tunnel and jet.

L, Experimental results were then compared with those predicted by theory.

A literature survey was initially made of previous work related to the
general subject of motion effects on ncise. The more pertinent features as
revealed by this survey are sammarized below.

In the general_ development of the theory of noise generation from aerodynamic
sources, Lighthill—— shows that convectiion of quadrupole sources increases the
noise radiated in the direction of convection. This is introduced as a plausible
explanation for the fact that the noise radiated from a jet is greater in the
downstream direction than in the upstream direction.,

Ostreicher12 develops equations for the sound field from sources of a general
multipole nature which are moving with subsonic speed in a viscous compressible gas.

A general procedure for referring the data observed at a point on the ground
to the noise emitted by an airplane during a fly-by is presented by Cole, et al.
Taken into account are the difference in time of emission and observation, inverse
square loss, sound absorption in the atmesphere, and Doppler effects This method
permits evaluation of the acoustic power gererated by a moving jete.

ASD~TDR-62-787 L5

'. ‘.'. -‘.. T ' v -~ v-‘ -t . '-- " 2 . .-\ .~. & '. ) A ‘-l‘ ‘u. ‘~V .I. - P R
> R T T N \ SRR
St el e $e N N 1 e Ay oA At S AR




Reference is made by Powellll+ to theoretical work on the influence of an
axial motion of external air flow on the spreading characteristics of a jet.
Similarity considerations result in the following conclusions for the region
immediately downstream of the nozzle, all expressed relative to the situation
when external air flow is absent: (1) the power generated per unit length along
the axis is reduced, and the region of generation is extended because the jet
itself is extended; (2) the characteristic frequency generated at any given RO
station is increased; (3) the power generated at any particular frequency is R
decreased, but the rate of change of power generation with frequency is unchanged. RN
Similar but tentative results are described for the region well downstream of the
jet core. :!

Franken, et al.ls, estimated the effect of motion on jet noise by assuming .
a model which is a simple source attached to the vehicle. This leads to the L
result that for an attached source, motion of the vehicle tends to increase sound
levels in the direction of motion. In the absence of supporting experimental
data, Frankenl® later concluded that the analytical method related to sources not
attached to the vehicle as suggested by Powelll7 is more reasomable. Franken then
derived a relationship between the angle of propagation from the source to a
receiver attached to the vehicle when the vehicle is in motion and the correspond-
ing angle when there is no vehicle motion. This results in a general procedure N
for estimating the change to be expected in a noise field due to vehicle motion. -

..
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In reference 17 Powell considers the specific case of noise radiated directly
forward, as to a rocket vehicle from the rocket exhaust. It is suggested that the
noise on the moving vehicle decreases because of two effects: (1) the total
acoustic power decreases as the third power of the relative exhaust velocity, and -
(2) an inverse square type of loss occurs because ¢f the increased distance that w
the sound must travel between the source and the receiver located on the vehicle, :
i.es, the receiver moves away from the source.
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Williamsl8 derives a method of calculating the noise field generated by a
jet by considering the convection of eddies in the flow and the effects of exter- S
nal flow., An equation results which defines a correction factor to be applied to S
the noise field measured in the absence of external flow to allow for the presence
of external flow., Thus at a particular point in the static noise field generated
by a stationary vehicle, a correction expressed in decibels for the effect of
vehicle motion can be calculated if there is given the ambient speed of sound, the
vehicle velocity, the jet velocity relative to the vehicle velocity, and the eddy
convection velocity expressed as a fraction of the jet exit velocity. (The
practical usefulness and experimental verification of this expression is limited by
lack of knowledge of values to assign to the eddy convection velocity.)
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Eldred19 has shown that a receiver attached to a vehicle is expected to
receive different noise for varying vehicle velocities. An expression is derived
¢ relating the angle of propagation from source to receiver when the vehicle is
stationary to the corresponding angle when there is vehicle motion. This expres-
sion is mathematically equivalent to that derived by Franken.
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II, HYPOTHESIS AND DISCUSSION

A, Hypothesis

Bagsed on the methods suggested by Frankenls, Powelll7, and Eldredlg, a
working hypothesis has been developed which is considered to best explain the
effects of vehicle motion on jet noise., This hypothesis consists of two parts
as stated below:

1. Generation -- The noise generated by a jet exhaust is a function of the
relative jet velocity only, i.e., the noise generated by a jet with
exhaust velocity V, which is in motion at velocity S is identical to the
noise generated by a stationary jet with exhaust velocity V, =V, - S,

2, Propagation -~ During the time that the noise is propagating away from
the source, a receiver attached to the vehicle is moving through the
noise field and therefore receives noise which would have passed
forward of the receiver had the vehicle been stationary.

Referring to Figure 12, the angle;? specifies the direction of a receiver at
point R relative to the source at time t,. The noise radiated from the source at
time t travels at the finite velocity of sound and reaches the moving receiver at
a later time t,. At time t,, the receiver is at a new position R' and thereziore
intercepts noise which was Tadiated from the source at t , not at the angle &S,
but at a smaller a.ngleo( « The relationship between the angles o{andlais given
by the following:

ol
sS1in
tan g = cos oL~ M (8)

(The derivation of this equation as presented by Eldred19 is shown in Appendix II.)
The relationship (f?-aé) vs.(?is plotted in Figure 13 for various values of
Mach number,

B. Discussion

The validity of the above hypothesis is dependent upon two assumptions:
(1) that jets with the same relative jet velocity are dynamically similar and
therefore generate the same noise, and (2) that a far field type of radiation can
be applied to the near field outside the hydrodynamic region of the jet., It is
appropriate to consider these assumptions separately in greater detail.

Noise Generation -- [t is essential to distinguish between changes in the
radiated noise rield which result from changes in exhaust flow parameters and
those which are due to vehicle motion., It is therefoure necessary that flow
parameters which influence noise generation have essentially constant values
with changing vehicle velocity, or to somehow account for the changes in the
noise I'ield when the desired values of these parameters cannot be maintained as
constants.
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Jet exhaust noise from a stationary jet is generated by turbulence resulting
from shear forces produced by the high speed exhaust strecam in the surrounding
atmosphere. The intensities of these shear forces are directly related to the
velocity of the jet relative to the surrounding air., It is reasonable to assume
that when a jet is moved through the surrounding air in a direction opposite to
the jet flow, the jet noise power will be reduced because of decreased shear
action., Relative exit velocity (V = S) of a moving jet is therefore assumed to
be equivalent to jet exit velocity (V) in the stationary situation, This assump-
tion is made by Powell in Reference 17; likewise, in a number of other references
relative velocity is used as a significant parameter,

Noise Propagation -~ Rel~rences 16 and 19 describe the effect of venicle
motion on the propagation of noise from a jet exhaust, i.e., a receiver attached
to the vehicle moves through the noise field. Since this method assumes the
source of a particular frequency to be located at a particular point (in contrast
to an extended region in the jet), it is basically applicatle to the far field.

It is desired, however, to apply this method to the near field outside the hydro-
dynamic region of the jet, The hydrodynamic field cannot be expected to behave

like the far field. It appears, however, that the hydrodynamic field considerations
are not applicable beyond about five nozzle diameters from the jet; by restricting
the receiver to locations cutside this boundary, this complication can be disre=-
garded.

The approximate source location of each frequency band of interest can be
determined experimentally by measuring noise levels along the jet exhaust boundary
and determining the region where the maximum noise levels in that band are observed.
By this method an apparent point source for that band of noise in the exhaust can
be determined to a probable accuracy of one or two nozzle diameters. For a
receiver located beyond eight nozzle diameters from the apparent point scurce,
the source-receiver angular relationship can be reasonably approximated. The only
limitation on the ability of a near field experiment to verify the propagation
convection effect is the fact that the sources appear to the receiver to be distri-
buted over finite regions. This, however, does not seem to be a prohibitive limi-
tation.

Franken16 and Eldred19 both point out that a change in wave-length may be
expected at any receiver for any particular frequency when there is vehicle motion.
This is not caused by a Doppler frequency shift, but instead it results from a
change in the effective propagation velocity only. This effect is not of immedi-
ate concern in the current study as it is a refinement in defining the noise field
secondary in importance to determination of magnitude and frequency.

C., Procedure for Predicting Effects of Vehicle Motion

The general procedure for predicting the effect of motion on noise in
accordance with the previously stated hypothesis is first to account for the
effect of reduced relative velocity and then to shift the noise field obtained
for the stationary case aft by a calculated amount. A step-by-step procedure
is outlined for predicting the sound pressure level which will occur at a
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specific vehicle location in a particular frequency band for a particular Mach
number by using measurcd noise data from a stationary engire test.

l. For a given stationary jet, obtain the jet exhaust velocity (V ) and
the density ratio (/0 /P
From the glven vehicl® veToc*ty (8), calculate the relative jet
velocity (V, = V1 - S,
Operate the statlonary jet at the relative jet velocity (V») of (2)
above and at the density ratio of (1) above. Locate the apparent
source of the frequency band of interest by measuring the sound
pressure level along the jet boundary and determining the point where
a maximum occurs.
Determine (azimuth from source to receiver) for the receiver location
of interest (R) from consideration of the geometry alone (Figure 12).
From the given vehicle Mach number (M), determine & from Figure 13 or
by calculation of Fquaticn 8.
Locate a microphone at R' at azimuth & and at the same perpendicular
distance irom the jet axis as R.
Operating the jet as in (3) above, measure the noise at R' in the
frequency band of interest. The hypothesis predicts that this is
the noise that will be found at the location of interest (R) when
the jet specified in (1) above is moving at the given Mach number.

2o

3e

Se
6,
7o

In praztice the above procedure may be readily modified so that cne
stationary engine run serves the functions of (1) determining the source
locations of all frequency bands aud (2) measuring sound pressure levels on
any line parallel t¢ the jet axis. Then by interpolation, predictions can be
made for all frequencies of interesi at many locations for a given vehicle ve=-
locity. One stationary run is necessary for each desired vehicle velocity.

The experiments reported here were all performed in a wind tunnel instead
of using a moving venicle., Although separate mathematical derivaticns may be
made from either viewpoint, the expected results are the same. Throughout the
remainder of this report the wind tunnel test results are presented as being
applicable to either situation.

I1I.

TEST AFPARATUS,; INSTRUMENTATION, AND PROCEDURE

A, Selection and Description of Apparatus

A number of existing fac.lities were evaluated for possible use in
determining the effect of wvehicle motion on jet noise. These included jet
airplanes, a rocket sled, and large wind tunnels. However, each of these were
ruled out on the tasis of excessive background noise, high cperating costs, or
difficulty in providing cuitable instrumentation.

The apparatus selected for use on this program was a l6-inch diameter
induction wind tunnel. The basic features of this apparatus can best be
described using Figure 1L, The propulsive source was the vlant supply of
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compressed air which was introduced through an annular injector downstream of
the test section. The injector design was based on the work of Knowler and
Holder<®, The downstream position of the injector allowed the introducticn of
a sonic block to prevent the noise from the propulsive system from reaching the
test section. In order to minimize background noise, an attempt was made to
match the size of the sonic plug to airflow at high velocities. The injector
introduced air at an angle of 10° to the tunnel axis. The injector slot width
wes variable up to a maximum of 0.33 inches. The width normally used was 0.25
inches as this resulted in the optimum relationship between tunnel efficiency
and low background noise,

To minimize the problem of reverberation effects anticipated in such a
small test section, the tunnel wall was made of sound absorptive material.
Fiverglas PF-615, a 6 1b/ft> board, was cut into annular rings whose inside and
outside diameters were 16 inches and 24 inches, respectively. Forty-eight
l-inch rings were placed side by side, with occasional oune-eighth inch thick
aluminum rings for strength, to form the test section wall., A partial vacuum
was applied to the plenum surrocunding the Fiberglas wall to pull air radially
out of the test section through the Fiberglas to minimize the boundary layer
and associated noise in the test section.

The jet noise source was a heated air jet, 0.6 inch in diameter, introduced
through the tunnel inlet. A conical nozzle of 10° half angle convergence was
used as a compromise between the best internal flow and minimum external wake,

A probe microphone (described in Section III-B following) was mounted on a
sting projecting through the sonic plug. Adjustment of the axial position of
the microphone was made externally by rotating a rod running through the strut.
This linkage was completed by a rack on the sting and gears contained within
the plug.

Part of an existing exponential horn with a 10 cps cutoff was adapted to
serve as a diffuser. The maximum diameter of this section was 48 inches. The
average half.-angle of expansion was about 3.5°,

A photograph of the assembled apparatus is shown in Figure 15, Only a
small part of the diffuser is visible in this photograph.

B. Instrumentation

The two basic requirements of the microphone to be used with this program
were t.at it have a sufficiently low self-noise level and that it be able to
measure frequencies high enough to include a significant portion of the model
jet spectrum.

To minimize microphone self-noise in the wind stream, laminar flow at the
pressure~-sensing position was c¢onsidered to be necessary. This could only be
provided by using a c¢ylindrical body to contain the microphone. Descriptions
of only two previous instances of success with this type arrangement could be
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found in the 1iterature.19' 21 In both cases the dimensions of the microphone

and housing were so large that diffraction effects limited excessively the

upper frequency at which useful data could be obtained, The conclusion reached was
that it would be necessary tc use a probe microphone,

The probe microphone as it was inserted in the wind tunnel is shown in
Figure 16, Four 0,0135-inch holes are drilled in the tip near the point of
tangency to the main probe tube, The main tube is 10 inches long, with a
3/16-inch outside diameter and 0,065-inch wall thickness. The probe tube was
connectad to a Bruel and Kjaer Type 4134 condenser microphone with the Ua 0G40
Probe Kit. The small plastic washer included with this kit was used to
improve the frequency characteristics, but a small slot was first cut across the
face of the washer so that the microphone weuld be vented. Small tufts of steel
wool were used near each end of the probe tude tc damp the major tube resonances.
The conical housing was attached rigidly to the probe at the front end, but soft
ruiber material for vibration isolation was placed between the microphone vacuum-
tube cathode follower case and the zonical housing. Similar material was placed
on the cable for a short distance downstream of the cathode follower.

An equalizing circuit was placed after the cathode follower. The frequency
response of the probe microphone utilizing this equalizer is shown in Figure 18
for one~third octave bands. This calibration was performed by comparing
the probe microphone with a standard Bruel and Kjaer Type 4133 microphone, both
being exposed to the broad band noise from a small jet operated outdonrs. This
should be considered as only an approximate calibration., However, because only
changes due to the effect of motion were to be determined, this method was
considered satisfactory. The corrections implied by the frequency response shown
in Figure 18 have been applied to all reported data, No data are reported
above 12,500 cps, however, Vithout the equalizing circuit, the resvonse of the
probe microphone would have been down approximately 24 @b at 12,500 cps
relative to 1000 cps instead of 1 db down as shown,

C. Wind Tunnel Performance and Operation

Performance -- A rake consisting of three calibrated static pressure pickups
and five total pressure pickups was arranged so that it could be positioned at
various locations in the tunnel test section. An additional static pressure
pickup located in the downstream portion of the test section was monitored during
all tests. Static pressure taps were also placed in the wall opposite the plug.

The surveys which were made with these pickups indicated that the total
pressure was atmospheric down tr within a short distance forward of the plug.
The Mach number at any location could therefore be obtained by measuring the
static pressure, calculating the pressure ratic as the ratic of static to
etmospheric pressure, and reading the Mach number corresponding to this ratio
es tabulated in Reference 22, At any given station in the test section, the
wind velocity was constant up to within one-half inch of the walls. The
velocity along the axis of the tunnel increased somewhat with downstieam station.
At a nominal Mach number of 0.62, the Mach number increased from about G.60 at the
rost ferward station used to 0.6% at the most downstream staticn used. At this
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and all other velocities used, the value reported iz the azvera_e velocit. in
the test section. At Mach numbers lower than 0.62 the change in velocit: with
axial position was proportionately less. Eliminating the vacuum-induced flow
approximately doubled the variationr noted in axial velociuy.

The weight flows of air in the injector suvply line and the vacuua line
were determined using an approximate method described by Ower.23 The ratio
of weight flow throug: the tunnel test section to weight flow througn the
injector varied from abhout 7 at a test section Mach number of 0.12 to 2.5 for
a test section Mach number of 0.62.

Figure 17 chows the placement of the O.A-inch diameter jet nozzle in the
wind tunnel and the 13 stations at which sound level measurements were made.
The background noise level at one station in the fest section is presented in
Figure 19. Background noise was mezasured while operating tre jet with unheated
air at the same velocity as the wind tunnel flow (zero reiative velocity). This
background nocise was nearly independent of location throughout the central part
of the test section. At a Mach number of 0.62, eliminating the vacuum-induced
flow increased the background noise by about 2 db at all frequencies. The maximum
vacuum-induced flow which could be provided was about 3 lbs/sec. It is believed
that two or three times this flow would have been necessary tc reduce the boundary
layer noise substantially.

Wind Tunnel and Jet Operation -- The mechanics of predicting noise in the
presence of vehicle motion consist of obtaining measurements at specific locations
in the absence of vehicle motion and then translating these data to new positiocns
based on vehicle motion considerations. The stationary condition required is a
jet exhaust velocity numerically equal to the relaitive exhaust velocity for the
motion condition to be predicted. The set of jet conditions intended to be repre-
sentative of a typical straight turbojet engine are given in Table V as Conditions
1 through 3. The set of Conditions 4 through 6 maintains the relative exhaust
velocity constant. This second set is useful in providing additional ccnditions
from which to make comparisons and is not intended to be representative of actual
engine operating conditions. The noise data measured for the staticnary jet Condi-
tions 9, 10, and 11 are translated iu accordance with predicted propagation effects
to establish the predicted sound pressure levels for the moving jet Conditions 1,
2, and 3, respectively. Condition 7 supplies the reference noise data for the
stationary 1860 fps jet.

Condition 12 serves as the base line for another series using Conditicns U
through 6., In this series a different reference stationary jet is used for each
of Conditions 4 through 6. Condition § serves as the reference for Condition L4,
and Condition 8 is the reference for Condition 5. Since a stationary jet with
an exit velocity of 2070 fps was not included among the measured data, a noise
spectrum for a 2070 fps jet was estimated at each measurement location by extra-
polating measured data from Conditions 7 through 12, These estimated data serve
as reference data for Condition 6. The small difference in density ratio for
Conditions 4 through 6 was taken into account by a correction of 0.5 db,
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The desired adjustments between jet density and velocity were made by
varying tre temperature, pressure, and Mach number of the jet. The velocities
were the highest which could be used with a convergent nozzle and a 1100°F
temperazture limitation. Although a convergent-divergent nozzle could hzve
been used at higher pressures and Mach numbers without producing screech, a
different convergent-divergent nozzle would have veen required for each jet
condition at each tunnel velocity.

To obtain the required acoustic data, the microphone was first positioned.
The model jet was then started and stabilized operation was achieved. The
tunnel was then set to the desired velocity, and a spectrum of one-third octave
band levels was obtained by use of a graphic level recorder. The tunnel was
shut down, the microphone moved (usually with the jet still running), and the
procedure repeated.

Data for determining the source locations of the various frequency bands
(required for application of the prediction method) were obtained by placing
a microphone at various positions along the jet boundary. Data were taken for
all jet operating ccnditions from 1190 to 1860 fps inside the wind tunnel
without tunnel air flow.

IV. RESULTS AND DISCUSSION

A. Data Processing Method

Using the data in absence of vehicle motion (Conditions 7 through 11 in
Table V), predictions of the noise expected with vehicle motion are made. Each
of these stationary conditions corresponds to a condition measured in the
presence of vehicle motion in that it has the same relative velocity (e.g. Condition
10 and Condition 2). A shift in position is all that needs to be applied to the
stationary data at the corresponding relative velocity. This shift depends on
Mach number and angular location; therefore, the source location of the particular
frequency band of interest must be known. Figure 20 shows the source locations
for the particular jet used in this investigation.

An illustration of the method used in this study to make sound pressure
level predictions for the conditions for which wind tunnel data were obtained
is given in the following example.

Consider a jet operating at 1860 fps and moving with the vehicle at a
velocity of 670 fps (Mach 0.62). It is desired to predict from static noise data
the sound pressure levels during motion in a cne-third octave band centered about
8000 cps for a number of stations artl located 8 nozzle diameters to the side of the
jet axis. Station 20, which is located 20 nozzle diameters aft of the nozzle, is
considered first in the following example:

1. The relative velocity is 1190 fps (1860 - 670); this is Condition 11
in Table V.

2. From Figure 20, the source location for 8000 cps for a jet of 1190
fps is 2.4 nozzle diameters aft of the nozzle.
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3. The azimuth in relation to the source (jet exhaust direction is
180°) is determined as follows:

-1 8 e
e e e 2

4, From Figure 13’f3 — & is found to be 15° for Mach 0.62; therefore &
= 1%0500

5. The station for the static jet where the sound pressure level
is the same as for Station 20 in the moving case becomes

8
tan 140,5°

6. Sound pressure levels for the one-third octave band centered about
8000 cps are plotted versus station for the 1190 fps stationary jet
condition in Figure 21.

7. The sound pressure level is read at Station 12,1 from the 1190 fps
stationary jet curve ( Figure 21) and then shifted aft to Station 20.

8. By following the alove procedure (steps 3-7) at other stations, a
predicted curve of sound pressure level versus station for the 1860 fps
jet moving at Mach 0.62 can be drawn., For reference, the curve of the
stationary 1860 fps jet is also shown in Figure 21,

+2.l+ = 12.1

By use of the method outlined above, the data were processed for all frequency
bands and for all Mach numbers. This resulted in information to make plots of
predicted sound pressure levels versus frequency at a given station., Comparisons
of these data were then made at each station with measured results obtained in the
wind tunnel and also with the measured stationary full-velocity jet data; these
comparisons are shown in Figure 22 (a-e).

Obtaining a sufficient signal-to-noise ratio was a problem in many cases,
particularly for the high wind tunnel velocities which with resulting low
relative jet velocities constituted combinations of low signal and high back-
ground noise. It was necessary, therefore, to exclude a large portion of the
data because of inadequate signal-to-noise ratio (3 db or less) relative to the
tunnel background noise. In less severe cases corrections have been applied to
the data. Corrections applied to measured levels based on the signal-to-noise
ratio noted were as follows:

Greater than 12 db No correction applied
5 to 12 db Data corrected (~1.5 to =0.5 db)
3 to 6 db Data corrected (~3,0 to =1,5 db)

Data in this range marked with
line through the plotting symbol ( ¢ )

Less than 3% db Data discarded
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In summary, very little reliable data were obtained where the jet sound
pressure levels were low, for example, at low frequencies (below 1000 cps), -
at high wind tunnel velocities (above Mach 0.32), or at stations forward of L
the nozzle. ;
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B. Discussion

Scale Model Frequencies ~-- Because of the small jet nozzle used in this
experimental program, the frequencies are, of course, very high relative to
a full size engine. For example, a 22-inch turbojet engine operating at a
velocity of 1860 fps would generally have its spectrum peak in the 150 to 600 cps
range. By application of scaling principles, the O.6-inch model jet correspond=-
ingly should peak at 5,500 to 22,000 cps. An examination of the static jet curves
in Figure 22 shows this to be true. The upper frequency limit of the microphone
and probe combination prevented observance of this spectrum peak in a few cases.

Comparison of Predicted and Measured Levels -~ The general agreement with
theory is easily seen for a Mach 0.32 condition in Figure 22d, vhere moderately
large SPL reductions from the static condition are expected, For example,
at Stations 12, 16 and 20, 6 to 12 db reduction was predicted and 5 to 10 db
reduction was measured.

The agreement between predicted and measured values is apparently poorest
at the Mach 0,22 condition shown in Figure 22b. At Stations 16 and 20, where
the static jet levels were highest, 4 to 11 db reduction was predicted, but
only 1 to 5 db reduction was measured.

The highest wind tunnel velocity for which any jet noise levels were
measurable above the background was Mach 0.62; data for this ccndition are
shown in Figure 22e. At Station 20 measured reductions of 17 to 20 do compared
favorably with predicted reductions of 15 to 19 db. At the other stations for
which data were obtained above the background noise the measured reductions were
somewhat greater than predicted.

Except for very few cases (1%), the predicted moving jet sound pressure
levels for all frequency bands at all stations never exceeded by more than one
decibel those for the static jet at the same station. This prediction was
verified by measurement also where less than 2% of the measured values in motion
were more than one decibel above those for the static jet. It is significant to
note that there is no general trend of increasing sound levels with motion at
positions forward of the nozzle as would have been predicted by some of the
earlier theories. The agrcement of measured levels with those predicted by the
present theory is much worse at the forward stations than for positions aft of
the nozzle.

The general trends of the predicted motion effects shown in Figure 22 appear
to be confirmed by the results from the experimental program; however, the magni-
tudes of the deviations in some instances are somewhat disappointing. In order
to summarize the extent of the agreement and to compare the subject method with
other simpler approaches, Table VI has been prepared, This table shows the
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percentage of the meazsured noise data obtained in the wind tunnel that agreed

.:\
within +? decibels of the predicted values. All of the measured data from et
Figure 22 were used in making this analysis, i.e., all stations and all fre- ,j{{
quency va...S. ;:}

In Method 1 the measured sound levels at each station from the full-
velocity static jet are used with no corrections, i.e., this method assumes the
effect of motion to be negligible. As might be expected the agrecment between
predicted and measured sound levels gets progressively worse as the venicle Mach
number is increased, thus demonstrating the need for some type of correction.

Method 2 uses measured noise data frcm a static jet operating at reduced L
velocity corresponding to flight relative velocity, but no correction is made s
for the shift in position caused by motion as required by the second part of :
the present hypothesis, With this method the agreement gets progressively worse e
with increased Mach number, but it is significantly better than Method 1 where no #
correction is applied. '

Method 3 represents the present approach which utilizes measured data from
a reduced velocity static jet and alsc accounts for z position shift for the
motion effect. There appears to be no general trend in agreement with increas-
ing Mach number as was noted fer Fethods 1 and 2. For over 98% of the 369 indi-
vidual sets of values compared, Method 3 gave values within *6 decibels of those
measured in the wind tunnel.

In Method 4 the reduced relative velocity is taken into account by means
of caiculation pased on the 8% power of relative velocity. No ccrrections are
applied for a shift in prosition. This method is identical to Methcd 2 except
that reduced relctive v Zo-I.y levels are estimated from the “evels measured
for a full-velueily static jet rather than bein, reasured for the lower relative
velocity condition. Use of this method appears to produce no trend in .greement
with Mach number. The use of the 8% power of relative velocity for all locations
and frequencies is justified only on the basis of simplicity. If this method
were to be used in practice, velocity exponents appropriate to a specific
location and frequency should be used.

From inspection of Table VI, it can be seen that Method 3 yields better
agreement than Method 2 for four out of the five conditions shown; thus it is
seen that the correction for position shift resulted in an improvement. The
very simpte approach of Method 4 appears to give results almost as good as the
complex approach of Method 3, It should not be concluded, however, that Method 4
will apply equally well in all situations., For example, if the method is applied
to rockets the eighth power dependence on relative velocity would probably have
to be changed to a third power dependence. This lower exponent coupled with
the smaller percentage change in relative velocity (because of the high exit
velocity of the stationary rocket) would then make the position shift the
predominant factor governing the SPL changes due to motion. It would be
desirable to verify this experimentally with a high velocity (above 7500 fps)
jet or rocket in a wind stream. This could be accomplished by use of a small
heated helium jet as described in Part I of this report.
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Past experience in working with jet noise has shown that most consistent data
are generally found near the peak of the spectrum. For the model jet used in this
program, the upper four 1/3 octave bands (center frequencies at 6.4, 8, 10, and
12,5 kcps) are consider2d to be representative of the spectrum peak., The
correlation between measured and predicted values of noise reduction caused by
motion is shown in Figure 23 for these frequency bands. Although there is
considerable data scatter, the measured data tend to follow the predicted values,

Position Shift -- The shift in position of the noise field caused by vehicle
motion is not obvious in the plots of SPL versus frequency in Figure 22. To
observe this effect more readily, a different type presentation is required as shown
in Figure 24, In this figure an 1860 fps jet operating in a Mach 0,32 wind is
considered. According to the hypothesis, the effects of motion are determined
in this case by operating a static jet at an exit velocity of 1505 fps and by
making a noise measurement at a specified forward position determined by calcu-
lation. In Figure 24 the calculated rearward shifting of the noise field for an
8000 cps source can be seen. The measured data for an 1860 fps jet operated in
a Mach 0,32 wind stream are shown for comparison. It is apparent that the measured
and calculated plots of SPL versus position are quite similar, The measured values
are slightly higher, but the peaks occur at the same station. This particular
condition and frequency hand was selected for illustration because it was one of
the better examples, However, a shift of position occurs at all frequencies and
at all test conditions. The position shift is not readily apparent in some
cases because of unexplained variations in level which tend to obscure the
ghift,

To permit quick analysis of the position shift effect for various motion
conditions, Figure 25 (a-e) presents curves of SPL versus statiop for (1) the
measured static relative-velocity jet, (2) the measured full-velocity jet in
mction, and (3) the predicted full-velocity jet in motion. The peaks of these
curves have been normalized to separate the shift in position from the unexplained
shift in sound pressure level,

Analysis of the curves of measured data in Figure 25 indicates the following:

1. without exception, all curves shift downstream,

2. For a given jet and wind tunnel condition the shifts are greater for
the more downstream positions.

3s The Mach 0.32 data show greater shifts than the Mach 0,22 data. The
Mach 0.62 data are somewhat inconclusive as to the magnitude of the
shift because of lack of data; however, they appear to fit the
trend of increased shift with Mach number.

Qualitatively, then, the shift in position caused by motion is behaving
as predicted, i.e., in direction, in trend with position, and in trend with
Mach number. Quantitatively, the experimental results appear to be in reasonable
agreement with theory. In general, the actual shift appears to be somewhat
greater than predicted, except for the 1860 fps jet at Mach 0.22 which produced
much less position shift than expected. Also, this particular condition did
not produce the expected drop in sound pressure level as noted in Figure 22b. This
raises the question of a possible error in wind tunnel velocity for this particular
jet condition because the other Mach 0,22 condition shown in Figure 2b4a
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produced shifts in reasonable agreement with theory. (However, a check of
the records for this particular experimental run did not reveal any obvious
errors.)

«

'

[
>

&

Overall Evaluation of Hypothesis -~ On a qualitative basis the experimental
results are consistent with the two motion effects predicted by the hypothesis;
i.e., noise reductions associated with reduced relative velocity and downstream
shifting of the noise field are both observed. However, on a quantitative
basis, the agreement of experimental results with theory is not sufficient to
completely confirm the hypothesis, It is reasonable to assume that a combination
of small experimental errors could account for at least some of the deviations
observed, e.g., a ¥ error in jet velocity determination will cause a one
decibel change in sound pressure level. In the absence of any conflicting trends
with theory or gross inconsistencies between measured and predicted values in
general, it is tentatively concluded that the hypothesis is fundamentally valid.
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Airplane Flight Results Compared -- It is desired to compare results predicted
by theory with those obtained from airplane flight. Unfortunately very little
of the already small quantity of available flight data can be used because of
(1) the presence of boundary layer noise, (2) unknown flight and engine
conditions, (3) multiple engine operation and (4) lack of ground-measured static
data at the approprizte reduced relative velocity conditions. In order to make
a good comparison, preferred flight conditions are those which will be expected to
produce a large change in noise so that motion effects can be easily observed.

Noise measurements made in two aft compartments of the XB-47 airplane24
showed large reductions in sound pressure level for a flight condition of Mach 0,77
at 15,000 feet altitude compared to ground measurements made at the same engine
compressor speed. Average noise reduction values are shown below for three low
frequency bands where boundary layer noise did not affect the results.

75 - 150 cps 22 db
150 - 300 cps 17 db
300 - 600 cps 12 db

It is not possible to make an accurate prediction of the noise reduction
for the above case because no noise data along the outside of the fuselage are
available from static runs at reduced engine power settings which correspond to
the lower relative velocity in flight. Qualitatively, however, the measured
results appear to be in reasonable agreement with theory. For example, at

L Mach 0,77 the relative velocity would be reduced to about 55% of the static

! jet velocity; this would cause a large reduction in acoustic power generated

- (21 db if is assumed to apply). The jet directivity effects caused by

-, reduced relative velocity and forward motion would modify the results, but

q{ these effects are difficult to evaluate because of the lack of static data for
E} the reduced velocity condition.

l{ Method Applied to Various Propulsion Systems -- Application of the general
{ method described in this report to various type engines and vehicles can be
expected to produce a wide variation in the SPL changes caused by motion,
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Approximations of the predicted change in noise caused by the change in relative
velocity with motion are given in Table VII. (This table does not account for
the shift in position of the noise radiation pattern with motion.) The velocity
dependence terms, which have been z2ssumed for illustrative purposes only, are
shown below; these are based on directivity considerations.

Aft of Forward of
Nozzle Nozzle
Turbojets V8 VA
Afterburning V8 below 1860 fps; Vl+
turbojets V" for 1860 to 2500 fps
Rockets V3 V3

The smaller values of noise reduction shown in Table VII for rockets
relative to turbojets are caused by two factors: (1) the percentage change in
relative velozity is smaller because of the high rocket exit velocity and (2)
the velocity exponent is smaller. Because of the small noise level change due
to these two factors, it appears unnecessary to require noise data from a re~
duced velocity static run when it is desired to predict the effect of motion on
rocket noise., The principal requirement, then, for making a prediction is the
availability of full-velocity noise data at various locations of interest. These
noise data can be conveniently provided by use of a scale model rocket., The
expected result for positions forward of the nozzle would be rapidly decreasing
noise levels as the vehicle velocity approaches Mach 1,0 due to the shift in
noise radiation pattern. Aft of the nozzle, the rockct noise could increase or
decrease depending upon the particular location and velocity relationship. For
turbojets, an increase in noise aft of the nozzle does not generally occur
because the relative velocity effect predominates over the effect caused by the
shift in the noise pattern.
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5. CONCLUSIONS

ros e .
S e ¢
LR Ak M A
L Y
P
»
g Sl
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et

The evidence presented in this report tends to confirm the hypothesis L
that the effect of vehicle motion on jet noise can be explained by two sep-
aerate factors: (1) the noise produced by a jet in motion is dependent upon the
relative velocity between the jet and the air through which it moves; and (2)
a shifting of the noise radiation pattern toward the rear occurs because of
combined effects of vehicle motion and the finite velocity of sound.

The specific method developed for predicting effects of motion on jet noise u1~q
is workable. However, since it requires the use of either measured or estimated R
noise data fo. various power conditions for a stationary engine, the success of Bt
the method is dependent upon the availability and accuracy of the appropriate fiﬁ:
stationary engine data, AN

Application of the method to various classes of flight propulsion systems Hd
indicates that the relative importance of the two factors contributing to the ]
motion effect changes as the exhaust velocity of the power plani is increased. )
For turbojet vehicles the general effect of motion is large reductions in noise L
mainly because of reduced relative velocity. When similar motion is applied to o

vehicles equipped with the higher jet velocity afterburners or ramjets, the iLﬁi

noise reductions will be smaller. The effect produced by the shifting of the ,Yrj!

noise radiation pattern then becomes more significant. For rocket vehicles the Y
i,

effect of relative velocity change is almost insigrnificant compared to the
effect of the shift in the noise radiation pattern. For a vehicle with a
tail-mounted rocket the noise on the vehicle is always reduced relative to the L
static condition; however, for a forward-mounted rocket, the noise on the PRI
vehicle could increase or decrease with motion depending upon the particular
relationship of vehicle velocity and location. These general effects can be
investigated for specific cases by the method outlined in this report.
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APPENDIX II

EFFECT OF MOTION ON PROPAGATION OF SOUND

The following derivation has been reported by Eldred.'lg Minor changes have
been made in designating certain symbols to be consistent with the terminclogy
of this report.

R

..’ .-’
PR
!\ [9and™
.

The moving vehicle situation is depicted in Figure 26. The receiver, RN
which is initially at point R at the time t,, is attached to the venicle, which af;;igg
moves at a constant velocity S, or Mach number M = S/a through the stationary f{;r:¢q
medium. Consider that the sound radiated at time t, reaches a point R' at NN
time ty, (t; - t,) seconds after the sound was radiated. During this propagation ey
time the receiver has moved from R to the point R', a distance equal to Ma(tl - t5). | I

The distance which the sound must travel in the stationary medium to
reach the moving receiver is given by

ST )

t = - e -
r a(t1 to) (9) i“ -
The distance which the receiver has moved in the time interval tl - to is ° R

Ma(t, - to) =rt cos X -r cos/B (10)

where S is the angle (measured from the direction of vehicle motion) which
relates the receiver to the source in the coordinate system moving with the
vehicle, and & is the angle of noise radiation from the source to the moving
receiver,

-----
RN

Substituting r' for a(tl - to) in equation (10),
r' (cos - M) =r cos,ﬁ (11)

Since the perpendicular distance between the vehicle longitudinal axis and
both R and R' is constant,

r* sin& =r sin/g (12)
Dividing equation (12) by equation (11) and transposing,
sin K
tan f = W
shown previously as equation (8)., The relationship ( -& ) vermnsf? is

plotted in Figure 13 for various values of Mach number,
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Table VI, Agreement of measurcd data with nredicted values.

Jalues shown in the tszble indicate the percentace cof measured3PL data which
agree within * 3 ldecibels with SPL values prediczted by various methols (see
text); numbers in parentheses indicate the vercentasze o date wiich agree
within * 6 decibels., The sample consizts of all reasured SPL data siown in
Ficure 22 (a=e),ieee, for all frequency bands and all measurerent locationse

Veiricle liacn number |[0622 | Ge22 | 0632 | Ce32 | 0462
Jet velocity 1615 186G | 1725 | 1860 | 207G

Wind tunnel velocity | 25 | 245 | 355 | 355 | 67C

Humber in sample 97 107 71 12 22

Prediction method

1. Use measured full-velocity static jet only| 51 (i 25 23 0
(no corrections)

2. Use measured relative-velocity static jet] 62 63 50 53 35
(no correction for position shift)

3¢ Use measvred relative- velocity static jet| 71 52 65 85 L1
Jith correction for position snift (acoy | (97) 1 (99) 1] (100) | (91)

e Usc estimated relative-vglocity static jet| 61 €9 62 65 59
based on: (Vl -5)/ vy

ASD=-TDR-62~787

[IPIIPUPPIL TR GO P RIS




Table Vi1, DLstimated reduction in sound pressure level due to relative

velocity eirectss

ATt of nozzle

Forirard of nozzle

Mach 045 Mach Ce9 Mach 0e5 Tach Ce
Turbojets 12 db 26 db 6 dn 13 db
(1860 fps)
Afterbarning turbojets 6 db 15 db L db 9 db
(2500 fos)
Rockets 1db 2 db 1 db 2 db
(7500 £ps)
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Geometrical relationship between angles & and [g
for a jet in motion.
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REIATIVE RESPONSE - DB

o) | TR i L L1 ] 1] l r |
1 2 i 8 16 32

ONE-THIRD OCTAVE BAND CENTER FREQUENCY - KCPS

Figure 18, Frequency response of probe microphone with electrical equalization.

Q 120
' Tunnel Mach
= Numper
2
110~ 0670
2
= L 0462
:
8 100{— O G.32
: L
& 0422
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1 2 L 8 16 32
ONE-THIRD OCTAVE BAND CENTER FREQUENCY - KCZ2S
Fipure 19. Background noise in wind turnel test section,
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130,

L
MEASURED SPL FOR
STATIONARY JET
V = 1860 FPs
120 p—
]
8
~
2 .
N PREDICTION FOR 1860 FPS JET
§ MOVING WITH VELOCITY S
4 (s = 670 FP3)
g 110 |—
us] = \
[ Vs 1
A N
/ AN
= / N
m 100 |4 / AN
. MEASURED SPL FOR N
% STATIONARY JET WITH N
3 V, 2V -5z L190 FPS k ~
g - » SHIFT DEFINED BY
EQUATION 8 OR
g yd " FIGURE 13
90 p——"
[ |
z §‘2
| T T [ ad ' N T B T R T
212 -8 < 0 L 8 12 16 20 2, 28 32

MEASURZMENT STATIONS IN NOZZLE DIAMETERS

Figure 21. Illustration of method of predicting the change in SPL
at a location due to vehicle motion,
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Figure 23, Measured vs, predicted values of noise reduction due to motion, *-;
\;1
Plotted symbols indicate the correlation between measured and predicted values 1
of noise ruduction (from Figure 22, a-e) fer the upper four 1/3 octave bands .
. (6.l 8, 10, and 12,5 keps).. o
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