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Page 11, Equation 2-2, denominator should read

Fq +T,
2 a ¢
S $° 4 - 5 -
( MV Fa )
Pag_g 22, Equation 2-15, should read
c’a((iG) Te
where A & ——-
m; Hs

Page 98, Equation 4-29, ghouid read

g
5 = {Xgg — X7 ) K  lete?
where
) (i)
. I oyg ¢xT
Ay =

m (Xeg X1 )
Page 101, Equation 4- 35, the following may pe added:

F
a
Ka"mv *

also -
o 2, T*Fa
s MV Ha

Page A-14, list of symbols should read

~

7, wave height for first sloghing mode = 0.84 o I'b tmax) ||

Page B-39, Equation B-4, ghuuid read
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Page B-40, Equation B-%, should read

Equation B- 10, should read

iveq " Kg 3. -8 1 + Kg Py

= - Ky 18,-8) - etc.

Page B-43, equation immediatcly preceding paragraph B4-2-8 should read:

) 4 Cs
6y = Gy oy
Page B-46, Equation B-27, the second parenthesis of the numerator should read:

2
(TF s +Kzs—i-K3)

Also the definition of K2 should read
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Page C-17, Figure C-5, should be drawn
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FOREWORD

This report was prepared under Air Force Contract No, AF33(616)-7037 by the Convair (Astronautics) Division
of General Dynamics Corporation, San Diego, California. The contract was initiated under Project No, 8219,
Tagk No. 82168 and was administered under the Dirsation of the Flight Control Laboratory, Aerospace Mechanics
Branch with Mr. H. M. Davis and Lt. R. L. Swaim acting successively as project engineer.

The project was carried out by the Dynamics Group of the Convalr (Astronautics) Division of General Dynamics

Corporation, with the major portion of the study conducted by Mr, David R, Lukens, projcct leader, Dr., A. F.

Schmitt, supervisor, and Mr. George T. Broucek. Convair-Astironautics persounel agsisting in the study were:
Mr. J. W, Evans, Mr, F. I. Backus, and Mr. R. G. Norell,
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ABSTRACT

This roport summarizes sufficient information to enable a practicing engineer to understand and analyze the
phenomena associnted with a floxible-booster-and-autopilot analysis., Simpiifications and approximations are
given for all phasos of synthesis and analyais, and the limitations of the simplified eolutions are discussed in
doetail.

The development of mothods for synthesis and analysis of floxible boosters is prosented in scveral stages--from
simplo lincar techniques useful for predesign or preliminary design analysis, up to the complex forms requiring
computer solutions, which may be used to verify tho adequacy of the final flexible~bonster-and-autopilot config-
uration. .

The methods of synthesis and analysis arc prosentod with threo major limitations: 1) A lincar airframe is as-
sumed, 2) The acrodynamic surfaces (wings) are assumed to be small and relatively rigid, and 3) The aero-
dynamics arc represented by a simple quasi~steady model. These limitations will not restrict the usefulness of
the results for moest classes of flexiblo Loosters.

Tho rosults of the work indicate that acceurate solutions for most nonwinged fiexible boosters can be achicved by
simple root-locus technirgues involving Linearized equations. The cases where more advanced techniques are
necessiry, und the equations and mothods for a more comprehensive analysis are also presented.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER: J)?é(// 7 .
<Y, Wut'g
C. B

. Westbrook
Chiel, Acrospace Mechanics Branch
Flight Control Laboratory
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1.1 GENERAL

Booster flexibility is recognized as a problem causing adverse effects upon vehiclo loading and stability because
the bending modes couple with eloments of the missllo control systom. The effcets upon loading, particularly
air-loading, may be traced to local increases In the angle of attack as a result of vehicle flexing. Such in-
creases lead to additional deflections and loads, Convair-Astronautics' experience has shown that increases in
structural loading due to gusts may range from a {aw porcent on carly ICBM's to as much as five to ten perceni
on multistage space broster vehicles having a large sienderness ratlo.

Elastic coupling with the control system usually arises becausc of modal pickup by the sensors. These elastic
modos arc due to additional degroos of freedem which appear as parallel blocks to the rigid body when the
missile transfer function is dorived. If these modes are within the control system bandwidth, or within
several octaves of the control frequency, thon accurate transfor function determination is necessary so that the
modes may be gain- and/or phaso-stabilized. Phase stabilizaiion has been necessary for the fundamental
bending mode on all Atlas program vehicles.

1.2 PURPOSE OF REPORT

It is tho intent of this report to present the basle concopts and techniques needed by enginecrs to understand the
principles and techniques used In the analysis and synthosis of a large flexible booster with autopilot control.
This report presents the methods of applied mechanics, servo theory, and acrodynamics which are felt to be
most applicable to this analysis. The prosentation is made in & manner so as to provide an approach to the
problom which will be based solely upon the laws of mechanies, The results presented will therefore be directly
applicablo to now acrodynamic methods which lmprove upon the quasi-steady acrodynaimics used in this report.

The type of flexible boostors considered will have no modos of operation in which flight 1s not basically sustained
by propulsive thrust; therofore, no wings are required on the vehicle. Small tail fins may be used to provide
stability, although the stability probloms may usually be solved by thrust-vector control alone. The eguations
and simplifications presented in this roport will therefore assume that the external acrodynamic surfaces are
small enough and stiff enough so that thelr analysis does not require the use of additional degrees of freedom,

If a winged payload is affixed, 1t {s likewise ssumed to be sufficiently rigid that the payload's own clastic
modes need not be coupled to those of the vehicle.

The class of vehicles analyzed are, by intent, built with a high degree of inertial and elastic symmetry. The
asymmeiric configurational aspects, which do occur, result in very minor acrodynamic and inertial coupling
elfects between control planes. These effects are so small that analysis of planar motions is permitted in
almost all inslances.

In the development of transfer functions the modal or normal coordinate representation is used whenever possible.
Thus, it is possible to apply direct simplifications to the analysis of the rigid-body, sloshing, and elastic modes,
without having to recalculate the booster parameters or rewrite the equations of motion, The simplifications
presented make use of describing functions for significant nonlinearities and can be uged to predict system
stability and to show the existence of stable and unstable Hmit cycles. The role of detailed computer simulations
of the complete system of equations for final system proofing and snecial studies, is described.

The airframe of a4 hooster may be assembled by the bolting (or other nonhomogencous fastening) of several sec-
tions (stages) to make up the complete booster vehicle. This assembly I2ads to nonlinear eiastic propertics for
the airframe which are nol amendablc to the analytical techniques presented in this report. However, during
flight the steady loads on the vehiclo (longitudinal thrust and alr loads) are usually sufficient Lo preload the
structure and io hold it in a lincar range for small elastic oscillations such as would be encountered in a stable
configuration. The methods presented in this report are thercfore limited to a linear, or lincarized, airframe
and will be adequats for most classcs of flexible boosters.,

Manuscript released by the authors (April 1961) for publication «s 8 WADD Techrical Report.,
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1.3 MATERIAL COVERED

Sections 2 and 3 contain the background material for using the methods of aualysis and simplification, as well as
a comprehensive derivation of the equations of motion used. The equations and analytical techniques cover the
booster airframe plus related clastic motion, propellant sloshing forces and moments, and the autopilot and
control system, Sections 4 and 5 contain methods of approximation and simplifications of the flexible booster
and autopilot, and & comparison of these simpiifications with the complete analysis. Section 6 gives compari-
sons of analytic results with {light and captive test data.

The appendices give related data not directiy involved in the simpiification and analysis of the flexible booster
but nevertheless necossary fur the analysis of flexibie booster and autopiiot coupling. Appendix A gives the
preparation of the basic datn necesenry to doscribe the airframa, the mass and related inertial, propellant slosh-~
ing, the elastic propertics {(modes), and the acrodynamic coefficieats. Appendix B describes the missile auto-
pilot aad control subsyegtoma, Appendix C discusses several miscellancous related topies, i.e., spin-stabilized
vehicles and payloads, solid propellant grain motion, and the cffect of mass flow and internal damping on rigid-

body and modal solutions.
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SYMBOLS USED IN SECTION 2
Symbol Definition Units
BM bending momaent ft 1bs
[ N/a aerodynamic normal force coefficient per unit angle of attack i/rad
Elxn flexural rigidity at station n along the longitudinal axis lb—ft2
F force Tha
Foz asrodynamic force coefficient in the pitch plane 1bs/rad
I reduced moment of inertia in pitch (see Appendix A1-5) slub ft2
K A position gyro gain factor rad 6/rad ©
Kc hydraulic actuator gain factor {rad/sec) §/rad dc
K . spring constant for oth propellant sioshing mass lbs/1t
KR rate gyro gain factor rad 6c/ (rad/sec) ©
Ku o -loop feedback gain factor rad ﬁc/ rad o
Ia aerodynamic moment arm ft
fc rocket enginc moment arm ft
tp moment arm of sloshing maés (pondulum) ft
Lp sloshing analogy pendulum length ft
‘2{ ' ganeralized mass for the ith mode slugs
M moment {also, vehicie mass) 1b-ft (slugs)
M i discrete (lumped) mass at station i slugs
g aerodynamic pressure (q = gV 2/2) lbas/t‘t2
1 generalized displacement of the 1th mode ft
r radius of gyration {Equation 2-9) ft
8 Laplace operator (s - ¢ *+ jw) 1/sec
S vehicle reference area ftz
t time sce
T control engine thrust 1bs
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SYMBOLS USED IN SECTION 2 (Continued)

Symbol Definition Units
TL load torque ft-lbs
\'4 vehicle velocity ft/sec :
X, ¥ % vehicle coordinates roferenced frum center of gravity ft ‘
X ca center of gravity position along longitudinal axis ft
X op center of pressure position along longitudinal axis ft 1
Xp location of pendulum attach point on longitudinal axis it
Y 2 lateral displacement of pth sloshing mass (8pring mass analogy) ft
7 acceleration along the Z axis ft/xaec2
o angle of attack in pitch plane rad !
agust anglo of atiuck due to a gust rad
o vehicle acceleration along its longitudinal axis ft/sec2
B angle of attack in yaw plane rad
Y flight piath angle rad
T propellant pendulum angie {pendulum analogy) rad
4] rocket engine gimbal angle rad
r damping ratio N.D.*
(€] vehicle pitching angle rad
#rx aerodynamic effectivenesa parameter defined in Kquation 2-2 1/sec2
n 5 control engine offectivencss parameter defined in Fquation 2-2 l/xr.ec2
o standard deviation as used in probability N.D.
52 normalized slope of the ith mode at station n along the longitudinal axis rad/ft :
¢§:r)l normalized deflcction of the ith mode at station n along the longitudinal axis ft/it
w natural frequency 1/8ec
wc, @on frequencies of engine hydraulic actuator transfer functions i/sec
Note: Throughout this report no distinetion is made in notation between a real time function and a
transformed function of the complex frequency, s =0 + jw. The differeatial equations are given
as time functions, but the equations otherwise are generally written as transformed equations, as
is always cvident by the prusence of the variable s,
*Non-dimensional
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2.1 BASIC CONCEPTS*

In the normal evolution of a large fluxible-booster design, a considerable number of feasibility studles are under-
taken in the preliminary design phase to determine the payload capability and mode of operation of the booster

for different missions. These studios may be of varying degrees of sophistication in the extent to which they
consider propulsion characteristics, "g" ficld, acrodynamic propertios, otc. Almost invariably, however,

they employ the cecmmon approximation of studying the motion of a point-mass under the previously mentioned
forces, assuming that the booster can be stecred perfectly to produce flight along the desired trajectorics.

tem. After the preliminary studies have outlined the capabilities of a properly controlled and guided vehicle,
it becomes the task of the guidance and control system to realize these capabilitics.

The overall task of system analysis is of such comploxitly that many tools of analysis have to be applied in order
to obtain satisfactory solutions to the problems, Thus, both manual and complex computer studics are cmployed
at various stages. One rocognizes that during carly phases of flexible~-missile-and-autopilot analysis there
exists an cconomic and logical requirement to reduce the use of computers, For the early phase of the investi-
gations the overall problem must be simplified in order to emphasize the main paramceters and thelr inter-
relation for the system under study, To attempt to study 2l phases of this analysis through the usc of computers
would not only be too costly but would also limit the inventivoness and creativity of the engineer for formulating
novel concepts, After the main parameters and disiinguishing features of the problem have been roughed out,
the complete systam should be progressively analyzed with computer techniques through an iterative procedure
of synthesis and analysis.

In the detormination of approximate transfer functions of 2 lzrge flexible missile, it is assumed that what is
sought is the simplest transfer function which will adequately desceribe the system under study in the realm of
signal frequency and amplitude. Tt is also desired that the approximate transfer function may be obtained with

a minimum of effort on the part of the person studying the systemn.  To determine which type of transfer function
will be best suited for approximate studies, it is necessary to look at hoth the analytic models and the mathe-
matical methods available for their analyses. In the following discussion, it is assumed that the reader is
familiar with the basic theory and techniques in the solution of feedback control problems, The tools used in
the majority of ihe analyses will be those employing system transfer functions of the complex frequency,

s “ g + jw. The root-locus method of analyzing the closed-loop response, based upon the open loop transfer
function, will be usced for most graphic prescentations,

In this section a hrief survey of the hooster control systen synthesis and analysis process is given to provide
a hackground against which the usefulness andd appropriateness of the transfer functions, and their simplification
given in succeeding chapters, may be judged,

To enable guidance of a vehiele, it must he possible to control its attitude. The problem of attitude control will
also determine, in part, the loads imposed upon the vehicle by its environment, The control problems may be
considered as uncoupled from the guidance problems for many of the large flexible boosters, 1t is feil that

this assumption is justificd for the class of vehicles to which this study is applicable, as the control and elastic
oscillations have periods that are several orders of magnitude shorter than those of the guidance modes. I the
guidance and control systems are coupled (for hardware, encrgy manygement, or other considerations), then
the problem cannot be simplified to the extent of an uncoupled system.  The equations and techniques presented
are correct, however, and fully applicable to these systems, even tiwugh all of the simplifications recommended
may not be usable.

The major parameters and mode of operation of the bousicre must be understood before an attitude control system
can be studied. The following paragraphs summarize these fiactors,

The booster vehicle's mission is to 1ift the upper stages and piyload through the carth's atmosphere, imparting
to them a desired velocity vector. To accomplish this mission in an officient manner, a mode of 8pe1‘ation is
devised which capitalizes on the presence of large propulsive forces and on very low mancuver requirements.
In addition, the flight plan is tailored so as to minimize acrodynimic fvading and thus permit a low structural

*References 1 and 2 have heen drawn up in prepuration ol subscections 2,1 through 2,4,
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weight inbothbooster andupper stages. Thevehicle islaunched vertically to minimize launcher requirements and to
permit thevehicle to complete its initial rise without placing large-lateral-stabilizing-load requirements on the con-
trol system. Shortly after lift-off, the vehicle is turned (pitches over) froin a vertical flight path to a zero-lift
(zero-angle-of -attack) flight trajoctory. Using this flight plan, the vehicle assumes an intentional angle of attack
at low dynamic pressures during the brief transitional pitch-over., Thereafter, an attempt is made to fly a
trajectory in which the turhing rate is equal to the flight-path turn rate so as to obtain a2 zero angle of attack.
Obviously, atmospheric inputs of winds (steady proflies and gusts) will produce some unintended loadings which
the control system must cope with, Howover, intontional vehicle mancuvering is kept at an absolute minimum,

Spoecial flight operations, such as staging, can impose severe control problems if conducted at high dynamic
pressures, Thoso operativas are, therefore, generally deferred untii the vehicle has left the atmosphere or, at
least, the region of high dynamic pressure. The conirul problems posed by such an oporation concers: the
stability of rigid-body motlons; a specialized and complex kinomatic~-dynamic -autopllot simulation is required
for system analysis, Flastic mode coupling problems are not considered in such a situation, due to the fact
that complox transient conditions pertiin at these times, while the veohicle configuration is being varied and
control gains and forces (propulsive and hydraulie) are changing rapidly,

2.2.1 Equations and System Block Diagrams.* For purposes of the primary study of the vehicle and control
system, it is satisfuctory to consider the vehicle as being rigid. This assumption simplifies visualization of
the effect of basic vehicle and control parameters. Such an assumption implies that the control frequencies will
bo kept sufficiently low so that their sepuration from frequencies of other major degrees of freedom (propellant
sloshing and elastic modes) is reasonably groat,

Only planar motion of the vehicle will be assumed in the present discussion, the equations of motion and the
vehicle's control system being ireated as uncoupled, insofar as the vehicle's three axes of rotation are con-
cerned, The threc-axes coupled equations are given in Scetion 3, The class of bouster vehicles considered will
not have large wings, will be very nearly symmetrical, and will ¢xecute no rapid maneuvers. Therefore, the
coupling between control planes will be very small, and the planar motion assumption should be adequate. To
fix ideas, the analysis is conducted for the vehicle's pitching plane (longitudinal mode) but is also representative
of yaw planc analyses,

Figure 2-1 shows the parameters employed, The vehicie is assuimed 0 be acrodynamically unstable {center of
pressure aliead of center of gravity) and to employ thrust-vector control for attitude stabilization. Perturbatios
angles away from a refercnce trajectory arce shown. This reference trajectory is the zero 1ift path, having a
steady -state turn rate, 00, so adjusted as to eaneel the transverse gravitational acceleration.

e \L?‘“‘\‘T . /;0

e < 2 >
ey

Figure 2-1. Rigid Vehicle Control Paramcters

The reader is referred to sections 3 and 4 for more comprehensive equations,
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The squations of motion (small 6 and o angles assumed) are:

> =MV = D -Mrs ~
Fulong MV Tc D - Mg sin IT
path
normal = MVI‘T = Fa— a - 'I‘c (6 - o) - Mg cos I‘T (2-1)
to path
EM__=16=T2 6+F 4 a
CG cec oa

Here, Fa is the aerodynamic normal force por unit angle of attack, and D i» the drag force. In writing Equa-

tiens 2-1 certain lesser aerodynamic coefficients have hoen omitted, their effects being negligible.

In solving Equations 2-1 the first equation will be considered as uncoupled from the others, by assuming the
drag is not a function of the angle of attack. Thus, the forward velocity {8 unperturbed by attitude changes.
This assumption removes any consideration of a "phugold" mode. It is jusufied on the basis that: 1) aero-
dynamic drag is a small force relative to the propulsive and inertial forces and, hence, its perturbations have a
negligible effect on velocity history; and 2) the system analyzed is one of accelerated motion, having no steady-
state flight condition in which a low-frequency "phugoid' mode can manifest itsealf,

The initial unperturbed state of the system is one involving flight along 2 zero-lift path, for which ')30 = éo = -

g cos Yo
and =0,
v ao 0
Now let:
roo=y
T ’Yo Y
8:0 +Q
[}
o o .

Substituting into the last two of Equations 2~1, one obtains:
MV +9) =F_ o -T (6 - ) -Mgcos (y_+7)
I6 =T 6+F ol
ce o a
Cancelling MV')"O: -Mg cos yo, one gets:
MV').'=Faa -TC((S —a)*Mgsin'yo~ Y
(2-1a)
I©6=T42 6 +F { o
ce o' a

The term Mg sin Yo - ¥ represents the motion of the vehicle relative to an accelerated reference systen (the

earth and its atmosphere). It is commonly omitted for attitude stability studies of ballistic hoosicers, since the

ettects of the flight-path ; - coupling into attitude stability (through acredynamic force perturiations) are
minor. If this term is omiu |, and if onc uses 6 =y + o, Lquations 2-1a may be solved to yield:
T r (:z B2 )
o8 4 oalc a
MV MV 4 _
0., ¢ (2-2)
o To , F T/
i ‘-“ + - -
st MV Ha)
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where p_= T !lc/[ is the control cffectiveness parameter, and “a s I«‘OJZJ/I is the moeasure of acrodynamic
¢ o

5
~2

instability . These parameters have the units of (seconds) =, and give the angular-acceleration per unit-thrust-

vector deflection and per unit-angle-of -attack, respectively. (For an acrodynamically stable atreraft, “a is

tho square of the short period mode natural frequency.)

At launch, or out of the atmosphere, when the dynamic pressure is low (Fa—- 0) Equation 2-2 simplifies to:

(] 4] .
s R (2-3)
g2

(2-1)

For a vehicle of tho class being studied here, onc finds that Equation 2-4 is a good approximation whenever the
acrodynamic instability is sufficicently great to necessitate its inclusion, The other termis of Equation 2-2 which
are omitted therehy only lead to a dipole of small residue (pole-zero grouped closely togethey;, having little
influence on this problem,

Physically, the approximation is that O = «, a satisfactory assumption for a massive vehicle whose transverse
forces are low by design intent.

2.2.2 Autopilot and Control System quations, To discuss the methods used in a preliminary analysis of a
flexible booster and control system, it will be advantageous to choose a particular control system. This assump-
tion witl not exclude other control configurations from the methods used because the discussion will be kept
general, The advantage gained will he that sample root-locus plots can he sketched from representative
numerical substitutions into the equations representing the example control system.

The control system described will be for one axis of vehicle rotation only, Figures 2-2 and 2-3 show a block
diagram of the attitude control system. A gyro provides attitude refercence, a deviation frem which results in an
error signal which yields a thrust-vecter gimbaling command. It is assumed that thrust-vector positioning is
achicved by gimbaling the rocket engine thrust chambers--a popular solution. The response of the thrust~
chambher positioning scrvo is represented by o first order lag. Sufficient lead wiil have to be provided in the
control loop to stabilize the system. The necessary lead may be provided by cither a lead compensation network
or by insertion of a rate gyro; the latter soiution is assumed berein,

0, o
(4 €
WA LR aame SHANING INGING ] MISSILE
AT NETWORK |7 Ghd DYNAMICS |-
o)

@ [t

]

| —

U ey V1 V) S L
lﬂNSOR

I

RATIE

CYRO
¥
L.

' !
_IposITION
GYRO

Figure 2-2. Basic Elements of the Control System to be Discussed
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Figure 2-3. Approximations Used for Preliminary Analysis

An aerodynamically stable vehicle is one which responds to angles of attack by turning into the velocity vector so
as to reduce the angle of attack., The aerodynamically unstable vehicic can be given a degree of synthetic aero-
dynamic stability by sensing angle-of-attack variations as they develop and by commanding the engine to gimbal
so as to turn the vehicle into the velocity vector, “Chus, the inner feedback loop (shown dashed) with gain, K,
induces such a stability. @

Angle-of -attuck feedback has the potential advantage of relieving acrodynamic loads on the vehicle, since it
moves the vehicle so as to reduce the angle of attack as it develops. Some of the disadvantages of this additional
feedback loop lie in the increase in comiplexity (and attendant decrease in reliability) and in the introduction of
additional higher-order degrees of freedom in the angle~of-attnok sensor, which can lead to further stability
problems. An additional shortcoming of the system lies in the erratic or uncertain behavior of this loop at low
dynamic pressures (near launch or outside the atmosphere), possibly necessitating some compensation by gain
changes in the outer position loop. It is assumed that a feedback is not used in the system under study, although
the principles discussed apply cqually well to such a systen:.

2,2.3 Preliminary Gain Choice, It is desired at this time to make a preliminary selection of system gains so
as to provide working values for subscquent discussion. There are three gains at the designer's disposal: Kc’

KA' and KR' The churacteristic cquation for the ayatem of Figures 2-2 and 2-3 is:
s rK 524 (KKK Is 'K (K. u, - )~0 (2-5
¢ At rte T Ha e Waks H) 0 -5)

A brief study of this equation by usc of Routh's criteria yields two simple inviolate criteria for stability, viz.:

h/\“é >u, and I/Kl{ < l\c .

The first of these criteria may be characterized as the static stability criterion; it stipulates that the restoring
moment per unit attitude change must be greater than the upsetting moment.  The secend criterion ig a dynamic
stability requirement to yleld positive damping; It states that the lead from the rate gyro must be greater than
the lag from the engine servo, Within these bounds the designer may seleet many suitable giin combinations.,
However, experience with this class of systems and vehicles requires that vue look ahead and foresce problem
areas which may further restrict the choice of gains, Thercfore, before proceeding with a choice of gains, it is
appropriate to detail some of these probiem areas so that they may be weighed in subsequent discussions.

a. The engine-thrust-chamber-gimbaling time--constant, l/iic, cannot be reduced indefinitely because of prac-

“ical power and structural limitations, While a small time-constant may he desirable to reduce the aniount

of lead necessary in stabilizing the system, the practical problems associated with providing high aceelera-
tions and velocities to a massive thrust chamber and of stabilizing the necessarily high-gain servo loop. wil’
result in a compromised upper limit to K.

12
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b. Vehicle response to transients, particularly gust inputs, must be considered if system loads are to be
limited to within the capability of a light~weight structure. The control system, without angle-of-attack
feedback, does not respond to a gust until a change in vehicle attitude has occurred. This attitude change,
in the case of the aerodynamically unstabie vehicle, is always in a directlon which increases the angle of
attuck, the gust thereby overshooting the imposed value. The vehicle's gust response is strongly dependent
upon the sysiem's {ransient response. A tight systcm, having a rapid response with good damping, there-
fore, leads to small gust avershoots,

c. Stability of the system when higher order terms (other degrees of freedom) are included must be considered
in selecting gains, these being particularly significant in limiting the upper values of the gains., A number
of these problems will be constdered below, in relation to additions to the basic system equations and modi-
ficatlons to the root-locus plots. Briefly, some of these additions are: 1) inclusion of propellant sloshing
modes, 2) addition of vehicle body bending modes, 3) inclusion of higher order terms in the engine-thrust-
chamber-gervo-loop transfer function and in the transfer functions of the reference gyros, and 4) the
insertion of additional shaping and filtering networks within the autopilot as required to stabilize these
new terms.

To select some tentative gains we can assume the roots of the characteristic equation are of the form:
L2 2
(81 p){8 *2Lwst w')) =0 (2-6)

1.e., an oscillatory mode (a pair of complex peles) plus an exponential decay {real pole). U Equation 2-6 is
expanded and the results compared term by term with Equation 2-5, one finds:

Kc=2£w+p

2
4 - = + 4 -
K. K KR#(S B Fw 28 wp 2-7)

2
Kc(KA#(3 A

Equations 2~7 permit a cholce of the gains for a given u s and ,u(x , provided one can rationally select p, w, and £.

To make this selection, one can be guided by considerations from the problem areas enumerated above,
Specifically:

a. A fast, well-damped transient response is desired,

b. Kc should be kept reagonably low,

c. The overall gaina should be kept low 80 as not to excite higher modes (body bending in particular),
These requirements are conflicting, of course. However, one can begin with an observation, based upon exper-
ience, that a separation ratio of at least four to one between the rigid-body-mode and {irst-body-bending-mode

frequercies will relieve problem ¢, above. This simpie rule-of-thumb will often provide a basis for the choice
of w, since the first-body-bending frequency will have been previously established by the configuration,

From a study of transients for systems with the poic configuration of Equation 2-6 (Reference 3, pp. 37-43), it
is known that a good, well-damped transient will resuit from choosing ¢ = 0.3 and p = w.
The value of Kc which results from the above calculations should be examined from two points of view. First,

the value should be reasonable as it affects the thrust-chamber-servo-system requirements — a scparate study
in itself. Second, Kc should not be too low, inasmuch as the complete gust transient respense contains a zero

at Kc; too low a value of Kc will adversely affect the gust overshoot. As a general rule, if K  exceeds twice the
value of p, the influence of the zero on the gust transient will be slight.
The first approximation gains chosen in the above manner should form a satisfactory basis for mwore elaborate

analysis. Beforz procecding to a root locus presentation and to the study of additional degrees of freedom, it is
important to discuss onu other prime factor, The properties of this vehicle — its inertial, aerodynamic, and
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propulsive parameters — vary over wide ranges threugh the hoost phase, Moreover, many of the higher order
effects to be discussed below change in rolative importance as the flight progresses. Consequently, it is under-
stood that the tentaiive galn selection just described, when carried out for a specific time of flight, may require
different adjusiments for different flight times when analyzed further. Such a result may lead to the necessity

for programmed gain changes. It in reasonable to carry out the preliminary gain scloction for conditions at the
time of maximum dynamic pressure (usually in the mid-portion of the boost phase), on the basis that these are
mean conditions of a sort and will lead to suitable working values for studies through the entire phasc. 1t is

quite possible that gairs so chosen may prove satisfactory without time programming, thus leading to the simplest,
most reliable system,

2.2.4 RootLocus Studies: Rigid Vehicle, To permit plotting root loci, numerical data will be introduced at this point.
For convenience all data is expressed here nondimensionally, using the first-hody bending-mode period (1/w 1)
as the unit of time,

At mazimum dynamic pressure, data taken from the feasibilily phase studies show that the vehicle studied has:

2 2
=0, =0, 60e~
[,l(s 0.012 wl and I.la 0, 60¢ wl

Following a rulc-of-thumb given earlier, we let the control frequency be less than one—quaricr of w_. Let

1
w=0,2 wl and set this also equal to p, Let ¢ =0.3. Equations 2-7 now yield:

=0,32 w
Kc u,l
KA = 2.65
KR = 7/<.u1 .

With these data the root locus for the contro! system of Figures 2-2 and 2-3 has been drawn in Figure 2-4,
showing the operating peint for the above gains.

1
K KCKR“G (s +—)

A Kx

hradie P

O¢ (s + Kc) (s -ua)

V= 0.082w, 2

w
KR: ...7_ $= 0.3 1
“1
Kc = 0,32 wl
2
= 0.012

Hy 0.0 Wy Loz
CLOSED LOOP ROOTS 0.1
(OPERATING POINTS)
FOR KA = 4.65
U
“1

T AV O T X Py T
Kc -0.3 -0.2 1 0.1 -y T "I——“a 0.1
K o
R
Figure 2-4. Root Locus for System of Figures 2:2 and 2-3, Using Preliminary Gains
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Considering also the problem of changing vehicle properties, we will check the operating point root locations
for the gains chosen above at conditions near launch and near the time of booster staging. At both of these times
dynamic pressure is low, so that K, % 0. Since engine thrust increases sommewhat with altitude (as the back

pressure from the atmosphere decreases) and vehicle moment of inertia decreases with flight, the control

effectiveness parameter, p 57 will vary over a modest range. For the vehicle studled:

2
=0, 0068
K launchy ~ 0+ 0068w~ and

2
=0.0:
M5 (staging 0020 @y

Assuming all autopllot galns arc kept constant, Figure 2-5 shows the voot loci and operating points for the begin-
ning and end of this beost phase., Also shown (dashod) is a locus of the operating points as they vary over the

boost phase due to changes in both 5 and “a .
LW
J;“
1
-0.3
BOOSTER
STAGING
- .65
KA 2.65 i
K = 032w i
| .
7 - 0.2
K, o —
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0.1
—— ROOT LOCUS IFOR u” 0

~ —~ LOCUS QOF OPERATING POINTS FOR K-’\ 2.65
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-Jl >t T O - T 0
-0.3 ~0.2 LT\ I 0
¢ K
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Figure 2-5. Root Locus for g 0
o

By inspection of the Joci of Figure 2-5 1t would be concluded that the preliminary gains chosen would be satis-
factory for use throughout the boost phase, at least insofar as the rigid-body stability is concerned, Such a
conslant gain autopilot is highly desirable from a relinhility standpoint,

2.2.5 Root Locus Studies: Propeilant Modes Included.  One of the impertant stability problems in the attitude
control of large liquid-fucled vehicles is that of the control of sloshing modes of the internal propellants, An
ettitude-sensing control system, such as that proposed here, couples the rigid-body and sloshing modes quite
strongly, under some circumstances often producing a divergent mode.  Since the inherent damping in a tank of

fluid varies inversely with tank diameter, these propellant modes are only very lightly damped in large vehicles.
Thus, the energy imparted to the propellants by the vehicle motion is but slowly dissipated, and sloshing-
control system modes may build up to destructive amplitudes unless properly treated.

16
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In Appendix A, Paragraph A-3, if Is shown that the problem of propellant sloshing in a cylindrical tank can be
treated satisfactorily by the substitution of & mechanical analogy for the fluid, The analogy consists of & rigid
mass, plus a series of harmonic oscillators {8pring masscs or pendulums) — ono for each fluid mode. The
mechanical system duplicates the fluid's responso and the resultant forces and moments uia the tank, In practical
control problems, only the first propeliant morde of cach tank s treated, the higher modes producing negligible

contributions,

The usual lquid-fueled booster has a multiplicity of tanks -- two per stage. The tranafer functions for such a
system are unwieldy when treated by algebraic solution, Treatment of such a system will, therefore, he
reserved for sclution by machine computation. It is instructive, however, to begin with the more modest pro-
blem of a single tank in order to discover some features of the problems.

Figure 2-6 shows the basic vehicle, with the addition of a simple pendulum representing the sloshing propellants
of the first fluld mecde. The "'rigid" (non-sloshing) portion of the mechanical analogy 18 lumped in with the
vehicle's structure in computing an cffective center of gravity, mass, and moment of inertia. The appropriate

parameters for the sloshing analogy, as a function of tank proportions, are given in Appendix A, Paragraph A-3.
A
1 *
-V
Y
REFERENCE PATH
T
c
Figure 2-6.  Sloshing Model
The equations of motion become:
porY 16T 6 -Muo I
1CG e te Mpu " tl) i
MVy =T (6~ oj ) 9.8
)§ norm. Y lc(u o M)) {XT (1t (2-8)
path
. SRS , 1
o

E 2 1 v .
5 b | = i - L .
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where w 2. at,r/ L anda,, =T-D/M is the absolute longitudinal acceleration of the vehicle, this being the
P p T total

parameter affecting the tension in the pendulum rod, (Mtotul =M + Mp).

In writing Equatione 2-8, we have omitted the aerodynamic effects. While the influence of the aerodynamic
forces on sloshing is not necessarily small at all times of flight, it develops that the sloshing problem seldom
becomaes acuta until the vehicle's propellant mass has burned down considerably. By this time the dynamic
pressure will have fallen off to a point where these acrodynamic forces are small, The pendulum is shown
responding to the absolute transverse acceleration at the pendulum mass station, the force summation indicated
being the summation of all real forces transverse to the misslle's logitudinal axis. (Gravitational attractions
do not displace the pendulum.) Setting:

2F =~(’r S+M_a 1“),

7 c p T

one sees that the first and last equations of Equations 2-8 are uncoupled from the flight-path equation (the result
of assuming no aerodynamic effects),

Hence one finds, by simple substitution, that;

a “ M « 2
R A -
9.:.“_‘5 " p_c¢ 2-9)
3 2 M o f (® -L)2 ‘
8 it P TP TP P C
P M L 2 2
p ‘e r
where
o M .
w}; 2:..1.%1‘ (1+_ﬁ[3) and P oM.

A comparison of Equations 2~9 and 2-3 reveals that the addition of the harmonic oscillator has introduced a pair
of pole-zero dipoles on the imaginary axis. The presence of the very small fluid damping (omitted in the equa-
tions) would shift these points slightiy into the left-hand half of the s-planc. A study of root loci for the closed~
loop autopilot system may be made using this transfer function. Figure 2-7 shows a typical result fer ene of

the main tanks of a booster vehicle,
jw

SLOSHING MODE

FUNDAMENTAL RIGID-
BODY MODE
RIGID BODY
POLES (2)
-
¢ 0
-K A

Figure 2-7. Typical Root Loci for Booster Vehicl-r with Single Tank of Sloshing Propellaat
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2.2,6 Detailed Root Locus Studies: Multi-Tank Vehicle. For purposes of studying more carefully the variations
in roots of the significant modes (modes within the range of control frequencies), it is convenient to employ a
digital computer, particularly when the equations become quite numerous and strongly coupled. The digital
routine should be capable of extracting the roots directly from the equations when they are written as a set of
simuitansous differential equations in all the variables. The homogeneous equations of motion (independent var-
iables such as gust inputs set equal to zero) will usually have the matrix form:

{tars2 +1mrs+rc1] fai} =0

where the q; elements are the problem variables, and the A, B, and C matrices contain the system parameters
{constant for a given insiani of flight).

It is most efficlent, in terms of machine time, to extract the roots of the equation for Ky = 0 and Kp — o, ob-
taining thereby the open-loop poles and zeroes (respectively) and then to employ a separate digital routine using
these poles and zerces as inputs to generate the root locus. The variety of methods which may be programmed
to accomplish these calculations is so great as to preclude any discussion here.

Figure 2-8 shows machine-gencrated root loci for a two-tank booster vehicle, coniputed at one time instant of
boost phase flight, The variables considered wore the rigid-body degrees of freedom and the sloshing of pro-
pellants in the two main tanks. One tank's roots are seen to be slightly unstable for the assumed case of zero
damping.

jw
TANK 2
TANK 1
RIGID-BODY MODE i
A Y
-U

3 L Y hvd
> A A

Figure 2-8. Root Loci foir Booster Vehicle with Twn Propellant Tanks

Since propellant modes can he controiied by mechanical baffles to provide damping, it is common to defer fur-
ther study of the sloshing problem until other problem areas (such as bending stability) have been investigated.

2.2.7 Root Lecus Studies: Body Bonding Included. The problem of closed-loop stability of the flexible mi
was mentioned earlier in connection with phenomena which will estabiish an upper limit on the autopilot gains.

The attitude gyros sense missile hody bonding modes in addition to rigid-body atiitude changes, and these modal
contributions provide a gimbaling command to the thrust chambers. Since the thrust vector movement, in turn,

il

]
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excites body bending modes, a closed loop is formed which can lead to a divergent osvillation at the bending fre~

quency, if excessive galns and incorrect phasing are employed.

Figure 2-9 shows tho parameters used ina simple one-mode analyais for moderate frequencies, i.e., frequen-
cies at which thrust chambor lateral inertial forces are small relative to the gimbaling thruat vector's trans-

verse component,

REFERENCE

Figuie 2-9. Vchicle with One Elastic Mode

The equations of motion for rigid-body attitude and the first bending mode are:

. (i) i
1820 = Tole (6 - oxT 4p) = Te ¢x$p)qi
0
¢ @x1 6

wi

. =1 (2-10)

(s‘z' +20 ) wis + w‘z)qi ==

are the normalized modal slope and deflections, respectively, at the engine station (sub~

i i
where "x(’l‘) and 4’x(T)
and £, Wi, and77 { are the mode damping, frequency and

seript "T"). The mode normal coordinate is q
generalized mass, respectively.
Because the gyro package senscs the total attitude at the gyro station, the expression, Og =© + u)ig qj.can be

written. Herce ux((];) is the normalized mode slope (positive nose up) at the gryo station. Schematically, the

block diagram couk! be drawn as in Figure 2-10.

ROCKET
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Figure 2-10, nlock Pipgram of Control System Including One Elastic Mode
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If these additional relationships are incorporated, the open loop transfer function becomes:
i { .1
OF - T BN B\ s+
[N A b
¢ 7 i He G+K) &
0] () (i)y2
o Ux’l‘ T(: ¢x’l‘ (¢xT) Tc
24 wy w + 7 (2-11)
2 s, LA & 72
8+ c¢x’l‘ %G 8
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TP %%
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2 2
L 3
8 ag;i wla wl

A comparison between liquation 2-11 and tho open-loop transfer function for Figures 2-2 and 2-3 (Ref. Figure
2-4) reveals that the addition of the mode has affecied the gain as well as introduced a pole-zero doublet. One
may show that in order for sucha dipsleto yield a loop of stable roots, the bending mode zero should be less
than (below) the pole (see Figure 2-7). Thus, an inspoction of the cquation reveals that it is desirable to locate
the gyro on the aft portion of the vehicle, {behind the antinode) where ux%) is negative. It must be added, how-

ever, that this simple conclusion applies only {0 mades of moderate frequency (probably only the fundamental)
and to the simpic low-order autopiiot of Figure 2-11, A more elaborate study will be required to provide a
reasonable assurance of stable operation when higher frequency modes are considered.

8 0 6 K T
c + e c & 0
QR Ky TR EQU. 2,10
- C
8
F ‘li
)
YxG

1+KRs

Figurc 2-11. Approximations Uscd for Preliminary Analysis of Control System
Including One Elastic Mode

2.2.8 Detailed Root Locus Studies: Higher-Order Klastic Mode Analysis. Even a planar analysis of an elastic
vehicle leads to complex equaitions when numerous modes of motion and system degrees of freedom are to be
accounted for. Large analog computer simulations were used for the carly studies of such large boosters as
Navaho and Atlas. The use of the analog computer permitted the inclusion of many modes, acrodynamic and
propellant slosh forces, and the nonlincar churacteristics of the servo actuator. As more was icarned about

the problem it became apparent that the system could be analyzed adequately in separate parts, i.e., the elasiic
modes examined one mode at a time, and the rigid-body and sloshing modes examined independently from clastic
motion.

For the analysis of the coupling of the control system with the elastic motions, the follewing simplificatiuns were
found to be suitable to adapt the analysis for manual techniques. Such analysis yiclds good resuits for pre-
liminary design and may, under certain conditions, be acceptable for determining final configuration, The
limitations upon this method are explained in later chapters,
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In the first simplification only one elastic mode 18 considered at a time. This step is permissible because the
elastic modes are orthogonal and couple only through the aerodynamic forces, rocket engine control forces
(through the autopilot), and fuel sloshing modes. The frequency separation betwsen modes and the highly tuned
nature of each mode (low damping) make this coupling negligible (see Section 4).

In ealculating the characterisiics of the modes, the vehicle mass and ineriial properties are computed with the
englne mass and rigid portion of the propellants included (see Appendix A). This technique provides maximum
urcoupling of the modal coordinates.

The second stmplification neglects the effects of aerodynamics. This asaumption generally 18 satisfactory at all
times for a ballistic bonster with a nonwinged payload, For aralysis of a winged booster or payload, aerody-
namics will have to be included at certain times of flight, The effect of aerodynamics on stability can be es-
timated by computing the apparent frequency chango of the mode brought about by the generalized aerodynamic
foreing function. If the frequency doos not change more than a few percent the effects of aerodynamics are
safoly ignored.

In the third simplification, a linear rocket engine servo (as derived in Appendix B-4) i used. The technique
used to linearize the nonlinear equations is given in Appendix B-4, By using gaineg for several engine ampli-
tudes the presence of stable and unstable limit cycles can be predicted.

For the block dlagram of the control sysiem and missilo, including an elastic mode, two parallel blocks will be
used to represent the missile dynamics ~ one for rigid motion {©/6) and the other for elastic motion (qi/é).

This block diagram is given in Figure 2-10,

The equations which will be used to replace Kyuations 2-10 for vehicle dynamics are derived by addition of en-

gine chamber inertial terms, They are: Iuszd and MRE Rszd , respnctively. Hence:

(Rigid Body):

l s
2 r) @, W
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For the engine servo one uses the equation:
o, w88 el s KWl =K, Wlo, . (2-14)

Combining these equations in the control system of igure 2-10 gives the following open-ioop transfer function.
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In writing Equation 2-15 the second order terms describing the effect of rocket engine inertia on the rigid body
motion have heen approximated in favor of factoring out a simple expression for the "tail -wags-dog" zero, Also,

we have used the convention ‘bx(’i‘) = 1.

The so-called "tall-wags-dog" (TWD) zoro appears in Equation 2-15. This zero occurs at the frequency at
which the tranasverse inertia forces resulting from the gimbaling of the rocket engine chamber cancel the thrust
forces resulting from the chamber's angular deftection. Thus, at frequencies below the TWD zero the thruet
forces will determine the phase of the resulting force, while the inertia forces will determine the resultant
force-vector phase at frequencies above the TWD zero, Therefore, there will he a 130-degree phase shift in
force output as the frequency crosaes the override point,

In writing Equation 2-15 the rate and position gyros, if both are used, were restricted to the sams location on
the missile. The equations and simplifications which can be used when this assumption is invalid are given in
Section 4.

With Equation 2-15 one may continue to use the rool-locus technique for simplified analysis. This is cne of the
best methods available for linear systems, giving a good visuai indication of the effect of one mode and/or eie-
ment upon the other. In addition, the root-locus technique gives a direct indicaiion of the damping of the sys-
tem. Figure 2-12 shows a representative ront-locus pole-zero configuration for Equation 2-15,

RATE GYRO POLE

Jw
“y
4
BENDING DIPOLE
- 3
ENGINE SERVO POLE /
TWD & 2
{ 1
RIGID BODY
Y ENGINE SERVO POLE FILTER POLE POLES (2)
- — . My
14 3 2 1 GYRO ]

ZERO
Figure 2-12. Representative Root-Locus for Pole-Zero Configurations for Equation 2-15
The effect of higher order elements such as those poles due to the rate gyro roll-off characteristics can be il-

lurtrated at this point. The relatively high frequency body bending mode in Figure 2-12 would be affected by the
rate gyro poles. This effect can be shown by measuring the phase-angle centribution of these poles from the
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elastic mode pole. For a low frequency mode, on the othor hand, the phase contribution of the gyro poles will
ba nogligibie.

As a linear approximation is used to represont the nonlinear actuator, the engine servo pole configuration will
only be applicable to one engine amplitude and frequency of oscillation (see Appendix B-4). A change in ampli-
tude would cause a shift in the position of the actuator roots, This shift would cause a gain change and angular
rotation in the locus from the clastic pole. A typical change in locus with amplilude is shown in Figure 2-13.

iw_
“y
3%
/‘ TWD
ENGINE SERVO POLES <
(3) SETS
2% BENDING
DIPOLE
321
/ 3
/.
1X 1
ENGINE SERVO POLES
(3) SETS RIGID BODY
~u
= ) - 1 POLES (2)
1 2K Zf 2y )4
FILTER POLE < GYRO ZERO

Figure 2-13. Engine Serve Poles for the Three Different Signal Amplitudes
and the Resulting Three Different Departure Loci

The results of the locus of Figure 2-13 can be exprossed in three ways; a constani amplitude locus (conventional
gain locus), a constant gain locus, or a family of gain and amplitude loci. These representations would appear
as shown in Figures 2-14 through 2-16.

Jw 24.0
K = 2
oA 2,00
fo} KA = 1,75
]\A 1.25 OKA 1.50
KA 1000
,;'.\Q | 27.6
X%
f ) i
0.4 0 0.4

Figure 2-14, Constast -Amplitude Locus
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Figure 2-15. Constant-Gain Locus

Although Figures 2-12 through 2-16 represent a simplification, they are very useful in analysis of the effects of
elastic motion. The roots illustrated above can be easily handled by manual techniques. One effeet which has

jw
00 28.4
0.500
= 0.250
28.0
= 0.100
0.075
8= 0,050 27.6
a
{ 1] )
~0.4 0 0.4

Figurc 2-16. Family of Constant-Gain vs. Constant-Amplitude Loci

heen omitted is that of the dynamics of the displacement gyro. The relative unimportance of the displacement
gyro, its gain, and its characteristics may be seen from the fact that the I/KR zero is practically at the origin,
and hence is almost cancelled by a pole there, ingofar as its appearance from the region of the hending dipole
is concerned,

Figure 2-17 illustrates the importance of the angic of departure from the bending pole in the analysis of the sta-
bility of the system. By manipulating the parameters related to the filter (position and number of poies and
zeros), one can obtain any desired angle of departure from the bending pole. For example, the addition of a lag
filter is quite often used to phase-stabiline e lower frequency modes. Howcver, this results in a deterioration
of the rigid-body locus, as shown in Figure 2-17,
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Figure 2-17. Deterioration of the Rigid-Body Locus as a Resuli
of Lag-Stabilization of Low I'requency Mode

The preceding discussion indicates that at any time the control system analyst could provide a stable control
system bending mode configuration by the addition of proper phase compensation, This approach, however, is
noi always feasible In practice. Fivst, there will be many dipoles, ench one represeniing « different mode.
Thus, a simple filter which stabilizes one mode may make another unstable, thereby requiring a more elaborate
filter design.  in addition to the multiplicity of dipoles, each dipole will mos-e in the course of the flight, This
would corirespond to an inerease in the frequency of the modes as the propellants are expended, The frequency
range covered by a higher mode (e.g., the third or fourth) vver the course of a stage of flight might be very
great. In addition, the mode shapes change, often altering the sense (sign) of a4 modal siope seen at a gyro
station.

ft is therefore impractical to try to achicve a stable angle of departure for all peles througheut flight by filtering
only. Thus, structurai damping (modal damping) must be relied upon in practical control systems to help in

gain-siabilizing certain modes.  While for many configurations the angle of departure of closed-loop roots from
the pole might be toward the right half of the s-plane, the combination of structural damping and control system
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attenuation will be sufficient to give a stable operating point. The gencral philosophy is to attompt to control the
angle of departure (phase-stabilize) the low frequency modes while depending on the structural damping and con-
trol system "roll off" to gain-stabilize the high frequency modes,

The use of structural damping to stabilize the low frequency modes i8 inadvisable due to the small amount of
damping available. This damping has been found to vary from 1/4 percent critical, for a large, structurally
clean counfiguration which is full of propellants, to 2 percent for conventional built-up construction when the tanks
are empty. This damping will generally be higher for the high frequency modes*, Curves illustrating the damp-
ing for severai configurations of a large booster arc given in Section 6.

The preceding technique gives a simple method for the prefiminary analysis of flexible booster-autopilot elastic
coupling. The answers are corrvect under the assumptions made and give insight into phenomena which may oc-
cur when a more complute analysis is undertaken, The results obtained are uscful for predesign studies on
autopilots for flexible booster configurations and will be adequate for final configuration and gains for a large
clase of boosters (see Sections 4 and 5).

2.3 DETAILED COMPUTER STUDIES

In addition to the simple linear and describing function results, analoyg and digital computer solutions of the com-
plete system of equations are often used. The analog solutions may be used to give final verification of the solu-
tion of the elastic, rigid body, and slosh erquations. With present anzlog cquipment one can simulate (practical~
1ly) up to five eiastic modes plus the slosh analogies. A block diagram of the control syst- v missile dynamics
and the elastic modes, plug the rate and position sensor dynamics for such a system of cquations is shown in
Figurc 2-18, The usc of an aiiloyg computer makes it possible {o simulate more extensive nonlinearities such
as a complete gervo actuator and intentional control nonlincarities (limits, thresholds, digital sampling-and-
hold, etc.). The computer allows all significant degrees of freedom to be included at the same tine, this giving
a final verification of freedom from instabilitios arising because of unexpected coupling between the various
modes and because of the nonlinearities.

Larly analog studies were used to obtain clastic missile stability houndaries, which are plots of gyro location
versus maximum allowable gain for stability. IKach bhoundary represents onc particular flight time. A typical
stability boundary plot for scveral flight times is shown in Figure 2~19.

The elastic modes change frequency and configuration as propellants are experded. On a root locus system they
have the effect of moving the bending dipole up along the jw axis, In the stability boundary obtained from the
analog this effect shows up as a change in permissible gain and a shift of the bouncary along the missile. This
shift reduces the available area in which the sensors can be placed.

The stability boundary gives an accurate representation of the gains which can be nsed at various times of fhight
but does not give information necessary for complete confidence in the result. This is true because small
changes in phase, such as could occur with changes in time and other parameters, may alter the angle of de-
parture from the clastic pole and drastically change the gains allowable for stable operation. IFor instance, if
the angle of departure from the elastic pole were paralle! to the jw axis, tie ailowable gain could be appreciably
reduced by a rotation of this angle a fow degrees towards the jw axis. Thus, even a minor interpolation or
change in operating characteristics could alter the nature of the resulis sericusly,

The best method of synthesis and analysis of a quasi-lincar boosier control sysiem appears to be through the use
of maodified root-locus techniques (as described in Subscction 2,2.8) to determine the gains and filter configura-
tions. These techniques may he elaborated to consider suspected coupling hetween modes due to a small fre-
quency separation and/or significant gencralized forees. Such claboration is made by employing a general,
digital-root extraction routine such as described in Subscetion 2,2.6, along with as many modes of the system
as nacessary.

The degree to which such a result can be utilized without analog verification is dependent upon the accuracy with
which the system's nonlinearities-both unintentional and intentional - can he represented.  One fruilful usage of

*This ohservation is in contradiction to the classical structural damping property bue rests upon the fact that a
portion of the damping is from coulomb friction and propeliants.
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Figure 2~19, Typical Stability Doundary Plot for Several Flight Times

the analog might be to provide a measure of the accuracy of the digital resuits by running a test problem as a
standard, against which digital predictions may be gaged. In this way the necessity for mounting a full-scale
analog effort, with its attendant equipment complexity problems, may be obviated.

On the otier hand, the use of the massive computcr simulation for a final proofing of the complete missile sys-
tem does have several advantages, Onc advantage is that all terms which affect solution accuracy, including
strong nonlinearities, can be simulated, and the results cannot be questioned on the basis of an excessive num-
ber of simplifying assumptions, Thus, one increases the confidenece icvel by verifying the rosuits of other
studies, Finally, the simulation yields transient resuits under various inputs and provides data concerning local
historics of boay londs. The determination of loads is discussed below,

2.4 TIME-VARYING STUDIES

Time-varying studies constitute the mest complete simulation and analysis which can be applied to the flight of a
missile. A mathematical model which changes with time is the only comprehensive representation that ean be
used for the lower frequency modes of a vehicle expending propellants and itying through a varying environment.
The effect of the change of parameters can then be evaluated and the differences from fixed time studies shown.

The time-varying nature of the studies gives risce to additional transfers of energy which are not present in
fixed-coefficient studies. This transfer arises {rom changes in longitudinal acceleration upon propellant slosh-
ing, aerodynamic forces, masy and inertial changes, and changes in the clastic properties. Of the preceding
iterus, changes in elastic properties are usually not included in the time-varying analysis. This omission is
acceptahle because the time-varying solution is usually vonducted to analyze the rigid-body and sloshing coupling
between the pitch, yaw, and roll planes; there normally is a great Irequencey spread between these modes and the
clastic modes.

29
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Conversely, time-varying solutions are not usually used in the analysis of elastic modes. The bending-mode
equations are of such nature that a theory for the time-varying case which can be practically implersented does
not exist. The partial differential equations of the clastic motion are too cumbersome to handle, and the modal
aimplifications can only ba made for time-fixed configurations. The time-fixed analysis is satisfactorily ac-
curate, however, sincc modal periods are short and parameters vary slowly,

The design of an autopllot demands that the system be stable at all conditlons‘of flight. Using the time-slice ap-
proach, system stability is domonstrated at selocted times. There is small possibility of elastic instabilities in
a system that passes through a number of stable points tn which the parameters vary only slighily from point to
point, Thus, by analyzing a number of points during the flight tho stability between these discrete polnts can be
correctly inferred.

Both single-plane and three-axis studies are used In timo-varying analyscs., The single-plane analysis will al-
ways be simpler than the three-axis analysis and, therefore, should be used whenever it can give satisfactory
reguits. One such study area concerns the effect of the continuing increase in acceleration on propellant slosh-
ing amplitudes. This increasing acceleration has the effect of reducing slightly the amplitude at any given time.
As the acceleration i8 increased, the sanie energy can be contained in an oscillation of slightly less amplitude.
In a related study, the build-up of sloshing duc to system inpute is simulated. All expected atmospheric dis-
turbances during flight are silmulated to provide the mest accurate means of predicting the maximum slosh
angles which are to be expected. The effect of this maximum slosh amplitude on loads and control capabflity can
be evaluated, The daiping provided by mechanical baffles —one common method of slosh conirol —is a function
of the amplitude of slosh (sce Appendix A-3), The effect of this nonlinear damping on fluid slosh history during
flight can be analyzed only by a time-varying solution.

The effect of the cumulative flight history upon aerodynamic loadings may also be analyzed in this simulation.
Vehicle initial conditions, angle of attack, angular velocity, and contirol deflection all have an effect on the re-
sponse to acrodynamic disturbances such as wind profile, shear, shear rcversal, and gusts,

With the time-varying simulation a number of tests of performance gquality may be made which are not possible
with fixed-coefficient studlos. Primarily, these studies consist of a complete launch-to-staging (burnout for a
single stage vehicle) simulation to observe the behavior of the vehicle and control system during launch, transi-
tion-iurn off the vertical, and flight through various wind profiles and gusts. The implieations of the instability
in the forward propellant tanks and the amount of damping which must be added to the tank may be cxamined. In
one vehicie, for instance, it was found possibile to allow a slight degree of propellant-mode instability up to
about t = 0,7 Ts (Ts = time of staging) without adding propellant damping baffles. After t = 0.7 Ts, it was found
necossary to add haffles. (A bhaffle iz "added" at a certain time-of ~flight by locating it in the propellant tank
such that the [ree surface of the liquid arrives at the bafile station just shortly before the damping is needed.
Baffle damping is only effective when the haffle is close to the liquid's free surface.)

There are some problem areas where all three control axes must be simulated and the vehicle given six degrees
of rigid-body freedom. Somec of thesc problem areas are:

a. Circular sloshing (swirling propellants), in which the propellant may oscillate in two orthogonal planes with
varying phase and amplitude relations. It should be noted also that propellants tend to slosh in inertial
planes about which the vehicle may roll,

b, Center-of-gravity offsct and product-of-inertia coupling.

c. Coupling through the control system due to cross-talk between control channels or due to poor tracking be-
tween chambers of a multi-engine configuration, Cross-talk may be caused from electrical pickup between
control channels or from unwanted signals "secen" by the sensors (e.g., a rate gyro is sensitive to accelera~
tiona about its output axis).

2.5 LOAD STUDIES

The problem of load determination and transient response Is a necessary part of the flexible~booster autopilot
analysis since the matter of maximum bending moments imposed on the structure is critical to the success of the
booster system being analyzed. An unnecessary increase in the bending moments which the structure must sus-
tain will result in an unnecessary increase in the structural weight. An indication of the maximum angle of at-
tack thal the contro! system must balance will also be evaluated. As the classes of vehicles considered will
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usually be aerodynamically unstable, the rocket engine control moment available must be greater than the aero-
dynamic overturuing moment at the maximum expectad angles of attack and dynamic pressures. Thus, the load
analysis will also lead to a verification that the control moment available is adequate for the task.

The determination of the loads imposed on the structure can be determined in three, progressively refined
studies: 1) rigid body (steady-state), 2) in-flight rigid body, and 3) in-flight elastic body. Each of these methods
will be used at some time during the design study from preliminary to detailed final analysis. The three
methods will be discussed, and the stage of the analysis under which each is applicable will be outlined,

2.5.1 Steady-State Loads. The simplest method is that of rigld body steady-staie load determination. This
method is usually used during early predesign studies to give a rough estimate of the loads which the airframe
structure will be required to carry. The method Is particularly well suited to rapid parametric studies wherein
comparative data is desired on the relative load carrying requirements of several configurations. It is also the
only method which may be used independently of the nature of the flight controi system characteristics, i.e., it
does not make use of an autopilot. Tho major shortcoming of the steady-state analysis is that it requires en-
glneering judgment and exporience to obtain quantitative load data and to make allowances for dynamic overshool
effects,

The method used for steady-state analygis is derived as follows. Assume that the missile has a steady-state
angle of attack. This angle of attack determines the aorodynamic forces and moments (see Figure 2-20),

Figure 2-20. Model Ured for Rigid-Body 'Steady-State' Angle of Attack

Let

nose nose
ac. /u aC, Ja
Fa=qu % dxandMa =F&,la=qs -Tx-(x~xCG)dx.
tail tail

The control force required to trim the acrodynamic moment is then determined:*
2 Mg 0=M,a 1 Tol sin 6. 2-10)

The equation for the summation of lateral forces can be written:*

X v, =Fya - T, sin 4. (2-17)

* Fquations 2-16, 2-17 were written for one control force oniy. If more than one control or propulsive force is
pregent they must all be included in moment and {orce equations.
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This force causes a lateral acceleration of the vehiclu as shown below:

nose
¥y,
7 = Eﬁﬁ where MT = m {x) dx and m (x) is the mass per unit length,
T tail
The bending moment at any point along the vehicle can now be determined by summing momenta from the nose,
Thus, the moment at station X, equals:

nose nose
oC

73 / dg + f N /o d
)Y R/ - 3 [ES— -
I ) B Y L M 2
n n
Here the auxiliary variable, &, has been introduced for convenience. The preceding equation was written as an
integrai equation. The solutlon will usually be accomplished by a summation of discrete elements in the actual

analysis.

The integral in the preceding equation gives the value of the bending moment at any station aiong the vehicle. It
may be seen that the loading is proportional to both angle of attack and dynamic pressure, q. The required dy-
namic pressure can be obtained from trajectory data. The preliminary trajectories are usually sufficiently ac-
curate for determining this value of "q" to be used for load calculations,

The maximum bending moment for an actual vehicle will occur at some general position along the missile. Thus,
the bending moment must be calculated at various selected points and an interpolation made. This can be rep-
resented by a graph showing hending moment per anit angle of attack, per unit q versus atation number., Figure
2-21 gives a typical curve of bending moment for a steady state o along the vehicle length at a particular time
and dynamic pressure, A number of such plots will have to be made for different times of flight. The use of
these curves requires csiimates of flight conditions (angle of attack and dynamic pressurej at various times of
flight so that the absolute magnitude of the bending moinent at each section of the booster can be determined.

",

a M
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VEHICLE LOCATIO‘N

<

Figure 2-21. Bending Moment for Steady -State Angle of Attack

The maximum angle of attack to be considered in load determination presents a more serious problem, The
various contributions to the totad angle of atluck must be assayed and thelr sum used to obtain the vehicle load-
ing. ¥irst, the angle of attack history duc to the reasonable steady wind profile (shear reversal peak not in-
cluded) is obtained from trajectory caleulations which are made with an instantaneously bhalancing control engine

(no autopilot required us yet),

in addition to the load imposced on the structure by the wind profite, short-period wind disturbances such as
shour layers and gusts also affect loads.  These disturbances exist mostly at altitudes below 100, 000 feet, which
is also the region of high dynamic pressure., Allowance for thesc loads must also be included instructural capa-
. \%
bility. Ap estimate ol the angle of attack accompanying o sharp-adged st iz readily had ax ugust:‘mrl ‘T,g",

-where Vg is the gust velucily component normalf Lo the vehicle, whose velocity is V. A further empirical
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allowance must be made at this point for an anticipated dynamic gust overshoot—ranging from 20 te 50 percent
on typical aerodynamically unstable boost vehicles —which occurs because of the finite time of resrounse of actual
control systems.

The total air load then consists of that due io the steady wind profile, plus that duc cithor to a gust or to shear
layers (Shear reversal peak), The last two events appear to be mutually exclusive and rarely will cccur si-
multaneously. The gust usually imposes the greatest load upon the system; however, the loading imposed by
both gust and reversal should be evaluated.

The wind profile (horizontal wind velocity versus altitude) veiocities and wind shear and gust velocities have a
probability value associated with them. These probability data are available in the literature (Refs. 4, 5, and
14 in the Bibilography). Figures 2-22, 2-23, and 2-24 give typlcal wind profiles and wind shear and gust inten-
sity data. These curves are representative of the most severe conditions existing over the North American

140 4 4 7 )

120 / /

~N

/ / ¢ REFERS TO TIE PROBABILITY OF
& 190 OCCURRENCE, A3¢ VALUE OCCURRING |
a2 3/1000 OF THE TIME DURING THE
: WINTER MONTHS, THE PROBABLE
o a0 VELGCITY FOR WINDS ALOFT DECREASES
2 " \ \ DURING THE REMAINDER OF THE YEAR,
4 |
2 POSSIBLE ALTITUDE
2 WIND PROFILE \: TRANSLATION OF WIND
B N PROFILE PEAK
= MEAN ltq 3 1
(=] —
E \ T===——15,000 FT
[ ~ )
~ 40 ] 1
; D =i
(é

'/A—‘/\
///"

[r—p— 25,000 FT
==

/ ZSHEAR REVERSAL PEAK
i ||

\

0 40 50 120 160 200 240 280 320

WIND SPEED (FEET/SECOND)

Figure 2-22. Maximum Predicted Wind Velocity Over the North American Continent

Continent af any time during the year. Less severc criteria can usually be chosen if a particular location and
direction are known; algo, reductions cun sometimes be made if it is known that the vehicle will fly during a
particuiar time of the year,

A detailed statistical analysis of the cffect on vehicle loads of winds aloft is being performed by Hobbs (Refer-
ence 14). The initial results of this study indicate that the loads which would be obtained using the methods out-
lined in this section are non-conservative for vehicles smaller thun an Atlas (actual loads could be slightly in
excess of predicted loads). There exists some doubt, however, as to the accuracy of the methods used in the
reduction of the balloon-sounding data which was used for these studies. Furiher studiee hnve indicated that the
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wind loads as predicted in Reference 14 are too severe and that the method explained in this section will givo as
accurate & result as any discrete method. The further studiea also indicate that for vehicles of Atlas-siza, the
loads predicted using the methods of this section will be conservative.

2.5.2 In-Flight Rigid-Body Bending Moment. The design of the autopilot cannot be made without giving attention
to the loads imposed on the air-frame by the environment and the manner in which they are affected by the
control-gystem response. In this next, more elaborate loads study an active control system is simulated, so
that dynamic response of the vehiclie may be observed, The equations of motion of the vehicle with autopilot are
written as usual. Equations comparable to those of Subaection 2. 5.1 (but including angular acceleration effects)
are u1iso added to yield tho bonding moments at various siations us linear functions of two [light parameters:

BM_ =BM; (6) +BM, (@)

where the coefficients BMdn and BMa.‘ aro functions of x along the vehicle body and are also functions of flight

time, as outlined below:

Te X ] %n 2 ) xn
BMGn_VT M G mx - g BM G )T (o Xeg) BM G o)
BM_ = 3 (C/ s- % M Yo

oy & On/e G xS T Mg ) M

Xn 2 Xn
“Hy ‘? My %) -0y B - %) {-: Mg -

The steady-state bending moment can be obtaincd directly from the simulation used. The next step is to analyze
the effect of the autopilot on loads. A curve of maximum bending moment for a gust or shear input may be plot-

ted for various values of control system gain (K A A typical piot of the results for an acrodynamically unstable
vehicle is given in Figure 2-25. i

BM(a +5)

(6)

™

BENDING MOMENT (BM)
UNSTAB.LE

UNBALANCED MOMENT PRODUCED BY WIND

|
I
MEL‘_:: L T—— . BM(&)
I
]

0 — —» INCREASING

CONTROL GAIN
(DEGREES ENGINE MCTION PER DEGREE
ATTITUDE ERRGR)

Figure 2-25. Steady State Rigid-Body Bending Moment for Increasiog Autopilot Gains
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The loads in Figure 2-25 have a simple physical oxplanation. The bonding moment due to aerodynamics (o) can
be thought of as going to infinity at low values of K, , since the vohicle, heing unstable, will tumble. At inter-
mediate gains the control syatem will allow some overshoot due to control sluggishness. This overshoot will go
to zero at an infinitely high gain, thus reducing the hending moment due to aerodynamics to that of the steady-~
state value for high values of Ky . For the bending moment due to the rocket engine (6) the converse is true for
high values of Kp. The higher the gain ihe farther the enginc will gimbal for the eame attitude disturbance.
Thus, for increasing valuos of K, the bending moment due to the rocket engine (6) will increase. Figure 2-25
also shows a curve of the total hending moment, BM(x + 6). The optimum point for gain, as far as loads are
concerned, can be taken from this minimum point on the curve,

2.5.3 In-Flight Elastic Vehicle Bonding Moment, The preceding rigid-vehicle study may be sufficiently accu-
rate for many applications. The Incresse in loading due lo elustic defiections is small for the types of vehicles
presently flown. This increase is only significant under gust or shear reversal responses and will run from a
few percent on i presont-day ICBM to five to 10 percent on multistage satellite vehicles having a large slender~
ness ratio, When an analvsis of the elastic flexing on the flexible hooster is considered important, the following

method can be used to evaluate this loading,

In calculating the loads due to clastic motion, an anaiysis technique which can determine transient response must
be used. This restriction will usually imply that a large digital or analog computer simulation must be used.
This simulation would use a flow diagram similar to that of Figure 2~18.

Once the transicnt response to a particular input has been determined, there are two methods which may be used
to calculate the bending moment. The first of these is the mode-displacement method and the second is the
mode~acceleration method,

In the mode-displacement method the following equation is used for calculation of the transient bending moment
at station "Xn":

2 4
n
BMxn =1 \ (~l¢ ¢‘, qi
Ko7 dxg
2 (1) ’
where n = number of modeg used and 3 is the normalized curvature of the i"h mode at station xn.
dx

n

The mode-deflection method is theoretically correct for caleulation of the bending smoment only if all modes are
used. In practice, the answer is obtained by using no more than {ive modes, with three being a more repre-
sentative number, For this Hmited number of modes the mode displacement method can introduce certain in-
accuracies into the result. These inaccuracies arise because the flexible booster will, in general, have a highly
discontinuous mass distribution. The modal solution lends to smooth out these discontinuities and can give re-
sults which are substantially in error in certain arcas. To give a more accurate answer with fewer modes the
mede acceieration method is usually used.

In the mode-acceleration imethod the transient bending moment at station "x )" is given by a siaiic summation of
monants. working from the nose of the vehicle buck to a given station. The eyuations follow:

[ (i) «» AN
- ij Q}i_:qsxn qQ ! (xj - XCG) O ¢ /,> +

b -
¥ Xn qi

a8 (CN/“).V.j ‘(ugust o)t 2|: (I(i

N I
VAR AL R A Ry 0]

i

- + Y -
(xj xn) }f KE {1 (xl xn)

where j 7 ndex of stations forward of X,
& index of propellant sioshing tank
i = modal index
n = stalion index.
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Here Z is the lateral acceieration of tize center of gravity of the reduced mass (with sloshing propellants re-
moved) of the vehicle under the action of air loads, thrust vector forces, and sloshing propellant forces.

The mode-acceleration method will give more accurate results than the mode-displacement method, in that it
will converge to the desired value with fewer modes. As the elastic contribution is usually small compared to
that from the rigid hody and rigid body overshoot, the use of one mude by the mode acceleration method is usu-
ally sufficiently accurate {or the determination of bending moments on the structure.

In addition to the bending moment it may be necessary to detormine the lateral acceleration at various stations
on the missile. This acceleration environment is needed for design of equipmont and mountings, and may ba
computed using the same simulation used in determination of bending moments. The transient lateral acceler-
ation at station Xn is given by the equation:

g o-05 eu - .
Z. ['ca &, - Xcq) © ): ¢

This discussion completes the Information usually obtained during transient analysis of the flexible hooster.
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SECTION 3

SYSTEM EQUATIONS OF MOTION




Symbol

3

N/

(CN/u')xn

N/B
Elxn

Fx,y,z

ax

* Non-dimensional

SYMBOLS USED IN SECTION 3

aerodynamic drag coefficient

linearized gimbal friction

flexibility influence coefficient for an unrestrained beam

agerodynamic normal force coefficient per unit angle of attack in pitch planc

localacrodynamics normal force coefficient per unil angle of attack at
station n along the longitudinal axis

aerodynamic normal force coefficient per unit angle of attack in yaw plane
flexural rigidity at statlon n along the longitudinal axis

total force acting aiong the x, y or z axis

acceleration due to gravity

reduced moment of inertia (sec Appendix A1-5)

moment of inertia (pitch or yaw) of km engine about its own ¢.g.

th

spring constant for sloghing mass in £ propellant sloghing tank

sloshing propellant index
sl

moment arm of sloshing mass in £™" propellant gloshing tank

moment arm of kt'h rocket engine measured from its gimbal point
to its center of gravity

moments about the x,y or 2 axis respectively

running mass along the longitudinal axis

gencralized mass of the i"h mode

sloshing moment coefficient for the !Zth propellant sloshing tank
sloshing mass (1st mode) of lth propeilant sloshing tank
"lumped" mass at station n

reduced vehicle mass

mass of Kkth rocket engine

total mass of vehicle
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Units
N.D.*
1b-ft-sec/rad
ft/1h

1/rad

i/rad

1/rad
b ft?
1bs
tt/sec?
slug ft?
slug %3
1bs/ft
N.D.

ft

ft

ft ibs
slugs/ft
slugs
slug ft
slugs
slugs
slugs
slugs

glugs
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SYMBOLS USED IN SECTION 3 (Continued)

Symbol Definition

P aerodynamic force parameter, = qS

P,Q,R angular roiation rates about the x,y, and z axis respectively

q aerodynamic pressure {y = oV%/2)

q1 generalized displacement of 1th mode

QU generalized force acting on the 1th modo

S or vehicle reforence area

SpeF

t time

T thrust

U,V,W velocity along the x, y, and 2 axis respectively

un(t) "lumped" displacement as a function of timo

ux,t) transversc displacement of longitudinal axis

Wn(t) "lumped" loading as a function of timc

wix,t) transverse loading along longlindinal axis

X Va2 vehicle coordinate gystem

X,Y,Z component forces along x, y, and z axis

Y . lateral displacement of sloshing mass in ith sloshing propeliant tank
(spring mass analogy)

«,f aerodynamic angles of attack in the pitch and yaw planes respectively

aT vehicle longitudinal acceleration

o local angle of attack at station n along the longitudinal axis

T sloshing pendulum angle (pendulum analegy)

[ angle between rocket engine thrust vector and vehicle elastic axis at
gimbal polint; includes elastic deformation of engine position scrvo
and actuation within the servo itself

61'( angle between thrust vector and elastic mode at the k"h rocket engine
CG due to actuation within the positioning servo

ti damping ratio for the it mode

Cl damping ratio for the lth sloshing propellant tank

S,¢,¢ rotation angles defined in Figure 3-5

P radius of gyration

Units

lbs
rad/sec
s/t
ft

ibs

ft

Be2
1be
ft/sec
ft

ft

ibs
1bs/ft
ft

Ibs

ft

rud
/ sect
rad
rad

rad

rad

rad

ft




Symbol

O

X

o

Yy

SYMBOLS USED IN SECTICN 3 (Centinued)
Definition

normalized slope of the ith node along the longitudinal axis
normalized slope of the jth mode along the longitudinal axis

normalized rigid body plunging mode slope at station u alung the
longitudinal axis

normalized pitching mode slope at station n along tho longitudinal axis

normalized slope for the ith mode at station T {rocket engine gimbal
point) along the longitudinal axis

normalized deflection of the ith mode at station e (rocket engine center
of gravity) along the longitudinal axis for the kth engline

normalized deflection of the l"h mode at station n along the longitudinal axis

normalized deflection of the j"h mode at etation n along the longitudinal uxis

uormalized deflection of the rigid body plunging mode at station n
along the longitudinal axis

normalized deflection of the pitching mode at station n along the
longitudinal axis

normalized deflection of the ith mode ai station T {rocket on

gimbal point) along the longitudinal axis
natural frequency of the ith mode

natural frequency of slosh for the Jlth propellant sloshing tank

Aerodynamic Coefficients (N.D.)

v Gy Gy Sysey,
] C 1] s
CN/a‘ z/P Cz/Q <, log
.«
“o “e Cyr ey
c

. C
m/a’ CIu/P' m/Q' Cm/ﬁ e

C C C

n/p’ n/P’ n/R’ Cn/d,l,
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Units

rad/ft

rad/ft

rad/ft

N.D,

rad/ft

ft/ft

ft/ft

ft/ft

ft/ft

ft/rad

ft/8t

1/sec

1/sec

NOTE: These coefficients are defined to represent the acrodynamic forces or moments per unit value of a vari-
able producing the effect. Thus, C'//Q represents {in nondimensional form) the foree in the z-direction per
wnit angular pitching rate, Q. ’

Matrix Notation

‘column matrix

1‘ diagonal matrix

]squarc matrix
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3.1 BASIC PRINCIPLISS

Certain characteristics of the ballistic booster distinguish this class of vehicle from the lift-sustained vehicle.
The ballistic booster is bullt with a high degree of structural (and honce inertial) symmetry, This symmetry in
many cases goes beyond the plane symmetry of the lifting vehicle, extending almost to pure axial symmetry.
The conirol axes nearly coincide with the principal inertial axes. Thus, Inertlal coupling cficcts between mo-
tions about the control axes arc small. The external configuration is nearly symmetric as it affects aerody-
namic properties, leading to negligible acrodynamic cross effects (lateral-directional coupling). ‘The control
configuration will rarely employ active aerodynamic surfaces, but will depend primarily upon reaction-jet con-
trol, For those configurations which depend upon 4 degree of aerodynamic contre! in the region of high dynamic
pressure, the vehicle configuration 18 still such as to result in very small aerodynamic cross-coupling effects
belwoeen control channols,

The three~axes coupled equations of motion of the baliistic booster are given in Subsection 3.5, where these
coupiing effects are discussed further. It is sufficient at this point of development to say that the cross-couplings
ure minor enough for this class of vchicle to permit very extensive and detailed control analyses of plane mo-
tions; these analyses are highly satisfuctory for purposes of control system design.

It should be stated furthor that such coupling cffects hetween vehicle axes as do exist are only of significance for
studies of the lower frequency (rigid-body) modes and are of lesser importance in studylng closed-loop servo-
elastic stability of the control system. Since the main thes’s of this report is the analysis of elastic autopilot
coupling effects, the greatest emphasis is placed here on the equations for plane motinn of 4 flexible booster.
These planc motion analyses are applicable to cither the pitch-, yaw-, or roll-control planes but for uniformity
of presentation are illustrated here for the pitch planc alone. In general, the roll control system for this class
of vehicle & not a high performance control loop, and hence, clastic coupling problems in roll will rarely occur,
Thus, the pitch and yaw planes are the control planes of greatest interest and are those to which the following
analysis is pointed.

For purposes of analysis the mathematical model of the missile system under consideration in this study is
basically the: same for all vehicles, regirdless of the external configuration of the missile system. Although one
may have configurations rangzing in size from a sounding rocket to a large space probe with tandem tanks, par-
allel tanks, winged payloads, eic.; the main body of ihe missile sii
loaded beam in all cases. It may b(, necessary to represent the missile as a split, ""branch" beam for certain
configurations; but the modal solutions of all the configurations will be of identical form, yielding modal fre-
quencies, masses, and mode shapes for all portions of the beam,

turc may Lo represcnted adequately as a

Two approachkes to writing the equations of motion may be taken. If the system is looked upon as a continuous
medium having an infinite number of degrees of freedom, one is led to a differential equation representation of
the preblem.  On the other hand one may take a lumped paramcter model leading to a finite (but large) number of
degrees of freedom, the equations being written most conveniently in matrix form.

In either case, tv reduce the problem to a reasonable number of degrees of freedom, a modal solution approach
is employed. 1In ihis approach the system's defiected shape under forced motion is represented by the super-
position of a restricted number of selected functional shapes (modes). The shapes of these modes are chosen
such that, in proper combination, onc may expect to represent accurately the system's deflected form. For
reasons of computational expediency (and for their physical appeal) one often uses orthogonal modes as computed
for the free vibrations of the sysiem. These "normal modes' lead to equations having no inertial or elastic
coupling terms. Lacking a set of truly orthogonal modes, the analyst may employ completely arbitrary mode
shapes ("assumed modes"), or as a better compromise, some mode shapes computed in the presence of certain
artificial constraints which are applied for convenience (artificially uncoupled modes™). These modes are ex-
plained in the following paragraphs.

Modes which are computed for the complete system with no artificial constraints applied are called "normal
modes". In the resulting equations of motion for the system, these modes are completely uncoupled elastically
and inertially. Howcver, in the calculation of these modes the analyst accounts for all of the physical coupling
between elements of the system, Ilence, historically {(and unfortunately), these modes came to be known as
eoupled modes'.

Modes which are computed for the system in the presence of some artificial mathematical ccastraints {applied
usually for computational ease) are called "artificially uncoupled modes™. For example, the missile body -bending

N
il
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modes are often computed with the sloshing portion of the liquid propellants removed, Correspondingly, the
liquid propellant mode is computed for a rigid (fixed) tank. These two modes, computed in this artificlally un-
coupled manner, are then coupled together anulytically in writing the equations of motion. They will therefore
have elastic and inertial coupling terms between them in the equations of motion.

Modes are sometimes used which have assumed, arbiirary shupes; these modes will have the greatest elastic
and inertial coupling in the equations of motica. Such functions may be used If analytic evaluations of certain
elements in the equations (most often integral torms) are greatly expedited by the use of a series of closed form
(standard) functions (polynomials, harmonic functions, etc.). There may also be reason to suspect {on physical
grounds) that some such function may actually better describe the system's deflected shape than do the normal
modes, This might be the case on an aeroslastic calculation for a thin lifting surface where it is felt that aero-
dynamic forces, rather than inertial forces, arc dominant in distorting the wing. Since for the ballistic hooster
it is clear that elastic, inertial, and propulsive forcos are dominant, use of arbitrary modes i{s seldom made;
the system's doflected shape is unquestionably hetter described by normal modes or (second best) by ceriain ar-
tificially uncoupled modes.

In the following paragraphs, equations of motion for the vehicle treated as a loaded elastic beam are derived by
both the differential equation and lumped parameter approaches. In cach case one is led to a modal formulation
of the problem of forced motion. Finaliy, a rather complote sot of equations of forced motion for a flexible
booster with autopilot is written in a format suitable for use with either orthogonal normal modes or with certain
classes of artificially uncoupled modes.

3.2 DIFFERENTIAL EQUATION PROBLEM FORMULATION
The plane eiastic motion of the continuous system of Figure 3-1 is described by the partial differential equations
for forced small amplitude vibrations of a "free-free' (floating) beam. *

d 9%

2, o2
m ("’a_t‘; t o [1-:1 (x) ax:]=w(x,t) (3-1)

ugx, t)

INERTIAL REFERENCE
Figure 3-1. Flastic Beam Coordinates of a Continuous System

3.2.1 Frec Vibrations of System. The solution to the free vibration problem (w = o) for this beam is obtained
by the mcthod of separation of variables, i.e., by assuming a solution of the form:

u(x,t) ~Ux) T (1)

The spatial functions U(x) arc found (o be the cystein's o ! wiodes of vibration (eigenfunctions) which are de-
pendent upon the geometric boundary conditions (method of support or constraint of the beam). Associated with
each of these modes is a characteristic parameter (eigenvalue), «@;, its naiural frequency.  The time functions,
T{t, are found to be harmonie functions of the circular frequency wy.

* Shear deformation displacements and rotary inertial terms are omitted here for simplicity, see pp. 67, 68 of
Reference 6. Their inclusion in the general solution is discussed later,
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An infinite series of these functions is necessary to satisfy the general boundary conditions in time (initial con-
ditions) and to describe thereby the time history of free vibratory motion, Thus, one writes:

1) = +
u(x,t) 1221 A1 ain wlt Bi cos wit ¢(x)

where the ¢2‘))'s are the normal modes. In compating the coefficients, A‘ and Bi' from the given initial condi-

tions, advantage is taken of the modes' property of welghted orthogonality, viz.:

o ik
My oq=y

Note that the absolute magnitude of7rZ1 as defined here 18 dependent upon the scale selected for the mode shapes,

L
[ moo o o - (3-2)

(x) "(x)

¢2‘)) , since these are functions giving only relative amplitudes. Selecting a particular scale for these is the pro-

cess known as normalizing.

3.2.2 Forced Motions of System. A Fourier series of normal mode functions is used to represent the deflection:

wwh = 2 g o 3-3)
’ =1 1 (x)

where the qy(t)'s are functions of time to be determined and are called normal coordinates. If Equaiion 3-3 is
i
substituted into Equation 3-1 and the result {s multiplied by d{x)) and integrated over the length of the beam, one

obtains a series of simultancous equations of the following generic form:
— (3-4)
advantage has been taken of the medal orthagonality proparty, and we have defined:
v 0
Q = { Wi, - g dx

as the generalized force acting on the #th mode. The generalized mass of this mode is given by:

t o |2
»L i f m (x) [¢(x) dx.
0

Also, the natural frequency is defined by:

(1)

e g a2l 19 ™

wi=z [ L [ripy) —&L ] ax.
i m P4 dx2 dax2

No inertial or elastic coupling terms appear between the coordinates. It follows that the normal coordinates
(modes) couple only through any dependence of the forcing function, w(x,t) upon the motions themselves, i.e., if
w - wix, {, 4, u). The "external” forcing functions used in an elastic missile simuiation ave:

a, Aerodynamic Forces

b, Rocket Engine Thrust Forces

¢. Engine Contrui-Servo Incrtial Forces

«d. Propellant Sloshing Forces

{
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Quagi~static aerodynamics are most common'y used, employing local 1ift coefficlents along the body and local
angles of attack induced by body deflectione and deflection rates. Both in-phase and damping terms are thereby
generated, Methodn which can be used to approximate the aerodynamic forces are given i Appendix A5,

For an unwinged ballistic booster the aerodynamic forces (which do depend upon the diepiacements) are small in
comparison to the elastic, inertial, and propulsive forces. These, therefore, provide negiigible modal coupling.
The other significant source of coupling is through the control forces (autopilot) which respond to sensed mo-
tions. These modal frequencies are, however, always (by inteut) well above the control system bandwidth; hence,
their signals receive great atienuation. Consequently, it is only harmonic or quasi~harmonic motion at or near
the rescnant frequency of a given mode which can achieve sufficlent magnification to be sustained by control
forces (and then oniy if the phase is correct). The control system then provides negligible elastic modal coupling.

In practical applications a beam will pnssess some dissipative forces which provide damping. This dissipative
energy is usually small in comparisoi to the elastic and kinetic energles; thus, the lower eigenvalues and eigsn-
functions are negligibly affected. These coffecis aro discussed in detail in Appendix C3. This dissipative force
can be approximated by adding a small viscous damping term to Equation (3-4):

- Qi)

. . 2
+ + =W
Gt BT @ T

1
This damping does not affect the calculations of the normal modes nor does it couple them together.

Values of £ have been determined by experiment. The use of an cquivalent viscous damping term in piace of a
combination of structural damping, coulomb damping, and true viscous offectz is acceptable because of its small
magnitude (1/4 to 2 perceni of vrilical) and because of the near-harmonic nature of the motion being investigated
for stability. Typical curves of damping for various tank configurations and propellant leading conditions are
given in Section 6.

Finally, we note that the missile in free flight is an unrestrained, "floating" beam. For such a case it is con-
venient to introduce two rigid body modes: translation and rotation of the principal inertial axis through the cen-
ter of mass. These modes have zero frequency. The clastic deflections in this case become simply the deflec-

ivr i nardo a3 bonmhediiin To scseat el P P L P T ey e | .
tiong measured relative to this principal axls, This technigue s employed specifically in lhe nexl subseution.

3.3 MATRIX EQUATION PROBLEM FORMULATION

Ballistic booster vehicles are sufficienily complex in their physical makeup that a lumped-parameter idcaliza-
tion of the system often has more inluitive appeal than a continuous media model. In a lumped-parameter sys-
tem the analyst concentrates attenlion on those aspects of the system which are felt to be dominant (major mass-
es, major structurai members), while scconcary features are "lumped in" to account for thein approximately.
Figure 3-2 shows a lumped-parameter model of a loaded clastic line. The deformed shape of the system is

7 W“(t)

\ln(t)

INERTIAL REFERENCE

Figure 3-2. Lumped-Parameter Modcl of a Loaded Elastic Line
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given by a finite number of coordinates. Klastic propertics are also expressed in iuriped fashion as a set of

flexibility influence coeffictents, Cp,,, giving the elastic deflection at point m per unit force at point n*. The
displacements, up(t), ar~ measured relative to an inertial reference. Three equations of motion are written

(small displacements assumed):

(Summing forces vertically)

M i = ZzW (3-5)
n o non n N

{Summing moments about the coordinate origin}

EM x i ® X W x (3-6)
n nnn i nn

(Elasiic deflection)

0 ve
Mo .ore, fw o-m ou . 3-7

u -u - x
n ©) n 0% m m m m m

0

Here u(o) and -{3 (0} are the deflection and slope of ihe elastica at the srigin of x. In this case the flexibility in-
E clasuld

fluence cocfficients are to be thought of as giving eilastic deflections relative to this reference line in the beam.

It is found convenient in further analytic manipulations to set the crigin of x coincident with the system mass cen-~

ter, f.e., M“ X, = 0. This arrangement is assumed in the following discussion.

3.3.1 Free Vibrations. with w“ =0, Equation 3-7 may be rewritten, using (3-5) and (3-6), to yield:¥*

c M i (3-8)
nm m m

=

I

1
=

n V

where the C“m’s are theflexibility influence coefficients for the unrestrained (floating) beam. ***  Written in matrix

form, for all n mass points in harmonic motion, this becomes:

‘unl :wz lénm] ~P’Iml l“m" (3-9)

Equation (3-9) is in a form suitable for solution for the orthogonal clastic mades (eigenvectors, ¢(l)) and their
natural frequencies (elgenvalues, wi). The rigid-hody displacements have been "swept out" through the use of
Equations (3-5) and (3-6) in deriving Equation (3-9); hence, only clastic modes (w; # 0) are obtained from kqua-
tion (3-9). These modes are orthogonal with weighied orihogoualiity (cf. Equation 3-2):

[ B

x oW ¢'(l“ M, dx =
' i1

n n

It is also true that these modes are orthogonal with any rigid-body displacements (translation and rotation), as
may be shown using Fquations (3-5) and (3-G) with Wn = 0,

2.3.2 Forced Vibrations. To treat the forced vibration case it is found mest expeditious to employ the free vi-
bration normal orthogonal modes to describe the total system displacement as:

S 'd»f]" (3-10)

*Deflection and foree here are defined in the generai s ¢, {.¢., rotations and couples are included. These de-
flections are all measured relative to an arbitrary reference station in the beam. The effects of shear deforma-
tion are conveniently iniroduced into the preblem at this point by accounting for thew in the structural calculation
of the Cyp, (8ee Appendix Ad).

** Sce Reference 7, pp. 173-180,

% See also Reference 6, Article 5-7 where this proof is carvried out in Integral equation form.
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i R
Here the qi's are functions of time called norma! courdinates, The ¢,(‘)'s arc the orthogonal normal modes (spa-

tial functions) and are understood now to include the rigid-body modes of translation of the center of gravity and
rotation of the principal centroidal axes. Thus:

¢f‘translation) =1, =0

W
(rotation)
=X, w, =0,
¢1\ *n' “n
For intuitive appeal, one often writes z and O for the normal coordinates of these modes. Note that the rigid-
body velocity, z , in this case is the velocity with respect Lo a [ixad ceordinate system; i.e., this is nol a body -

axes coordinate system (ef . Appendix C3).

If Lquation 3-8 is substituted into Equations 3-5, 3-6, and 3-7, the equations of motion uncouple to yield the fol-
lowing sct: ’

7 EM - 2w
n n n n

6 *Mx?= »Wwx (3-11)
n nn n non

. 2

+ = Qi / ’Z
q. wi (|i ML/ 7 i
where

. . (i, ?
7,(,iﬁ z Mn(d,n)

n

0i- x wel,
n nn

Equations 3-11 arc the genceral set for the motions of the normal coordinates under the action of external forces,
The only coupling between these orthogonal modes can ceeur through a dependency of the forces, Wy, upon the
motions themselves. The general form of equation may be compared with that of Fqguation 3-4, derived for the
continuous media model: it is identical,

The observations relative to the properties of normal modes, given in this and the last subsections, form the
basis for their usc in writing the detailed system equation 1o follow,

3.4 PLANE MOTION OF A FLEXIBLE VRUICLE - GENERAL EQUATIONS

In deriving the cquations of motion of the missile airframe and propellant in normal coordinates we will use the
mathernatical model shown in Figure 3-3. The missile is partitioned into the follewing clements:

n cencentraled masses, cuch free fo translate and rotate,

m rockel engine masses attached through torsional springs and,

s concentrited sloshing masses attached to the clastic axis of the beam by springs.
Moments (pure couples) due to sloshing propellants are also applied at the bottom of each liquid tank, The pro-
pellant sloshing massces, attachiment springs, attachment locations, and other propellant parameters are dic-
tated by the spring-mass anitlogy of sloshing propeliuants (see Appendix A, subsection A3),
The missile is constrained to motion in a single plane with translational and rotational degrees of freedom. For

small dispiacements (ber ding displacements are always small when compared to the gross dimensions of the
missile} the concentrated body masses and engine ma

es will be assumed to transtate laterally and to rotate,
but not to translate longitudinally.  The sloshing masses are restricted to translation normal to ihe elastic axis

10
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of the missile. The number of degrees of freedom of such a system 1s: 2n + m + 8. As discussed in Appendix
A4, it is often found satisfactory to omit the rotary inerties (and hence rotary degrees of freedom) from the mn-
dal calculations. In this case the number of degrees of freedom reduces to: n+m +5.%

In performing a stability analysis of a missile and its flight control system, there are several appreaches which
may be taken to describe the systom's motion:

a. The orthogonal modes of the entire missile structure with propellanis may be calculated; this means including
tho rocket engines and the sloshing propellants in the modal calculations, This approach results in a mini-
mum of coupling between the modes, such coupling only arising through the dependency of the aerodynamic
forces and controi forces (rocket engine deflections) upon the system's motions, Of these forces the aero-
dynamic group are small for an unwinged bhooster.

b. ‘The artificially uncoupled bending and rigid body modes may be calculated by excluding the sloshing portion
of tho propellants in the modal caleulations. The uncoupled sloshing modes of each Individual tank will have
been calculated previously by means of a hydrodynamic solution, in order that one may know which portion
of the propellant is considered to be sloshing. In this case the bending modes will be coupled by means of
the flight control systom, aerodynamics, and the various sloshing propellant modes.

c¢. ‘The artificially uncoupled hending, rigid-body, uud sloshing modes may first be coupled together by calculat-
ing orthogonal modes of the system fromthe free-vibration equations of motion. These modes will then be rea-
sonable approximations to tho orthogonal normal modes of the first approach. They maythenbetreated as in
the first approach by coupling them together with the flight control system and the aerodynamics of the missile.

In the study of bending stability, in the majority of cases the use of artifically uncoupled modes (uncoupled in a
prescribed manner) will prove as satisfactory as the usc of orthogonal system modes. As will be shown later in
Subsections 2 and 3 of Scetion 4, the rigid-body modes, sleshing modes, and the bending modes (other than the
bending mode being investigated) may be omitted in the analysis for the majority of cases. In the cascs where
these other modes may be omitted, a comparison of the orthogonal system modes with the artifically uncoupled
bending modes will show that there is a negligible difference between the bending mode properties (mode, shape,
generalized mass. and frequency) and the corresponding orthogonal mode properties.

When the artifically uncoupled bending, sloshing, and rigid-body control frequencies are in the vicinity of one
another, all of those modes in that viciaity will most likely have 1o Le included in the stability analysis, Here
the use of orthogonal modes, either approximate or cxact, will be easier since they will not coupie with one
another as strongly as the artifically uncoupled modes. This lower coupling is evidenced by the fact that there
will be an appreciably larger frequency scepiaration between all of the orthogonal modes concerned. This separa-
tion allows one to treat some of those modes, if not ali, exclusive of the others.

It follows from the previous discussion that if a complete stability analysis of the missile (with the control sys-
tem) is to be conducted, i.e., bending, rigid-body, and sloshing stability, the first approach would be easier
than the other two. This is true since the calculation of orthogonal modes by means of a detailed digital com-
puter program will not appreciably increase the input data nor the operating time as compared to calculation of
artifically uncoupled bending modes.

In order that the stability analysis may be made using artifically uncoupled bending, rigid-body, and sloshing
modes, the gencralized equation of motion will be written showing force inputs trom the sloshing propellants,
Also, separite equations of motion will be written for the artifically wncoupled modes of the sloshing propeliants.
If, however, sloshing propellants arce to be included in the misgile modal ealenlations (orthogonal modes) the
generalized equation of motion will remain the same: one simply omits the sloshing terms (¥Y's) and drops the
sloshing equations of motion.

The general equations of motion are to be written using the form of Equations 3-11, To accomplish this it is on-
ly necessary to display the generalized forces acting on each mode. These forces will be discussed briefly at
this point.

* Henceforth the number of degrees of freedom and/or number of modes in the various suramations shown will be
denoted by the symbol r. In theory r could be cqual to the number of degrees of freedem, there being that many
nermal modes; in praciice a far smalier number of modes is used.




WADD TR-61-93
April 1961

3.4.1 Inertial Forces. The equations will be written for artificially uncoupled body modes (rigid and elastic)
and sioshing modes, and for a set of additional degrees of freedom representing the engine thrust chamber's mo-
tions due to action within the positioning servos, The coupling which will arise between these modes will be dis-
played by applying inertia forces (D'Alembert's reversed eifective forces) to each sloshing mass element and to
each rocket engine chamber,

3.4.2 Rocket Engine Forces and Moments, Referring to Figure 3-3, the rocket engine may be scen to be gim-
baled at the engine's iniector head. At the time of writing this technique is the most common one used for thrust-
vector controi of liquid propellant engines. Other thrust-vector control techniques will very likely be idealized
to a model compatible with this one; hence, its gonerality is probably assured.

S
B%
BOTTOM OF ¢t
PROPELLANT TANK
© )
g ~ i 'axn
ENGINE GIMBAL "
_STATION "T® !
0]
$n
Il
PRINCIPAL
AXIS
. 7 0
] INERTIAL
REFERENCE

NOTE: ALL ELASTIC MODAL
DEFLECTIONS ARE
SHOWN AS ¥OR A UNIT
NORMAL COORDINATE
DISPLACEMENT ¢{) 1

/1 DENOTES PARALLEL LINES
Figure 3-3. Schematic Showing General Relations of the Coordinates Used for Eiastic Motion

Since the entire engine is gimbaled instead of just the thrust vector, the gimbaling of the engine will exert iner-
tial forces as well as thrust forces on the missile body. These inertial forces are appreciable, and their lateral
components will occasionally cyual thosc = the thrust forces when the engine is gimbaled sinusoidally. For cur-
rent engines this crossover occurs somewhere between 3-1/2 and 7 cyceles per sccond.  An engine using jei- '
evators or vanes for thrust-vector deflection will exhibit forces similar to those produced by a gimbaled thrust
nozzle,

In addition to the propulsive thrust and chamber inertial forces, there are friction forces exerted at the gimbal
due to relative movement there. These forees are applied to both the missile and the engine, and are a function
of both the modal deflections and the engine perturbation angle.*

*The total angle between the center line of the engine chamber and expansion nozzle and the eiastic axis of the
structure at the gimbal point consists of two parts: a) an angular displacement which is contained within the
mode shape itself (due to the elasticity of the engine's torsional spring mounting as cmployed in the morlal cal-
culaticns) while the servo positioning system is locked, and b) an additional degree of rotational freedom added
to represent the motion accompanying action within the positioning scervo, The latter motion is referred to
throughout as the perturbation angle, (S'k.
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For small angles the lateral propulsive force exerted on the missile at the hinge point of the rocket engine due to

a total engine chamber angular deflection (é'k —}j; z!?(): qj) is:
(4]
P oy
Tk (6k 2]' “xe qj)'

However, we choose to omit thit portion of this component due to the angle between the principal inertial axis and
*he clasiic axis at the gimbal point; i.e., the only work done on the mode by the propulsive forces is assumed to
be that due to the inclination hetween the thrust vector and the clastie axis at the gimbal:

N I ¢
Tk wk ZJ‘ (ch Uxfl‘

)“1])-

This approximation is made to offaet the omission of the work done by longitudinal movement of the thrust vec-
tor; it is duscussed in detail in Appendix C-t.

The bearing friction moment about the hinge point due to gimbaling of the rocket engine is:

= O S N ¢
ka [61( jEll (Jxe u.\:T)qj

Here E:f is the llnearized gimbal friction of a specific frequency and amplitude of oscillation of the engine angle,
with respect fo the elastic axis at the gimbal (see Appendix B4).

3.4.3 Liquid Propellant Sloshing Forces and Mowents, There are two popular mechanical analogies which
duplicate the frequencies, forces, and moments resulting from the hydrodynamic solution of 2 rigid circular
cylindrical tank, undergoing translation and rotation in a "earried acceleration field.'* These analogies are the
pendulum and spring-mass analogies, and they arc discussed in greater detail in Appendix A3 under the heading
Sloshing Basic Data, For our purposes, we choose to use the modificd spring-mass analogy, rince it may be
arranged to place the point of application of the lateral sloshing forces at the center of pressure for the sloshing
fluid, This arrangement is made through the addition of a pure couple to represent moments duc to the hydro-
dynamie foreos on the hottom of the propellant tank (see Appendix A3),

When the sloshing propellant masses are not incorporated within the elastic heam modal ealculation (as is the
case if an artificially uncoupled mode approach is taken) explicit terms must be written for the sloshing masses'
forces and moments reacting on the tank walls,

The lateral force exerted on the missiie due to deflection of the sloshing mass, Mﬂ, is KQYJZ . This force ex-

pression may be used as an alternate to the inertiai forces in coupling the sioshing to the body modes. And, the
moments exerted on the bottom of the tank duc io acceleration and deflection of the sloshing mass, M A0 Are:
L

Mgy ¥g + My, @ Y, .

3.4.4 Aerodynamic Forces and Moments. In this analysis only quasi-steiady-state aerodynamics are considered,
ae discussed in Appendix A5. This mathematical modcl for aerodynamic forces assumes the forces to be directly
proportional to, and in phase with the instantaneous local angle of attack at each body station. The linear aero-
dynamic property is a good approximation, since the angle of attack seldom cxceeds six to eight degrees for this
class of vehicle during the time of flight when dynamic pressuves are siguificant (mid-portion of the boost phasc).
No aerodynamic interaction between stations (downwash effect) occurs. This model is essentially the slender
body-airship theory of Munk and Jones (Reference 9) which presumes two-dimensional flow in planes transverse
to the tiight direction. In preference to using the theoretical local 1ift curve slopes, which are known to be in-
accurate (see Appendix Ab), experimental or at least empirically corrected values are employed.

*A'carried acceleration field" is an acccleration ficld that is fixed with respect to the maneuvering vehicle, In
the case of a booster vehicle the total thrust of the engines is directed along the longitudinal axis and rotates with
the vehicle. The lateral acceleration, due to a thrust vector deflection with respect to the iongitudinal axis, is
accounted for as one of the forcing fuactions of the sloshing propeliants.
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The adequacy of this aerodynamic model for slender, non-lifting bodies at modest angles of atts :k may be as-
sumed a priori for low values of effective frequency of oscillation, since steady-state experimenta: or empirical
1ft distribution data is to be employed. In tho case of the slender-body oscillatory problem the criterion against
which to judge whether or not an oscillatory frequency is "low" is the reduced frequency parameter, k = wl/V,
where 1 is the body length. In general, this parameter should be less than unity for the slender-body hypothesis
to be valid {Reference 9).

For rigid body mode cscillatioas of balllstic boosters the typical range of this parameter is irum 0.1 to 1; hence
one concludes that the quasi-steady aerodynamic model should be satisfactory for this mode. For the higher fre-
quency (elastic) modes the situation is ncither 8o simiple nor so clear. Parameter k for these higher modes may
range from 1.0 to 100, when based upon use of total body length. One can argue that this unit of length is mean-
ingless in this case,* but regardless of selection of a reasonable alternative, the reduced frequency parameter
remains too high to justify completely the use of the quasi-steady model for the elastic modes' aerodynamic force
effects,

No suitalle alternative to the quasi-sicady model for high frequency motions of a slender body is known to exist.
By inference from the properties of non-steady aerodynamics of lifting surfaces one might conclude that the non-
steady effecis are those leading to a reduction in force amplitude and to a modest phase lag. ** Such effects
could be of major importance in the study of sustained oscillations of a system which extracts its energy from
the air, e.g., wing flutter. For the servo-clastic probiem of the unwinged ballistic booster, however, the aero-
dynamic forces play a secondary role and the small phasc shift i8 of little importance. Hence, the quasi-steady
model is still suitable and will be empioyed hercin,

Another phenomenon further complicates the study of the unsteady aerodynamic forces; viz., transonic buffeting.
Thig phenomenon manifests itself in the form of sizable oscillatory pressuves acting on the vehicle during its
passage through the transonic speed region. The nature of the mechanism of this buffeting is obscure; it has
been observed on fixed and oscillating models of a variety of two- and three-dimensional shapes, over a sizable
transonic speed range. The phenomenon is generally attributed to regions of separated flow which appear pro-
minently in the transonic range over biunt bodies. This separiation has heen observed to result in a hysteresis
effect in the aerodynamic cocfficients, such that under certain conditions increased amounts of energy may be
extracted from the airstream.

Much of the model testing work dene in the arca of transonic buffeting is reported only in the classified literature
(e.g., Reference 12), although some earlicr results are more generally disseminated (Reference 13). The phe-
nomenon is highly configuration-dependent and is so little understood that no general treatment of it, either
analytic or semi-empirical, is available, Some statistical design approaches have been made; however, the
application of stationary, random-process analytic methods to an aceelerating vekicle is questionable,

Transonic buffeting is believed to be a problem only on those ballistic hooster configurations having reductions
in diameter {negative "skirt-angle' effects) which require a flow expansion hehind a bulbous forward stage or
"hammerhead payload.’ A configuration with continually increasing stage sizes going aft should experience a
minimum of trouble from this source. Actual flight cxpervience to date of ballistic boosters carrying bulbous
forward stages or payloads has been meager, and the data obtained is inconclusive as regards the presence
and/or significance of the transonic buffeting phenomenon.  Flight experience with vehicles of monotonically in-
creasing diameters has confirmed the absence of any serious effects due to buffeting, for such configurations.

The problem of providing a suitable acrodynamic model for the ballistic booster carrying a lifting surface pay-
load and/or fins is a formidable one, for which no simple general solution is available, Here, downwash and
wing~body interference effects can be significant, Here, toe, the amount of energy which may be extracted from
the air (or, equally, the magnitude of lifting forces) is much greater than that associated with the unwinged
boogter. Fortunately, a larger body of theory and experience is available to be applicd against the problem.

For trcatment of the 1ifting surface problem hercin the following observations are made: the range of reduced
frequencies, k = wh/V, where b is the semichord of a lifting surface attached to a ballistic booster, is usuaily
low if consideration of modal frequencies is restrieted to thosce of the overall vehicle structure (including its

* The law of nuli forward propagation of effects it supersonic speeds certainly makes it questionable,
*+ See for instance a plot of Theodorsen's function C (k) on p. 272 of Reference 6.
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elastic modes). Thus, "local" modes of the lifting surfaces, with their higher uncoupled natural frequencies,
are omitted from vonslderation, The Mach number range in which the aerodynamie forces for the winged hoos-
ter are significant {s usually from 0.4 to 4.0. Hence, the range of the parameter, kM, is not sufficiently high

to justify application of the simple "piston theory" (Reference 11), which applics for kM >> 1. However, since
the range of the lifting surface reduced frequency parameter, k = wh/V, is low, continued use of the quasi-steady
aerodynamic medel for these 1ifting surfaces is reasonable. Moreover, it permiils u unified description of aero-
dynamic forces over the entire vehicle.

Thus, in the following discussion quasi-steady acrodynamics are indicated for ail portions of the vehicle. The
extension of the equations to Incorporate a more scphisticated acrodynamic nwodel (when available) is direct but
is not given herein because of the specialized nature of any such treatment, dependent as it is upon configuration,
Mach range, and expericnce and persoenal taste of the analysts.,

Following the quasi~steady approach the 1lift distribution along the vehicle is obtained, as discussed in Appendix
A5, By integrating the acrodynamic normal force coefficient per unit length, per unit angle of atiack over the
length of the individual partitioned segments of the missile, one obtains a normal force coefficient per unit angle
of atiucik fur each segment, (CN /a)x“ . Applying these coefficients at the centrcid of the partitioned length, one

writes the acrodynamic force at the segment's centroid as the product of the normal force coefficient and angle of
attack of the centrold of the seginent.

The local angle of attack due to the deflection of the r bending and rigid body modes (qj) is (see Figure 3-4):*

%
S L VRN
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AXIS

/ INERTIAL
4 REFERENCE

X

Figure 3-4. Determination of Effective Angle of Attack

*The perturbation angie of the flight path, ¥, is taken as zero, i.e., O o
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This makes the aerodynamic force applied at station Xn cequal to:

)
r ¢xn .} )
p(CN/a)xn il (— v llj " qj

where P = qS_ .
9 ref

No aerodynamic coupie is applied on any beam segment in this model, zince it is assumed that the centroids of

area and pressure coincide.

3.4.5 Internal Dissipative (Damping) Forces. Some of the forces already discussed are velucity-dependent (e. g, ,
certain aerodynamic forces and engire-gimbal-Learing friction torques) and will therefore be dissipative in na-
ture. However, there exist oiher dissipative (dampling) effects duc to material strain hysteresis, coulomb fric-
tion in structural joints, and to viscous propellant action in the tanks.

The nature of all these additional damping cffects is obscure and does not lend itself to anything other than an ap-
proximate empirical ireatment. This treatment represents the gross effect of these scattered dissipative me-
chanisms as an equivalent viscous damping, added to each mode as appropriate, The damping is thus assumed
to produce no coupling between modes. While this mechanization 18 not entirely realistic, it is justified by the
following observations:

a. The actual damping is very low and is found by test to produce little coupling. Thus, nearly pure normal
modes of a system may be excited and the system observed to decay almost harmonically. The indication
given is that velocity-dependent coupling is very small,

b. If cne were to show a velocity~-depondent coupling, the cocfficient would have to be determined experimental-
ly. Since the direct damping coofficiont is itself difficult enough to measure, it is clear that one could hardly
expect to improve the accuracy of a study by introduction of still more suspect data.

The structural damping force is a function of the deflection of the generalized coordinate of the mode but in phase
with the velocity of the generalized coordinate of that mode. To treat this damping as a viscous damping requires
that the mode oscillate in a quasi-harmonic manner. This damping force may then be expressed as a damping
factor, {4, where 2f 1 Wi ('11 is the internal damping force of the ith mode per unit generalized mass.

The fluid propellant damping forces result from the dissipative nature of a viscous fluid undergoing shear. Al-
through there are some approximate methods for caiculating damping forces, these forces are most commonly
arrcived at by experimental testing of the actual tank, in the case of small missiles, and a model tank in the casa
of large missiles. These forces may be represented as a propellant damping factor, ¢ g, in the expression

2 tl w!‘i'l , which is the damping force per unit sloshing mass,

In Appendix C3 it is shown that the rate-of-change-of-mass terms, including jet-damping, are nesgligible for the
class of vehicles considered. Therefore, these terms are assumed to be zero.

3.4.6 Servo Actuation Torques. The engine positioning serve actuation system produces a torque on the engine
chamber, denoted here by TLse"vn' Its elaboration in terms of the scrvo system properties and autopilot com-

mand signals is a specialized study for each such system (see Section 4).

3.4.7 Equations of Motion. By defining a few special symbols concerned with the rigid-body degree of freedom,
the equations of motion of the vehicle body modes may be written in a general form which will include rigid -body
pitching, rigid-body plunging and body bending. Let

a)(:l) =1 and
() _
¢xn xn B xCG
(6)

Here v is the normalized slope of the rigid-body pitching mode at station n along the longitudinal axis of the

) %)
vehicle;qﬁ,(m) is the normalized deflection in this mode. Note that Uz(m) is dimensiciless andd’i&;) lias units of
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ft/radian. The pitching mode normil coordinaie is qe 6 and is dimensionless.* The generalized mass for the
pitching mode becomes:

K ./"“(X) [¢(e) &) ] K ] mex - xp ) s L

Also define

Y (7—') =0
xn

¢
xn

where ¢x(n) is the normalized rigid-body plunging mode deflection at station n.

The generalized mass for this mode is:

n =[ m(.\’)ld)(i) (x) I : dax - j mdx £ M.

[}
1t will be noted that o( )

i and (n ) arc constant along the longitudinal axis of the vehicle since they are pure rota-
X

tion and translation, respectively, of the vehicle's principal axis, behaving as a rigid body.

By use of this choice of symbels the rigid-body mode equations become identical in form with thosce of the clastic
modes. Hence, in this scetion we will denote their normal coordinates as qj‘s, just as for the clastic modes.
Two other elasses of degrees of frecdom are distinet enough in their nature that they will be carried with their
own distinctive symbols: the control deflections of the rocket engines will be denoted by 6] and the translation
of the sloshing masses, by YB .

The modes assumed to deseribe the body shape are orthogonal modes, computed with the rocket engine masses
afixed. Inertial conpling hetwoen the hady mevles
accelerations, &' . To write the cquation of motion of & ‘(, the rocket engine chamber mode, we hegin by sum-
ming forces and torques about that engine’s center of gravity,

i S ine anlic thnmerh thay masvbesliadioa o
¢ the engine then oceurs only through the perhiurbation o

. z R ) I -
T, <1 (B - x i bV, LT
Mea " lo @™ 2 % 9 Thgervo ' Vol

: RS I
XF M, (26 + 2@ -V,
r ®rb §oxe 4y T
where V’[‘ is the transverse shear force acting on the engine (and vehicle) at the gimbal point, due to the engine's

transverse acccleration; Ty is the gimbal friction torque: and T is the torque generated by the servo ac~
r ! Lgervo -

tuation device. If one eliminates V.p from the above, the general equation for the rocket engine is obtained as
shown below,

In rases where the sloshing liguid elements have been included in the calculation of the body modes, the slosh
displacements are given within the modal description.  The slosh modes are then orthogonal to the body modes
and the sloshing terms ot Eauation 3-12 may he omitted; this includes dropping the tank bottom couples
(M:Q(XTYE) and (MCIZ Yf ). which are now accounted for in the modal calculation (sce Appendix A4). Eguation

3-11 is also not aceded in such @ case.

* [From these remarks one sces that the units of the pitching mode coordinate are unigue, all other modal coor-

dinates having units of feet,  An arbitrary unit of length could be introduced to the pitching coordinate to make it
conform, bhut no basic advantage would thereby acerue.
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(ith body mode, rigid or ¢lastic)
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3.5 THREE-AXIS RIGID VEHICLE EQUATICQNS

The rigid-body equations of motion of a booster vehicle which posscsses six degrees of freedom are presented
herein. The vehicle is considered to be asymmetric, both inertially and aerodynamically. By asymmetry it is
meant that the center of gravity and center of pressure do not necessarily coincide with the geometric or control
axes of the vehicle. Eulerian (body fixed) axes are used in writing the equations of motion. The axes are piaced
along the pitch, yaw, and roll geometric or control axes, wiih the origin referenced at the longitudinal center of
gravity of the "'reduced vehicle.'*

It is assumed that in flight a booster vehicle will have only small angular deviations about the body-fizxed coordi-
nates in the yaw and roll directions. The anguiar displacement about the pitch axis (Y-Y?) will be considered to
be composed of two parts: the sieady state pitch angle, 8., and the perturbation pitch angle, 6.

0=Go+9
¢-¢
=4

where ¢, 8 and § are the perfurhation guantitics,

*The “reduced vehicle” is that portion of the vehicle which acts as a wnitary mass at the rigid-body control fre-
quency. This is usually taken to be the entire vehicle mass minus the mass of the sloshing portion of the liquid
propeliants, and for this analysis will be defined as such.
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3.5 THREE-AXIS RIGID VEHICLE EQUATIONS

The rigid-body equations of motion of a booster vehicle which possesses six degrees of freedom are presented
herein. The vehicle is considered to be asymmetric, hoth inertially and aerodynarmically. By asymmetry it is
meant that the center of gravity and center of pressure do not necessarily coincide with the geometric or control
axes of the vehicle. Eulerian (hody [ixed) axes are used in writing the equations of motion. The axes are piaced
along the pitch, yaw, and roll geometric or control axcs, wiih the origin referenced at the longitudinal center of
gravity of the "reduced vehicle. "*

It i1s assumed that in flight a booster vehicle will have only small angular deviations about the body -fixed coordi-
nates in the yaw and roll directions. The anguiar displacement about the pitch axis (Y-Y*) will be considered to

be composed of two parts: the sweady state pitch angle, 6,, and the perturbation pitch angle, 8.

©=8,+0
¢=9
'

where ¢, 9 and p are the perturbation quantitics,

*The “reduced vehicle! is that portion of the vehicle which acts as a unitary mass at the rgid-body control fre-
quency. This is usually taken to be the entire vehicle mass minus the mass of the sloshing portion of the liquid
propeliants, and for this analysis will be defined as such,

t
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The forward velocity along the steady-state pitch geomnetric axis, U, is assumed to be relatively large. Lateral

perturbation veloceities, V and W, are written as angles of atiack: [ -‘g'and B —% All angles will he

written in radian measure,

The Euler angles are defined as those angles through which one axis system must be rotated sequentially to
superimpose it upon another having an initial angular displacement from the first, In Figure 3-5 these rotations
are made fequentially about the vehicle's pitch, yaw, and roll axes in that order,

Xy X, ¥, ¥

273
- k.
X . . ¥ !
1 | v P 9 ] {
| sy b amnly,
| -~ e
X u Q
()
YA
R

Figure 3-5. Angular Notation Used for a Three-Axis Analysis (8-p -¢ System)
The following rclations can be obtained by direct resolution of the vectors in Figure 3-5:
P= ¢ + 9 sin
Q=8cosy cos Pty sin
R =4 cosd - 8 cos ¢ sin ¢

By rearranging these equations the rates of change of the Euler angies may be expressed as functions of ihe in-
stantaneous angular velocities:

@ =P +rRsingian § - Q cos ¢ tan ¢

boq( o) p(ang)

cos P cos ¢
1[‘: = Rcos ¢+ Qsing.

These equativns are linearized by assuming small perturbations only: ¢ and y must be restricted to small
angles; P, Q, and R are small also:

¢~
8=Q
4= 1.

Figure 3-6 prescents the mathematical model and coordinate system used, Figure 3-7 presents a modification for
vehicles with aervdynamic surfaces of a typical manned ballistic boost-glide configuration, carrying a lifting sur-
face pavioad and stabilizing fins on the first stage booster.
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Figure 3-6. Three-Axes Schematic of a Boost Vehicle

Figure 3-7.

Typical Boost-Glide Vehicle Configuration Showing Lifting Surfaces
on the Booster and its Payload
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The equations of motion of a rigid vehicie about a body-fixed axis system are derived in numerous rcferences,
e.g., Reference 11. The equations will thercfore not he derived but only presented. Attention will he directed
instead to development of those fucets of the equations peeuliar to the ballistic booster and which distinguish it
(and its analysis) from the lift-sustained vehicle. These items arc discussed following the presentation of the
general equations themaelves,

3.5.1 Three Axis-Equation of Motion:

U =2% _ Qau ¢ RpU - g sin 0
M. °
1
2P, BCOS6, (5o AYgg

B g - - =P
Mg TP e

U U

i1, Al
g - y + Po R,‘_fz__l_lg -__..("G.
UMy, U u
L, P

Lo QF R+ %
XX xy VI R L

- - C ey
IYYQ IXYI IY'/. R+ 2 M
R=1, Pri, Qr X N
l'/,'/. ? X7 Y7 ! N
where
AT deos 0, + P 8in 6,
and

fro oo gre
fa-a + fa e
fl'zrn ; IR=¢

Note that the equations are written for body ~fixed coordinates (see Appendia C3).

3.5.2 Forces. The forces Fy, F, und I, have contributions from the aerodynamic forces (sub a), propuision
forces (sub p), and sloshing forces (sub s).

P L A I A
3 2 P s

3.5.2.1 Aerodynamic Forces. The aerodynamic forces arise frowm angiz:. of attack in pitch and yaw (o and g),

trom the roll, pitch and yaw body rates (P f¢, Q =6, and R = $) and from aerodynamic control surface deflec-
tions. Esxpressed in terms of acrodvnamic coefficients these are as follows:

X =-¢qS8C
a

D

Y --y$C 1S e, ¢-qSC ¢ 1S C

a N/if/ ! y/l’d’ ! y/n‘p 4 .v/é‘[‘ %
4 -gSC LS C L @S C , BigS e,

a q N/ w - (,z/pq ¢! 2Q S I'/é“ Oy
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where 6 and & 0 are the aerodynamic control surface deflections in yaw and pitch respectively.

¥

3.5.2.2 Propulsion Forees:

. In T
poy K
m
Y - % S
P k1 kOFy
Z = s T
o1k ke
3.5.2.3 Sloshing Forces:
L Fx
. M T
Y, ————MT \11!(1¢ r,é)
X Fx
|7 A b v It
“ M, Mip Iy I¢¢)

The I e¢ and l"l';,d)tcrms arce due to the assumption thai there is zero shear hetween the propellant and the missile
tank wall. As a conscquence, the missile is considered to rotate arcund the fluid.

3.5.3 Moments. The moments L, M, and N likewise consist of the moments due to the acrodynamic forces,
propulsive forces, und sloshing forces:

Y= Ui AZ S e
XL L:l “p A/CG}_ I‘Y AYCGL Fx

IM=M +M +M -AYZ 2 F
a p s >

t
ol

EN=N *N +N tAY ) .
a P s CG x
Acrodynamic moments arce proportionai 1o angles of attack in pitch and yaw

3.5.3.1 \erodynamic Moments.
They are expreesed in co-

{including a nonlinear product term), to body axis rates, and o control deficctions.

efficient form:

B-qSL C d+ystC ¥ qSﬁ(,l,/.(s 6¢

®

.= Stas tqstC L
la Laﬁqaﬂa qS ¢ C [!”,1;

P L/p

M =gqSIC . arq8ficC  $-ustcC , BogsicC o
My a8 tC I’?(’m/P‘t ust m/qQ 4 2(m/é,9 8

N -q8IC GraSEC , P-q88C - gSEC 6
N i n f(,"/l)d’ qs ¢ wn? qsf\: 5

where £ is a reference icugth and ()d, represents a differential deflection of the acrodynamic surfaces to produce

a roll-contro! moment.

3.5.3.2 Propulsive Moments:

m . m

1. z 1 Ok, + X O

Pk 1 kK Yk kg k1 ll\ p/k Y I‘ﬁ

A m I e m |

h X T ¢, - X v
N A
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3.5.1 Propollant Sloshing Equations of Motion:

. 'reg  EFy T

™

o0 L, " Lo

Fp. \ |
w _ Typ xF g
I‘ - JPCEE D
133 Lpﬂ MT "pyz

where
[ xv, . IFy

=l —— - [ 3 -1,

Frop = | Tm, ~ @ ¢pe 7 Lpe) w, 1 Coe  Tpe) 4

.
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S Dol A S - ]
Fr‘“ A FRA{yp - Lpg) - [ g Q (€ - ipg) l ¢J

3.5.5 Discussion of Three-Axis Coupling Effects for a Ballistic Booster. Coupling in the three-axis system
arises from four sources: '

a. inertial coupling, since principal axes are not presumed,

b. coupling due to asymmetric gerodynamic configurational aspects,

¢. coupling through the control system (acrodynamic and reaction jet), and
d. propeflant sloshing in inertial plancs about which the vehicle rolls.

The cross-coupling due to inertial asymmetry is significant when the body axis system does not coincide with the
principal axes. This type of coupling is often negligible in analysis of ballistic boosiers which are built sym-
metrically by intent. The principal inertial axes will very nearly coincide with the geemetric or control axes,
making such coupling very low. Typically, the ratios of products of inertia to moments of inertia for this class
of vehicles wili be of the order of 0.001 to 0.01.

Aerodynamic symmetry in the booster vehicle is also maintained by intent. Although the symmetry may be only
plane symmetry, it is with respect to two planes and is usually cnough to eliminate most aerodynamic configura-
tion coupling, Tnspection and discussion of the various acrodynamic forces and moments will give an indication
of the origin and relative importance of the acrodynamic terms, such that it will be evident that many of these
terms may be omitted from the three-axis equations of motion and may likewise justify using a plane-motion
study for rigid-body stability.

3.5.6 Aerodynamic Coupling Due to Drag Force Increments. To minimize aerodynamic loading during flight,
ballistic missiles or boosters arc purpusely flown on zero-lift trajectories, either by pre-programming the de-
sired flight path angle or thrrough direction from some form of guidance system, In addition, an angle-of-attack
attitude control loop may he employed which will try to maintain a zero angle of attack {zero lift) when the missile
is flying through wind shears and gusts (sce Section 2, Subsection 2.2.2). It follows then that the lift distribution
on the aerodynamic surfaces is low (non:inally zero). Consequently, any vehicic maneuvers or differentlial con-
trel deflections which produce asymimetric lifting surface loadings will resuit in very little cross coupling
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between axes due to drag force increments. For example, a differential atleron deflection to produce roll will
result in equal drag increases on the two main surfaces (if they have no lift) and, hence, will not be accompanied
by & yaw couple. Likewise, a roll rate (¢ = P) will result in equal (but opposite) lifts and equal drag increments
on the main surfaces due to the induced angle of attack.

It should also be noted that such differential drags as do occur on the main surfaces act at a very small moment
arm from the yaw axis, leading again to the conclusion that roll-to-yaw coupling due to drag increments is neg-
ligibly small.

3.5.7 Forces and Moments Due to Yaw Angle of Attack or Sideslip, The forces F1, Fg, F3, and F4 of Figure
3-8 are exerted on the vehicle due to a relaiive wind angle, 8. The force F_ is the total acrodynamic force
exerted on the aft fins in the Z-plane. The fins on the booster section of the vehicle would be symmetrically

N

y --—

FRONT

N ———

Figure 3-8. Acrodynamic Ferces Due to Sideslip on a Ballistic Booster with Lifting Surfaces
placed with respect to the yaw plane such that the force F; would intersect the X-axis, and, therefore not con-

tribute a rolling moment. The payload on the forward part of the vehicle will not necessarily be symmetric about
the yaw plane, as shown in Figure 3-8, Hcie the forces Fgand Iy impart a rolling moment which is the
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@S ic 07 jB) -torm of the aerodynamic roll moment La' All of the forces (F r F 9 ¥ 3 and F 4) are included in the
/{

(a8 CN//i f)-term of the lateral aevodynamic force Yn' The roll moment imparted by F,; and F4 would be quite
small a8 compared to the other acrodynamic and control rolling moments and is often safely omitted.

3.5.8 Forces and Moments Due to Ruil Rate, The forces Fl’ ¥, FS‘ F4, F7, and FB of Figure 3-8 produce

no net lateral force but are the main contributors of the (¢S £ C l/Pa’) ~term of La' The conventional
roll-yaw coupling i8 either zero or negligible, as previously mentioned, since boost vehicles are flown on a
zoro-lift trajectory or nominal zero angle of attack.

Figure 3-9. Acrodynamic FForces Duc io a Rolling Rate
on a Ballistic Booster with Lifting Surfaces

The forces Fg and I'g do howaver, contribute a yawing moment due to rolling veloeity, but this moment is again
much less than the yaw control moments. 1t is not likely that there will be asymmetry in both of the luteral
planes of the aerodynamic payload and, therefore, as shown in the figure, the forces Fq and Fg do not contribute

pitching forces or moments.

3.5.% Forces and Moments Due to Yaw Hate. The forees 17y, FZ' and Fy of Figure 3-10 produce a yawing mo-

ment that opposces the yawing motion. Forces ¥y and Fy also contribute a small roll moment, La'

3.5.10 Forces and Moments Due to Yaw Control Surface Deflection. The control forces ¥, and Fy of Figure
3~11, due to deflection of the vertical fin control surfaces in the same direction, cause an overall control force
in the Y -direction and a yawing moment, since the forces do not pass through the center of gravity of the mis-
Since the fins are symmetric there s no roll moment produced.

sile,
3.5.11 Forcees and Moments Due to Roll Control Surface Deflection,  All of the control surfaces may contribute
to the roil control of the missile by cither deflecting clockwise or counterclockwise., The forces Fy, Fy, Fg and
k4 in Figure 3-12 produce no net lateral force but only a rolling moment since the fins are symmetrical in each

piane, No significant vaw moment is produced, either,

In summary, ballistic or hoost vehicles are purposely limited to low urning rates so as to minimize structural
loads. They also nominally fly zero lift trajectories. Guidance commands produce much slower maneuvers than
do the control commands of manned aireraft and therefore do not appreciably affect the problem. In rigid-body
s of booster vehicies it is therefore common toignore all of the terms other than the maior term in each of
Thus, for the bailistic booster without lifiing suifaces one writes:

stludie
the aerodynamic furce and moment equations.

Res
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Figure 3-10. Acrodynamic Forces Due to Yaw Rate on a Ballistic Booster
with Lifting Surlaces

Figure 3-11. Acrodynamic Control Force Deflection, Yaw (Typical)
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Figure 3-12, Aercdynamic Control Force Deflection, Roli

{Acrodynamic Forces)
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(Aerodynamic Moments)

- .. S-

.L:a Luﬂq,l(vﬂ
Ma‘qSRCm/aa
Na =-ast Cn//J #

/R may be

gignificant enough to warrant inclusion of their terms. If these same surfaces are activated for control, the
i.x.erodynamic cantrol forces as reflected in the coefficients CY/(S R CZ/(SQ, C2/6¢' Cm/ée, and Cn/6 , &r
included also. [ (]

For the ballistic hooster varrying lifting surfaces the aerodynamic damping coefficients Cm/Q and Cn

(]
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Symbol

SYMBOLS USED IN SECTION 4
area of hydraulic actuator piston
butk modulus of hydraulic fluid
gimbal bearing friction coefficient for the ku‘ engine

hydraulic actuator leakage coefficient

local aerodynamic normal force coefficient per unit angie of attack at
station n along the longitudinal axis

reduced moment of inertia (see Appondix A1-5)

moment of Inertla in pitch or yaw of the kit engine about its own center
of gravity

moment of tnertia of the kth engine about its gimbal point
rocket engine index

hydraulic actuiaivr (no load) spen loop veloceity gain

hydraulic actuator effective (at Joad) open loop veloceity gain as defined
in Equation 4-12 .

v,
equivalent spring constant for hydraulic actuator systom equals T + =
4BA
48, '\2
hydraulic actuator spring constant for the kth engine - ==
T

th propellant sloshing tunk

spring constant of sloshing mass in the ¢
actuator structural spring constant
sloshing propellant index

aerodynamic moment arm

control thrust level arm about center of gravity

sloshing pendulura moment arm for Jlth propellant tank

rocket engine lever arm measured from the gimbal point ai the engine
center of gravity

h

generalized mass for the it mode

* Non-dimensional
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Units

2

ft

1ba/f1:z

ib ft sec/rad
5

ft" /lb. sec.

i/rad

slug ﬂ;2

slug itz

slug ft2

N.D.*

(rad/sec) &
rad 6,

1/sec

Ibs/ft
ibs/ft
1bs/fL
N..
ft

ft

ft

it

slugs
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SYMBOLS USED IN SECTION 4 (Continued)
i{nlb_c_x_l Definition UnLt!i
M, " sloshing moment coefficient for the ith propellant sloshing tank 1b sec2
My ¢ first mode sloshing mass in ath propellant (sloshing tank) slugs
MR mass of rocket engine slugs
M 8 aerodynamic moment due ie pitching rate ft 1bs sec
p aerodynamic force parameter = q Sref 1bs
PL load pressure on hydraulic actuator lbs/fi:2
ql generalized displacement of the ith mode ft
Q1 generalized force for the ith elastic bending mode 1bs
R moment arm of hydraulic actuator ft
8 Laplace operator (s = ¢ + jw) 1/sec
T total rocket engine thrust 1bs
Tc thrust of control engine (s) lbs
Tf thrust of fixed rocket engine (s) ibs
Tk thrust of kB rocket engine 1bs
v vehicle volocity ft/sec
X 1 actuator deflection due to load pressure acting on the actuator clastic ft
compliance
“ X coordinate (longitudinal) of station n it
Y f lateral displacement of the sioshing mass in the gth sloshing propellant ft
tank
o angle of attack rad
¢n vehicle longitudinal acceleration = I-b ft/sec?
6 angle between rocket engine thrust vector and vchicle elastic rad
axis at gimbal point; includes clastic deformation of englne position
servo and actuation within the servo itself
4! angle between thrust vector and clastic mode at rocket engine's rad
center of gravity, due to actuation within the positioning servo
6( rocket engine error angle (defined in Equation 4-20) rad
en damping ratio for hydraulic actuator N.D
Zi damping ratio for the ith mode N.D
¢! generalized damping ratio for the ith made N.D.




SYMBOLS USED IN SECTION 4 (Continued)
Definition

damping ratlo as defined in Equation 4-13

damping ratio of the sloshing mass in the gth propellant sloshing tank
vehicle pitch angle

acrodynamic effectivencss paramoter defined in Equation 2-2
ongine conirol offcctivencss parameter defined in Equation 2-2
normalized modal slope

time constant

normalized modal deflection

natural frequency for hydraulic actuator

natural frequoncy for ith mode

generalized natural frequoncy for ith made

modal natural frequency defined in Fqguation 4-13

natural freguency of sloshing mass in 2“‘ propellant sloshing tank

Subscripts

A

station A (location of lateral translation scnsor)

station e (center of gravity of rocket engine)

station G (gyro or other angular sensor location)

atation B (bottom of tank) of pth propeliant sloshing tank
station n

station T (rocket engine gimbal or thrusting point)

coordinate along the longitudinal axis
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Units
N.D.
N.D.
rad
1/sec’
1/8ec”
rad/ft
aec
1/t
1/sec
1/sec
1/sec
1/sec

1/8ec
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4.1 AIMS OF SIMPLIFICATION

In any field of analysis, one of the main concerns of the analyst is to determine to what degree of complexity or
completeness he must cominit himself in performing the analysis so that the solution obiained is significant and
sufficiently accurate to satisfy the purpose for which it was Intended. In the field of automatic control, this pro-
blem manifests itself in the form of determining the most suitable equations of motion (or transfer functions, if
the problem may be linearized) for descriptica of the "forward path", i.e., the plant cr process being controlled,
Present-day control theory, in combination with modern ccmpuier fucilities, is probably sufficient to give
reasonable assurance that solutions to tho control problem may always be obtained, provided the proper mathe-
matical model of the controlled procesa can be written.

From a practical as well as a philosophical viewpoint, it is desirabic to detormine and possess the simplest }
equations of motion or transfor functions that will yiold sufficiontly accurate results, keeping in mind the purpose

of the analysis. As a consequence of having a suitably simplificd analysis, good results may be obtained with the

most efficient use of timo and mc .y, The simpler transfer functions will permit jllumination of the most signi-

ficant features of the problem; they will allow application of powerful analytic tools thereby providing great in-

sight to the nature of the problem; they will obviate the necessity for massive computer simulations within which

the heart of the problem is often buricd from sight,

in this section a group of simplified approximate transfor functions for the large ballistic booster are given. ;
These transfer functions have a limited range of applicability. The limitations are well defined since each trans-

fer function is tailored to pormit investigation of certain specific flexible booster/autopilot control problems by

the least elaborate of analytic methods. In every case these simplified trunsfer functions may be viewed as being

extractions from the general system cquations of motion given in Section 3. The basis for this extraction is now

discussed.

4.2 BASES OF SIMPLIFICATION

Since the primary application of thc simplified or approximate transfer functions will be in performing stability
analyses of the elastic booster with autopilot control, it is natural that the hasis of simplification be established
with stability analysis criteria. It is nccossary, however, to keep in mind also that these same approximate
transfer functions should, if possible, be usecful for load analyses and other system studies wherein the time-
domain response of the system is most important. For these reasons, it is felt that the suitability of approxi-
mate transfer functions can best be judged relative to behavior of the complex roots of the Laplace variable, (s),
Effects of approximations on these roots can, in turn, be judged most effectively from the graphic interpretations
possible in root-locus plotting methods.

Hence, while many aiternate interpretations of the approximations may be made in the frequsicy realm (Bode
plots, Nyquist diagrams), these will rarely be employed here; then only insofar as they lead to a convenient way
of cataloging some effects.

Judgments as to the efficacy of a particular approximation are very difficult to arrive at in a truly objective
manner - they are almost certain to be colored by the user's own exporicnce. To this degree the approximate
transfer functions given in this scction represent a distillation of the authors' experience. In'addition, however,
certain objective measures of these equations' suitabiliiy can be applied. These measures will be discussed in
each arca, along with other approximations made, since they will provide the reader with an appreciation of the
range of applicability of the equations as well as with some techniques which may prove useful in evaluating new
approximations for the unforesceably strange vehicle configurations of the future,

Approximations may be placed in one of the followlng iwo categories:

a. The relative size of coefficients of the sume order of (s) in a transfer function (secondary effects) is con—
sidered.

b. The importance of terms of different ¢rders of (8) (higher or lower) are studied. These ternis usually rep-
resent other modes or physical effects associated with certain regions of the frequency spectrum.

in every case the criteria for evaluating these two classes of approximations may be interpreted from their sig-
nificance in affecting the modes' complex roots and. hence, their stability and time -domain behavior.

13
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4.2.1 Neglect of Secondary Fffecte. Terms deleted from the equations of motion, as under a. above, have the
effect of representing either small changes in the locp gain of the system or small shifts in the position of the )
open-loop poles or zeros and hence of the phase of the system. Here the importance of such a term is readily
weighed relative to the effect it has on the position of the closed leop roots. Very often such a comparison may
be made solely on the question of the size of such a term in comparison with the nncertainties in the values of
the larger, dominaut parameters, i.e., the accuracy with which it is expected other parameters in the system
will be known or controlled.

As an axample, the angular-velocity-dependent aerodynamic damping term is usually omitted in studying rigid-
body pitch axis stability of nonwinged ballistic boosters * One way in which this term might be evaluated is to
ohserve its role in the rigid-missile tranefer function, 8/6. If incorporated, the transfer function becomes

1
/6 = My ———————— (cf.Equation 2-4 of Section 2, from which the notations are borrowed). The result-
82 +Ma/l s -p

ing shift in the two real poles (at approximately + ,/ Hg ), due to inclusion of the damping term, is negligible as

it affects the closed loop root for the class of boosters considered. The situation is depicted graphically by the
root locus plot of Figure 4-1.
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P

Figure 4-1. Effect of Aerodynamic Damping on Rigid-Body Locus
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* In Equation 3-12 this term appears as P >ﬁ (CN/”)vm v and would be written more commonly

as% (zrzl(c ‘@) x )ézM' 9.
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Alternately, one could observe the effect of incorporation of this term on the closed-loop characteristic equation
of the system (cf. Equation 2-5). This aerodynamic damping term, if added, would appear in two coefficients of
powers of (8) also containing velocity gain constants of the autopilot; in magnitude it would be but a faw percent
or less of these coefficients. Physically, the aerodynamic damping of unwinged vehicle oscillations is negligible
compared to that introduced by velocity-dependent elements of the control system. It i8 not necessary to incor-
porate these minor terms of the system equations when the autopilot gain constants, which determine the major
efiects, are not themselves controlled to within comparable absolute accuracies.

There exists, however, a complementary example to the one just cited, viz., a comparison of the relative con~
tribution of this same velocity-dependent aerodynamic damping to the damping of a body bending elastic mode
coupled through the autopilot.* Here, system damping from structural dissipation is extremely low and hence
the aerodynamic damping, which yields a damping contribution of comparable magnitude at certain flight times,
becomes too important to neglect. This situation may also bo analyzed through the relative importance of a
small shift i the open-loop pole of the bending mode which this acrodynamic damping term accomplishes. Wkile
the effect on closed-loop roots of small shift in the open loup pole for the rigid-body mode may be negligible (as
noted earlier), it can be of critical importance for the elastic mode roots. Many of these modes will be gain-
stabilized, i.e., their loci will depart from the oper loop pele, heading towards the jw axis {and the right hailf of
the complex planc). Whether or not the closed loop root is stable depends upon the loop gain (how far the root
departs from the pole) and upon the distarce the pole is away from the jw axis, This, in turn, is deperdent upon
modal damping. The situation is deplcted graphically in Figurc 4-2. It should be apparent that a conservative
analysls can always be made omitting this aerodynamic damping.

jw
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Figure 4-2. Effect of Aerodynamic Damping on Body Bending Mode Roots

From the foregoing one sees that the approximations just discussed have as their bases certain characteristics
associated with the vehicle class under study. However, thelr validity is readily re-evaluated on the same bases
for any vehicle of strikingly different characteristics.

4.2.2 Terms of Different Orders of (8). There oxist a variety of ways in which terms of different orders of (s)
appear in a problem. A few of these are as follows:

a. Added degrees of freedom representing other modes of the controlled vehicle,
b. inertial effects added to a system to account for their presumed importance in a problem, and

¢. high frequency characteristics of varicus system elements.

2
> .
* In Equation 3-12 this term appears as —}v— b3 (Cn/“')xn [ ¢ 52 ] a4
n
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Recause of the varied nature of these effects, it is more difficult to make genecalizations as to their agsessment.
A useful point of view, however, is alluded to 1 the above listing, viz., taking the position of evaluating terms
as additlons to a glven system of simplified equatiorns. Thia of course is the inverse of the problem posed by
Equations 3-12, where u very general set of equations {8 prosented from which the desired approximations are
to be synthesized. The situation in many ways is analogous to the clussical synthesis-analysis cycle of design
and. hence, should not appear foreign to the practicing engineer,

If this last viewpoint is adepted, a number of useful indications of treatments of "higher order terms" may be

had from tho following considerations,.

An added degree of froedom may be evaluated, relative fo its cffects in the root-locus plot. If i is a mode of
the systcm {almost invariably the caso), it will appear as a group of pole-zero dipoles and, depending upon the
strength of its coupling with the other modes (ihrough the elastic, inertial, or generalized forces), will produce
some shifting of the other mode's open loop poles and zeros. [Hence, two measures of the effect of an added
mode on other modes present themselves: 1) ita effect in shifting the "existing open lvop poles and zeros and,
2} the effcet of ite dipnle(s) as seen from the arca of the closed loop roots of the former system. Naturally, this
added mode must itself be analyzed for its own stability, but this is a separate problem.

As an example of the foregoing ono may cite the coupling between rigid-body plunging and pitching modes
brought about by aerodynamics. When studying pitch attitude stability (8/6), the plunging mode coupling mani-
fests itself as a small dipole at the origin and as minor shifts in the pitch mode poles (cf. Equation 2-2). Its

effect on the pitch mode closed loop root is therefore minor (see Figure 4-3).

jw
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Figure 4-3. Effect of Coupling of Rigid Body Plunging Mode with Rigid Body Pitching Mode

Another example is the effect of a bady bending mode on rigid-body pitching stability. Coupling occurs through
the autopilot (significant) and through aerodynamics (minor). The added mode produces a conjugate pair of
dipoles (cf. Lquation 2-11) and appears as shown in Figure 4-4. As may be scen there, the effect on the rigid-

body pitching mode phase and gain is negligible.
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Figure 4-4. Fffect of 4 Bending Mode Dipole on the Rigid Body Mode

Inertial effects are added to the equations becausc of their presumed importance in a frequency region to be
studied. Depending upon where these effects are added in the equations, they may simply modify existing coeffi-
cients (e.g., the inclusion of aerodynamic inertial terma would only serve to modify the body inertial coeffi~
cients), or they may add new open loop elements (e.g., the "tail-wags-dog zero”, TWD, which appears when
rocket engine inertias are included in the rockel control force term; cf. Subsection 2.2.8). These new added
loop elements will always appear in conjugate pairs. Their effect on phase shift and gain of an "existing mode"
is readily evaluated from the root locus plot, Figure 4-5 shows the graphic interpretation of the effect of the
TWD zeros on the rigid-body pitching mode's closed loop roots.

As it is obvious that the effect of the TWD zero on the rigid-body mode is minor in thig case, so toe is it elear
that the effect will be of paramount importance for hody bending modes in the range of the TWD zcro's frequency
or above. Thus, for body bending atudies this effect becomes a dominant factor, and certain other low fre-
quency effects (c.g., the precise position of the rigid body pitching mode poles) become less significant.

Higher {requency characteristics of elements in the system may be evaluated readily from the poles and zeros
introduced by them to the root locus plot. Such cffects as roll-oft characteristics of the servo positioning sys-
tem, the sengors (gyros and platform), the amplifiers or any other clements in the control loop appear as real
or complex poles and zeros. Their influence on the stability of a mode being analyz2d is quickly gaged from
their contribution to phase and gain changes in the vieinity of the complex plane where the mode of interest lies.
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Figure 4-5. Effect of Engine TWD Zerog on Rigid Body Pitching Mode

4.2.3 Effects of Flight Environment and Configuration Changes. From the foregoing discussions it is clear that
simplifications and approximations cannol he made categorically without due consideration of the great variations
in system characteristics (and hence parameters) which occur over the course of a flight. Thus, an approxima-
tion which neglects the effects of propellant sloshing modes on rigid-body control modes at liftoff (a good approxi-
mation) may be invalid near burnout of a booster stage. simply because the change in system parameters has
greatly increased the coupling between these modes, Hence, any approximations given must be tempered with
these considerations.

In the remainder of this section various approximate transfer functions are given which have been found of prac-
tical value in the analysis of elastic ballistic boosters. These transfer functions may be looked upon as simpli-
fications of the general equations of Sectien 3 and elsewhere. Comments as te the nature of the approximations
made in arriving at these cquations are given, aleng with expected areas of applicability of each. The transfer
functions are also illustrated, where appropriate, by control system block diagrams and by root locus plots.

-1
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4.3 SIMPLIFICATION OF THE GENERAL EGQUATIONS OF A FLEXIRLE BOOSTER VEHICLE.

The preceding subsection illustrated how several particular offocts, when consldered as additions to simple trans-
fer functions, could be easily evaluated as to their importance. in this Subsection the general plane motion
equations for a flexible booster vehicle (see Section 3) are simplified for use in the stability analysis of closed
loop bending autopilot coupling. Thus, the methods of simplification will be based upon the possibility of omitting
terms or classes of terms from the equation.* These methods are, in gencral, based upon considerations dis-
cussed earlier in this section.

Prior to simplification and approximation certain facots of the preblem must be noted. These considerations
have to do with the type of modes that are to be used in the study. The three clusses of moedea {of, Section 3) are:
1) normal modes, 2) artificially uncoupled modes, and 3) assumed arbitrary shapes. Of the three classes of
modes only the first two are considored in this report. The equations to follow ure for modes of the artificially
uncoupled type, in that the sloshing propellants are not included In the mode calculation, If these propellants are
included in the modes then the squations arc mcdificd by omitting all sloshing terms (see Section 3).

In the calculation of system bending modes the flexibility of the rocket engine tctuation linkage may be either
accounted for in the modal calculations, or the linkage may be ropresented as a rigid link. In the latter case the
flexibility of the linkage is included in the engine servo mechanism, itself. This is the approach follvwed in de-
riving the engine servo equations of Appendix B4.2. The flexibilities arc incorpora‘ed therein as a mounting
spring of stiffness, Ky, and a finite hydrauvlic fluid bulk modulus, B, This model leads to the more complex
engine servo equations., When the modal golutions do not include the actuation flexibility of the rocket engines,
the modal slope on the missile structure side of the rocket engine gimbal block, ¢ .1, is cqual to the modal

slope on the rocket engine side, o_ . Therefore, the difference expression, o g) - 0'53,, is equali to zero, mak-

ing all terms containing this difference oxpression also cqual to zervo (cf. Equation 3-12), In this case

When, on the other hand, the actuation system flexibility is included in the modal caleulations, the servo loop
equationa are computed with infinite rigiditics: K~ o, B+, Some simplification of the scrvo loop trans-
fer function results. In the following discussion the actuation linkage flexibilities will be assumed accounted for
in the calculations:

n
N § N i) i
8y Oy - 2{ (v§<é -Ui.z‘) g4
With this approach one of the normal vehicle body modes will be primarily that associated with the resonance of
the engine chamber, elastically mounted from the vehicle. This mode will be referred to as the "engine-body"
normal mode, since it is of particular significance.

4.3.1 Simplification of Dependent Variable Coefficients. ‘The {irst step in simplifying the equations of motion
may be accomiplished by an analysis of the various terms comprising the total coefficient of the dependent vari-
able, viz., the elastic normal coordinate, q;. This simplification amounts to neglect of secondary effects. The

modal equation of motion (cf. Eguation 3-12) is rewritten here in transfermed form.

- ; iy (2 52
2 . W5 M@ _ 0 r o (i) )
Lzzi s (2% J"i”li + k‘-:l "fk(" xe "x'l‘,)k v E (('N'/”-\.v_n $xn /8 *

L2% B ) W _,0\. p y ) (t\] _
(“’1 ;- x| T ¢ 1, <"xek %t )7 P R OOt vy |9y -

This equation continued on next page.

* Certain obscrvations will be made throughout this secticn concerning the evaluation of terms, with regard to
the usual range of magnitude of the varivus terms.  These observations are based upon analysis of several (pro-
posed) large space booster configurations as well ag experience with present-day space booster and ICBM con-
figurations. However, it must be realized that these vbservations cannot apply to all possible configurations:
but that the dependency upon modai {requencies, displacements, slopes. generalized masses, and generalized
forces may alter these observations.
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In dealing with a second order system such as the ith mode, it i8 helpful to think of the first order term of that
variable, 8qy, as the modal damping term and the zero-order term, q, as the modal frequency term. One can
then separate the various contributions to the coefficients into components affecting damping and Lhose affecting

frequency.
4.3.1.1 Modal Damping Term, 8qi. The total coefficient of the sqj-terin 18 composed of: (1) the structural

2
damping term, 2¢; wj,(2) tho acrodynamic damping torm, -{-; % (CN/D)yn ¢ ’(3 , and (3)the damping term

due the englne gimbal friction, % Efk( o gg, - (1)) |- This cocfficient will hercafier be denoted as, 2£{ o],
K

the effective modal damping.

A 2
2t! o . ot sl W OE (LB N2, P a, 4-2)
T Porrer 2 S loxeoxithc t v E Cn/oha dxn “-2)

For the various clastic modes the 24 w term is limited to a relatively small range, as the damping factors g
are found to be between 0.0025 and 0. 02 (see Sections 2 and 6).

The second term, that due to engine gimbal friction, ‘i Cfl ( (l) . Ux’%‘) k. can take on a variety of values.
1

For an engine in the 150, 000-pound thrust clags normal ﬁ iclion icvels for gimbals with sleeve bearings are
500 Ib-ft-coulomb friction and 2000 lb-ft/rad/scc viscous friciion, Depending upon the value of o e -0 (l)r , this

damping term may vary from less than 2 ¢ wj for the lower body bending modes to a much greater value for

the higher bending modes. For an engine-body mode this term may be the dominant damping term, rcaching
eight to ten percent of critical damping. It should also be noted that since the friction coefficient ka is a

linearized value representing both viscous and coulomb friction, the effect of this term wili vary with frequency
and amplitude of enginc motion; i.¢., this term will increase in importance as amplitude decreases. This term
does not appear in the rigid~-body modes nor in modes computed with a rigid-engine position-servo linkage, since
Oxe ~ Typ is zero in cach case.

Y €N/ 0% ¢ ol
v & (Cn/D)xy @ xn » for most classes

In regions of high dynamic pressure the acrodynamic damping term,
of unwinged flexible boosters is usually of the same order of magnitude as the structural damping term. As the
acrodynamic damping coefficient is directly proportional to P/V, its cifect is usually important only during the
time of high dynamic pressure and can be ignored during the other flight times. Its omission is conservative.
A damping term also exists due to acrodynamic coupling between the modes. This term is small compared to

the primary acrodynamic damping term, go is universally omitted,

The cffect of the aerodynamic damping on the rigid-body pitching and plunging modes is likewise negligible and
may be omitted for mosi vehicles of ihe class considered.

Although it is conscrvative to omit both thc igimbal {riction and acrodynamic damping terms. it is recommended

that all three of the terms comprising 2¢ ' i :u'i be retained (except for expediency when simple hand solutions
are heing used) for more aceurate stability analysis and transient responses of the system.
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4.3.1.2 Natural Frequency Term gi. The total coefficient of the qj term, designated as w'fa, s analogous to the

natural frequency of a second order harmonic oscillator:

2 21 omwm. oo/ o _ ®» _p n oo B
Wt oy 7y kgl Ty ¢ka(ch Yxr/k “Z;, R CN/Dyy bxn Ixn - “-3)

The class of vehicles considered are: 1) thoso having rolatively constant cross section over their length, 2)
these with no major acrodynamic surfaces (wings, fins, otc.), and 3) those controlled by means of a gimbaled
thrust-vector located at the basc of the missilo. For this clags of vehicles the aerodynamic forces, due to an
clastic modal deflection, g, are low relative to the elastic forces, IFrom another point of view, the modal di-
vergence speed (at which wj —e 0) i8 very high. The thrust term is likewise very small in its effect on fre-
quency. Thus, when considering the elastic modes of the class of vehicles under study, thesc two terms are
usually much less than the modal frequency term, wlz. Only with tha very slender boosters, or with boosters
having lifting surfuces will the acrodynamic torm become significant. lowever, this aerodynamic term is im-
portant in the rigid-body modos.

4.3.2 Simplification of Forcing Functions. The next, and more difficult, step in simplifylng Equation 4-1 18 an
cvaluation of the various forcing functions which represent excitations of a given mode. The excitations appear
in several guises:

a. The orthongonal body modes are coupled directly through the action of such nonconservative forces as aero-
dynamic, bearing friction, and propulsive.*

b. The artificially uncoupled sloshing modes cxhibit tnertial coupling with: the normal body modes.

c. Regenerative and coupled excitations occur through the autopilot in modes whose motion 18 detected by an
autopilot sensor; these modes may, in iurn, be excited divectiy by control forces.

d. Indirect coupling may occur through the autopilot in two classes:

1) Modes whose motica is detected by certalin of the contiol sensors, but upon which the control forces can-
not act directly; e.g., if propellant gloshing were detected by a sensor placed in a tank for that purpose the re~
sultant signal could command control forces, but these forees could not act directly on the propellant modes.

2) Medes whose motion is not detected by the control sensors but upon which modes the contro! force dves
act directly, c¢.g., the rigid-body plunging in an attitude-only control system.

The above types of coupling might be categorized as "open-loop" {a. and b.) and "closed-loop* {¢c. and d.).

4.3.2.1 Direct Modai Coupling Terms Between Normal Modes (Open Loop Coupling). Direct modal coupling be-
tween normal body modes occurs through the nonconsrrvative forces. Figure 4-6 is a block diagram illustrating
the couplings between two of the normal body modes. The dircet modal coupling appears (for example) as a feed-
back path around the ith mode of:

i T T

B, 2Q aq;

The general effect of this coupling is to produce a shift in the position of the open-loop poles of the ith mode,
Experience dictates that the portion of this shift due to aerodymamics is minor for these normal body modes (as

I ol
one might expect), since the "acrodynamic gains' in the loop (the P (Cn/oyy, u)‘(J,)l and '{‘, (CN/)xn ¢0)terms)

. th . . . X . i
are both very low. Consequently. the j- mode forcing function coefficients are usually omitted in writing a
simplified ith mode transfer function. The cxeeption could be for the vehicle carrying lifting surfaces near the

* The individual mode's regencrative excitations by these noncongervalive forees were treated as part of the
normal coordinate's coefficients in Subsection 4.3.1.
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times of maximum dynamic pressure. This problem then bucomes that of the aeroelastician, where, for gsuffi-
ciently high q, the system roots (open loop poles) can move onto the jw axis. Because of its minor role and/or
specialized nature (derivation of the mathematical model for the unsteady aerodynamic forces on the lifting sur-
face is certain to be a highly specialized prohlem), ne further treatment of this type of open loop coupling is
mads herein.

The other open-loop coupling terms are either:

a. Nonexistent (the case where the servo mount elastic compliance is not incorporated into the modal caleula-

tions so that, U_Q‘_Z - 0',((1% z 0, in which case the coupling will still appear but in a different form (see Sub-
section 4.3.2.5), or

b. Dependent upon the gain, agg - u,(‘l.}\ ., through which the thrust vector and bearing friction forces act. For
most body modes these terms are low, since their frequency separation from the engine-body mode (present
when servo mount compliance is incorporated in the modes) 1s great enough that this relative motion is not
greatly excited.* The obvious exception then may occur in the case of coupled motions between an engine-body
mode and a body mode. If these modes are at all close in frequency (a distinct possibility siace the engine-body
mode frequency is relatively constant throughout flight, see Appendix A4 for an example of almost coincident
modal frequencies). then significant coupling can oceur. This being an "open-loop" effect, one can expect this
coupling to appear for both active (commanded) and passive (noncommanded) engines. The effect manifesis it-
self as a shift in the open-loop polee for the body mode Leing studied.

The effect is greatest, of course, if the two modes have nearly coincident frequencies and may be cither bene-
ficlal (stabilizing) or harmful (destabilizing) to the body mode being studied. The effect 18 discussed further in
Section 5 and in Appendix C5.

Occasionally, then, a case may arise where it is desired to test for the adequacy of this simplification. For
this purpose the following test may be employed.

First, it i3 noted that the sim:lified transfor functions arrived at during the course of this study are intended to
be used both for stability analysis and time-domain response. In both of these analyses the behavior of a lightly
damped, elastic mode is greatly affected by a small lateral shift in its open-loop poles due to a phase shift. A
small change in the gain will not significantly affect the damping (real part) of the closed-loop root as it will only
modify the frequency (imaginary part) of the rovt. This effect is much less gerious. Therefore, the test will be
conservative if it is assumed that the root locus departs directly toward the j-w axis from the open-loop pole.
By assuming that the closed-loop root is approximately on the j-w axis (a zero real part), the numerical value
for the natura! frequency may be substituted for the Laplace variable (0 + jw), and the contribution of the
auxiliary path or feedback loop may be evaluated.

The transmission around the it? jth

mode representing mode coupling is:

( aq, )(6@, )/aqj \/E‘ i\ [DQi/()qj] [an/aqi]

- - 1 X 1 t 1
2 J\aq J\oqy ooy ] 2%+ 20 i wp s + o) Ry@EP+ 205 wjs + ). (4-4)

Evaluating at s - jw we obtain the {vilowing expression for the magnitude of the signal in this path:

_ 2
[\ T ) M _ O\ P M 0 2
[m] - ( 5T (o "’x'r,)k(“ T ‘)k VR Y% % ® Wt

k=1 LA Xe xe X'l xn U xn

. 2 |1/2
mo W W ()] y v oo (O —‘
( LT b (a - Ux’l‘)k X C/ D by v ) .

k-1 K xe 4 X1 Xn _I x (4-5)

This equation continued on next page.
*The responsc of the ith mode is nonharmonic in general. However, since these modes ave lightly damped they
are also highly tuned (sclective) and the dominant signal strength is at their resonant frequencies.
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If this magnitude does not exceed a numerical value of 0.09, the maximum perceiiage crror in the loop modal

damping is loss than 10 percent.

%
Asg an example, Figure 4-7 shows the ( Y ) transfer function with the jth mode teedbrek loop around it:
k /
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Figure 4-7. Evaluation of Direct Modal Coupling
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or, if the percentage error in the approximation is defined as:
& A
\J U
6k / exact Ok / approx.
%
(4-6a)

U
8% / exact

one finds this is idontically cqual to:

a9, 2Q Day 2
BQi : Z)qj ! E)Qj in .

Hence, the magnitude of this quantity, as computed in Equation 4-5 gives a percentage orror measure.

Also, as scen in Figure 4-7, the ratio in Equation 4-6a 18 an upper-bound approximation to the error in the
damping of the open loop pole., {Upper-bound because the error is greatest if the exact and approximate poles
have tho relationship shown in Figure 4-7). If no phase shift resulted, the ratio would give the gain change (less
serious, as observed carlier). By the above mcans the significance of direct mode coupling may be evaluated,

4.3.2.2 Auxiiiary Path For Engine Forcing Function. Reforring to Figure 4-6, it is seen that the jth normal
mode also affords an auxiliary path by which the control engine motion, 6;{ , can excite the 18 normat mode.
This path 18:

DQj Oqj aQ
W‘k ’ an ’ i’qj )

i

As might be expected this is a comparatively weak path, for if the autopilot system is responding to motions of
the ith mode (at frequency wy ), then engine responses, 6! , through the auxiliary path are highly filtered by the

j"b mude. Hence, it is a good approximation to show the ith

mode responding to the engine 51'( only through the
primary path, BQi/ i)él'( .

Again, for completeness one may wish to apply a test to determine the relative importance of these paths
(secondary to primary).

Thus (refer to Figure 4-6 for notations):

an aql 9Q ) ‘ xQ
2§ T T K ‘J =]
Sccondary R S Ky (& * 2o ) B F Zogp) 99
Primary aQ B! =i 2 D) 2
- Ky (8 + 2pgn) 6+ Ty W (s 4285 0 s +or)
:

4-7)

If this function is evaluated at 8 jw; , it may be used to gage both the percentage error in the loop gain and
phase of the i*h mode incurred by omitting this suxiliary path through the j”‘ maode.

4.3.2.3 Direct Modal Coupling Terms Between Artificially Uncoupled Modes (Open Loop Coupling),

A. Body Modes and Propellant Modes, The artificially uncoupled propellant sloshing modes are forced only by
inertial coupling with the vehicle body modes (rigid and clastic), The coupling of these sloshing modes back
into the vehicle, in turn, is displayed as a combination of inertial and clastic coupling.* No direct coupling
through any other force system cxists,

* The difierence is only a matter of convenience and could be changed by rearranging the equations. No physical

meaning should be attached to the terms "elastic and inertial™ coupling as they may be shown to be mathematically
interchangeable.
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This coupling between modes in the "open-loop" equations of motion manifests itself as pairs of dipoles-one
conjugate pair for each mode-in the transfer functions. For example, the transfer function for the {1 nor-
mal body mode with a single sloshing tank coupled into it (other body modes omitted, as per previous dis-
cusslon) is:

2
) 9 1 dQ‘_ 8 +2I;£ wls+ w!2 _‘
1 1 2 < 2 By
S 7y ¥ [ v2p wst wiz)(s +2£tw£s+tula)+A_J
where 4-8)
9
LM M . _ i
A= sz ...LL o lp ¢ U(i) s + w 2 ¢(i) @, u @
Hi ¥x, M, Tx, 2 Px, rx,
L "t t B .

The denominator factors into two sets of conjugate prles, one near the uncoupled slosh mode poles. Figure
4-8 depicts the situation graphieally.

~— SLOSH ZERO
o]
L Y

COUPLED POLES

X

a
!

UNCOUPLED BODY __/

MODE POLE

Figurc 4-8. Poles and Zeros of qi/él‘( with und without a Slcsh Mode

This same situation way encountered previously in Scetion 2 for a simple single tank siosh case. Therein
the body mode considered was rigid-body pitching, wj 0, for which mode the poles are at the origin,
where they remain even when sloshing coupling is added.

It is not possibie to generalize too sweepingly on the efficacy of an approximation which omits a sloshing
made from a body-rande transfer function, or visa versa, lowever, it is clear on simple grounds that a
wide [requency separation between the uncoupled modes would make such an approximation suitable, Alaso,
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the body-mode amplitude at the sloshing mass station, ¢)((1) . 18 a good index. As seen in Equation 4-3, if

this parameter has a zero value then the sloshing dipoles are nuiled (pole on zero), Another parameter
affecting the "strength of the sloshing dipole (scparation between pele and zero) is the mass ratio, Ml2 '/7’(1 .

As a general rule for body bending modes whose froquencies are several octaves above the slosh frequencies
(a common situation), the sloshing may be omittod In writing simplified transfer functions. For the rigid-
body pitching mode this sarne approximation is oaly partinlly satisfactory, since the cloged-loop roots for
this mode often approach a alosh frequency (sce discussion Lelow on closed-loop coupling).

Obviously, if the spring~contered sloshing masses have been included within the cilculation of the body nor-
mal modes, this entire issue is obviated, there being no 3eparate sloshing modes to couple in "open ioop”.

In this case oue passey immediately to the question of elosed loop coupling between body modes (Subsection

4.3.2.56).

B. Body Modes and the Rocket Deflection Mode. The rocket engine deflection mode, 6' (or §), is artificially
uncoupled from the body modes and, hence, will exhibit inertial coupling as well as coupling due to the other
ronconservative forces (propulsive and bearing friction).

If tt.  ositioning scrvo's clastic compliance has been incorporated into the body mode caleulation, then &'
is t+ =3 bol for the rocket engine deflection mode, representing that pertion of the total rocket motion, 6 ,
due to action within the serve device itself, That portion of § due to clastic compliance already appears in
the orthogonal hody modes: it produces an open-loop coupling die to the nonconservative forces and was dis-
cussed in Subsection 4,3.2.1, There remains, however, a further compliance within the servo gystem due
to fluid leakage and parasitic pickup of the {eedback transducer signal, It produces an open-loop coupling
involving incrtial forces as well as the nonconservative forces.  Discussion of this coupling is given more
fully in Subsection 4.3,2.5.

If the positioning servo's elastic complianee has not been incorporated into the body modes, then the complete
rocket engine control motion (mode), 6 , is artificially uncoupled from the body modes. In this case open
laop coupling between 8 and the body modes invelves inertial, propulsive, and bearing friction forces.

4.3.2.4 Cocfficients of the Rockel Engine Forcing Function (01 2. The major regenerative and coupled feedback
paths occur through the control system in a ballistic buoster. Beeause of their importance, a few remarks on
the cocfficients of the eontrol forces which effeet these excitations are appropriate at this point,

in a multi-engine installation all the rocket engines will deflect due to interaction of the inertial load torgue.
mount clasticity. leakage orifice flow, and the engine servo control valve flow, However, only the engine or en-

gines being commanded by the autopilot ave usually considered as gimbaling,  This assumption is nat a good one
when the mode under investigation is an engine mount mode or is in the frequency range of an engine mount res-
onance of an uncommanded engine. In this case, the deflection 8y of the uncomminded. "zeroed, ' engine may
Lecome sufficicotly large 1o warrant the inclusion of that engine's forcing function in the overall transfer function.
A means of accounting iGe the motion ol the wncommanded engine, 6. when advisable, is discussed in Appendia
Ch.

A. Rockel Engine Inertia (s~ 6] “Term).

(MI( ﬂl( ¢(1_) -1 (i)l \) <!\’1R£ " é(,i.:. - l“ o (>i)_ >
k k% i “(k/ My k%

The preceding terms constitute the foree and moment necessary 1o gimbal the rocket engine  relative to the

ith mode,  For most engine gimbal configurations these ferms beeoe important for the hig

reqguency
modes. The term may semetimes be omitted for rigid-body modes, and inay alse be omitted for several of
the common thrust deflectors such as jelavators, jet vanes, ete. which have {ow giabaied mass,

This term is important even though it may be simall, This is dlustrated by the reot locus

(Figure 4-9), This force m:

the sole contribution to the displucement of the TWD (tail-wags-dog) zero
Lterally from the imaginary (i) axis. The roots of the elastic mades which are in the vieinity of the TWD
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zero may cxhibit an uppreciable phase and gain error if the TWD zero is misplaced. Although this is an im-
portant effect, it is quite often omitted from the analysis. This omission is acceptable uniler some condi-~
tions, as this term is amplitude-dependent; !.e., the TWD zero will approach the tmaginary axis as the
amplitude of oscillation increases. Therefore, if a amall limit cycle can be tolerated this term may be
omitted.

ERROR IN REAL
COMPORENT OF
TWD ZERO

O=—---0

DEPARTURE ANGLE __
ERROR

Flgure 4-9. Effect of Velocity Dependent Term in TWD Zero

4,3.2.5 Coupled Excitations Through the Autopilot.

A. Coupled Bending Exeltations. in this scction it is assumed that previous tests have shown the direct open
loop coupling between the orthogonal body modes to be small. A'so, it will be agsumed that suitable uncoup-
ling exists between the body bending mndes and sloghing modes such that their coupling may be omitted. *

If these simplifications are made, then Equation 3-12 reduces to:

2 2 m . (6] () 2
7, 57 v 28w s+ W) q - 3 (M £ ) -1 g )s
i z .
i i i i k=1 Rk Rk x’lk Rk xek
4-9)
= W M) ) .
Lf,,( % T Yxrfk ® +Tk¢x'1‘k] % .
iS

For purposes of the analysis, it has been assumed here that the actuation linkage flexibility is included in the
modal ¢alculations; the following rocket engine equation of motion may be used (see Subsection 4.3.3 for
derivations). -
' ( C;, K¢ L (o(j) _Uo))
oy -I\l';\\_/\g -R;_l— i xe xt qj * chc
¢ s+ K_) . (4-10)

The control system for the clastic missile-autopilot system is depicted in Figure 4-10. This figure includes
only two modes, 4, and q, - Additional modes would only complicate the picture ai this time: they are of
identical form. Also, only 2 single control rocket engine is assumed, representative of one or a cluster of
similar engines.,

* Alternately, one might presume that the spring-centered sloshing masses have been included in the elastic body
mode calculations. In this case, this pavagraph may be leoked upon as treating the closed loop coupling between
two of the higher frequency body bending modes: the next Subscection considers coupling of one high and one low
frequency bending mode,

Xy
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s ¥ ” -
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5 et )
(b 'a¢2w25+u2

(2)

Iy My

AUTOPILOT

Gl(s)

i) .

REF,

Figure 4-10.

Autopilot Modal Coupling Paths

A general autopilot is assumed in which a variety of scnsors at different locations will appear to offer differ-
ent transmittances to the two modes, ‘The forward path compensation, G, {s), is assumed common ¢ al

sensor paths.

1. Open-Loop Coupling Due to Servo Compliance, I will be observed that in Figure 4-10 the system still

containg some open-loop coupling terms between the body modes.
tional compliance within the scrvo actuation system assumed.

These terms arise because of addi-
This "compliance™ is contributed by a

damping leakage orifice and by signal pickup (by the fcedback transducer, sce Equation 4-20) of the hy-
draulic fluid compressibility. This open loop coupling was not included in the earlier open loop coupling
discussion for several reasons. First, it is a fundamentally different coupling - that occurring between
two nonorthogonal modes, q; and §'. As such it contains an inertial force coupling term in its cocfficient
as well as the nonconservative propulsive and bearing friction furces.* Second, this term depends great-
ly upon the exact nature of the servo positioning systcin whoiber 01 woi there is a leakage orifice; how
much of the actuator compliance is sensed by the feedback transducer, i.c.. K /K :andnpon the loop gain,
. . X EH
Ke. Thus, this really is a coupling through the autopilot.

A scrvu posgiticning loop may be stiff enough to minimize these additional feedbacks in some cases. They
are, in fact, zero if a fixed linkage is used to posgition the rocket chamber.

* Note that if the servo actuator elastic compliance had not been incorporated info the bending modes, that part of
the open-loop coupling between modes due to elastic compliance (see Subsceetion 4.3, 2. 1) wouid appear here in-

stead, since oy,

o yp Would be zero.  The extra coupling would manifest itself, in that Equation 4-10 could not

be used for the engine servo but, instead. one including clastic compliance (Equation 4-23) would be used.

84
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2, Closed Loop Coupling. In the following discussion, the above open-loop feedback around an individual
mode (due to the additional servo compliance) will be assumed accounted for. The inter-mods coupling
due to this effect will be disregarded. The latter simplification is generally well justified, the arguments
being a direct parallel with those applied in Subseoction 4.3. 2.2 for neglecting an "auxiliary path for the
engine forcing function". Here, toc, the analyst may check for the accuracy of such an approximation,
using techniques equivalent to those of Subsection 4.3,2.1.

If these additional feedback loops are to be ineluded in the analysis, they are readily incorporated by
substituting Equation 4~10 into Equation 4~9, If this is done, the qi/lsc transfer function may be written:

-K
[4 6 (1)) 2 = a _ o ) o @
i . 7y [( MR t R ®xr IR Uxe /) ® Cl‘("xe Ut /%7 T ¢ xT
: 2 2
8¢ (6 + K (687 28 W' s+ W) . (4-12)

Here the denominator is the faciored form which displays the reots of the following cubic:

K ¢ K
3 . . _E L e M (i)‘( - (1)) 2
8’ + [Kc v 2w ;———){‘ ——Az —-KH 7o ch) Mot o) |8
K C K
2 E L e ) oz -
4 1t 1 t o —— —— e —— - -
+ [Kc @f] w) + wf +»L’1 = K”)("xe o) G s (4-13)

Approximate roots of this cubic are given by:

Kl
™ K {4-14a)
and
(@ + 2¢ M w;' 8 + w;' ) ™~
K. ./C K
2 B L () 1) (8] [tY]
8 + 2f w“——('——"‘—">(( - i 2 qf)'”-#I Ita 8 +
‘ i i Wi \AZ K" xe xT R A xT R xe
K /T ¢ |
L'g P ‘. ko\ ( ) ll)) 2 J {4-14b)
- - a -0, -
L i Wli f \ 2 K” / . Xe xT,

With these engine servo feedback loops incorporated as in Byuation 4-12 the system may be reduced to
that pictured in Figure 4-11. Here the body bending modes are coupled only through the control system.

‘To evaluate the effeet of modal coupling of mode {2) on mode (1) the percentage ervor in the closed-loop
roots is computed as iullows:

36
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Figure 4-11. Simplified Modal Autopilot Coupling Diagram

As for the open loop roots (Subscection 4.3.2.1j, this function can be interpreted to give both the percent-
age error in: 1) gain, or in 2) the damping of the closed loop root for mode (1), if the coupling of mode
(2) is omitted. The evaluation of this function would be carried out for s jw], this being a good enough
estimate of the location of the made (1) closed-loop root.

1t is difficult to go beyond making generalizations with regard to the closed-1nap coupling error equation,
4-15. This difficulty ariscs beenuse of the speeialized nature of the equation, involving as it does the
transmittances, ¢ g:)H land U[(‘f) H 2" peculiar to a particular vehicle, The following gencralizations are
offered, however:

First, it is clear that the closcd-loop cross-coupling error is gain-dependent. It {ollows that the ervor
is smaller for modes whose {requencies are beyond the bandwidth of Gl'

v

Second, the error is directly proportional to the mode (2) transmittance, af»{Z) }!2 q"/oc' From this

fact it follows that the error is small if pickup of this mode by the sensors is small. It also follows that
this error is luw it the natural frequency of mode (2) is well below w‘ll’ since this will put the *'test fre-
quency" well beyond the roll-off point. (From this point it follows casily that rigid body modes will have

very little coupling eifect on a body bending mode .}

Third, the error ig low if the mode(l)response is high relative to mode (2). Thus. if mode {1) is lightly
damped, its respounse ai wf will be very great; if the mode (2) natural frequency is reasonably far re-
moved, or if maode (2} is nearby but is highly damped, its response will be relatively low, leading to low

error.
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Fourth, if again one of these two modes is an engine-Lody mode, strong coupling may exist because of
very little frequency separation. It 18 also true that this engine~body mode has greater effective damp-
ing than a "regular' body bending made, bocause of the gimbal bearing friction, This damping tends to
spread the bandwidth of this mode further, propagating its coupling effects.

B. Coupled Bonding-Sloshing Exclitations. Two points of view may be adopted herc, each of which is discussed
herein briefly in general terms.

1. If the spring-cenisred sloshing masnses have been included with the vehicle elastic and inertial character-
istics when the body bending modes woere computed, then the sloshing and bending are orthogonal normal
modes. These can be coupled only through the flight control system in 2 manner exactly analogous to
that just discussed in Subscction 4.3.2.5,A, above, The sume general conclusions apply.

It should be noted, however, that the sloshing mode frequency is usually well removed from the other
elastic mode frequencies and, henco, coupling is very low, Moreover, from the point of view of the

ending modes, since their frequencics arce vsually well beyond those of the sloshing modes, it is guite
reagsonable to noglect the sloshing modes,

2. 1f the sloshing mades have been treated as artificially uncoupled modes, their open-loop coupling is dis~
played as shown in Subsection 4.3.2,3. As for closcd loop coupling, it is noted that the propellant modes
are not acted upon directly by the autopilot control forces; hence, coupling through the fiight control sys-
tem is indirect.

If the flight control system dircetly senses propellant motions (by mcans of liguid sensors placed n the
tanks for that purpose), then it responds to these signals and reacts upon the body modes; these, in turn,
affect the propellant modes, If the flight control system doces not sense propellant motions directly (the
more common situition), then it sces these motions only as they affeet the body modes (which is the case
wiih the conventional sensors). In either case, propellant sloshing modes, if they are to be sustained
regeneratively, must have their loops "filtered” by the body modes. It foliows then that these propeliant
modes will only couple significantly with modes in their immediate frequency range or with modes having
a large cnough pass band to encompass the slosh frequencies. Of the various body modes, the rigid-body
pitching is the unly one which generally has such a bandwidth,

1
4.3.3. Engine Equations. Subsection 3.4 gives the cquation for the angular motion of the Kkth engine, 6, with
respect to the elastic axis of the missile in terms of the modal motion, q; , and actuator load torque, Ty,

All parameters arc assumed to be for the kM engine: serve
¢ &
=, e -1 rf G 0y £ o 0y 1
&' +— &' - X (M 2 ¢ -1 e g t+— ¥lo. -« +— T
I 1 i 1 * AN > [ B
R R J 1 R R VKT R " xe ) § IR j=1\ xe xT/ %) IR Sorve.
(4-16)

The servo torgue is a function of the servo actuation system used to pogition the engine or control system. For
this discussion, a hydraulic actuator employiag a flow control valve and a leakage orifice across the piston will
be used. The servo terque for such a system (scee Figure 4-12) is:

T -AR P

Lgorvo L (4-17)

where the lo2d pressure, Pl , is given by (¢f. Subscetion B4,2, Equation B-6, B-7, and B-11.

A Y :
e > + -C P -K AR S . 4-18
":m 1B ,l,. AR & Ll, [I, \C ARG (1-18)

wnere 6 is the servo loop actuaiing error (sce below),
€
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LSERVO
Il DENOTES PARALLEL LINES,

Figure 4-12. Schematic of Position Scrvo Model Showing Division
of Compliances and Actuation

When the flexibility associated with the actuator linkage and hydraulic fluid compressibility is included in the modal
calculations, the leit hand side of Equation 4-18 is sct cqual to zero (KF—-—> o):
ot C'L

é P, +K & . (4-19)

4
AR I, c <
The engine comrol system ag shown in Figure 4~12 will be used for the following discussion. This contrel system
consists of a hydraulic actuaior with ne control or leakage orifice but having a spring, K. This equivalent spring
K represents the actuator structural spring, K, and hydraulic spring, Ky, in scries. The motion of the hy-
draulic actuator due to flow from the control vaive and the leakage orifice is represented by 2 hydraulic piston in
scries with the spring, K. The hydraulic fluld in the actuator piston is then treated as incompressible.  This
piston has the leakage orifice for damping and a servo valve for control.

Now the error aignal, & , is given by:*
€

AP
6.6 -~ & 1
€ c -
RI\H
(4-20)

K

E o) m)
- T h — -
6, =8 K (“xT %xe /9
1
By combining Equations 4-16, 4-17, 4-19 and 4-20 one obtaing the engine transfer function as:
. 2. 2 2. 2
. . i K AR K K A"R
r ) 0} 2 @ 0] [ Er ) 0]
-z M -1 s -C - g+ = o - +
j=1 l:( R L R ¢XT R g XC) s f( 7 xe ¢ x'l‘) .+ Cy, Kii (UXC x'l‘)_ q'; Cr, ‘SC
& - —

i C 2 .

| \32 +[~r , A 1ﬁ1| . s Ke a*w? ‘

R c ¢

"w Tk Cu I €, 4-21)

* The feedback transducer sees the total relative motion between piston and cylinder. which includes the effects
of hydraulic fluid compliance.
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A vory satisfactory simplification for hydraulic actuators is maus by dropping the Kip/Ky term, representing
pickup of the hydraulic compliance by the feedback transducer.

An alternate form of the preceding equation also exists. This may be calculated by letting the load preasure be

exprossed in terms of the modal deflections only. For a glven load pressure (Py), the hydraunlic spring (Kg) and
the actuator structural spring (Km) defloct a total distance, Xy, given by:

This deflection (X;) may also he exprossed as the sammation of the differences in the modal siopes on each side
of the gimbal block timea the radius arm (R) {cf. Flgure 4-12):

Solving for PL one obtains:

K. R

E r )
P - » LI
L A A (v 7 r) 9 .

Substituting this in Equation 4-10 and using 4-20, the enginu equation becomes:

K L e ) » 0
K\ "w ) 2 N
, B\ A2 Ky /5% (ch ux'r) 4+ Ko,
6 5+ K . @-22)

Equation (4-22) will yicld correet results if the data used is accurate. One arca which must be checked for accur-
acy 18 the difference of modal slopes (ugg -u 9}) An inaccuracy here will introduce an error in the 6'/q].

portion of the transfer function; however, this portion is usually small with respect to 6 '/6, and, therefore, wiil
not appreciably affect the accuracy of the determination of cloged-lonp rootg, In a similar manner. the trangfer
function for the case where the actuator compliance is not included in the modal calculations may also be obtained.
With finite stiffness KF' the resultant engine transfer function is (sce Appendix B4.2):

O, oy2| s ki
s -(MR IR L -
; TR T
. l 3 [Ty, K { K, KpRr2
i s + |K j—= +— |+ 5 +———
R 1‘,\ 7 "X I T )
A R R J4-23)

It may be noted that the gimbal friction term, Cf/I“ (UG) -

xe "S':‘ ) qj, is omitted from the equation. This is done

because (by hypothesis) there is no relitive motion of the engine with regpect to the back end of the missiie due to

modal deflections, i.c. ,( 5 o o U)\) Q.
A xe x'1

4.3.4 Elastic Booster Coupling Classification Summary. As an aid in achieving perspective from which to review
the foregoing subscetions, the following tabulation und remarks concerning couplings are given.

9.4
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&. Open Loop Coupling - Orthogonal Modes
1) (Couplirg Mode 1, 0 mode qj)
Only through nonconservative forces:
Aerodynamic - minor for nonwinged booster
Propulsive (Engine Thrust)
Major
Dissipative (Bearing Friction)
b. Open Loop Coupling - Nonorthogonal Modes*
1) (Coupling Mode q4 to mode §' or §)**

Forces:

®w _,

Inertial (MRIZ R ¢x1‘ ® Y xe

)
Propulsive
Dissipative
2) (Coupling Mode q; to mode y, )
Forces:
Inertial
Elastic
c¢. Closed Loop Coupling
i) {Coupling Mode q; to qj)
Forces:
Inertial

Propulaive

Thia coupling depends upon tranamittance from mode to control system, i.e,, the way mode is sensed
by the control.

4.4 SUMMARY OF APPROXIMATE FLEXIBLE VEHICLE TRANSFER FUNCTIONS

In this subsection are summarized certain approximate flexible~booster vehicle transfer functions useful for con-
ducting rapid manual calculstions of the stability of the various vehicle modes, ¥For such computation it is desir-
able that the transfer functions be reduced to simple single~-mode equations with all elements appearing in factored
form (or at least in a form easily factored by hand calculation). These properties have been attained here with,

it is belleved, a minimum penalty in accuracy for most applications. The transfer functions are grouped accord-
ing to which dominant vehicle mode is of concern: flexible vehicle transfer functions, rigid vehicle with sloshing
propellants and finally rigid vehicle with rigid contents. The assumptions made in obtaining each transfer func-
tion, along with an indication of its area of applicability, are given.

* This coupling actually effects a coupling between vrihogonal body mndes as seen in Subsection 4.3.2.5.

** The difference is that coupling with ' is through the agency of the servo control compliance alone. Coupling
with 6 is through both serve elastic and control compliances,
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£.4.1 Flexible Vehicle Traunsfer Funciions. Given herein are some approximate transfer functions useful for a

ey

stability check of one elastic mode coupling with the flight control system.
a. Assumptions:

1) Modal coupling with other bedy modes (rigid, sloshing, or elastic) through aeruvdynamics, the conirol
system or conservative forces (for nonorthogonal modes) |8 neglected.

2) Only one {or a group of idontical) gimbaled engines is commanded.
3) Noncommanded ongine coupling offocts arc neglected (seo Section 5§ and Appendix C5).

4) Aerodynamic effects and engine inertial foedback for the mode considered may be included if desired.

5) It is assumed thal the engine-positioning sorvo compliance is accounted for in the engine servo transfer

function itself.* Thus, the vehicle body bending modes to be used are those computed with no servo
elastic compliance allowed foi' {n those modes.

The goneral form of the simplified q:/ &' transfer function is as follows:

q K, (s + 2z 8 +%
Yo g ¢ i'rwn) ¢ 1'1‘WD)
Y 5 3 (4-24)
%(S 28 w8+ @ )
i i i i
whove:
8] 0]
K a2 -
1 Mpfpdar T Tk k)
i (i)
~ 2 ¢ ®xT
(8 + 7, Y 8+ zi ) 8 + K
TWD TWD i
and 6 ',
The actuator transfer function is (from Equation B~25, Appendix B4,2, and Equation 4-~23):
Ki s2 + K C!. . Kc K 2
- —_ + .
IR 3 E Az Km 4 e Yo éc
o o ] 2 3 2 ’ (¢-25)
8 + 2¢ w + 8 + K w
cn cn cn c ¢
where ,
. 2 KE R
c 1R
0 2 2 L . K )
« = —t
cn d E 2
¢ IR A Km
¢, < C. K
2  w — + K. | 2
cn ¢n IR E . Az Km

* Incorporation of this servo compliance into the hady mede calculations yields better results for a detailed stabil-
ity study in which coupled modes arc employed. For a simple, uncoupled, single mode stability check, however,
the method given here is adequaie. A comparison hetween the coupled mode approach and that indicated in 5) is

given in Scetion 5.
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|
|
I
|
This ihird order denominator is readily handled manually, since it always factors into at least one real root, }
This root is found by trial by dividing out several trial values until a second order function with no remainder is
left as the quotient. A value of 5 - - K is always a good first trial. (
1

|

|

|

|

|

|

The autopilot pictured in Figure 4-13 has the following ()f/q1 transfer function:

2 (i3} (¢4}
8 KR “Re “Ra % pg
4 2 2 Bt T D)
i 8+ 2856 “pg ® T “Rra PG ) (4-26)

L2
-

Here a simple lag represents the attitude reference dynamics; these inay be fur more complex {cf. Appendiz B2,
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Figure 4~13. Block Diagram of Closed Loop Elastic Mode System (Servo
Mount Flexibility Incorvorated in Servo Actuator)

In general, for elastic mode coupling studics the contribution of the attitude-position signal is negligible (unless
the attitude position sensor is located at a point of great modal flexure, such as the nose, while the rate gyro is
located near an antinode) and the abeve gimplifies to:

2
% fm¥mere "
4 2, s P 2
bt 2l pg Opg 8 Y Ypg) 4-27)
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The feedback path labeled "flexible mode feedback to actuator' ia Figure 4-13 may be omitted for stability checks
of most modes. The exceptions would be modes at or near engine-servo-mount resonunt frequency (approximatoely

KER2/IR ), for which the path becomes significant, If this path is omitted the open loop transfer function may be

read direcily from Figure 4-13.

The additional fecdback path may be eliminated algebraically fron: the equations by substituting Equation 4-24 into
4-25 to obtain a higher order transfer function. The result is:

2 2 2
é_ Kc w, (s +2§;w{s+wl)
reli . o > ) ’
60 (sa+2§ w 521‘w2 8+ K w )@ +20 w8 +wd+ Ki 3 2. {2 Tc
cn cn cn c ¢ i1 i ),,——-(s +2Kc wcs)s+——
i1 R 1 /(4~28)

where

EL Kc
2Kc wc = KF(—? + ——)
SV AT m

The flexible mode feedback is displayed here as the added higher-order terms of the denominator. Clearly, if
these are dropped the transfer function reverts to a aimple third order equation:

cn cn cn c % . (4-28a)

It is not recommended that Equation 4-28 be used to account for servo-mount compliance in checking body bending
modes whose frequency is at or near tho uncoupled servo-mount frequency. To use Equation 4-28 one would em-
ploy a machine routine to factor the fifth-order donowminator. It Is feit thai better use may be made of this ma--
chine time to obtain roots of the coupled body bending and engine-body modes (where the servo-mount compliance
ig incorporated in the body-mode calculations). Equation 4-28 is given cnly as an alternate means of rational-
izing the omission of the "flexible-mode~-feedback-to-tho-actuator" path (leading thereby to Equation 4-28a).

Occasionally, it is dosired to display the body-bending mode coupled through the autopilot to the rigid-body mode.

This presumakly would be the case for a very low frequency b-nding mode, The transfer function giving the atti-
tude perturbations, as seen by the gyro package is:

o, ,

2
1
(82+ c ¢x1‘)(q2+ By w89y
% Peg™ Xy) K (-4 K 1-A 1-A
s 2

(4-29)

where

() )
! "xu ? T

A g—t
! 7'71 (XCG - Xy

K, - M) 2 P TP

i R~ R " xT R xe

Here aerodynamics have been negiected. This equation is an extraction of Equation 2-15 of Section 2. Figure
4-14 shows a typical control loop.

@
<




ENGIRE
SERVO

WADD TR-61-93
April 1961

[ ® ) AMPLIFIER
FILTER

€ &/6
[+

(EQ. 4.28a)

GYROS

8/6
qllé
(8]
axG
GG + 4

(EQ. 4.27)

Figure 4-14. Rigid Body Pitching and Body Bending Coupling Control Loop

4.4.2 Rigid Vehicle With Sloshing Propellant Modes. Given herein are some approximate transfer functions use-

ful for sloshing propellant mode stability checks.

a. Assumptions:

1) The sloshing propellants’ fundamental modes only are considered (see Appendix A3).
2) ‘The pendulum mechanical analogy is employed. Corresponding ixiterpretations may be made for the
spring-centered sloshing mass.
3) Propollant damping is omitted in writing the cquations.
4) Aerodynamic effects are omitted (see comment in Subsection 2.2.5),
5) Artificially uncoupled sloshing modes are agsumed.
6) Control engine inertial effects are neglceted (8ee Subgection 4.4.4, below),
4.4.2.1 Single Sloshing Tank.
, 5 aT M
gz + w'z + __ﬂ_ _pL
8 _ # ] Lpg M Lo
2 M, ¢ L 2
[ g h, f
. 8 + w! + --.1 .._p.l o CPe pl,)qc
Lp M lc r‘
2
MP
2 1 2 2 2 "
r O wi = wlZ (1 + M ) {4-30)
. T-D u I‘c ! c
o Y
T .AT or ' [ I
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The remaining parameters aro dofinod in Figure 4-15, and tho equation is derived in Section 2 (Equation 2-9).

T= T + 7T
4 f

f "FIXED"
¢ "CONTROL"

Figure 4-15. Single Tank Propellant Sloshing Model

Equation 4-30 may be uscd for sloshing stability studics in a control loop such as that of Figure 4-16. For this
study a simple 6/6, iransfer funciion such as Equation 4-28a or even a first order transfer function (sec
Appendix B4.2, Equation B-28) may be used, The choico of 6/6, function is dependent upon the expected fre-

..... y 2c us

quency of glosh roots relative to the sorvo actuator bandwidth.

ENGINE
SERVO
6 0 " 6
e o AMPLIFIER A o/ 5 6/6
FILTER e
VEHICLE
o E
GYROS

Figure 4-16. Rigid Body and Sloshing Stability Control Loop

4,4.2,2 Multiple Sloshing Tanks. For an n-tank vehicle with acrodynamics omitted, one may write:

(sec Reference 15)

3 L
("p pﬂ) ¢ 9
M ¢ 1-— ~ | w,

I T I n Py Py ; i

. 2 - -

F3 s M(XC(‘ X ) 01 32 . wﬂz @-31)

where
M L
2 2 Py o t'n, Py ’)
j 1+ = 1+ —
“y “y M \ 2
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4.4.3 Rigid Vehicle With Rigid Contents. The rigid-body (rigid-vehicle) transfer function (8/6) will be presented
first in its simplest form, based upon several restrictive assumptions, These restrictions will be removed one
by one, showing the change to the transfer function. The rigid vehicle that is discussed in this study is assumed to
have a reasonsble slenderness ratio, and § s restiricted tc small angular motions. Figure 4-17 is the mathemat-
ical model.

c . f= "FIXED"
¢ "CONTROL®

Figure 4-17. Riglid Vehicle Parameters

Assuming zero dynamic pressure (g) and no inertial moment coupling of the rigid-body mode with the engine, the
8/6 transfer function ia:

9 _ L (doa
T = ~;2~ , where By 'lcpc/l . (4-32)

Next, the effect of aerodynamics on pitching is added, but the rigid body plunging mode and engine inertial coup-
ling are omitied. One nbtains:

[
—_— , where ¥ . 4-33
3 B, ol /1 (4-33)
8 -,
Equation 4-33 is rationalized differently in Section 2, Subsection 2.2.1.

If the plunging mode is coupled to the pitching mode by the aserodynamic forces, one has:

2
T+ F (1 + _a_)
al [
+ . (o3
L MV
8 2 T + F
® 8 +——% s -y, {4-34)
MV
Other useful rigid-body transfer functions of the same''class' as 4-34 are:
T
P B
= J 1
o MV By
o p, TR T
[ 6 9 T + FQ,
+| T s - -
3 YL L (4-35)
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c 8
8 1+ 2
& MV Hs
9 2
2
T + F"(lr )
g +—— ~ L
MV
s T2 ]
O sa—}m— 1t —E‘-’u (1 +,—g->
Yy MV é Tt e
5 8 2 ('I‘ + F,
AU A
From geometry:
0 =y + ¢
and
-1 v&' VH
a - tan v ~ v

T

Bt —

[*] “a MV
= — + = .
9 (6)6 S R Pt T @,
8 + 8-“11

My

(4-36)

(4~37)

{1-38)

(4-39)

(4-40)

From Equation 4-36 onc may show that ¢ ~8 1s a good approximation for this class of vehicle. Figure 4-18 is
a Bode plot of Equation 4-36 with break frequencies at typical values during flight.
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Figure 4-18. Log - Amplitude vs. Frequency Plot of «/6 Transfer Function

for a Large Booster in Flight
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If one wishes to study the effects of auxiliary feedbacks on loop stability, two other useful transfer functions are
available:

- -

@ sensor v @ vehicioe (4-41)

where £ is the distance an angle-of-attuck sensor is mounted ahead of the vehicle center of gravity.

u
T ) T o 4+ F
Zsen .Uy -——-M: (,, s o P - a)o
S0
(] -
;M-S (4-42)
8 Hs

Here {g is the distance an accelerometer is located ahead of the vehicle center of gravity.

4.4.4 Concluding Remarks on Engine Inertial Effects. Engine inertial effects arise in two ways: 1) the inertial
loads of the gimbaling engine mass react on the body modes and 2) the accelerations of the body modes load the
engine-positioning servo.

The first of these effects if displayed by inclusion of the inertial gain, K = M o 1 ) and the

i R ! R ® xT R Txe’
tail-wags -dog zoros, z; Twp and 2§ wp (sce Subsection 4.3.2.4). This effect 18 seldom important for rigid
body and most sloshing modes for contemporary classes of rocket engines. Ilowever, it is likely to be significant
for some future gimbaled powerplants of great mass, even for rigid body modes. This effect is best accounted
for in approximate modal analyscs by returning to the general equations of motion, Section 3, from which simpli~
fied equations for a mode or modes are quickly extracted.

The importance of the second inertial effeet in moving the engine depends upon two factors: 1) proximity of the
signal frequency (modal frequency) to the engine servo mount frequency and 2) softness of the positioning servo
(servo loop gain and dead zone size). For the lower frequency modes it is unlikely that frequencies will approach
the servo resonant frequencies. However, the effect of servo-loop softness is sometimes significant in determin-
ing limit-cycle behavior, particularly when a sizeable servo "dead-zone® is present. This effect is readily incor-
porated in the rigid body and sloshing mode analyses as follows:

If Equation 4-25 is simplified by letting wcz —e @ (4 good approximation for modes well below the servo resonant
frequency) one has:

is L [
- —_— ¢ — q + K 6
2 2 K i [4
R A mn ¢
6 o T K
{ 1, [4
5 |1 +— —= — + K
2 K c
L iR A m

® (@)
xT !

For use with rigid body and artificially uncoupled sloshing modes, ¢ PO xe 1 and thus:

- i @
Kpap Mty t I e
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Then one has:

v e}
/“R !R!c IR L K(:
| S 2 s e + T{‘— 8 6 + KC (Sc
\ R A~ m .
5 = g Fl B R (4-43)
f L [
8 1+ — —— = + K
Rz 1,\4 Kin c

Equation 4-43 may be used in place of Equation B-26 for an actuator transfer function in rigid-vehicle studies to
display the effects of inortial Joads un the positioning servo.
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6.1 GENERAL

In previous chapters detailed system equations of motion have been wriiten from which various simplified trans-
fer functions were derived. By far the greatest simplification is made when the coupling between modes is omit-
ted and the stability of a single mode is analyzed with a minimum of secondary feedback paths. This simplifica-
tion ig employed sweepingly in compiling the approximate transfer functions of Subsection 4.4.

For the lower frequency modes (rigid body and propollant sloshing), experience has shown this simplification to
be well justified in general. In cases where it is not (e.g., rigid-body coupling with a low frequency, artificially
uncoupled sloching mode), a single simple transfer function can be obtained for the coupled system., Hence, the
transfer functions given for these modes are readily applied with little quulification.

For tho higher froquency modes (bady bending) the situation Is not so slmple, in that various coupling effects and/
or auxillary feedback paths can cceasionally be very significant. Their omigeion in applying a simple transfer
function for rapid manual analysis will sometimes lead to results which can only be considered crude and barely
adequate for a rough check. In this section certain of these effects are discussed and example problems are
shown to display the nature of the coupling phenomena.

The major secondary effects in dealing with the higher frequency modes are as follows:

a. open-loop coupling between normal modes due to noncenservative forces (propulsive, dissipative, aero-
dynamie),

b. open-loop coupling through rocket engine servo compliance (inertial, propulsive and dissipative forces), and
c. closed-loop coupling through the control system,

Open-loop coupling due to aerodynamics is gencrally negligible. The exception could be for the vehicle carrying
lifting surfaces near the times of maximum dynamic pressure (see Subsection 4.3.2.1), Becausc of its special-
ized nature no further treatment of this type of open-loop coupling Is given herein,

5.2 OPEN LOOP COUPLING COM PARISONS

The first type of open-loop coupling due to the nonconservative forces (propulsive and bearing friction) arises due
to the elastic compliances within the enginc-positioning servo. Thege elastic compliances permit a relative an-
gular motion in ecach body mode between the engine chamber centerline and the elastic axis at the gimbal,

o ,(:g - ug} . {Note that restriction of the open-loop coupling from these forces to this sole source is actually a
congequence of the omission of certain other propulsive foree work terms which are very nearly self-cancelling,
as explained in Appendix C4.)

A second type of open-loop coupling arises through the internal compliance of the servo actuation system. This
coupling involves the nonorthogonal engine deflection mode, §', and hence, inertial as well as propulsive and
dissipative forces are concerned.

These couplings manifest themselves as shifts in the oper—loop poles of the body modes being studied. Because
of the rather specialized nature of these two types of open loop couplings (due to their great dependence upon
characteristics of a given servo installation), no attempt is made in the following diacussion to distinguish be-
tween them or Lo generalize on their relative contributions to an open-loop pole shift,

Figure 5-1 shows some root compar.sons computed for a iarge ballistic booster vehicle employing gimbaled
nozzle Hquid rocket engines. The figure shows a body bending mode's open loop poles, first when it is un-
coupled a1d second when it is coupled with an engine-body mode. Set one shows a budy mode at a frequency of
52 radians per second coupling with an engine-body mode whose natural frequency is 46 radians per second. Set
two shows a body mode at 67 radians per second coupling with an engine body mode whose natural frequency is 77
radians per second. In set three one sces the much smaller effect of coupling with an engine body mode at 77
radians per second when the body medal frequency is far removed (101 radians per second) from that range. A
typical electrohydraulic servo-actuator with leakage orifice damping was assumed for these calculations.

iv7
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Figure 5-1. Effects of Upen Loop Coupling Between a Body Bending Mode Frequency (wg)
and an Engine-Body Mode { Yep )

The figure also illustrates the rule-of-thumb, given in Appendix C5, that the open-loop coupling effect from
"wagging" an engine is generally stabilizing (i.0., tends to move the open loop poles to the left) for modes whose
frequencies are above the engine's TWD frequency. The TWD frequency for Set one was at 32 radians per sccond,
and for Sets two and three it was at 42 radians per second. The higher frequency mode (Set three) shows, how-
ever, the reverse trend; thus, the rule-of-thumbdoes not aiways apply for very high frequency modes. The
reason 18 that the phase relationship between modal deflection (¢) and slope (o) at the aft end sometimes changes
radically for high frequency modes, thereby changing the sense of this coupling correction. Fortunately, this
coupling correction is amall for these same high frequency modes; hence, the rule-of-thumb as given is still
generally useful.

It should be obvious that open-loop coupling alone will have no other effects on closed-loop roots than those ac-
companying the shift in the open-ioop pole. For the body-bending modes the separation between modes is gener-
ally such that a relatively small shift in the open-loop pole is reflected as a simple translation of the root locus
in the pole's vicinity. This property is illustrated in Figure 5~2, which shows the effect of open-loop coupling of
a noncommanded engine upon a closed-loop root locus for a body mode. (Since the coupling is from a non-
commanded engine it obviously cannot include any closed loop coupling.)

The open~loop coupling through prepulsive and dissipative forces due to servo-elastic compliance also occurs
between two body bending modes when neither one is an engine~-body mode (provided, of course,

v,((ig - u)(:% = 0;i.c., the servo-elastic compliance wes incliuded in the modal calculations). This coupling is

so small, however, that it is hardly practicable to display it graphically. Several of these modes were selected
from those of a typical large booster (these being the closest in frequency which could be found), yet the open-
loop coupling was found to be negligible. The slight extent of this coupling in a typical case may be seen in
Figures 5-9 and 5-10, which were drawn to shown closed-loop coupling, also.
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Figure 5-2. Effect of Open Loop Coupling on a Cloged-Loop Root Locus
5.3 SOME CLOSED LOOP COUPLING COMPARISONS

As with the open-loop coupling shown above, the strongest high-frequency closed-loop couplings occur between a
body~bending and an engine-body mode. Here, however, effects are often mor: striking than the open-loop coup-
ling cffects.

Figure 5-3 shows a comparison of closed-loop roots fur a budy~vending mods and an enginc-body mode, reason-
ably well separated in frequency. The difference between coupled and uncoupled closed-loop roots is consider-
able for the engine-body mode. This difference, however, is not so great for the body-bending mode (the more
critical one), although it could be important in 2 more marginal system than the one shown,

Figure 5-4 is another such comparison, this time for a body~bending mode and an engine-bcdy mode quite close
in frequency. Here, the coupling effect is proportionately greater, being critical to the system stability,

Since the effect of engine~body mode coupling may be considerable, it is not generally advisable to omit this
mode in performing a stability check of a body mode. However, incorporation of this added mode, with its
various couplings, greatly increases the labor in a manual computation. Hence, for a simple manual check it is
recommended that the various couplings of the engine control mode be accounted for by incorporation of all the
engine-servo compliances into the servo-actuator equations (see Appendix B4). In this way the various servo-
made couplings are represented in the resulting third- or fifth-order actuator function {cf. Equation 4-28, 4-28a)
with a resulting control loop which can be treated manually (see Subsection 4.4).

While recommending this approach for simplified manuai stability checks, the writors must add a word of
caution as to the general accuracy of these results. Experience has shown that root calculations of high-~
frequency modes are subject to large errors from a variety of sources, a clean evaluation (or weighing) of which
is difficult tc impossible. 1t is equally difficult to say which method of solution (coupled body modes or one-
mode-plus-higher-order actuator) gives the more accurate results. In numerous test problems, however, the
preponderance of results indicated ihat the coupled body mode solution yiclded the more conservative results. A
sampling of these results i8 now given.
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Figure 5-3. A Comparison of Closed Loop Roots for Two Modes (One an Engine-Body Mode)
with and without Coupling Through the Autopilot
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Figure 5-4. Coupled and Uncoupled Body and Enginc-Body Modes with Small Frequency Separation
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in Figure 6-6 roots are shown for a body mode whose frequency is well above (60 percent) that of the actuator
mount resonanve (about 73 radians per second). Roots were computed using this mode coupled to an engine-body
mode; they also were computed for this mode plus higher-order (third) actuaior. As may be seen, the results
differ somewhat In gain and phase, the effective gain in ithe coupled mode system being greater. 1t is not possi-
ble to assert which result is actually the more acourate. The differences whick appear are directly the result of
elastic modal data differences (¢1, ol and%’l), an absolute measure of which was not available in this frequency

range.

108
=0
v “a
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Y §F=0.1
ACTUATOR =73 RAD/SEC
= K, =0
Wy = 70 RAD/SEC / A
104
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K =1
A 100
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. 98
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3rd ORDER ACTUATOR | %8
PLUS ONE BODY MODE
K, =2
A
|—COUPLED BODY & 94
ENGINE] BODY MOIDES
-12 -10 -8 ~6 -4 -2 [}

Figure 5-5. Comparison of a Bedy-Bending Mode's Closed-Loop Roots
by Two Sol ~ 1.
g utions (wi 15w actuatm')
In Figure 5-6 a similar comparison is given cf results for a body mode whose frequency is relatively close to
that of the engine servo-actuator resonance. Here, the difference in results is very dramatic. However, this is
a case whet ¢ the higher order actuator should probably not be expected to yield good results; hence, the coupled-
mode approach {8 recommeaded.*

In Figure 5-7 another body mode, well below (40 percent) the engine servo actuator resonance, is shown, as com-
puted by each method, Here, the results showan apparently poorer agreement than might be expected. How-
ever, Figure 5-8 shows the reason. The proximity of this mode to the engine's TWD zero makes its gain very
genslitive to movements of this zero.

* Note that for this problem ihe inertial feedback of the mode into the third order actuator {Equation 4-25 or 4-28)
was employed to gel the best reaults obtainable,
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Figure 5-8. Solutions of Figurc 5~7 on a Smaller Scale

Tn that the location of this zero is a function of the madal parameters (¢x'l" U and axe) and the bearing fric-

T
tion cocfficient (Cy), these variations between the two solutions for the vehicle's modes* will result in different
zero positions, Ilence, a mode in this immediate vicinity will display a strong responsc to these changes. For-
tunately, however, this sime proximity to the TWD zero means that this mode is highly attentuated (note the
very close proximity of the closed-loop root to the open-loop pole in Figure 5-7). Hence, the trouble here is
more academic than actual,

Finally, we compare closed~loop roots for coupled versus uncoupled body-bending modes. These are displayed
in Figures 59, 5-10, 5-11, and 5-12 for two vehicle body modes selected because of their relative frequency
proximity. As may be scen, the effects of coupling between body-bending modes (engine~body modes excluded)
arc nepligible.

* Remember that the coupled-hody and engine-body solution uses modes in which the servo-elastic compliance
was incorporated; the other golution uses modes computed for zero elastic compliance.
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Figure 5-9. First Body-Bending Mode Closed Loop Roots, Coupled and Uncoupled
to Second Body-Bending Mode (At Lift-Off)
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SECTION 6

COMPARISON OF ANALYTIC MODELS WITH TEST DATA
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SYMBOLS USED IN SECTION 6
Definition
experimental normalized mass
analytic normalized mass
Laplace operator (8 = o + jw)
servo feedback transducer deflection
rocket engine gimbal angle
rockot engine gimbal angle commanded

rocket engine gimbal angle feedback

normalized deflection for the 1-5 mode
natural frequency of 1at mode
normalized natural frequoncy

analytic natural frequency
experimental natural frequency
undamped natural frequency

natural frequency of engine oscillation
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Unite
slugs
slugs
1/sec
ft

rad
rad

rad

ft/ft

i/sec
1/sec
1/sec
1/sec
1/sec

1/sec
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6.1 GENERAL

Regardiess of the complexity, detail, and correctness of the analytic model chosen for the theoretical studies of
a flexible booster, it remains an analytic model. Its similarity to the actual hardware components cannot be in-
ferred simply because of the correctness of the mathematics used, but will depend upon the assumptions made
and the accuracy with which the basic characteristies of the components and structure are known. Also, the
validity of the autopilot and control system analyses will Le directly related to how closely the model resembles
the real quantities. Tests, and the subsequent use of test data, are the means by which analytical data and
methods of approximation and simplification can be improved upon.

This section is divided into two subsections. The first subsocction will contain discussions of particular testing
done on autopilot components and missile airframes and of ground testing which complements the analytical
studies. The sccond subsection will be limited to a qualitative discussion of information gained during flight
tests. Most of the data presented is qualitative only; it is folt that the accuracies of the synthesis~analysis
methods can be discussed adequately without the necessity of referring to quantitative data which is of value only
in discussing a specific vehicle.

Two aspects of testing will be intermingled throughout the two sections; the first is a general discussion of the
penefits of a test program and the second is a discussion of particular tests performed on control-system and
bending-mode ealculations on Atlas and Atlas space booster configurations. This discussion will be limited to
possible benefits rather than the actual mechanics of testing and data reduction. The second topic is presented
to back up the methods presented for the calculation of engine servo characteristics in Appendix B and moedal
properties in Appendix A.

6.2 GROUND TESTING

Ground testing will refer to all testing that is done under conditions that are not design flight conditions. Ground
testing s of value, as it provides the carlicst opportunity to check on the validity of certain simplifications and
approximations used in the preliminzry analysis; this testing may be carried out on components, subsystems,
complete systems, and even a complete vehicle assembly.

Subsystem testing will be used to define two major areas of uncertainty concerning the preliminary analyses per-
formed; one is the nature of various higher order effects and nonlinearities which were not Inciuded in the orig-
inal analysis; the second is the check on apecifications such as gain, phasc, frequency, ctc. of components and
systems which were called out in the design studies. Tho system parameters may be suificiently influenced by
nonlinear behavior and by second order cffecis to alter ihe offective gains, thus aliering the system stability
marging. The testing then examines certain of the characteristics related to the simplifications and approxima-
tion discussed in Appendix B (Subsystem Transfer Functions). Effects which are discarded in applying certain
simplifications may come back to haunt the analyst at this stage.

System testing, or testing of a major vehicle assembly, is usually accomplished to evaluate problems concerning
the gross behavior of the vehicle. With respect to flight control problem areas, these tests concern overall
vehicle modes and control system compatibility with other systems. Operation is observed using airborne power
supplies (electric, hydraulic, etc.) under conditlons of temperature, vibration, acoustic impingement and loads
which most nearly duplicate actual flight environment,

Most system testing of a flexible booster is accomplished under conditions not completely compatible with those
exigting during flight. Certain constraints are placed upon the flexible booster by its support. This condition
makes the accurate evaluation of extra degrees of freedom not included in the analytical model very difficult.
Under such conditions it may be necessary to caleulate the basic missile properties (elastic modes, propellani
sloshing forces, and control system transfer functions) twice: first in order to analyze the in-flight conditions
go that the autopilot and control system characteristics and gains may be determined and second, to determine
the modes and control system transfer functions under captive conditions. ‘These latter results may be compared
directly with data taken on the test standsg, A typical schematic comparison of twu sets of modes obtained is
illustrated in Figures 6-1, 6-2,

Figure 6-1 illustrates ihe general mode shapes for a vehicle in flight. These modes correspond to the classical
"free-free’ modes for a beam. In Figure 6-2 the modes with a test restraint are illustrated. These modes
correspond to simple beam cantilever modes for the constraint shown. The frequency separation of the two
modes is quite appreciable,with the gecond cantilever mode having about the same frequency as the first "free~
free" mode.
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Figure 6-1., In-Flight Bending Modes
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Figure 6-2. Bending Mode for Boester Restrained in Launcher

This double calculation of elastic properties may be necessary to verify the adequacy of the analytic model used.
To insure direct comparisen, the same booster and control system mass inertial and elastic data must be used
in both cases. This then provides a check of the flexible booster model when subjected to test restraints which
can be extrapolated to the in-flight simulation.

In addition to obtaining a cherk on major vehicle modes, the system testing also permits evaluation of such addi-
tional effects as:

a. Evaluation of signal-noise pickup due to local mounting resonances and mechanical transmission of engine
noige through the structure. Some of this signal noise may arise through cross-axis pickup in the sensor,
such as pickup of accelerations about the output axis of a rate gyro.

b. Evaluation of other effects associated with the firing of the rocket engines such as gimbal bearing friction
meagurements and engine alignment shifts due to strain deformation of the structure (from thrust, pressure,
temperature).

Some of the subsystem and syatem tests of most direct concern with the evaluation of approximate transfer func-
tions are discussed now in more detail.
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6.2.1 Control Element Positioning Servo. The foroes produced on the flexible booster by the control element
and its positioning servos constitute the major generalized forces over which direct coatrol can be maintained.
These are in contrast to aerodynamic forces which are altered by disturbances (guste and shears), over which no
direot control i8 exercised, and the propellant sloshing forces, which are affected only slightly by the autoptiot.
A method of linearization has been presented in Appendix B4,2 for the class of electro~hydraulic control systems
now in general use on large flexible boosters. This method makes use of deascribing functions to linearize the
elements in the control system. Checking of the accuracy of this system's transfer functions is a prime objec-
tive of ground testing.

The analysis of the results of ground testing 18 complicated by the additional degrees of freadom which are in-
herent to the test seiup. Thoseo include vehicle structural resonances which will be present in flight plus addi~
tional structural rosonances due to test constraints. These resonances will quite often couple, making it diffi-
cult to separate the two and evaluate their individual effects. In addition, in both test and flight evaluation the
instruments which are avallable may give an indirect measurement of the desired data.

As an illustration of the preceding let us examine the schematic of a rocket engine control servo (Figure 6-3).

)
j

\\\L\J\

\__ TEST STAND SUPPORT
CONSTRAINTS
(SCHEMATIC)

SERVO
FEEDBACK
TRANSDUCER —\

(
N

GIMBAL ANGLE
TRANSDUCER

!
1

Figure 6-3. Schematic of Electro-Hydraulic Engine Position Servo

In Figure 6-3 the desired measurement is the inertial angle, 6, since the control forces produced are a direct
function of this angle. This angle is not, however, exactly equal to the output of the gimbal angle transducer.
The output will contain the effects of rotation of gimbal block, engine mount elasticity, booster elasticity, and
rigid motion of the bovster duc to the test stand response. In addition, the gimbal, which may contain two de~
grees of rotational freedom, is a difficult place to install an aceurate transducer. In effect, the output of the
gimbal angle transducer is sufficiently accurate only at frequencies below the main support structure's resonant
frequency .
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The output of the servo feedback transducer = aliogether different. It is rigidly mounted to the actuator and its
outpul will be AX, as Indicated in Figure 6-3. As the servo feedback transducer is an integral pari of the con-
trol gystem, it will usually be a more precise unit than the gimbal angle transducer which is used only for test
monitoring. The relationship between this transducer's output {A x) and the thrust chamber swing () is also
affected by structural complianco: in this case, the actuator sitachment rigging flexibility. Thus, the feedback
transducer is not an accurate measurc of the engine angle, 8 , unless the compliance 18 accounted for.

Figure 6-4 shows a comparison between Ax und & tost data. This configuration had a massive thrus: structure
on which the gimbal block was mounted; hetice, the measured 6 data was not affected by resonances st the gimbal
within the frequency band shown. As may be seen, however, the actuator mount stiffness resonance had pro-
nounced effects upon the Ax data,
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Figure 6-4. Test Data Comparison of Ax and 6vs. 6,

To get a useful verification of the 6/5c transfer function, comparisons between test data and the mathematical
model must be made for both Ax/6 o and 6/ 6(_, with the Ax/é ¢ test data generally being the more reliable. The

two responses shown in Figure 6-5 indicate the agreement that can be expected between a detailed nonlinear ana-
log simulation and tesat data.

After the accuracy of the nenlinear mathematical model has been verified, the analyst may seck a simpler linear
model which will mateh the gsystem's behavior adequately and yet will facilitate more stability analysis. A plot
of the lincarized simulation of the third order actuator of Appendix B4.2 is compared with an analog simulation's
amplitudes in Figure 6-6.

The preceding discussions indicate the adequacy of both the aneleg and the linearized sirvnulation in representing
the control element and servo system for analysis of a flexible booster and control system. They also indicate
how analytical tools can he used to verify data relationships obtained on test stands,
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Figure 6-5. Comparison of Analog Versus Static Test (Hot Firing);
Vehicle Restrained by Launcher

6.2.2 Bending Mode Tests.

6.2.2.1 Mode Frequency and Deflection, Studies of an autopilot and control system, in conneetion with the flex~

ible booster bending dynamics, have shown the importance of accurate mode shape, frequency, and damping data.

If structural propertics are not aufficiontly deflned, unstable booster conditions may result, or, (more rarely)
an unnecessarily complex autopilot design may rcsult. Much previous work on both missile and airplanes has
been directed toward ground testing for determination of in-flight bending mode shapes and frequencies. The
results, in general, have not been too promising, resulting in appreciable difforences between calculated and
observed bending modes for some configurations. The agreement, In general, worsens on the higher modes.
This lack of agreement is normally attributed to the influence of constraints on the elastic motion of the missile.

To attempt to verify the adequacy of the methods used to calculate mode shapes, a series of tests were per-
formed on a full cize Atlas tank. Two particular Atlas configurations were chosen as test specimens, since
there existed a large amount of theoretical calculations with which the test data could be compared. The missile
used in these tests was as close to a flight configuration as reasonable, except that the engines were removed;
therefore, the elastic modes were calculated with the engine masses removed.

The nature of this type of testing led to the consideration of a soft suspension having an absolute minimum of
damping. The suspension system used for these tests consisted of 2 set of thin vertical columns nlaced under
the engine gimbal blocks and a separate stabilizer to hold the missile erect. This method was considered best
suited to simulate actual flight conditions accurately. A schematic representation of this suspension system is
given in Figures 6-7 and 6-8. The suspension system provided relatively great lateral and rotational flexibility
in one plane, and the support structure also prevented rotation in the other plane. The system was designed to
operate with stresses well below the proportional limit. 'Phe use of bearings was avoided to eliminate parasitic
damping due to friction (Refercnce 8).

This test setup uses the acceleration of gravily to represent the engine thrust forces. The upright position of
the migsile aligns these forces in the same direction a3 the thrust forces would be during flight. The limitation
of acceleration forces to one g was not expected to have an appreciable effect on the motion of the bending modes.
Since the Atlas is a fairly rigid miasile, longitudinal forces can be largely ignored in the computation of iateral
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Figure 6-6, Comparison of Analog Simulation Versus Third Order Linearized Equations

bending modes, Vibration tests were performed at various propellant tanking levels, and the tanks wers instru-
mented to obtain mode shapes and damping factors, During testing miasile fuel and oxidizer were both repre-
sented by water., The amounts of water used were varied to correspond to different instants of flight. Thus the
mode data was checked for various times during flight.

Two configurations were evaluated; one was an ICBM configuration, the other was a space booster configuration
where the payload was a smaller diameter upper stage. For the tests this upper stage was represented hy a
dummnyy stage, as shown in Figure 6-8, ’

The missile was disturbed for testing by a hrdraulic shaker attached to the engine gimbal biccks. The other end
of the shaker was attached to a large reaction massa. Since the damping of a normal mode was to be obtained by
a free decay, provisions were made to disconnect the shaker from the missile on command.

The misgile motion was instrumented by acccierometers only. Thus the slopes of the missile sections were not
measured directly but had to be inferred from plotted displacement data. The accelerometers used were of a
variety which could be attached directly to the missile skin without cutting or stiffening the skin. In addition,
several position transducers were placed belween the miseile and a service tower.

t:
&
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Figure 6-7. Booster Phasge Suspension System

Test data will be presented for a typical time of {light, The variation of frequency with flight time is given in
Figure 6-9. This figure shows the increase in the modal frequencies as the missile becomes lighter during
flight, through expenditure of prepellants.

A frequency response of the full conditlon is given in Figurs 6~10. This figure is a plot of nose acceleration for
a constant force input. The effect of the first five natural bending modes can be clearly seen.

The theoretical and test results for the first five bending modes are shown in Figures 6-11, 6-12, 6-13, 6-14
and 6-15.

The results (Figures 6-11 through 6-15) illustrate that the shapes of the experimental and analytic modes do not
always agree. The frequencies are predicted most accurately, with the mode shape itself being less accurate.
A significant “figure of merit" is the gain with which the engine forces excite bending modes; it i8 inversely pro-
portional to the generalized mass. For the preceding modes the ratios of analytic to experimental generalized
masses are as follows:

Mode Gain Constant
1 0.96
2 1.39
3 0.36
4 1.25

<
™
k=1
(]
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Figure 6-8. Missile Support System Showing Missile with Dummy Upper Stage Attached
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Figure 6-10, Frequency Response Curve

EXPERIMENTAL
— o~ ——=ANALYTIC

= 1.05

/\

Figure 6-11. First Mode Comparison of Experimental vs. Analytic Modes
for a Space Booster Configuration

80

129




WADD TR-61-93
April 1961

EXPERIMENTAL
ANALYTIC ————— —

/\

Figure 612, Second Mode Compaiison of Experimental vs. Analytic Modes
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Figure 6-13, Third Mode Comparison of Experimental ve. Analytic Modes
for a Space Booster Configuration
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The modes illustrated are representative of the accuracy that would normally be obtained from the calculation of
modoes by the methods outlined in Appendix A3. As can be observed, thc agreement in the frequencies is best,
with the mode shape and its attendant gain becoming less accurate for the higher modes.

In addition to determination of mode shapes and frequencies, bending mode testing such as this can bhe used to
provide vibration environment information on components attached to the skin of the missile. Such informaiion
i8 useful, as the local motion of the skin may be altered by large masses (autopilot components, antennss,
batteries, etc.) attached to it. The motion of these masses attached to the skin can best be determined thyough
testing. These motiong may be useful in formulating the vibration specifications which the components must be
designed to withstand. The relationship between the mass motion aand the mode motion can be obtained very
accurately at this time.

6.2.2,2 Mode Damping. Theorstical studles of control system stability as well as other studiea involving dy~

namic response ui missiles require accurate knowledge of damping factors. These damping forces can be con-

sidered to bo the overall effect of lnnumerable small frictional furces that tend to resist deformation of the

missile. Thesse small forces include all the different kinds of friction (coulomb, viscous, mechanical hyster-

esis, etc.) that occur inand between the various parts of the missile. The importance of each of these frictional

forces in a given mode depends upon the relative amount of deformation in or between the various parts, which,

in turn, is a function of the mode shape. If follows, then, that different mcdes may have different damping fac~

tors. Also, if a mode shape 18 aitered by a change in mass or by un exiernal consiraint, the correaponding i
damping factor may be chunged.

In the tests two configurations were analyzed - one a regular Atlas configuration and the other a space booster
configuration with a long slender payload (Figure 6-8). This payload was simulated by a weighted !
beam., The tests of the space booster configuration indicated a damping factor that was quite low when compared

to those of the conventional Atlas, It was felt, then, that the uge of the "clean"” beam for a composite structure

had the effect of lowering the damping for the composite vehicle below what would be expected if the actual pay-

load were installed. The data from the Atlas corresponded closely with that expected from previous studies.

The resulis of the damping studies on the two configurations are presented in Figures 6-16 and 6-17. In some

cases damping was observed to vary with amplitude, increasing with increasing amplitude. In Figure 6-16, for

the second mode, two values are shown, The damping appeared to be double-valued - higher at high amplitudes

and lower at low amplitudes, with a sharp transition between the two points, The results of the Atlas configura~

tion are shown in Figure 6-17.
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Figure 6-17. Mode Damping vs. Nominial Percent of Tank Volumes Filled
with Liquid, Atlas ICBM

In general the damping tends to Increase as one goes on to the higher modes, but specific exceptions were found;
an occasional higher mode securs with low damping.

6.3 FLIGHT TESTS

Flight testing constitutes the final "proof-of~the-pudding’, 8o to speak. On some of the small missiles it has
been poasible to do a large amount of propulsion, structural, aerodynamic, and control system testing as flight
testing. With the larger, more expensive boosters it ig prohibitive to attempt cxtensive design testing as flight
testing. Therefore, except for specific blunders leading to dramatic instabilities, little quantitative information
relative to gtability margins will be obtained through flight testing. Some information can be obtained on a
chance basis, and through careful evaluation of this data a great deal can be learned from this information.

The data that can be acquired is limited by the instrumentation available and by the fact that the various modes
on which one wishes information may not be excited. The stable modes (propellant sloshing and elastic) will
have to be excited by launch transients, random system transients, or "built~in" transients; otherwise they will
aot be observed during the flight. Those that are observed give data which can be used to check {requency and
damping ratio of the predicted modes. The frequency can be used as a check on the modal data, and the damping
ratio can be compared with that predicted from the root studies as an autopilot and control system check.

Propeliant sloshing modes are usually excited at various instants during flight. These motions give excellent

chances to observe the frequencies of oscillation under accelerations ‘n excess of that of gravity, The agreement
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in frequency with that predicted in Appendix A has been excollent. The test data on propellant sloshing is pre-
sented with the methods for calculation of the analogy in Appendix A.

Bending mode frequencies, as seen from flight transients, are those of the closed~loop roots and as such differ
very slightly from the predicted modal frequencies. The difference is usually less than the error in computing
the open-loop modal frequencies, themselves. Hence, these in-flight frequencles are usually compared directly
with computed normal mode frequencies; the agreement is generally very satisfactory.

Damping ratios of in-flight oscillations, as compared with predicted values from root studies, have minor value
except to point out gross errors in the analysis (such as the wrong sign of the real part of a rcot!). The aiffi-
culty can be illustrated by observing an actual locus presented in Figure 6-18. This figure shows the uncertain-
ties in the location of the operating point. Fromn a glance at this locus it 18 apparent that even extreme motiona
of the angle of departure and gain would be hard to spot merely by observing the damping in the closed-loop
mode’s root.
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Figure 6-18. Variations Possible in Location of Closed Loop Operating Gain
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Flight tests sometimes reveal major omissions in the analysis when these omissions result in & system which,
although predicted to be stable, becomes unstable. Although extensive analysis had been performed prior to the
first Atlas flights, a 17-cps limit cycle oscillation (third body bending mode) appeared which was of considerable
magnitude., An evaluation of the simulations used for preflight analysis indicated several deficiencles in the
assumptions used, These deficlencles were primarily connected with the method used to simulate the rocket
engine hydraulic servo forces, moments, and deflections. By using a more complete analysis, made possible by
a large amount of laboratory and captive missile testing, it was possible to simulate more correctly the condi-
tions occurring in flight. The revised simulation indicated that the third mode could be stabilized by the addition
of a lag fiiter in the control loop. The resuits from fiight test were gratifying in that stable operation was
achieved.

Later in the Atlas flight test program a modified configuration exhibited a high-frequency limit cycle oscillation
(4th and 5th body bending mode). The methods of analysis were rechecked without result, so it was determined
that the mode shapes employed must be in error. Up to this time the vehicle elastic modes had been calculated
with the rocket engines removed. The engine forces and moments were then added as generalized forces onto the
mode. The inaccuracies resulting from this method can be explained best by observing the schematic missile
and mode of Figure 6-19. The aft end of the missile with the engines removed has little mass; hence, the aft
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Figure 6-19. Schematic Bending Mode with Engine Masses Excluded
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Figure 6-20. Schematic Bending Mode with Engine Masses Included
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portion of the modes is relatively straight (no shear or couples at the free end). Therefore, if forces and mo-
ments representing the engines are to be added at this point, a large number of modes must be used to represent
the actual missile dofloction by means of body bending modes. As the analysis is usually carried on with few
modes only, errors can result. These errors are not usually significant at frequencies below the aft structure
engine mount natural frequency. However, at froquencies near or above this natural frequency the effect can be
quite signiflcant, evon causing a 180-degree phase reversal in the inertial coupling between engine chamber and
mode. This reversal can be seen by the achematic representation of Figure 6-20. Figure 6~20 shows more
curvature at the aft ond and also illustrates that the engine and mount may be out of phase with the handing mode
shape at this point. This phenomenon can effectively reverss the angle of departure of the iocus of rovots from

the pole representing the elastic motion,

The metheds of simulation using modes calculated with the engines included furnish good agreement between
theoretica! and flight tast data, to the degree that flight instabilities in these higher modes have boen analyzed
satigfactorily., The mujor caution is that for the frequencies of the higher modes the representation of the prop-
erties becomes more involved and the accuracios more dublous. Thus, attempts to phase-stabilize the higher
modes may meet with fallure due to improper agreement of analytic models with the actual booster.
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7.1 GENERAL

Utilizing the material presented in this report the following concluding remarks can be made:

a.

The baslc equations and transfer functions that may be used for firat approximation (quick-look) analyses
are presented in Section 4. Typical applications are shown in Section 2. The simplified transfer functions
of Section 4 are valid for prellminary evaluation of most classes of ballistic booster vehiclas.*

The more complete set of system equations of motion, as may be used for comprehenaive analyses, are
given in Section 3.

The equations of Section 3 arc subjected to various simplifylng ussumptions in Section 4.

These simplifications fall into two general categories, viz., those which simplify coefficients of an
equation without changing its order and those which reduce the order of the equations.

Those simplifications which fall into the first group cause no great problem, us they can always be checked
and re-incorporated for any configuration about which doubt exiats, Those simplifications which reduce the
order of the equation are more troublesome to justify.

The majority of difficulties arise when the engine servo elastic mode must be considered coupled to the
vehicle normal elastic modes. A qualitative discussion of these couplings is presented in Section 4, Sub-
sections 4.3.2, 4.3.4, and 4.3.5.

The open loop coupling due to aerodynamics is generally negligible in the class of vehicles considered.

The results obtained utilizing the simplifications of Section 4 are compared with results from the solution
of more complete equations in Section 5. The effects of two goneral classes of coupling are displayed: 1)
open-loop coupling between modes due tc non-conservative forces coupling through rocket engine servo
compliance and 2) closed-loop couplings through the control system. Quantitative results are presented
for specific cases (typical ICBM configuration).

The simplifications involving climination of secondary feedback terms have little effect for the low fre-
quency modes (rigid-body aund propellant sloshing). However, for the higher modesa the various coupling
effects and/or auxiliary feedback paths can occasionally be very significant. Results also indicate that the
simplified approach using a single elastic mode eguation with the third order actuator of Equation 4-23 can
be used for modes whose frequencies are well removed from that of the actuator servo resonant frequency.
For frequencies close to those of the actuator, an engine-body mode must be coupled to the body bending
mode being analyzed.

The accuracy of the results is dependent upoi ihe adequacy of the basic data usod. Some comparisons of
calculated data versus test results are given in Section 6.

Information on methods used to compute basic data for the calculation of the transfer functions is presented
in Appendix A.

A discussion of some types of subsystei transfer functions, sensors, servos, and force producers neces-
sary to complete the booster vehicle-autopilot and control system analyses are presented in Appendix B.

*Some extreme future configuraiion may not be adejuately represented. Such cases, however, will receive
special treatment by the analysts, using the same principles.
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Al INTRODUCTION

In order to determine the numerical value of an approximate transfer function that can be used to analyze the
stability of any given configuration, it 18 necessary to evaluate the equations' coefficients. To compute these
system equation coefficients, In turn, requires that certain data relative to the vehicle's flight path and body
parameters be available. This data, referred to as "basic data", is an accumulation of: 1) trajectory data,

2) aerodynamio data, 3) propellant load data (if required), 4) elastic (modal) data, and 5) mass, center-of-
gravity, and other inertial data, all compiled at many discrete time instants during the vehicle's powered flight.
Other values may then be interpolated from these points, giving the data at any instant of the vehicle's powered
flight.

Some general remarks on the methods used for obtaining these basic data are given first in the four classifica-
tions: irajcctory, aerodynamic, propellant, and mass, center of gravity, and inertial data. Subsequently, more
detailed discussions are given of the derivation of certain of these data, a knowledge of whose origins is impor-
tant to any appreciation of the degree of approximation involved in autopilot studies. Also given is a detailed
discussion of elastic (mudal) calculation methods.

Al.1 Trajectory Data. Some of the trajectory parameters required for an analysis of the autopilot stability and
control problem are thrust (both fixed and glmbaled), weight, acceleratici: aiong the vehlcle's flight path, and its
time integrals, velocity, and altitude. All are required as functions of powered flight time. From this infor-
mation, additional data such as dynamic pressure and Mach number may be computed.

As a first approximation, a trajectory computed for a point-mass ({two degrees of freedom) launched in a stand-
ard atmosphere from a nonrotating spherical earth, will yield usable parameters. A drag term for this compu-
tation will have to be approximated for the vehicle under study.

A more advanced trajectory can be computed using an elongated body representing the vehicle, with three degrees

a balancing component of the thrust vector, which is required to overcome the moment produced by the aerody-
namic forces.

These nominal trajectory characteristics serve to fix quite closely the basic flight parameters of the vehicle.
Subsequent refinements to these trajectory studies, including flight control and guidance effects, off-nominal
performance and other assorted dispersions, will seldom result in significant changes to these basic flight para-
meters.

Al.2 Aerodynamic Data. Any vehicle that travels through the atmosphere {8 subjected to aerodynamic forces
and moments which will affect the vehicle's performance and stability. In order to insure that the vehicle is
capable of withstanding the environmenta! vonditions imposed upon it during the regime of flight and to svaluate
the effect of these conditions on its performance, the vehicle's aerodynamic characteristics must be known. The
location and magnitude of the resultant aerodynamic forces normal to the vehicle's longitudinal axis are required
to determine the degree of control forces required to balance out these forces and moments. The distributions of
lateral force coefficients along the length of the vehicle at the angle of attack are required for the analysis of the
aero-elastic deflections of the vehicle structure and for calculation of body bending moments under critical

flight conditions,

The aerodynamic force acting on the vehicle 18 determined from theoretical considerations or wind tunnel tests on
the vehicie model, or it is extrapolated from existing data on similar configurations. The force acting on the
vehicle 18 resoclved into orthogonal components along the body axes., This data is usually presented in the form

of normal force coefficients and centers of pressure as functions of Mach number and angle of attack.

The force coefficient can be separated intc two parts: the potential and viscous components. The potential force
is that force which would be experienced by the body if it were inclined {n an inviscid fluid. This component in-
creases linearly with angle of attack. In a real fluid, thig is the only force of measurable magnitude for the first
few degrees of angle of attack. Upor further increase of angle of attack, however, viscous effects cause the
cross-flow to begin to separate from the lee side of the body. The separation induces a pressure field which
causes the force curve to depart from linearity. This departure is defined as the viscous component of the force

and is dependent upon the state of the boundary layer; it is larger for laminar than for turbulent flow.

A=
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A more complete discussion of the aercdynamic data, along with approximate calculatory techniques, appears in
Section A-5.

Al1.3 Propellant Data (Liquid). For those vehicies which use liquid-fucled engines the mass of the liquid, of
necessity, constitutes a large portion of the total mass, This large mass, osclilating in a tank, may have ad-
verse effecta on the vehicle control system, especially if the frequency of oscillation of the liquid i8 near that of
the control system.

In early liquid-fueled vehicles (o.g., German V-2, American Redstone, WAC Corporal, etc.) propellant sloshing
was found not to be a problem, and no explicit means of slosh compensation was employed. With the advent of
larger vehicles having "cleaner" internal construction, the sloshing phonomena became increasingly important.
Mothods for determining the forces and moments due to propellant oscillation in "clean" tanks and the effects of
internal oscillation suppressing devices (baffles} ara # scussed in Scction A-3. This section presents the forces
and moments due to tho oscillating liquid and presents methods of handling this phenomena by the use of equiva-
lent mechanical analogies.

Al.4 Propellant Data (Solid). For those vehicles which use solid-propeliant engines, Appendix C2 shows that
the propellant grain may be treated as a unitary mass and that it does not contribute any appreciable stiffness tc
the missile structure. Therefore, all that ig usually considered is the mass distribution along the axis of the
missile.

Al1.5 Mass, Center of Gravity, and Inertial Data, The mass, center of gravity, and inertial data, hereafter re~
ferred to as inertial data in this section, are obviously required for a complete analvsis of any controi system.
For rigid-body control analysis, where the sloshing is treated as a separate, artificially uncoupled degree of
freedom, the inertialdata used is that for a "reduced" vehicle. The "reduced' vehicle is the entire vehicle mass
minus that mass of liquid propeilant considered to be sloshing. Therefore, at any time instant, the inertial data
will consist of the sum of the inertial data of the structural vehicle plus its residuals (liquida trapped in small
lines and tanks)and the inertial data for that portion of the liquid propellants that are assumed to be rigid (see

Appendix A3).

The method for combining these inertial data is given in Section A2, and the inertial data for the "rigid" liquid
propellant can he found from an equivalent mechanical analogy as presented in Section A3,

A2 MASS AND RELATED INERTIAL DATA

A2.1 Calculation of Center of Gravity and Moment of Incrtia. The property of & body by which it offers resistance
to any change in its motion is defined as inertia, and iis quantitative measure 18 called mass.

The mass-center or center of mass is defined as that point of & physical body where the mass could be concen-
trated so that the moment of the concentrated mass* about any axis or plane would be equal to the moment of the
distributed mass of the body about the same axis or plane, If the words area, volume, or line were substituted
for the word mass, and the reference to a physical body were deleted, the above definition would be that for the
centroid of an area, volume, or line. Therefore, with respect to homogencus physical bodies, the terms cen-
troid and mass-center may be regarded as synonymous.

The total force acting on a body undergoing rectilinear acceleraied motion i8 defined a8 the resultant of the
parallel forces acting on each particle in the body. The magnitude of the resultant of such parallel forces is
equal to the algebraic sum of the forces on each particle, and the position of the resultant is such that the mo-
ment of the resultant force about any axis or plane is equal to the sum of the moments of the component forces.
This position defines the line of action of the resultant force in the given acceleration direction. The resuliant
force is defined as the body's weight, and its position locates the center of gravity. Thus, the magnitude is:

* A mass moment is defined as the product of the quantity of mass by its distance {o a reference.
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and its line of action is located by:

ZwWpxg
T

_IWyy

W,

ZWjzg

W

where the symbology used is depicted in Iigura A-1,

Figure A~1, Coordinate System and Mathemstical Model

If we assume a uniform acceleration field, then the weight of each mass particle is proportional to its mass and
the center of gravity of a body coincides with the mass-center. For a rigid body the terms are identical re-
gardless of its position or orientation in the accaleration field. The difference between the two terms is that in
finding the center of gravity the moment of a force system is involved, and in finding the mass-center the mo-
ment of 2 mass system is Involved. In practice, the earth's acceleration field at a weighing station is uniform
enough s0 that the above distinctions are not evident.

Common experience teaches that if a body is free fo rotate about an axis, the farther from the axis the material
{or mass-center) 18 placed, regardless of direction (8lgn sense), the greater is the moment of force required to
produce a given angular acceleration of the body; that is, the greater the moment of inertia of the body becomes,
Therefore, the moment of inertia or second moment of the mass of a s.ystem of particles may be defined, for a

continuous body, as the integral: I = j r2 dm; that is, as the summation of the products of the mass of each
M

particle by ‘he square of its distance from a line or axis.

If the moment of inertia of a body thus found i8 about an axis passing through the mase-center (centroid) of the
body, the moment of inertia of the body may be found about any other parallel axis, by the use of the transfer
formula:
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where ILg = the moment of inertia about the centroidal axis (Lg)

L= the moment of inertia ahout a parallel axis (L)

M = the mass of the body, and

d = the perpendicular distance between axes Lg and L,

During the derivation of the equations of motion for a body, terms containing functions of the form:

Ixydm, szdm, and J‘yzdm

appear. These terms are defined as the products of inertia and represent the coupling effect of the inertia (mass)
about iwo axes. The transfer formula for products of inertia is similar to that for moments of inertia. That is:

= +
IL'M' ILgMg Mde,

where ILgMg = the product of inertia about the Lg and Mg axes passing through the centroid,

M = the masa of the body, and
d & e = the perpendicular distances between the L' and Lg axes and the M' and Mg axcs respectively.

in the preceding discussion it was assumed that the moments and products of inertia for each component were
known about the component's own centroid. For the vehicles under study it is necessary to determine the iner-
tial data for the entire vehicle by the summation of the inertial data of cach component about ita own center of
gravity and the transfer of this data to the center of gravity of the vehicle.

The welight and center of gravity of each component may be calculated or found quite readily by simple mechani-
cal means, such as scaies and weighing fixtures. The moments and products of inertia of each component pose
a different problem. An approximate method (which ia quite accurate) has bieen determined to find the moments
and products of inertia for the vehicle components. Each component has a characteristic shape (or sum of
shapes): spherical, conical, cylindrical, hemisphere-cylindrical, hemisphere-conical, etc. Knowing the weight
and dimensions of the component {coupled with the characteristic shape), the moment and product of inertia may
be computed, for a constant density, using standard moment- and product-of-inertia equations found in any hand-
book, This reduces the total inertial data problem to one of transferring the data for each component to the com-
bined center of gravity. In simplified form, the center-of-gravity equations and transfer equations become:
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where the symbology used is depicted in Figure A-2.

*1 ARE THE MOMENTS AND PRODUCTS OF INERTIA OF THE (il
A
; PARTICLE ABCUT ITS OWN CENTER OF GRAVITY.

Figure A-2. Coordinate System and Mathematical Model
Since the trajectory, aerodynamic, and sloshing data are presented in relation to the longitudinal axis (axis of

symmetry), it is convenient to reference the inertial data to a point on the longitudinal (x) axis. The moment
and product of inertia equations then become:

kxp = E | Ixx, * [(o y) +(ﬂ»z)z]Mi}
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An equivalent method well adapted for hand computions is the use of a table with the following headings:

2 2 2
Component Identification; M, x, y, %, Mx, My, Mz, Mx , My , Mz, Mxy, Mxz, Myz, EXX' IYY' IZZ' B(Y’

Yz & vz

The mass, center of gravity, momentis of inertia, and products of inertia about the center of gravity are com-
puted successively across the tabular format as:

IMy%
*ca ~ TzZM
Z Myyy
Yoo = TEW,
z Mlzi
“ca” TEM;

2 2 2, 2
5 =¥ + - + 7 + £1
Ixxog = 2 Myy FEMZ - (B M) pg *Eeg) T Ry

2 . ..2 2 2
. = % Ma, - ) + 1 >
I“CG Z Ile1 + MAl [¢] Ml' (XCG "‘CG' "IYYi

2 2 2 2

IZZCG =X Myi +% Mx! -(Z Mi) (xCG +yCG) + Z:Izz1
=3 - +

Ixvgg = & Mxy; - (B M) (xog Yog) * Elyy .

- Mixs o . oy
IXZCG Zsz.i (ZMi)(xCGZCG) Z,IXZi

, = 7 - (X ; z + e
Wzg = 2 Myz - (B M) Gpg %0 * Zlygyp

there

«
3

M = the mass of cach component,

X, ¥, % = defines the position of the mass-center of each component in the missile coordinate
system,

L{X'I\'Y‘I 27" moments of inertia of cach component about an axis system passing through its own
‘ mass-center,

IxY'IXZ'XY 2" products of inertia of each component about an axis system passing through its own
' mass-center.

The equivalence of the above equations with the preceding equations is readily made.

A2.2 Approxirnation of Moment of Inertia. It is often sufficiently accurate to ignore the moment of inertia and
product of inertia of a component about axes passing through its own centrold when using the moment of inertia
tranafer formula. This is shown In the following example. A homogeneous right circular cylinder of height, h,
and diameter, d, is orieated on the vehicle with its major axis parallel to the longitudinal axis of the missile.
Wa can [ind the effectiveness of the component's own moment of inertia as its height-to-diameter ratio varies

and as the transfer distance varies.
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Figure A-3. Approximation of Moment of Inertia

IYYC

In this example let A = W .

For a homogeneous right circular cylinder the moment of inertia aboul

its centroidal axes, in pitch and yaw is:

1 2.3 2
2 —
h
v.herec*—a.
Therefore:
1 2.3 2
—_— —t
1z M gre) 1+1.38¢2
N N 24 1612
1 2,3 2 2.2 1+1.33¢+16k
—_— —+ ]+
2 Md (-t ¢ j +Md kK
X
wherek--—a.

Plotting A versus k for various values of ¢, (Figure A-4), we find that for values of ¢ = h/d of less than three,
the moment of inertia in pitch and yaw of the component about iis centrsid may be ignored for transfer distances
(x) greaier than 4 d, and an accuracy of 95 percent may be retained,

A similar study in the roll plane (Figure A-5) shows that the roll moment of inertia of a component may he ig-
nored for transfer distances where x is greater than 1.5 d, and an accuracy of 95 percent may be retained.

In general, for vehicies whose length-over-diameter ratios are greater than eight, the pitch and vaw moment
of inertia of the components about their centrolds may be ignored 90 percent of the time and the roll moments of
inertia of the components may be ignored 40 percent of the time.

S
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SYMBOLS USED IN APPENDIX A3
_S_;_(_n_lb_o} })eflnitiotl Units
a tank radius ft
Al 1
Bl
éi
C 1 y dimensionless parameters dofined in Tables A-1 through A-6.
!
Dl
Py _
d tank diameter ft
dr diameter ratio for model laws as used in Equation A-12 N.D.*
F force in X direction lbs
h depth of fluid it
hl,l_n l.h { height of sloshing element attach-point above tank bottoin in the various ft
mechanical analogies
ho height of rigid mass above tank bottom it
K constant uscd in Equation A-10 N.D.
K constant used in Equation A-11 N.D.
Kn tank parameter = gnh/a N.D.
‘)7 moment on tank b ft
%B applied moment about tank bottom Ib ft
M total fluid mass slugs
Mo fixed or rigid mass slugs
MT total mass of fluid which a full ellipsoidal tank can hold slugs
M1 sloshing or spring mass slugs
n ordered number of fluid mode N.D.

* Non-dimensional

-y
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SYMBOLS USED IN APPENDIX A3 (Continued)
Symbols Definition
P fluid pressure on a baffle in equivalent feot of head
a Laplace variable

X,¥,% tank coordinates (see Figure A-8)

Y spring mass displacement in x direction

YF analogous fluid "displacement" defined in Fquation A-5

ozT longitudinal acceleration

o, acceleration field ratio (ground to flight) for model laws as used in Equation A-12
I‘F analogous fluid "angle" defined in Equation A-1

I‘p angle of pendulum with tank axis

Ah depih of a baffle below liquid free surface

e total damping ratio

bottom scrubbing damping ratio

4 d ring baffle damping ratio
ZI inherent damping ratio
zg side wall wiping damping ratio
ct free surface damping ratio
n i wave height for first sloshing mode =~ 0.84a l‘p
u viscosity
yr viscosity ratio for model laws as used in Equation A-12
v kinematic viscosity
th '
£n n"" root of J1 (0)
P liquid density
P, liquid density ratio for model laws as used in Equation A-12
T, time constant ratie
th o
w n fluld mode frequency =— K tanh K
n h n n

ft

ft

ft/ sec?
N.D.
rad
rad

ft

ft

1b sec/ft2
N.D.
ftz/sec
N.D.
slugs/ft3

N.D.
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A3.1 Introduction. The motions of a liquid in an open vessel have been the subject of study for many years.
During the past several decades significant progress has boen made in this fleld beyond the classic investigations
made by Sir Horace Lamb (circa 1879), with interest centered in the forced motion of aircraft fuels.

Numerous methods have besn used to describe and solve for the propeilant modes, frequercies, and pressure
distributions, In general, all investigators have sought sclutions to the equation of wave motion of a perfect
fluid satisfying the boundary conditions of prescribed motions of the vessel's walls. These solutions then may
be further defined to yield the relationships between forces and moments on the vessel's (tank's) walls and the
tank's motion. These relationships are given in the following sections for rigid and flexible wall vessels, For
the rigid wall vessels two mechanical analogies are presented; either one can be used with rigid vehicle studies.
One mechanical analogy is presented for use with flexible vehicle studies.

A3.2 Rigid Wall Vessels, Some of the original work on the sloshing phenomena in rigid tanks was done by

E. W. Graham (A-1) and J. Lorell (A-2).* An extension {8 made from Lamb's work on free oscillations for the
case of a rectangular tank, and a mechanical pendulus. analogy is derived. The fundamental frequencies and
forces involved in liguid free oscillation ara given for geveral tank shapes in addition to the rectangular case.

Schmitt (A-3) has determined the hydrodynamic forces and moments about the base of a circular cylindrical tank
urdergoing translation along its longitudinal axis and rotaticn ahout onc of the perpendicular axes, produced by
the oscillation of an incompressible, irrotational liquid in the tank., These are given by:

5

2 2 1 a”
E - - N — + w— . +
F=-s'x & M(-A)-80 ¥ Mh(z+ == -B)+ % MA a Ty
2
=-e®x z o+ 2 -B)-s% x MPd 4D -B)+ » MhBa.T 1
n s 4h2 n n 3 n n T n°T Fn (a-1)
2 2
. W, . Q
6@+ )Ty - 2 [s&x+s?‘0h(1-——%~-‘
n'"¥n o w2 ]
T n
where,
2 2ar coshKp-1
Q° =—= —
n h

cosh K
n
and the remaining parameters are defined in Table A-1,

For ease of handling, a mechanical analogy in the form of a pendulum or spring-mass sclution is sought. Such
an analogy not only gives the engineer insight to the preblem, but lends itself to a description of the liquid motion
which is readily adapted for digital or analog computer simulations, The forces and moments produced by an
analogous pendulum and rigid mass system, as shown in Figure A-6 for the first three modes, are equivalent in
form to those of the hydrodynamic equations. These may be written as:

F=—stM -szahM + 2 M T
o 00 n n T Pn
2 2 2
= - -8 8 + +
N =-s XM h -8 8Mh “+1)+ T Mboa)T

Pn (A-2)

2 2 _ 1 2 2
(s +wn)r¥’n——i.p [5 X +s a(hn~Lpn)-]
n -

* Numbers In parenthesis refer to references at the end of Appendix A,

A-15
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Thus, through a isrm by term comparison* botween Equations A-1 and A-2, the analogoug parameters are ob-
tained. They are presented in Table A-1 for the first mode only; the reasons for this will be shown later.
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Figure A~6. Tank Model and Coordinates for Pendulum Analogy
B, 9%  Lp,
* In making such a comparison the identity el 1- Yy + B is useful.
@
n
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Circular Cylind:ical Flat~-Bottom Tank

Table A-1. First Mode Sloshing Parameters for Penduium Analogy (n = 1) ‘J
|
|

MECHANICAL HYDRODYNAMIC
i
M +M M ;
) 1 |
M0 M1 -Al)
M1 MA1
1
(o) *
2 4h 1
h 1-4)
A
Mh"+] Mhz(-'l-JrD —B>
o0 [} 1 1
L. — 5 ‘
1
h_
hl Ay
- - coth Ky 3
I h T '
1
2 Zr
w, 7 K1 tanhK1
Where
L2 tanh K b - 4 2sibhK -K,
A =S =
1 K g2 ) 1.3 2
1 1 hl (gl 1) coshKl
, 2tvK sinhK 6 ~-coshK
5 2 21 ! ! £, 184
.
Ky ¢ty -1 cosh K1 °
4 cosh K -1
1 h
C e K =f — |
1 2 2 1 la ,
K] (Ll - 1) cosh Kl i

This mechanical analogy exactly duplicates the forces and moments determined from the hydrodynamic solution
and accurately reproduces the fluid oscillations, insofar as the assumptions made for the hydrodynamic solution
are accurate, viz., an incompruessible, irrotational flutd with onily small disturbances being admitted.

Usually, only the fundamental mode of oscillation is considered. since the sloshing masses for the succeedingly
higher modes have less and tess influence. This property can be seen from examination of the force equation

in the following form:

+
A 8 x
n

Fe-s'xMr 2 M
n

2
FosTxME 2 oMoy
n

h -4
2 tanh (!,“ ;—) 5 X

2 hoo2 o 8%
W - e ar

A-3)
;2
)
w2 ).
n
A-17
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If now the damping-limited peaking for the higher modes 18 no greater than with the fundamental, * then the forces
at resonance for these modes (82 -w?2 = - w%) are proportional to:

tnh
a

2
¢ -

2

(tanh )

F a
n

One can see that for higher modes (gn =1.84, 5.335, 8.535, 11.705... En-«l + 7) the hyperbolic tangent in the
numerator approaches unity and therefore, the force will vary as 1 /(Efl ~ 1),

Ancther argument in support of disregarding the higher modes rests upon the fact that test experience indicates
a great deal of turbulent mixing accompanies high frequency tank oscillations. This can be illustrated by cb-
serving the motion for steady state and the {irat two propellant modes sketched in Figure A-7. The increased
fluid mixing makes it difficult to display the higher modes except under careful "laboratory" conditions. It also
indicates that dissipalion (damping) effects for the higher modes sre greater, further reducing their significance
in control analysis.

STEADY STATE

N

Figure A-7. Sketches of the First Few Mode Shapes (Cylindrical Tank)

Of great practical significance 18 the fact that the maximum amplitudes and, hence, velocities of the fundamental
mode occur adjacent to the tank walls.

Curves representing the parameters in nondimensional form versus the aspect ratio, h/a, are given in Figures
A-8 and A-9. Values of the constants given in Table A-1 versus the ratio, h/a, are given in Tables A-2, A-3,
and A-4 for the first three sloshing modes.

*Experiments bear out this ussumption, therc being greater turbulent mixing for the higher modes.
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Figure A-8. Nondimensional Sloshing Paramecters for Pendulum Analogy
for a Circular, Cylindrical Flat-Bottom Tank (n = 1) (a)
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Figure A-9. Nondimensional Slcshing Parameters for Pendulum Analogy

for a Cireular, Cylindrical Flat-Bottom Tank (n = 1) (b)
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The forces and moments produced by an analogous spring-mass and rigid-mass system, as shown in Figure
A-10, are alsu equivalent in form to those of the hydrodynamic equations. They may be written as:

4
F=-8"xM el M +Zk Y
O o 0 nnn

Vi 2 2 2 -
- - - + + M Y
s“xh M -8"8 (M h"+1) "% KRV ¢ EM anY

T

2
4

5"+ wz)Y = . I.szxfszﬂﬁ]
n’ n i n

(a-4)

Agaiu, in 8 term~by-term comparison between Equations (A-1) and (A-4), the analogous parameters ars obtained.
They are presented in nondimensional form in Table A-§, and curves representing theso parameters versus the
ratio, h/a, are given in Figures A-11 and A-12. In order for a mechanical analogy (pendulum or spring-mass
systom) to reproduco the moments from the hydrodynamic solution at low fluid levels (h < 2a), the mechanical
elements must be placed above the fluid free surface. This peculiar effect does not affect accuracy in rigid body

studies; it does, however, introduce errors when making flexible missile studies.

P ™
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Figpire A-10. Tank Model and Coordinates for Spring Mass Analogy
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Figure A-11. Nondimensional Sleshing Parameters for Spring Maas Analogy
for a Circular, Cylindrical Flat-Bottom Tank (n = 1) (a)
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Table A-5. FPirst Mode Sloshing Parameters for Spring Mass Analogy
Circularly Cylindrical Flat-Bottom Tank

MECHANICAL HYDRODYNAMIC
M +M M
[} 1
Ml M/\1
M M{-A)
o ;
= h<B1 B cothKl )
K
! Al 1
T i 2
(L+ 2 . 8)
h W2 4nZ
o a-A)
2 2.1
3 h (= ¢+ -
M Mh (5 4D -B))
2
k w1 M1
. ot
w& T51 K
1 a 1

where the constants are given in Table A-1.

A3.3 Flexible Wall Vessels. For flexible missile studies it is desired that the forces and moments derived
rom the mechanical analogy act at points on the missile, corresponding tc those of the forces and moments as

derived from a hydrodynamic solution.

Certain exact solutions to the flexible-wall problem exist in the literature (A-4), (A-5), (A-8). However, their
application in general control system studies i8 by no means direct. lHence, it appears desirable to be able to
employ the relatively simple rigid-walled tank solution to the flexible-walled tank probiem. Actually, such an

application is very easy and direct; and, intuitively, it appears to be reasonably sound for deep tank liquid levels.

However, at low liquid levels the mechanical elements appear above the liquid surface when using the rigid tank
pendulum (or spring-mass) analogivs as abeve. Therefore, a third analogy is now presented (A-7). This ana-
logy is similar to the above spring-mass analogy except that a pure couple is applied at the tank bottom. This
moment ig justifiable becausc the pressure distribution along the bottom in the hydrodynamic solution produces
a couple only. The effect of introducing this moment is to lower the spring-mass and rigid mass elements so
thut they act al weiled tank wall stations for all liquid levels. In order to determine iha forces and moments for
such a mechanical analogy, the forces and moments obtained from the rigid tank hydrodynamic solution are re-
written here in a siightly different form. The -noment ta»ms are grourod according to whether they arise from
side wall pressures or from pressures on the tank bottom, thy latier producing a pure couple.

2 2 1 2
- ~g8°8 — - 3 Y
F s XM -8 Mh (2 )-8 E '\v‘lAn o

W‘:WW+WB

A28




WADD TR-81-93
April 19€1

I
T
AN

-
L'
| k
X
L]

)

AN
\ [
—

e, o
h—-‘_
0
0 0.5 1.0 1.5 h 2.0 2.5 3.0 3.5
a
Figure A-12, Nondimensional Sloshing Parameters for Spring Mass Analogy
for a Circular, Cylindrical Flat-Bottomn Tank (n = 1) (b)
where
W/ = moment from side wall
w {12
—sfxMh @) -sf0x Mgt D -b L ) -sfxMnB v,
2 n 3 n n n w:: n n n
‘ll
7?13 = moment from tank bottom (pure couple)
2 ¢ @ c {A-5)
~sZxmhl-2=) -sPozmn® D ¢ 2 B )s Frmn-t vp
n n 2 2 n 2 n
4h w
n
- 2 N
Q
2 2 2 2 n
+ Y T +8 8 h 1 - —
[¢:] wn ) Fu 8 x+8 “2
n

The mechanical analogy i8 identical in arrangement with that of Figure A-10, but with the addition of a pure
couple term, WB . The forces and moments for the mechanical analogy are written as:*

* Prime values have been used for the poaitioning of mechanical ¢lements to distinguish them from the rigid
wall tank analogy.
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(sa+wz)Y o T x s o0
41 n L n

The rotational acceleration term in the hydrodynamic solutions 27(: B cither may be ignored, since it is very

small, or it may be combined with the roiutional acceleration term for the moment from the tank wall, I this

latter course is chosen, the analogous moechanical system's first mass moment of inertia becomes the same as
that used in the spring mass analogy of Scetion A3. 2 (but does not affect the positioning of the mechanical ele-

ments). The analogous moment applied to the tank bottom, rearranged, hecomes for the first mode:

2 ¢
4 R 2 12
. ;4 l —_— ’
/7(13 M W) Y Mho =8t Y

here
where C,l hz ,
M = Mh — and M o = M- w
C 2 1 T i

This is the result employed in the main body of the report for the flexible vehicle equations,

tained. They are presented in Table A-G, for the first mode only. Curves representing these nondimensionalized
parameters versus h/a are given in Figures A-13 and A~14,

Plots of the noudimensionalized force and moment as functions of h/a, derived from the spring-mass analogy in
a flexible~walled, circular, cylindrical tank bending in a parabolic mode shape, are given in Figures A-15 and
A-18. The dotted curves represent the forees and moments of the liquid in a circular, cylindrical tank due to an
exact solution for this problem, according to Bauer (A-1), while the solid curves represent the forces and mo-
ments derived from the mechanical spring-mass analogy. As can be scen, the mechanical spring-mass analogy
closely approximates the exact forces and moments on the tank,

A3.4 Noncylindrical Tanks. Up to this point we have considered only cylindrical tanks with flat botioms and cir-
cular cross sectional areas. For this type of tank, we have presented parameters for two mechanical analogies
that can be used to reproduce the forces and moments due to liquid oscillations in rigid-wall tanks, We have also
discussed the applicability of the analogy to flexible~wall tanks. The question now arises as to how to reproduce
the forces and moments produced by liquid osciliations in tanks of other shapes.

Considering noncylindrical missile tanks with circular transverse cross scctional arcas, the leading shapes are
oblate spheroids, with the sphere as a special case.  Also included in this category ave those cases of low liguid
levels in tanks with nonfiat bottomg. These include conical, spheroidal, inverted spheroidal and other shapes.

A golution to the hydrodynamic equations of motion is found, and the parameters for an equivaleat pendulum anal-
ogy are determined, by A. H. Hausrath {A-8) for oblate spheroids. Hc determines a series sclution consisting
of Legendre polynomials, by means of the Rayleigh-Ritz approach. Free vibration and lateral translational vi-
bration only are treated. Curves of these parameters for tanks of various cccentricity are presented in Figures
A-17, -18 and -19.

A-27
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Table A-8. First Mode Sloshing Parameters For Spring Mass Plus a Couple Analogy
Circularly Cylindrical Flat-Bottom Tank

MECHANICAL HYDRODYNAMIC
M +M M
o 1
|
Ml M/\1
M, M(1-A))
h! h (if . Al\
o - W
By
h! h —
1 Ay
M h" M n?oer Mh?/i+c'+n'—§ -Cl*
[ ] 11 [o] \3 1 1 1 Al
2 C

1
* Use has been made of the identity —le v
1

1

©f

in making these comparisons.

where AI’ Cl’ D1 are defined in Table A-1, and

+ - e
1 Kl sinh KI cosh Kl

- 2 .
- - Bl K 2 (& L 1) cosh K
1 1 1
4
C! =
1 2 2
K1 (51 - 1) cosh K1
4 sinh K
Dl = 3 1
1 2
K1 (§1 - 1) cosh K1

Bottom Couple:
First form (rotational acceleration terms included)

2\ . . cre . ¢!
n, =- s aMh (2} - s omn® [pr v t] et -ty
B r? 1 TA P

Second form (for which I; from Figure A~12 and Table A-5 is used)
”{ =M o Y +M szY;M = Mh C'/2
B 1T ¢ ¢ 1
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30-1

- NONDIMENSIONAL FORCE DERIVED FROM SPRING-MASS
MECHANICAL ANALOGY,

NONDIMENSIONAL FORCE DERIVED FROM EXACT
SOLUTION ACCORDING TO BAUER (A-4) .

Comparison of Exact and Approximate Hydrodynamic Force .

Figure A-15.
on Tank Walls Due to Bending

20+

104

-104

~204

NONDIMENSIONAL MOMENT DERIVED FROM SPRING-MASS
MECHANICAL ANALOGY.

NONDIMENSIONAL MOMENT DERIVED FROM EXACT
SOLUTION ACCORDING TO BAUER (A-4) .

Figure A-16. Comparison of Exact and Approximate Hydrodynamic Moment
on Tank Wall Due to Bending
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Figure A-17. Sloshing Parameters for the Peadulum Analogy in an Elliptical
Tank (¢ =~ 0.141), First Mode (n " 1)

An integral-cquation approach has been used by Budiansky (A-9) to determine the natural modes and frequencies
of small-amplitude sloshing of liquids in partially filled eircular canals and spherical tanks, The circular canal
is analyzed for arbitrary depths of liquid, while the sphere is solved only for the nearly full and half-full cases.
The resulis for the sphere, together with the known behavior for the nearly-empty case, are used in conjunction
with the trends cstablished for the circular canal as a basis for estimating frequencies for arbitrary depths of
liquid in the spherical canal. The {requencies thus determined agree with those determined by Hausrath for the
spherical tank. Budiansky discusses the dynamic analysis of the container-fluid systeir: by means of the mode-
superposition approach, and modal parameters required in such analyses are presented.

For the case of a conical tank, J. W. Green {A-10) and J. Havper (A-11) both present solutions to a tank of cir-
cular transverse cross section, Harper solves the hydrodynamic equations of mouoi for a liquid in a cone with
a. 45-degree semi-vertex angle. Iie derives an equivalent pendulum analogy that duplicates the hydrodynamic
forces and moments. The parameters for such an analogy are presented in Table A-7.

Trembath (A-12) presents a mathematical model for the response to liquid oscillations in tanks of arbitrary
shape. An incompressible, irrotational fluid is assvmed, and only linear effects are considered. Rotation
about the longitudinal axis is not permitied. The response is given ia the form of integral cquations for forces,
moments, and wave heigits. The equations must be ¢valuated numerically for specific tank shapes.
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h
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Figure A-18. Sloshing Parameters for the Pendulum Analogy in an Elliptical
Tank (¢ = 0.66), First Mode {(n = 1)
Table A-7. First Mode Sloshing Parameters For a 45-Degree Half Angle Cone
{See Figure A -20 for Geometry)
MECHANICAL HYDRODYNAMIC
M +M M
o 1
M 0.25 M
0 L B
M1 0.75 M
r— R e e
h 1.2h
[
h1 1.6h
o2 I
h
Lp h
— e SR R, — J




e = 0.866
6 = /=== 4 = SEMI-MAJOR AXIS
b = SEMI-MINOR AXIS

0.6~ -

Figure A-19. Sloshing Parameters for the Pendulum Analogy in an Elliptical
Tank (¢ == 0.866), First Mode (n = 1)

rf Q@1

-
’:7‘7
211

Figure A-20. Geometry, First Mode Sloshing Parameters for a
45-Degree, Half-Angle Cone

WADD TR-61-93
April 1961

A1




WADD TR-61-93
April 1961

A3.5 Approximate Solutions for Vessels that are Bodies of Revoiution. The case often arises whare the exact
solution for the hyarodynamic equations of motion does not exist or is not readily available. If a sclutlon does
‘xist, 1i may not be in a form that is readily adapted for computation, Therefore, it is desirable to have some
method of computing the approximate parameters for a mechanical analogy directly from a given tank shape.

A method for approximating the parameters for a mechanical analogy that reproduces the forces and moments due
to liquid oscillations is avallable in the "equivelent-cylindrical-tank-with-an-equivalent-bottom™ analogy, The
"gloghing'' parameters for spring-maass or pendulum analogies may be found a8 a function of liquid depth from an
"equivalent flat bottom cylinder™. This mathematically equivalent tank (shown in Figure A-21 for a spheroid) is
a cylinder genorated at incremental liquid depths of the original tank by conserving the free surface area and vol-
ume of the two tanks (original and equivalent), The "sloshing' paramcters are then generated for the cquivalent
cylindrical tank, al various liquid levels, from ono of the rigid-wall tank mechanical analogics presented. {The
special rigld-wall, spring-mass analogy, as modified for flexible-wall problems, should not be used, however),
Tanks of other shapes are handled In a like manner.

2 o]

ff THE FREE SURFACE AREA (RADIUS) AND THE

LM VOLUME OF LIQUID IN THE "EQUIVALENT"
CYLINDER ARE THE SAME AS THOSE IN THE
SPHEROID.

I THE APPARENT LUCATION OF THE MECHANICAL

I ELEMENTS IS WITHIN THE BOUNDARIES OF THE
SPHEROID EXCEPT THE RIGID MASS FOR VALUES
OF THE EQUIVALENT TANK'S h/a GREATER THAN 2.

Figure A-21. Equivalent Cylindrical Analogy for an Oblate Spheroid

A3.6 Rotation Produced by Translation {Swirl). For stability analysis it has been customary to ignore the non-
Hnear terms in the Navier-Stokes equation, on the supposition that the motions to be studied were infinitesimally
small. It has also been assumed that the viscous terms could be dropped inasmuch as the viscous effects for
slightly viscous liquids are confined to & narrow reglon in the vicinity of the fluid boundary. It was observed dur-
ing the course of experiments designed to check the linear non-viscous theory that when the forcing frequency was
in the neighborhood of the natural frequency, the liquid departed from a planar motion, and a rotational wave was
observed to wash around the boundaries. R. R. Berlot (A-13) concluded, after a study of this phenomenon, that
any slight departure of the center of gravity of the fluid from the plane containing the axis of the tank (a cylinder
in his studies) and the driving vector will, by the action of centrifugal force. be amplified until an equilibrium is
reached between the action of centrifugal foree and that of gravity., The center of gravity of the liquid wili move
in an orbit about the axis of the tank, and the angular momentum will be carried by a vortex. Berlot also dis-
cusses the results of digital and analog computer siudies made to determine the response of a conical pendulum
to a driving force. These studies revealed the presence of boundaries between the regions where the oscillations
of the pendulum are confiner to the plane of the external driving force and the regions where rotary motion re-
sults from the planar driving force. These houndaries appear at or near the point where the driving fregrency is
the same as the natural frequency of oscillation.

This effect may be reproduced quite accurately, using the mechanical analogies already presented. For small
amplitudes the motion of a conical pendulum may he duplicated by supcrpositicn of the response of two simple
pendulums or spring-mass systems mounted perpendiculariy to each other. The slosh plunes of these two pendu-
lums are usvally considered fixed in inertial space, unable to rotate with the sank about its longitudinai axis.

A-34
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This model is restricted to tanks of revolution whose center lines coincide with the vehicle's longitudinal axis.
Of course, if section baffles or similar pieces of construction are present in the tank or if clustered tanks are
used, rotation of the liquid about the vehicle's longitudinal axis is impaired.

A3.7 Empirical Verifications and Other Data. It is often quite reasonable and accurate to determine the forces
and moments produced by liquid oscillations in a contained vessel by tests with the actual tank or a scaie model.
H. W. Abramson and G. Ransleben (A ~14) present a method for determining the parameters for a scale model
tank that can be used to study the liquid oscillations in a prototype tank. The method presented uses dimensional
analysis to determine the ratio of the model physical parameters to those of the prototype.

As can be expected, the ratios of the liquid depth, excitation amplitude, and diameters are all equal. If viscosity
18 neglected, the ratic of the dlameters divided by the ratic of the longitudinal accelerations equals the ratio of
the time constant squared. The reciprocal of the time-consiant ratio equals the frequency ratio.

In any test designed to determine the response of a liquid in a tank to external forces, care must be taken to mini~
mize coupling effects between the sloshing liquid and the tank support structura. Various methods have been de-
vised that show an acceptable solution to this problem (A-15, A~16-and A-17).

A3.7.1 Verification of Analytical Studies. Tes!s have been conducted to determine and verify the forces, mo-
ments, and frequencies of oscillation of a liquid in a contained vessel, Some of the notable tests have been con-
ducted hy J. L, McCarty and D. G. Stephens (A-18, -19) under the auspices of the National Aeronautics and
Space Administration, In these tests excellent agreement is shown between the experimental data and the results
of available theory. Useful plots of a nondimensional frequency parameter versus aspect ratio are given for the
first three modes of slosh in spheres, horizontal circular cylinders (transverse and longitudinal modes), upright
circular cylinders, and toroidal tanks in three different orientations. No data is glven to compare the forces and
moments.

For a spheroid the results in general show that, above the hali-full condition, the natural frequencies of the first
two modes of a liquid in a spheroid of somi-major axis, a, are approximately equal to those in a sphere of radius,
a. However, at lower depths the frequency is reduced appreciably. For the first mode, when the tank i8 near
empty, the frequency approaches the frequency of a simple pendulum of length equal to the radius of curvature of
the tank wall,

A3.7.2 Inherent Damping. K. M. Case and W. C. Parkinson (A-20} conducted an invesiigation of the damping of
surface waves In right circular cylinders with smooth walls. The question of interest was the dependence of the
damping on cylinder height and radius, and the viscosity of the contained fluid. Their results indicate that the
inherent damping is the sum of ine frce surface damping, side wall wiping damping, anz the bottom scrubbing
damping. These damping terms are given by:

(Free-surface damping)

4wy 5“1
£,o= 5 -
wa
{Side-wall wiping damping)
“2
1+
_ l—""‘ T En 2 !;nh A
be 3 a 2 B (*-8)
n asinh2t —
1- iz na
n -
N J
(Bottom-scrubbing damping)
& = I i 2 én
b 2w a sinh 2 £ f_h (A-9)

A-35




WADD TR-61-83
April 1961

From their studies, two remarks are in order:

a. The danping is ratkor indepondent of the shape of the cylinder cross section. Thus, the difference between
the result for a circular sylinder and for a aquare cylinder of the same cross-sectional area is less than 20
percent.

b, The free-surface damping is smell compared to the wall-wiping damping - particularly for large cylinders,

A3.7.3 Mechanical Baffle Damping. Soveral approaches exist which couid preclude exceasive in-flight sloshing
of liquids in smooth-walled tanks of missiles. The control system designer could resort to complex filtering
methods or to the use of additional feedback loops using sensors that detect propellant motion. The objective
would be to adjust the control systom phase in the neighborhood of the sloshing frequency (see Section 2). How-
ever, such an approach {8 not practicable because: 1) the raliability of such complex filtering or auxiliary sena-
ing would be questionable, 2) the vehicie and tank properties change radically over the course of the flight; thus a
complicated programming system would be required to provide an effective control system at all flight instants.

The solution employed in practice to stabilize vehicles having a divergent mode of oscillation is to install baffles.
Installation of suitable mechanical baffles can introduce the desired amaint of damping, but only if a certain
limit-cycle oscillation amplitude can be tolerated. That this limit-cycle amplitude 12 necessary {2 seen from the
fact that baffle damping is amplitude-dependent (see following discussism). Hence, to obtain damping sufficient
to provent excessive slosh buildup, some slosh amplitude must be accepted. The other chief disadvantage of
mechanical baffles is the weight penalty involved. It can be showm, however, that the weight of fixed-ring baffles
{s by no means excessive.

The amowt of internal (passive) damping of “iquid oacillations provided by fixed-ring baffles has been approxi-
mated as a function of the sloshing amplitude for given baffles in a given tank by J. W, Miles {A-21). His formula

is:

A 3/2 ) G_A_h_ " 1/2
. -k ( bafﬂe) . 2 (__) A-10)

b
b A ank a

The areas indicated are plan areas of the tank ¢ross section and annular ring. Another formula presented by
J. W. Miles, based upon an alternate set ot assumptions, is:

Ah
o Phatnie s52 75 [T
b, = K A )¢ a A-11

“tank \ (A-13)

Each of the above equations has been supporied to some degree by test data (after proper empirical choice of the
constant, K, or K'), The constant, X in Equation A-10 as given by E. D. Gelssler (A-22), has a value between
2.26 and 4.5. J. W. Miles suggests a value of three. H. F. Baer (A-23) predicts that the constant K' has a
value of six - a value which agrees very closely with experimental findings at Convair-Astronautics, at least for
relatively small baffle areas and damping values.

While the damping of fixed-ring bafﬂesecan be eatimated by Miles' formulae, a more exact procedure, especially
for baffies other than flat annular rings, is the investigation of sloshing motions in model tests. For these tests
moilel laws require, according to H. W. Abramson (A-14), that the following relationship between diameter,
acceleration field, viscosity and density ratios be fulfilled:

d = ar-l/a <“r) 2/3

r

This relationship is valid if surface tension is neglected. Acceleration on the ground, heing lower than that ex-
perienced in flight, requires larger models. Use of heavy liquids, however, permits simulation of high acceler-
ations with reasonably small models,
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-ring baffle, according to J. W. Miles is found

The pressure In equivalent foet of liquid head applied to the fixed

to be
1/2 1/2
Apatfle PRI
P = 5.5 y e a 'y n, co8 [ (A-12)
tank /

or, for alternate assumptions, whon Abafﬂe /A tank is greater than 0. 14:

AR 2
ses 2 (M i
P - 1.9 e a T/ CoB P (A—13)

where ¢ is an angular coordinate around the tank axis measured from the plane of slosh motion.

A knowledge of this force is required for the design of the bafiles and support structure.

P13

¢
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Symbol

¢ ¥, 8)

c®Ox, 6
%8
)

m (x)
p(x,t)
r(x,t)
u(x, )
$(x)

™

SYMBOLS USED IN APPENDIX A4

Definition

influence function; angular rotation at atation x due to 4 unit moment at station ¢

tnfluence function; angular rotation at station x due to a unit lateral force
at station ¢

influence function; lateral doflection at station x due to & unit moment at
station &

influence function; lateral deflection at station x due to & unit lateral force
at station ¢

distributed mass per unit length

distributed external lateral foree per unit length
distributed externul moment per unit length
displacement function

distributed rotary inertia pur unit length

mode shape (sigenfunction) for ith mode

Matrix Symbology

ao
T (o,

07
" (n.n)

Sa
(n,n)

66

Y (n,n)

Dm(n,n)

Pl n)

P 1)

o oo
=[Ci,u ] where C., 18 an influonce cocfficient which represents the
angular rotation at the ith mass slation due to a unit moment applied
at the j¥ mass station

] L0 Wb . -

: (,_j where (’ij is an influence coefficient which represents the
:m;;;ulur rotation at the ith mass station duc to a unit lateral force
applied at the ju‘ mass station

M 6o S

B LC’joJ where C . is an influence coefficient which represents the

lateral deflection at the it mass station due to 2 unit moment applied

at the j mass station

66 66
= [Cij } where Cij is an influence coefficient which represents the
lateral defiection at the ith mass station due o a unit lateral force
applied ai the jth mass station
I .
- Lm], mz, ceen e ; diagonal matrix of n discrete masscs
= {u‘ R '“z' P 'I‘i' i '“n i diagonal matrix of n discrete rotary inertias
L' ]

= l pl, pz, AN ,pi. . ,pn \ ; column vector representing external lateral

forces at n discrete stations
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Units

1/ft b
1/ib

ft/it b

f1/1b
slugs/ft
1b/ft

ft Ib/ft
ft

1% sect

N.D.

1/ft ib

1/ib

ft/ft b

ft/ih

slugs
slug ftz

ib
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SYMBOLS USED IN APPENDIX A4 (Continued)
Symbol Peflnmon
R(n, 1 = { rl, rz. ceey ri, vees rn l ; column vector reprosenting external moments at
n discrete stations
IR | S H ti 1
u 0, 1) ul, u n ui un ‘ column vector representing displacements at n
discrete stations
x = ‘x i SRS S 4 l ; column vector defining locations of discrete
{n, 1) 1'72 i n
mass stations
L1y ='1,1,1,...,1,....1f;unuvector

Special Notations

' "prime” denotes differentiation with respect to x

. "dot" denotes differentiation with respect to t

* "asterisk" denotes the transpose of a matrix

denotes any null matrix. The order {8 dependent on the particular

senso in which it is used, i.e., the order must be consistent with
its usage,

A-42

Units

ftih

ft

ft

N.D.
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A4.1 General, It was shown in paragraph 3.3 of Section 3 that the normal bending modes (and thelr associated
frequencies) for the unrestrained vehicle are obtained by solving the set of homogenous algebraic equations:

l“x‘ - o [611] £Mj]‘ l“;' (A-14)

Here the matrix, Eu, is the matrix of flexibility influence coefficients for the free—free {fioating) beam; deflec-
tions are measured relative to the centroidal principal axis, It may be shown that this matriz derives directly
{rom the symmetric flexibility influence coefficient matrix, Cyy, where deflections are measured relative to an
arbitrary line within the structure. In general this matrix includes coefficients relating both translation and ro-
tation to linear forces and couples.

In Section 3 it was noted that the diffcrential equations of forced vibraion for a continuous system are replaced by
their matrix counterparts (see Equations 3-7 and 3-9) which represent a lumped parameter system. Some judg-
ment must be exercised when choosing the number and locationa for these discrete mass stations, It has been
found that the required number of mass stations should be approximately ten times the number corresponding to
the highest elastic hending mode to be calculated. For example, if three elastic bending modes are to be ealcul-
ated, then approximately thirty mass stations are required (o representi adeguately the bending dynamics of the
third mode. This criteria has been established empirically by calculating mode shape, frequency, and general-
ized mass corresponding to the first threec eclastic bending modes for typical vehicle configurations in which the
numbers of mass stations used were successively increased from eighteen to forty. As expected, the accuracy
increased as additional stations were utilized, Howovar, it was obscrved that no further significant increase in
accuracy was achieved by using more than thirty mass stations.

A4.2 Tabulation of Basic Data and the Mathomatical Model. The basic data required for the calculation of the
natural bending modes consists of: 1) the distributed vehicle inertial properties, i.¢., running mass and rotary
inertial distribution and 2j the bending and shear stiffnoss distribution. Note that only rigid masses are to be
included in this distribution, ihat is, only those masses which ¢an be considered to act as an integral part of the
unrestrained beam during its vibrations. It cannot be overemphasized that items such ar puinps, equipment pods,
etc. which are actually mounted elastically to the main structure may significantly alter the bending character-
istics of the higher frequency modes. Whether or not such masses are to be treated as integral to the beam or
as separate, elastically attached masses, depends upon 1) whether or not the frequencies of the body modes to be
computed are less than or greater than the mount frequencies of the discretec masses, and 2) whether or not these
masses are great enough to atfect the resuit. (In this connection see aiso Subscciion A4.6, beiow.)

Figures A-22 and A-23 below illustrate a typical set of curves presenting bending stiffness, EI, and mass distri-
bution, m(x), as a functfon of vchicle station number. Similarly, curves presenting transverse shear stiffness,
KG, and rotary inertia, p(x), as functions of vehicle station number are required. From these data a table such
as Table A-8, can be constructed. The significance of the subscripts, r, and, i, will be clarified in the following
section. However, the following notes are prescnted at this peint.

a. nand s are independent, withn< s + 1
b. For each X there exists an X, which is numerically identical.

¢. There isaone-to-onecorrespondence between x,, m_, andp
i

i i

d. There i8 one-to-one correspondence between xr, Eir, and KGr'
The masrix of atructural influence coefficients, C, can be calculated from the data presented in the first four

columns of Table A-~8. The matrix C is called a flexibility matrix, and the paragraph which {oilows presents a
methed for its ealeulation by a process ol iriple paivia multiplicabion,
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BENDING STIFFNESS EI{x) (LB—FTZ)

1
I
TR x . x X X
*o 1 T2 Y % -1 r s
3 *6

VEHICLE STATION (FT)

Figure A-22, Typical Vehicle Bending Stiffness

MASS DISTRIBUTION
m(x) {SLUGS/FT)

VEHICLE STATION (FT)

Figure A-23. Typical Vehicie Mass Distribution

A4.3 Flexibility Mairix for a Cantiiever Beam: Statically Determinaie Case. A cantilever beam subjected to
concentraied forces and moments at discrete stations along its elastic axis is shown in its deformed state of
equilibrium in Figurces A-24 and A-25. The beam is considered to consist of 8" elements which are cascaded
end to end. The bending stiffness, I, and shear stiffness, KG, may in general vary in an arbitrary manner
througheut the length of the beam. However, for practical purposes it {s usually sufficient to assume a linear
variation between the boundaries of any onc cicment,

The internal elastic restoring forces acting on the vt ¢lement (bending moments and shears) are shown in
Figure A-26,

It is assumed that the rth element is chosen so that no external forces are introduced throughout its length; that
is, the external forces act at the points x,..7 and x,.. We define a load vector for each of the "'s" elements by:
s, | n:,r"l A-15)
i [ -1 | (A-15
NOTE: Within Subsection A4, 3 a different notation is employcd for applied torque, t, and for

transverse clastic deflections, y, than is usced clsewhere in Appendix A4, It appears only in
this specialized, selfcontained section and hence should cause no confusion.

A=l




Table A~8, Elastic and Inertial Properties
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xl_ xi El K(’r m1 pi
_ ]
P, FT LB.~-FT.2 LB. SLUGS LB.-SEC. 2
- _
xc X 1 I:.lo KGO ml “1
X, - EI KG, - -
‘(2 xz le KG2 m2 ua
) G
X, X EI Ki N m, B
xs xn “s KGE mn pn
Y
y b
t
J

NOTE: s e to bending

&

distortions only.

Figure A-24. Cantilever Beam Subjected to Concentrated Forces and Moments

Figure A-25. Displacement Forces

L1
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Mr-l v
X=X r
r-1 X=X
T
Figure A-26. Internal Elastic Restoring Forces

where Vr 1 and Mr 1 are the internal clastic bending moment and shear externally applied to tie boundaries of

the rth eloment acting on the r-1 end of the rth glement. We now define an externally applied load vector for the
entire beam as:
F = 3] P e, p t t,"' t _I . (A-16)
1) 2! H] nl 1' 2 3 n J
Now, since the internal elastic restoring forces are linear combinations of the externally applied forces, we
write: .

S = b F, (A~17)
T T
where br is a load transformaticn matrix, The matrix br takes the form:
b = [hp,---.bp,bt.'--,bt ] ) (A-18)
r T r r r
1 n 1 n

The matrix by 18 of the order 2 x 2n and has been partitioned into 2n vectors of order 2. The elements of the
vectors b}: and by, represont the intornal beam shear and bending moment acting on the r-i end of the r*" ele-
ment due to a unit force and unit couple respectively applied externally at the 1th station,

th

We next define a displacement vector, Vr' for the r*" element. This vector defines the deflection and rotation ot

r-1 end of the rtll clement relative to the r end when thir element is subjected to the forces, Sy. These displace-

mentjs are, in turn, a linear combination of the forces producing them, specifically Vr_1 and Mr—l' We express
this fact as:
v, = fr S (A-19)
where
v = r-1
r er_ 1

The displacements 6 ,_y and 0,7 are illustrated in Figure A-25. The matrix f; is a flexibility matrix for an
elemental cantilever beam. As shown above, Iy i8 of order 2 x 2 and is defined below. We have:

£ 66 fda
r r °
[ oo
£ 0= |1 £
r r r . (A-20)
where
3
2 2
o6 . *r 3 -
b T S ko, 0 TTRY) ] .

AT
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‘ 2
b r 2
b T EED a+g Ky
T
2
ad Sa !r 2
= + = °
fr f!‘ 2EI a 3 Kl)
r-1
aa lr
Y T W @+ K)o
r-1
wherein,
El
_ r-l
K T E -t
KG
L or-l
KZ K& - 1 and,
lr - xr h xr-l

The total lateral displacement (due to pure bending plus shearing deformations) at the ith station due to all exter-
nal forces ucting on the beam can now be determined from the principle of virtual work, Thus,

1 = 2P
yi " r=1 r vr
i
8 *p .
= ¥ b f b F (A-21)
r=1 r r r
i
Similarly, we get
1 = 2 bt b F A-22
G = % r Or (A-22)

Collecting all of the 2n displacements implied by Equations (A-21) and (A-22), we define a displacement vector U.

3

v [Y] £, f % F (A-23)
Lo r= r

From the definition of a flexibility matrix, C, we observe from Equation {A-23)

8 *
e = X b f b (A-24)
r=i r r r

i8 the complete flexibility matrix for a cantilever beam. Actually, this result is general and is valid for any
linear elastic structure, statically determinate or indeterminate. The latier casec is necessarily more compli-
cated since the by matrices are statically indeterminate. However, Equation (A-24) remains valid. The flexibil-
ity matrix, C, given above by Equation (A-24), is the same matrix introduced previously as Cyj. This matrix is
required fer the caleulation of the eiastic bending modes. The by matrices for a statically determinate cantilever
beam are dependent only on the stations chosen for the xy's and xj's. Some simple rules are presented below for
this case.

AT
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It is convenient first to partition br as:

1xn 1xn
e
-V 1 A\
p o t
b ! br
= O A
L Mo M
b P 1w
r ; r
L
Ixn 1xn .

v v M, M, T
The partitions of by, {.e., bp P, by ¢ by ©, andby  are calculated as follows:

Vp
a. Elements of by *:

1) calculate xl -xr_l;
v
2) i x - x < 0, b_P =0
i r-1 !‘i
\'
3) ifx, - x > 0, b P = -1
i r-1 rl

v
. Elements of b, t,

(=3

1) all elements are zero; 1, 0., br L

i
M
c. Elementsofb P 13
r(
1) calculate x1 <xr_1; i = 1,2, +v5, 0
Mp
2y ifx - x < 0, b =0
i r-1 - ri
3 if % > 0, bMP -
) * Fr-1 ' r, * X1 ~
M
d t,

. *Elements of b
i

1) calculate x, - x s 1= 1,2, , n
i r-1
My
2) ifx -x <0, 0L =0
i r-1 - r
i
My
3 ifx -x >0, b = 1
i r-1 T

i

o4 hy ohtgining the solutions

Ad.4 Elastic Bending Mode Calculations. The elastic bending modes are dc
to the set of homogenous algebralc equations glven previcusly by Equation A-14, This equation is rewritten here
with a slightly abbreviated and modified notation

& Tmen o

e ¢ ule'fl , ' (A-25)
where A - 1/w? and the inertial matrix is given a new symbol to signify the incorporation of rotary inertias of

the various mass points. It is readily shown that the matrix C is related to G such that Equation A-25 may be
written (sec nomenclature for this section) as .

\-18

-
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-1 |
- * * = .
[1-a@ DA A DI] cD, Au, {A-26)
where
1
. - 4
1 .
(2n, 2n)
L
1 x
A =)
{2n, 2n) 0 1
L
D 0
Di = m
(2n, 2n) 0 D _
and ~
066 Céoz
C =
(2n, 2n)
i Caﬁ Coux

Having constructed the flexibility matrix, C, as cutlined in the previous section, the matrix of coefficients in
Equstion A-26 18 constructed by straight-forward matrix operations.

A matrix iteration method (Ref. A~34 and A-33) for calculating the dominant cigenvalue and its associated eigen-
vector is recommended, due to its simplicity and because it appeais to yield results as accurately and rapidly as
any of the various methods currently employed. Having determined the dominant eigenvalue, and its correspond-

ing eigenvector, 13, of the matrix [I- A (A* Dp A)_1 A* D} ) C Dj, we now wish {o determine A4 and 7 4.

The subscript 3", which normally refers to ""third mode", is used to emphasize the fact that the first two modes
are the rigid-body modes of zero frequency. They are not obtained from Equation A-26, having been "'swept out"
earlier, see Section 3, One extremely simplo technigue for determing 7\4 and 7 4 is to proceed as follows., We
construct a new matrix by caiculating:

-A
\.W 3

The new matrix defined by Fquation A-27 is now added to the original matrix, [ I - A (A* Dy A)—'1 A* Dy | Dy.

Ny 113* D, where % is the mode's generalized mass. {(A-27)

1

-1 A
The "power method” will now yield A4 and n4 when applied to {1 - A (A*DyA) ~ A* Dy ] CDg —ﬁg Mg .';3* Dy,

This procedure is then repeated for calculating 7\5, 15, ete.

A4.5 Evaluation of Modal Calceulalion Technlques. The purpose of this Subsection is to exhibit the effect of
transverse shear stiffness.and rotary inertia on the calculation of the natural bending modes of a free-free
(floating) beam. The pertinent data used and the curves of resulis obtained are presented. Also, percent error
calculations for frequency, generalized mass, and maximum deviations from the hase curve (the most compre-
hensive calculation made) are presented. A discussion of the resuits and the conclusions reached are also in-
volved,

Deflection, slope, and bending moment curves were calculated and plotted for the first four natural modes of
vibration for one large booster configuration, using the following combinations of transverse shear stiffness, KG,
and rotary moments of inertia, Du:

A-i
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a. Casel D“ = 0; KG = KG
b. Case 2 D# = Du; KG =KG ("Base' Case)
c. Case3 D =D ; KG =@

Boou
d. Case 4 D“=0;KG=m
The basic parameters, frequency, and generalized masas for the four cases caluclated are shown in Table A-2.
The errors, maximum percentage difference based on mode computed with KG =KG and D), = Dy, are presented
in Tables A-10 through A-15. Table A-10 gives the errors in frequency, Table A-11 gives the error in gener-
allzed mass, and Tables A-12, -13, -14, -15 give the maximum deviations in the deflections. aslopes and mo-

ments for the first four modes versus those values at the maximum point on the curve.

‘The mode deflections, slopes, and bending moments for the four cases considered are plotted in Figures A-26
thru A-38,

Table A-9, Bending Mode Characteristics for Four Methods of Computation

MODE w f
METHOD NO. (RAD/SEC) (CPS) (SLUGS)
CASE 1 1 34.32 5.485 3,834
@, =0
p 3.6 13.31 , 71
KG - KG) 2 83.60 1,719
3 120,25 19.15 1,087
4 188.2 29.97 23,673
CASE 2 1 34,20 5.446 3,870
®y =5,
# oo £
KG - KG) 2 82.38 13,12 1,710
3 117.3 18.68 1,334
4 187.7 29. 89 33,337
CASE 8 1 36.96 5.885 3,419
Do =P 2 107.16 17.06 1,216
KG = ) ’ ' '
3 183.7 29.25 2,798
4 416.0 66.24 15,967
CASE 4 1 37.15 5.916 3,410
@Dy = 0;
111,39 .1
KG = o) 2 17 .4 1,209
3 194.1 30.91 1,809
4 472.9 75.30 141,906

P
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Table A-10, Fraquency Errors (Base: Case 2)
MODE NO, CASE NO. FREQ. (RAD/SEC) PERCENT ERROR
1 1 34,32 0.351
2 34.20 0.00
3 36.96 £ 07
4 37.15 8.63
2 1 83.60 1.48
2 82.38 0.00
3 107.18 30.10
4 111,39 35.30
3 1 120,25 2.51
2 117,30 0.00
3 183.70 56,50
4 194,10 65.50
4 1 188.2 0.268
2 187.7 . 0,00
3 416.0 122.00
4 472.9 152.00
I S .
Table A-11, Generalized Mass Errors (Base: Case 2)
MODE NO. CASE NO. MASS (SLUGS) PERCENT ERROR
i 1 3834 -6.93
2 3879 0,00
3 3419 -131.,78
4 ° 3410 -11.90
2 1 1719 0.526
2 1710 0.00
3 1216 -28.90
4 1209 -29.30
L. S SV
3 1 1067 ~20. 00
2 1334 0.00
3 2798 108.80
- 4 1809 35.60
e e 22122
4 1 23,673 ~29.00
2 33,337 0.00
3 15,967 ~52.10
| o o ,f. . 141,906 326. 00

A-51
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Table A-12. Percent Error Calculations and Maximum Deviations,
First Mode (Base: Case 2)

Deflection Curve

s = Percent Error Based on Maximum Deflection Shown by the Base Curve
6 =4.45
Station = 430 in.

As Dofinod:
Max. Deviation From Base
S E = x 100
Percont Exror Max. Point on Base (4.45)
Casc No. Max. Deviation Percent Error
1 0.2 4.5
2 Base Base
3 0.3 6.74
4 0,25 5.62
Slope Curve
Percont Error = Max. Deviation From Base  x 100
’ Max. Point on Base { 0 = 14.9
Station = 465 in.
Case No. Max. Deviation Percent Error
1 0.2 1,34
2 Base Rase
3 3 20.1
4 1.4 9.4
Moment Curve
Porcent Error = Max. Deviation From Base x 100
Max. Point on Base / M = 240 in~lbs
ft
Station = 825 in.
Case No. Max. Deviation Percen.. Error
1 2.5 1.04
2 Basge Pase
3 22.5 .38
4 27.8 11.45

>
!
[
[




Deflection Curve
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EEX I O

Slopo Curve

Casc No.
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Case No.,
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Table A-13. Percent Error Calculations and Maximum Deviations,
Second Mode (Base: Case 2)
Percent Error Bas(id on Maximum Deflection Shown by the Base Curve
y=1.6
Station = 1310 in, )
As Dofined:
Percent Error = Max. Deviation From Base x 100
’ Max. Point on Base (1. 6)
Max. Deviation Percent Error
. . 033 2.08
Base Base
. 233 14,56
.200 12.50
Poreent Error - Max. Deviation From Base  x 100
TN T Max, Point on Base/ ¢ = 9.4 Deg/it.
(Station = 815 in.
Max. Deviation Pereent Error
0.4 4.26
RBase Base
4.4 46.8
4.8 51.1
Porcent Frror — Max. Deviation From Base  x 100
o Max. DPoint on Base/ M = 345 in Ibs/ft
Station = 1065 in.
Max. Deviation Percent Errgr
30 - 8,7
Basc Base
240 69.6
175 50.7
A-03
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Table A-14, Percent Evror Calculations and Maximum Deviations,
Third Mode (Base: Case 2)

Deflection Curve

Pereent Error Based on Maximum Deflection Shown by the Base Curve

( ¢=1.77
. Station = 1325

As Definod: ==
1

Max, Deviation From Base x 100
Max. Point on Base (1,77)

Percent Error =

Case No. Max. Deviation Percent Error
1 0.2 11,3
2 Base Base
3 1.8 90.5
4 1.05 59.4

Slope Curve

Percont Error = Max. Deviation From Base  x 100
’ Max. Point on Base ( ¢ =11; Station = 1200 in.)

Case No, Max. Deviation Percent Exror
1 1 9,1
2 Base Base .« s
3 33 300.0
4 25 227.0

Moment Curve

Max. Deviation From Base x 100
Max. Point on Base {M = 575; Station = 1080 in.)

Percent Error =

Case No. Max. Deviation Percent Error
1 . % 13.05
2 Base Base
3 1225 213.0 {
4 925 161.0 ‘
-— = -




Deflsciion Curve

Case No,

Lo - -3

Slope Curve

Case No.

BN e

Moment Curve

Case No,
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Table A-16. Percent Error Calcuiaiions and Maximum Deviations,
Fourth Mode (Base: Tase 2)
Percont Error Based on Maximum Deflection Shown by the Base Curve
Station = 700 in,
Psrocnt Error = Max. Deviation From Base x 100
Max. Point on Base (4.5)
Max. Deviation Percent Error
0.1 2,22
Base Base
1.6 434.3
43.0 855.0
Percent Error = Max. Deviation From Base x 100
Max. Point on Base /o = 80 Deg/Ft
Station = 750 in,
Max. Deviation Percent Error
80 100.0
Base Base
340 425.0
820 1,025.0
Percent Error = Max. Deviation From Base x 100
Max. Point on Bagse/ M = 2300 x 106 in, -1bs
ft.
Station = 755 In,
Max. Deviation Percent Error
400 x 108 17.4
Base Base
10,000 x 108 435.0
27,896 x 108 1,213.0

WL BN e

A -55
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It appears from the curves and from the error calculations that, assuming the hase curve (Case 2) to be accurate,
the base curve can be closely approximated by a calculation with transverse shear stiffness, KG, included and
rotary inertia, Du, omitted. The test results (cf. Section 6) indicate that large deviations occur in all cases for
the higher modes. If only the deflection, @, i8 required, then the 18t and 2nd mode can be calculated with reason-
able accuracy, with transvarse shear stiffness, KG, and rotary inertia, Dy omitted. One result shown by the
percont error calculations and curves was that the results In the case where neither KG or Du were included
were usually more accurate than when only Du was included. In the first three modes all the curves seem to
show the same general trends, i.e., the same 8ign appears on ¢, ¢, and M for each case tested, although the
amplitudes will vary, In the fourth mode it can be secn that the various propertics (defleciions, siopes, and
bending moments) exhibit critical errors; the sign as well as the amplitude i8 in error. The significance of this
type of error can be appreciated by referring to the control system studies outlined in Sections 2 and 4,

1t should be noted how tho porcont orror calculations for maximum doviation are made. Tho deticiencios In-
herent in these calculations must be kept in mind when they are to be used.

A-56
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Figure A-38. Fourth Mode Bending Moments for Four Methods of Computation
A4.5.1 Conclusions. The curves and tables show that:

a. Adequate results may be obtained by the elimination of Dy in the calculation of natural modes of vibration
for the free-free besm,

b. Transverse shear flexibility is very important in typical space booster configurations and should be included
in moae calculations, It is found to be more important in the 2nd, 3rd and 4th modes than in the 1st mode.
It is also more important for siope and bending moment than for defiection calculations.

¢. Since Dy is of such minor importance in the calculation of the modes, doubling the number of mass stations
and discarding the Du would result in a matrix of the same order and would probably give much better re-
mwes gujits for the higher modes.

A4.6 Concluding Remarks. As was mentloned previously, the elastic bending modes, as calculated by the
methods presented in this section, reflect only the characteristics of simple beam bending vibration. It is often
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convenient, if indeed not necessary, to huclude the effects of additional degrees of freedom in the modal calcula-
tions. The previous formulae must then be supplomented by additional equations and their assoclated cross-
coupling terms.

In particular, consider the problem of including the effect of propellant sloshing in the elastic bending mode cal-

culations. Ag shown in Appendix A~2, the effect of a sloshing liquid can be duplicated by a spring-centered-mass
mechanical analogy. Furthermore, it was seen that this analogy requires the introduction of a couple at the basc
of the propellant tank. The magnitude of the couple acting on the hase of the tank 18 a linear combination of both

the displacement and acceleration of the spring-contered-mass. Thus, in addition to the lateral force due to the

deformation of the spring (this force is applied at the attach point of the spring~-centered mass), the action of the

couple on the base of the tank must be included. This action may be incorporated by modifying the influence cc-

efficient matrix and incertia matmnix in i dircci mainnoer.

Another degree of freedom may be added by incorporating the rocket-engine positioning servo's flexibility into
the vehicle elastic model, For the hydraulic positioning servo featured throughout this volume, the servo com-
pliance appears in the actuator linkage and mount flexibility (K, in Figure 4-12 of Section 4) and in the hydraulic
fluid compressibility (Ky of the sume figure). Whether or not these compllances are incorporated in the modal
calculation makes little difference for modal frequencies below the engine servo resonant frequency. Near, at,
or above thia frequency, however, significant difforences may appear in certain of the modal data. Table A-16
compares some criticil data for modes at one time of flight, computed with and without servo compliance. The
vehicle configuration was one in which the rocket engine chamhers ware large, “overhanging” inertial masses.

Table A~-16. Comparison of Body Bending Mode Data with and without Servo Compliance

* MODLE _—r;—(c;;) 7’71 (SLUGS) ¢’f¥ (FT/FT) J)E;Z (RAD/FT) aiz (RAD/FT)
- 1 o - ; 82 218 0.266 70.7071;‘3. - 60,0172
1 3.82 220 0.265 0.0184 0.0229
2 4. 88 203 0.185 0.0177 0.0177
2! 6.87 202 6,180 0.0217 0.0357
3 11.6 907 0.568 0."5.'.')5 0, 0555
3! 11,02 1230 0.370 0,051 0.43
3'a 12.98 2280 0.733 0,037 -0.84
SEUR R
Notes:

1. Unprimed modes are those having zero servo mount compliance
2. Artificially lincoupled servo mount frequency is 11.6 ens. Modes 3' and 3'a are the

orthogonal body and rocket engine modes on cither side of the common artificially
uncoupled frequency of 11.6 eps.

ARt
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As may be 8een in Table A~16, the third body bending mode at 11.6 cycles per second 18 very strongly affected
when the servo mount compliance, resonating the massive rocket chambers at this same frequency, is added.
The effect on the lower modes is smaller however. It would, in fact, ke minor in an overall closed loop stability
analysis, since the servo compliance would be accounted for in the servo actuator equations if it were omitted
from the mode. For the third mode, however, simple incorporaion of the mount compliance into the actuator
equation may lead to significant errors, since certain of the body bending modal data is strongly affected by the
changes in basic shape of the budy modes (see modes 3 & 3' in Table A-186).

It should be pointed out that the last column of Table A-16 should not be considered as a prime measure of
"error", due to omission of servo mount compliance. It is included primarily to show, by change in sign, when
a mode has passed the servo mount frequency.

-
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SYMBOLS USED IN APPENDIX Ab

Symbols Deftnttion
CN wormal force coefficiont, N/ (quef)
d(C N/ w)
. local normal force coofficient, por dogree per diameter
d(x/d)
d body diameter
2 body longth
!n length of conical section (nosc)
M Mach number
N normal force
q dynaiulc pressure
S body cross-section arca
| 4] angle of attack
8 Va2 .1
L] tan~1 slope of body surface
X axial digtance as defined in Figure A-39
Subscripts
ref reference
v vertex of nose

*Non-dimensional
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Units

1/deg.

ft

lbs
s/t
a2

degrees
N.D.
degrees

ft




WADD TR-61-93
April 1961

A5,1 Introduction. In this appendix the analytical meihods and experimental data available for estimating the
aerodynamic normal load distributions on typical booster vehicles are discussed. It is intended that the informa-
tion presented will enable the reader without extensive aerodynamic background to estimate (with the aid of the
references listed at the end of Appendix A) the approximate magnitudes and distributions of aerodynamic normal
loadings required for a prelimninary evaluation of their importance as a parameter affecting flexible-booster-
autopilot transfer functions. )

The aerodynamic normal forces imposed on a booster vehicle during its launch trajectory will affect the dynamic
reaponsge of the vehicle to the control-system commands throughout a wide range of flight conditions, from the
time of lift-off until the vehicle stages or emerges from the effective atmosphere. The magnitude of these forces
will depend on the angle of attack, the Mach number, the dynamic pressure, and the aerodynamic characteristics
of the vehicle. The angle of attack will vary with time as a result of the pitch-over program and the effects of
slowly varying or transient wind conditions; however, the flow in most cases can be considered as quasi-sgteady,
since the missile forward velocity is usually large in comparison with its pitching veloeity. If elastic modes of
vibration of the vehicle are excited by the interaction of aerodynamic forces with the control system, the angle of
attack will vary locally along its length, and the distributions of aerodynamic normal loads will not correspond
exactly to those of a rigid body.

In determining the aerodynamic force distributions on a flexible vehicle, the assumption is initiaily made that it
is & rigid body, Inclined 2t & fixed angle of attack. The effects of elastic bending are then taken into account dur-
ing the dynamic analysis by assuming that the forces at a particular location along the missile axis vary with the
local angle of attack in the same manner as for a rigid body.

For purposes of analysis the aerodynamic forces acting normal to a body inclined at an angle of attack can be
separated into putential and viscous flow components. Tho potential flow component corresponds to the forces
induced in an ideal frictionless fluid, and the viscous component of the forces resuliing from boundary layer sep-
aration of the actual fluid from the lee side of the body. The potential component is assumed to vary linearly with
the angle of attack, whereas the viscous component increases nonlinearly but does not become appreciable in
magnitude until the angle of attack exceeds several degrees. For the type of vehicle being considered here, the
angle of attack range is usually less than that required for the viscous forces to become important; therefore,
only the potential flow component of normal force will be coasidered,

Since the asrodynamic normal force on s booster vehicle may be of importance threughout the launching trajectory,
several flight regimes must be considered when ostimating these forces. From the standpoint of the nature of the
flow over the body, these regintes can be separated into the subaonie, transsnie, and supersonic Mach number
ranges. For the purpose of illustrating the application of methods available for the estimation of aerodynamic
normal loadings on a typical booster vehicle, specific Mach numbers within each of these regimes have been
sclected. Normal load distributions are presented for a specific non-finned booster configuration which may be
considered as quite representative in its over-all shape of vehicles of the type considered in the autopilot transfer
function study. The configuration chosen for analysis is sketched in Figure A-39 and consists of a cone-cylinder
with a nose semi-vertex angle of 15 degrees and an afterbody fineness ratio of eight,

+N

15° d

1.866d 8d

X e 4 X

Figure A-39, Sketch of Exampie Booster Configuration
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The discussion will be restrioted primarily to a consideration of configurations with pointed or moderately 2lunied
simple nose shapes and cylindrical afterbodies. Effects of external protuberances will not be considered, since
these are usually relatively amall in size and would thus contribute only a small increment to the normal loading. !
Although consideration of finned vehicles is beyond the scope of this appendix, it may be noted that Reference A-36
prevides a comprehensive treatment of methods of accounting for £in uifects for subsonie, transonic, and super- !
sonio Mach numbers. \:
1

d(C_ /o)

a(x/dy
S
ing in pounds per unit length is then detormined by multiplying by qo -—%‘-‘i, where « is the local angle of attack

The local aerodynamic normal loading on a body can be expressed in non-dimoensional form as . The load-

and may include the effect of elastic bonding of the body. The distributions presented herein for the example body
are i this non-dimenslonal form, It is apparveni from the above that for a glven vehicle and Mach number the
loads are proportional to the trajectory parameoter, arg.

A5.2 Subsonic Flow Regime. Although the dynamic pressure does not typically become large during the subsonic
initial ;}Tzi;é’t_)f boostar vehicle flight, the pitch-over program is usually initiated during this phase, with a rela-
tively large resultant angle of attack and a condition of appreciable oq. The effects of winds may also he impor-
tant in inducing angle of attack during this phase of flight. Aerodynamic loadings may therefore be significant in

their effect on control system requirements,

Consideration of the subsonic acrodynamic characteristics of hooster vehicles will here be restricted to the range
of speeds for which the local flow over the bedy i8 everywhere subsonic (M < 1). For typical configurations this

range, in terms of free stroam Mach number, is approximately 0 to 0.7; within this range the flow can be treated
as incompressible and independent of Mach number insofar as effects on normal load distributions are concerned.

Slender body potential theory (A-37) provides the only theoretical method available for predicting distributions of
normal force on a pointed Lody of revolution in subsonic flow. This theory is applicable oaly to slender bodies
with no discontinuities in profile slope or curvature. The theory states that the normal force distribution is pro-
portional to the local variation in body cross-section area, i.e.,

diCy/e) .0348  dS

S :
d(x/d) S 46/

It may be noted that slender-body theory is not restricted to subsonic flow; for sufficiontly slender pointed bodies
it is also applicable to transonic and supersenic Mach numbers.

The published experimental data pertaining to ths subsonic lift characteristics of bodies of the type considered here
are very limited, Refercnce A-38 presents total normal force and pitching moment data for ogive-cylinders with
various nose fineness ratios. Refercence A-39 prosents similar data for a cylindrical body with a conical and
various two-section nosc shapes, all with fineness ratios of approximately two. Thoese data indicate that siender
body theory predicts the total lift on bodies with nose fineness ratlos as low as two with reasonably good accuracy.
However, the distributions, as is to be expected, are not predicted correctly for bodies with sharp corners at the
juncture of the nose and afterbody. Experimental data presented in Reference A-40 for the normal force slopes
of cones with semi-vertex angles ranging from 15 to 65 degrees serve to indicate the limitations of slender-body
theory when applicd to not-so-slender bodies without slope discontinuities. The data show that the theory over-
estimates the lift on the 15-degrece cone by about 20 percent. .

Figure A-40 shows the distribution of normal loading on the example body, as determined from unpublished exper-
imental pressurce data. Also shown for comparison is the distribution predicted by slender body theory. The total
normal force agrees well with the theory; however, the theory overestimates the 1ift on the nose and does not pre-
dict the carry-over of lift onto the afterbody shown by the experimental data. ¥For ogive~cylinder (or other bodies
without sharp corners), however, the theorctical distributions of normal force can be expected to agree more
closely with experimental data,

A5.3 Transonic Flow Regime. Acrodynamic normal loading in the transonic phase of flight may be particularly
significant in a study of transfer functions of flexible boosters, even though any practical booster would probably
femain inthe transonie speed range for a relatively short time. The transonic flow regime is characterized by un-
steady flow eonditions and rapidly changing normal force distributions. Appreciable angles of attack may be
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induced by the high velocity steady winds aud gusts which can occur in the altitude range at which transonic flow
may be expected for boosters of the type under consideration.
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Figure A-40. Distribution of Normal Force Cocificient, Incompressible Flow Regime

The transonic flow regime is defined specifically as the Mach number range during which mixed flow oceurs over |
the body, 1.e., there are regions of local supersonic flow and regions of local subsonie flow, i

The inability to pradict the physical limits of the differeunt flow zones and the complexity of the flow have thus far
prevented the formulation of & practical theoretical method for predicting the lift on three-dimensional bodies.
Hence, transonic normal force coefficients for such bodies must be obtained exclusively from experimental and
empirical data.

A limited amount of transonic wind-tunne! test data pertaining to boester-like bodies at an angle of attack has been
published. Most of thesc available test dasa give only the average, or “steady-state", forces or pressures. Some
of the latest test results do include measurements of the magnitude and freguency of the fluctuating pressures (for
the primary purpose of estimating the effect of this unsteady flow on the normal force inposed on the body), but
the treatment of unsteady normal force phonomena is beyond the intonded scope of this appendix,

Experimental force test data from Refercnces A-40, -41, -42 and unpublished pressure test data from two sources
have been used to estimate the distribution of steady-state normal force coefficient on the illustrative 15-degree

cone-cylinder at three transonic Mach numbers, viz., 0.90, 1,00 and 1.10 (see Figure A-41),

There are four distinct sub-regimes of transonic flow about cone-cylinders (Reference A-43), which are, in order
of Increasing free-stream Mzach number: .

a. Subsonic free-stream (flow on cone completely subsonic, zone of locally supersonic flow on the cylinder be-
ginning at the shoulder),

b. Supersonic free-stream with detached shock wave (flow on cone completely subsonic, flow on eylinder com-
pletely supersonic),

c. Supersonic free-stream with attached "curved" shock wave (subsonic flow on cone surface, supersonic flow
over entire cylinder)

d. Supersonic free-stream with attached conical shock wave (subsonic rlow on cone surface, supersonic flow on "
entire cylinder).

In all of the above sub~regimes flow at the shoulder (cone-cylinder juncturc) is sonic.

The division between the transonic and supersonic flow regimes is the Mach number (which is slightly higher than
at condition d) when the flow on the cone first becomes supersonic.
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Figure A-41. Distribution of Normal Force Coefficient, Transonic Flow Regime

Experimental data indicate that the magnitude of the normal force coefficient on a slender cons is relatively con-
stant throughout the entire transonic regime. Generally, the distribution of normal force coefficient on the cone
is similar to the incompressible case except at the shoulder, where the local coefficient is always zero because

sonic flow exists arcund the entire circumference.

Distribution of normal force coefficient on the cylinder undergoes two distinct phases in the transonic regime,
depending on whether the free stream ic subsonic or supersonic. At subsonic free-stream Mach number (sub-
regime a above) there i8 a normal shock wave on the cylinder: flow ig subsonic on the cone, sonic at the shoulder,
supersonic on the portion of the cylinder between the shoulder and the normal shock wave, and subsonic aft of the
normal shock wave. At the location of the normal shock wave the magnitude of the local normal force coefficient
undergoes an abrupt change. The direction of change of iocal normal force cocfficient between the upstream and
downstream sides of the shock wave is always opposite in 8ign to the upsiream value. At sonic and supersonic
free-stream Mach numbers (sub-regimes b, ¢ and d above) there 18 no shock wave on the cylinder and, thercfore,
no discontinuity in the distribution of normal force on the cylinder.
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In general, there is zero or near-zero lift on the aft end of a long cylindrical afterbody in the transonic flow re~
gime, Although negative lift on certain portions of the afterbody is common at transonic {and low superazonic)

aes

speeds, the net contribution of normal force on the entire cylinder is always positiva.

There is a lack of published experimental data on the magnitude and distribution of lift on bodies other than cone-
cylinders. However, certain characteristics can be deduced from cone-oylinder knowledge. Distribution of
transonic normaul force coefficientas on configurations other than cone-cylinders could not be expected to go through
the same phases as described above. For example, a cylinder capped by a gently curved nose shape such as an
oglve probably would not have the normal shock wave and the discontinuous normal force distribution associated
with transonic flow about cone-oylinders at subsonic free-stream Mach numbers, Transonically, the total normal
force coefficient on a booster configuration with a reasonably proportioned ogive nose is undoubtedly in the same
order of magnituda as that of typlcal cone-cylinders.

A5.4 Supersonic Flow Regime. The aerodynamic normal loading on a booster vehicle is typically most severe
ia the low supersonic Mach number range. The dynamic pressure usually reaches ite maximum value in this
range and occurs within the range of altitudes where winds and gusts are at maximum intensity. The trajectory
parameter aq and, therefore, the normal loads will be maximum under such conditions, Aerodynamic loads may
also be of importance during the staging condition, which usually occurs in the high supersonic Mach namber

range.

The supersonic flow regime is defined here as the range of iree-stream Mach numbers ahove one for which the
shock wave is attached to the nose of the body (or its pointed extension, in the case of blunted noses) and the iocal
Mach number of the flow over the nose is greater than one. Of the theoretical methods available for estimating
the lift of a pointed body of revolution in supersonic flow, the method of characteristics, which is based on the
exact {low equations, provides the most accurate results, This method, however, is laborious to apply and re-
guires each case to be worked out on a numerical basis. Reference A-44 outlines the application of the method
for inclined bodies. Solutions for the flow over cones at small angles of attack have been obtained by Kopal in
Reference A-45 from the exact theory of Stone (A-46). Results of Kopal's work are alse available in numerous
references, e.g., (A-47). ’

Several useful approximate theories for the lift of bodies of rovolution at supersonic Mach numbers have been de-
veloped. Each of these theories has a limited range of appiicability, in terms of Much number, body fineness
ratio, and the similarity parametors #tan 8y, gd/ n ©or gd/¢ for which veascnably good agreement with exper-
imental data has been demonstrated.

The application of slender-body putential theory is limited to extremely slender bodies at low supersonic speeds,
for which the value of the similarity parameter, 8 tan Ov, is much less than one. Van Dyke's first order and
hybrid potential theories (A-48) represent a significant improvement over slender-body theory, and are applicable
at low and moderate supersonic speeds, for which the free stream Mach angle is greater than the body semi~
vertex angle, g tan 8, <1. Reference A-49 contains curves of normal force slopes based on first order theory,
for cone- and ogive-cylinders and normal force distributions on cone-cylinder afterbodies for a range of config-
urations and Mach numbers. A comparison is made with a large number of experimental values at normal force
slopes; and it indicates a moderately good over-all correlation between the theory and experiment.

At high supersonic Mach numbers, the expansion of the flow over a body of revolution can be treated as locally
two-dimensional. The generalized shock-expansion theory of Eggers et al;, (A-50), based on this assumption,
gives accurate rescits when the similarity parameter, 8 d/2, is greater than one. A refinement of this approach,
which permits its application to lower Mach numbers by accounting for the three-dimensional flow effects, is the
second-order shock-expansion method of Syvertson and Dennis. This theory (A-51 and -52) is shown to agree

quite well with experimental data for the norma! foree slopes and centers-of-pressure of cone- and ogive-cylinders,

for Mach numbers between 3 and 6.28, as well as for corresponding values of the similarity parameter, IJd/ln,
between 0.4 and 2.0, The theory is shown to be considerably superior to Van Dyke's first order theory in this
range. Exact solutions of the general second-order shock-expansicn method for normal foree and pitehing ma-
ment slopes of cone-cylinders, and approximate solutions for ogive-cylinders in closed form are presented in the
appondices of Reference A-51 and -52, With the aid of the equations and curves presented, the acrodynamic
characteristics of such bodies can be evaluated with little effort.

The comparisons {in the last references) of the second-order shock-expansion thevry with experimental data do

not reveal the limits of the range of applicability of the method. The upper llmit, on the basis of calculations.
made by the authora of the theory, will be exceeded if 8 tan 8, 18 appreciubly more than 2.5. in the rauge near
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2.5 the theory merges with the generalized shock-expansion method. On the basis of a limited comparison of the
theory with exporimental data for cone-cylindors in the Mach number range from about 1.5 to 2.5, it appears that
the method is uot applicable below about Machk 2. The theory does not predict the negative~-lift regions which hiave
been experimentally observed to occur on the afterbodies of cone-cylinders at low supersonic Mach numbers.

At very high Mach numbers, for which flow conditions approach hypersonic, Newtonian impact theory is applicable,
The application of this theory to the determination of the flow over inclined bodies of revolution has been developed
by Grimminger and Young (A-53).

A considerable body of exporimental data exists for the normal force characteristics of pointed bodies of revolu-
tion in supersonic flow, Only some of the more gystematic cxperimental inveatigations will be mentioned here.
Reference A-41 gives data for pointed and blunted cones tested for a wide range at Mach numbers, including the
transonic range., In Reforence A-54 data for cone cylinders, including the effects of blunting the noses, are pre-
sented for M = 1.5 to 4,04, Data for the noses alone are given in Reference A-52, As mentioned previously,
References A-51 and ~-52 give data for a series of cone~ ard ogive-cylinders tested between M = 3 and 6.28. The
effects on nermal force of adding base flares consisting of conical frustums of various angles to the cone-cylinders
with pointed noses of Reference A-54 have been experimentally determined and are presented for the same range
of Mach numbers in Refercences A-55 through A-58. A data correlation and analysis of the normal force charac-
teristics of the flares is presented in Keferconce A-59, It may be noted that all of the foregoing experimental in-
vestigations measured only the overall force and moment characteristics of the bodies tested. However, in these
tesis various afterbody lengths were included; thus, distributions of normal force on the afterbody can be deter-
mined from the data.

The supersonic/hypersenic similarity rule provides a means of correlating experimental data for the aerodynamic
characteristics of affinoly related bodies of revolution. The supersonic/hypersonic similarity rule states that for
bodies of revolution with identical thickness distribution the curve of l@é&l}a‘%l vs, B%‘..is the same for each value

of parameter $d/f , throughout the entire supersonic and hypersonic Mach number range. By use of this rule ex-
perimental data obtained for a particular class of bodies, for which the gimilarity parameters are systematically
varied, can be correlated to provide estimates, within engineering accuracy, of the asrodynamic characteristics
of such bodies for a wide range of conligurations and Mach numbers, Such a correlation, based on the experimen-
tal data of Relerence A-60 and -61 has been made for the normal force, pitching moment, and normal force dis-
tributions of cone~cylinders, and is presented in References A-62. The correlation curves are applicable to con-
figurations with nose finencss ratios > 2 for Mach numbers above 1.5.

Figure A-42 presents estimated distribution of aecrodynamic normal force on the example body at Mach numbers
of 2 and 6. These Mach numbers were choscn a8 boing representative of typical maximum load and staging condi-~
tions, respectively. The afterbody distribution at Mach 2 was determined from the correlation charts of Refer-
ence A-62. The distribution at Mach 6 was determined by the second-order shock-expansion method, using the
equations and curves in the appendix of Reforonce A-52. The distributions on the conical nose are related to the
tetal normal force, (Cy/wv),, on the nose, as given in References A-47, -52, or -62 by the eguation:

acy/e s(c_\, IR S
dx/d) a/n \ d tan- 8,

1 -850
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Bl INTRODUCTION

The main body of this report presents the equations of motion and approximate transfer functions giving the
response of a flexible booster to various inputs. To complete the picture for closed-loop control analysis, this
Appendix presents a survey of equations used to represent the various subsystems and components employed in
autopilots. A cursory discussion iz given of the most important characteristics of several classes of gubsys-
tems. The intent is not to provide a complete derivation of equations of motion but rather to describe the
characteristics which would affect the analysie of the autopilot-flexisle booster transfer functions.

The subsystems to be discussed are divided into fonr general categories: Sensors, Control Force Generators,
Positioning Servos, and Autopilot elements. The general characteristics of each are given to furnish a guide to
the data needed to analyze the effect of the individual components on the overall transfer functions. TJ obtain
this data it 1s usually necessary to resort to detailed analysis, test data, and manufacturer's literature.

B2 SENSORS

A reference input is required for the autopilot and control system. The information furnished by this reference
may consist of body angular position, angular rate, and/or acceleration. The reference input may be with
respect to an inertial reference or other external references such as angle of attack or local-vertical. The
sensors may either be "strapped down" (rigidly attached to the airframe) or mounted on an inertial platform.

Appendix B2 is physically divided into sections dealing with gyros, accelerometers, angle-of-attack meters, and
stable platforms. The class of external references which inciudes horizon scanners, sun seckers, and star
trackers is not discussed. In boosters thesc references, if employed at all, are more for guidance than for con-
trol; therefore, their output signals can be filtered to exclude signals in the frequency range of the flexible
booster and control system modes.

B2.1 Gyroscopic. The gyroscope consists of a wheel which is spun at a high angular veloeity. The most useful
characteristic of a gyroscope is its property of maintaining its axis in a fixed direction in inertial space unless
acted upon by an external torgue.

This characteristic of a gyroscope can be expressed as an angular counterpart of Newton's first law of motion:
A body in rotation will continue to rotate about a fixed axis with constant angular speed unless acted upon by an
external moment,

The physical concept of a gvroscope can be visualized by imagining a spinning disk supporied 80 as to be free
to move in any direction. This disk will remain fixed in space unless a force acts upon it. When one pushes on
the disk with a force, F, s0 as to cause its spin axis to move to the right the axis will actually "'preceas",

i.e., move up or down, depending on which direction the disk is spinning.

This phenomenon can be described mathematically, Consider a momentum vector, H, which points along the
axis of spin in accordance with right hand rules; its length is proportional t> the magnitude of the angular

momentum.

H = I (MOMENT OF INERTIA) ?Z—(ANGULAR SPIN VELOCITY)

Figure B-1. Gyroscopic Precession
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The rate of change of momentuis is equa! to the appiied moment:

di

M= T inertial,

The vata of change of angular momentum can be expressed in terms of body axis coordinates as:

af dH - -
(ET)mmm = (Et') body * “hody T ’

i~

For a rigid gyroscope, (dll,’dt}l W 0 and the preceding reduces ic:
M=wxH .
The preceding can also be written in the common form for the magnitudes as:

M= I(spm axis)g(spm axis)” (precession).

The spinning wheel can be used in several ways. The simplest way would be tc mount it on & suitable set of
gimbals and use it as a directional reference (Figure B-2). Used thusly it Is referred to as a free gyro. The
use of a free gyro, or two-degree-of-frecdom gyro, requires that the spinning rotor be mounted in a set of
gimbals. The attendant friction and balancing problems usually contribute to drift, thereby limiting the use

of this type of gyro to applications where low drifi rates and high accuracies are not required. Two symbolic
gimbal configurations of this type are shown in Figure B-2. The first configuration is that of a strict free
gyro which will provide a two-axes inertial reference. As there are no restraining gimbals in the configuration,
the spinning gyro wheel remains fixed in space, and the angle between the wheel gimbal and the frame is the
inertial angle. The second configuration illustrated hus an added refinement: command orientation capability.
This orientation command may be added if the gyro is to be used in a strapped down guidance and control sys-
tem. When orientation commands are used along with viscous friction about the gimbal the gyro becomes a
rate integrating gyro.

B2.1.1 Rate Integrating Gyros. The rate integrating gyro is so named because the resultant effect of a dis~
turbance is to produce a rotation of the gimbal system about the output axis that is pruporiional to ihe integral
of the input axis rate. This gyro may have either one or two degrees of freedom, although one degree is the
most common. A typical configuration, along with a system block diagram for a gingle-degree-of-freedom
rate integrating gyro iz given in Figure B-3.

The block diagram indicates output signals from two sources: 1)‘command torques and 2) input axis rates.
The equation of motion is:

JSZO + Fg® =Hw +K_ E .
[} o i T

Then the respective transfer functions are:
(Command Torques)

Eo 1 KTKP
. — and
F 8 Js+F

(Input Axis Rates)

E HK

N
W, Js+ F

w1

1

t3
}
Ha
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OUTER GIMBAL
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INNER GIMBAL
SIGNAL GENERATOR

OUTER GIMBAL

b. TWO-DEGREE OF FREEDOM GYRO

Figure B-2. Schematic Gyro Configurations

where

April 1964

*It may be shown that this unit also responds to angular velocitics of the case about the output axis gw ):
o

Eo/wo = KP/(s + F/J), where Eo = Kp(e - wo/s). Since J/F is very small {on the order of 0,005 sec), this

coupling term is usually neglected. In addition to the output axis pickup expressed in the preceding equation, the

gyro will also sense motion about other than the intended input axis if it is precessed away from its null posi-

tion (a second order effect).
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REFERENCE
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= VISCOUS FRICTION
H = ANGULAR MOMENTUM
J = GIMBAL INERTIA
%{p - PICKOFF SENSITIVITY
K, = COMMAND TORQUER GAIN

0 - SYSTEM OUTPUT AXIS ANGLE

w = INPUT AXIS RATE

Figure B~3. Rate Integrating Gyro

The time consiant J/F of the fivst crder lag term is made swmall by design (order of 0.005 seconds), and hence

this factor is usually omijtted.

B2.1.2 Rate Gyros. In addition to inertial angular position data it is sometimes desirable to measure the

angular rates of the vehicle. TFor this purpose a rate gyro is uscd.

In a rate gyro the torque necessary to rctate

the momentum vector is restrained by a counter torque. This counter torque can come from either a spring or

an electrical torque generator. For the case of the gpring restraint a block diagram representing the equations

of motion and a typical configuration is shown in Figure B-4,
The equation of motion for the rate gyro on Figure B-4 is:

2
g { + = 5
J8"6, + (Fs + K Jo_ = Hu,
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Figure B-4. Rate Gyro

The transfer function then becomes:

I
Wi KO
8 +—8t-—
J J
where
Lo = KPOO
The static gain (volts output per unit rate input} is:
K. H
Ko
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and the natural trequency is:

The major factor in the selection of a rate gyro is the relationship between static gain and natural frequency. As
the natural frequency is increased the static gain is lowered, and null voltage levels increase. Gyros with a wide
range of characteristics are commercially available with {requencies of from 6 to 50 cps and damping ratios of
from 0.3 to 2.5 critical damping.

1t is also posstble to obtain rate information from a rate integrating gyro. This is accompliched hy placing a
nulling amplifier around the rate integrating gyro. The output of the gyro then becomes proporiiunal to angular
rate. As an example, consider the rate integrating gyro of ¥igure B-3. The transfer function of u.'s gyro is:

“p
SR S -
Lo_s F \HwifKTLl,.
8'3

Let the feedback or nulling voltage be:
l:.i = K Eo;
then

K, /J

1 °p )
Eo "8 B+F/I L @ KTKFE‘o)'

This reduces to:

=

K
P

lo

€
IR

TKFKP
J

i 82 t(F/J) 81

which is the input-rate-to-output-signal transfer function.

It can be seen that the clectric torque restoring force (KTKFKP) is cquivalent to the spring K9 in the preceding
equation for a spring-restored rate gyro.

The static gain then becomes:

and the natural [requency is:

The damping of this second order system ig dependent upon the feedback gain (and hence frequency) chosen.

B2.2 Accelerometers. The accelerometer provides information as to the inertial motion of a body. Accelero-
meters can be classified into two major categories: 1) spring-restrained and 2) force-rebalanced. These
accelerometers may detect either linear or angular motions, or any combination thereof. Additional uses of
acceleration devices such as velocity sensing are also made: this can be done hy external integration of the output
signal.

B-8




WADD TR-61-93
April 1961

The accelerometers illustrated in this section are fitted with a displacement iransducer (shown as a potentiom-
eter) and a spring or elsctro-magnetic rostoring force. Accelerometers manufactured today contain many
unique arrangements of mass, restoring element, and output transducer. The combinations are too numerous
to describe in detail. A description of the operation of these devices will indicate the nature of the restoring
element and traneducer; from these the transfer function of the device may be determined. The three simple
accelerometers analyzed in the following pages are all equipped with displacement transducers. Some classes
of accelerometer-type instruments are equipped with volocity-sensitive output transducers. These transducers
change the output characteristics of the device such that the output is proportional to "jerk” (rate of change of
acceleration).

The first accelerometer configuration is that of a spring-~rostrained linear accelerometer, shown schematically
in Figuvre B-5.

/‘ OUTPUT TRANSDUCER

—>. B2 K Y

REFERENCE

Figure B-5. Line Schematic of Spring Rebalanced Accelerometer
The equation of motion is:

-MX + CY+KY=o.

After the following substitutions are made:

- 2 2
*The use of X for d x/dt™ (acceleration) was admiited in an operational equation to clarily the relationshin
bhetween the input and output variables,

B-9
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The static gain (voltage output for a unit steady state acceleration) is:

E, Mg
¥ss K
The undamped natural frequency is:
o
K
W = gf
Vi

The accelerometer can aiso be adupted to record linear and/or angular acceleration in all combinations. Con-

sider the accelerometer shown schematically in Figure B-6. The equation of motion for the configuration can
be determined by equating the inertial 1moments and the moments due to therestraints Fg and Ko , the gimbal

spring and damper:
T Mo, ~M 1 K-ML6-M1IP6-M 2 ¥
o 22 22 11 11

oM. =F, (6-0)+K _(©-0),
om O P ¥ Ky i

wherc the quantities F() and K() have the units of a torsional damper and spring.

Yy
%

CV

REFERENCE

Ml & M2 = BEISMIC MASSES
(1 & 12 = LEVER ARM OF SEISMIC MASSES

6 = INERTIAL ROTATION OF ARM
0‘ = INPUT ROTATION OF ARM

X- LONGITUDINAL MOTION
Kﬂ < TORSIONAL SPRING CONSTANT

FG = TORSIONAL DAMPER CONSTANT

Spring itebalanced Accelerometer Sensitive to Both Longitudinal
and Rotational Accelerations

Figure B-6.

B-~10
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By equating the inertial and base moments, the following transfer function can be obtained:

.. (Fos + K)o, + (Myt, - M 2 )%
2 22 7
(M2!2+M121)s tFgs v Ky

To determine the transfer function for the output voltage let

Eo - (gi -0

Then the follewing transfer function can Lo written:

2 .. . N
o e oMo )X
:(Mlll * M, 2) 6“1 1~ My 2)
o 2 2\ 2 ’
(lez ' szl)s T stk

E

If the accelerometer is then placed a distance L from the conter of gravity such that:

X X100,
a H

then onc can write:

2 2 .
(Mlll-t Mzﬂz)s + l-Os + K

From the preceding it can be demonstrated that by varying the various parameters (Ml' Mz, f£.,2,_and L)

the accelerometer can be made to sense cither pure (3, pure X or any combination of X and 6 i

i
B2.2.1 Force-Rebalanee Accelerometer. The seismic mass of Figures B-5 and B-6 can be restrained by an
external torce (usuaily magnetic) in place of the spring resloring force. Such a configuration would be called a
foree-recbalance accelerometer. A schematic representation of g force-rebalance accelerometer is presented
in Figure B-7.

E K.Y
o P E_ = FILTER OGTPUT
\ E_ = OUTPUT SIGNAL
* . FORCE DUE . SIGN
K, X, ¥ . = FORCE DUE TO ERROR SIGNAL
bre——P—! K - AMPLIFIER GAIN
UL MO 1y A
X K .= FILTER TRANSFER FUNCTION
FORCE ¥
TRANSDUCER Kp = PICKOFF GAIN
!
| 7 K,. - FORCE TRANSDUCER GAIN
Frp ' A . K X - LONGITUDINAL MOTION OF CASE
L 0
AMp/K K X; = LONGITUDINAL MOTION OF WEIGHT
A F

Y = RELATIVE MOTION OF WEIGHT AND CASE
Figure B-7. Line Schematic of a Force Rebalanced Accelerometer
The equation of motion for the seismic mass can e writicn as follows:

X+ F 9
MX Py

3
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where:

‘ I"‘K PY H

kr~ Kr¥a
also
X =X+V

The term ‘FK‘T is the force used to rostrain the seismic mass of the force-rebalance accelerometer. The
transfer function for the accelerometer then becomes:

Eo _KP
L. P (B-1)
X 2 K‘ K A‘KFKP
8 ¥
M

As the preceding transfer function is not damped. the filter characteristics muat be altered to provide damping.
The filter transfer function, KF" should be that of a lead network, to provide damping.

A simple icad-lag circuit is representative of the type of compensation that could be used to damp the accelerom~
eter:

Ea 1+ ‘r“s
E l+18’ (B-2)
0 b

Substituting Equation B-2 into Equation B-1 gives the following transfer function:

X 4 ¥ K K_
o Kk aXpTy ™™a%p )

gt
1+7. 8 T
M(1 bs) M{1 + bs)
This is eyuivalent to & pair of complex coniugate roots multipli--d by a lag-lead dipole. For T‘b< T one has:
a

-~ - +
El K p 1+7 bs
X

2 1+s/p

82 t2twas rw
n n

where P is a real root of the denominator. The values of natural frequency and damping are adjusted by choice

of Ta/ le and the rchalance ioop static gain, KPKT‘K A The static gain of the force rebalance accelerometer is:

L] M

X xk_°

B2.3 Inertial Platform Transfer Functions. Ir an mertially gulded vehicle the dynamic response of an inertial
platform can affect the stability of the vehicle short-period modes in several ways. There are two feedback
loops in which the dynamic reeponse of the platform: may appear. First, it always appears in the guidance
loop. Second, if the platform, through gimbal angle pickoffs or a resolver chain, is used as the position
reference, the platform dynamics will also appear in the pogition loop.

The actual platiorm response is highly nonlinear, even in a "linear" analog rebalanced accclerometer-analog-
torqued-gyro plaliorm, because of static friction. The effect of static friction is essentially a reduction in
loop gain and an increase in phase lag. The effects are more pronounced at low signal levels, where the plat-
form is usuvally operating. However, the platform is nwsually considered to be a "stiff" system and, for fre-
quencies below 10 cpa or 2o, can be linearized without much error,

B-12
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There are several methods of prasenting frequency response information (Bode Plot, Nichole Chart, etc.).
Platform manufacturers have adopted these difforent technigues, as may be seen in Figures BE-8,B-9 and B-10.

=——

AN

o
y

/

\
\
\

1 ' 2 5 8 10 20 50 80 100
FREQUENCY (cps)

CURVE A J,P,L., SQUARE WAVE RESPONSE (MANUFACTURER'S DATA)
CURVE B APPROX, SQUARE WAVE RESPONSE X
CURVE C APPROX, SINE WAVE RESPONSE ) COMFUTER MODEL

Figure B-8. Frequency Response (Bode Plot) Vega Platform

Figure B-8 presents a Bode Plot of ihe proposed Vega space booster inertial platform's closed-loop response.
Curve A is the actual data a8 received froim the manufacturer, It shows !"Square Wave Response versus
Square Wave (Input) Freguency'.

Figure B-9 presents the closed-loop transiuissibiiity of the Arma-Atlag platform. The transmissibility is
the angular displacement of the platform in inertial space per angular displacement of the missile in inertial
space, versus frequency of the missile angular displacement,

Figure B-19 presents an open-loop Nichol's chart for the Centaur space booster inertial plaiform's leveling
“iGtp%s provided by the®inanufacturer, Minneapolis-Hoaneywell,

Since this frequency response information is usually available and the actual tranefer function is not, an

approximation must be developed, Using the Vega platform (Figure B-8) as an example, one method of ap-
proximation wili be described.

B-13
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Curve A of Figure B-8, as mentioned previcusly, is the actual data as received from the manufacturer, From
experience it was felt tha: a transfer function of the form:

eout (T, 8+ 1)
eln 3
8 2t
(1"18"‘]) '-—:2 + o g8+1
¢ n

would be a good compromise between complexity and accuracy of curve fit, Next, this transfer function was
programmed for the analog computer, and the values of 7 1’ 1'2 vy and £ were adjusted unti] a square wave

response similar to that required was obtained {curve B of Figure B-8 shows this approximate square-wave
response). The sine-wave response of the approximate transfor function was obtained (see curve C of
Figure B-8) for comparison purposes.

Once the approximate platform transfer function is obtained, the method of insertion into the feedback loops
must be ascertained. Agaln using the Vega vehicle system as an example (because it uses gimbal angle pick-
oifs for position reference), the pitch and yaw channel block diagrams of Figure B-11 and B~12 were developed,
Figure B-13 shows the coordinate system used in these diagrams, Normally, the bending mode is not included
in the position loop, but for the Voga configuration the slope of the first bending mode at the platform position
was about ten times the slope at the rate gyro location, and an appreciable first-bending mode component was
expected. This should be kept in mind for all vehicles where the position and rate sensors are at different
locations, particularly when the position sensors are located in one of the upper stages of a multi-staged
vehicle,

+ . .
9% % IacTuaTor | L8 NN rarEn s
K ol 1 M 1 1
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Figure B-11. Pitch Channel
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Figure B-12. Yaw Channel

Figure B-13. Coordinate System
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B2.4 Dynamics of Angle of Attack Sensors. There are many possible approaches to the problem of measuring
angle of attack. Since the list of pasaible techniques (with variations) is guite'long, no attempt will be made
here to provide a complete set of descriptions. A good description and primary evaluation of most of the ideas
for angle-of-attack measurement is available in Reterence B-1. Only a few of the basic approaches have been
tried with any success. We will attempt to classify these atrictly on the basis of dynamic characteristics, and
point out such factors as relative accuracy, reliability, bulk, and complexity.

First, a broad distinction is indicated between systems which sense angle of attack more or less directly and
the proves2 of deriving angle of attack by computer mechanization of lift, The laller approach passes essential
information through the dynamics of pressure sensors, accelsromoters, and a computing process and would be
troublesoms if good dynamic reaponse is an important consideration. Hence, this treatment of dynamic char-
acteristics will confine itself to methods which are based on direct senging.

The direct zorsing methods can be classified in two general categories - - according to whether or not the
sensor is moveable,

With stationary sensors, angle of attack {s computed from the pressure sensed by two or more appropriately
positioned orifices. The moveable sensor is usually desighed to point Into the relative wind; angle of attack is
dertved from its position relative to the airframe, A little used alternate is to measure the aerodynamic
forces on a moveable (but restrained) device. This type will not be considered here, since corrections for
Mach number, dynamic pressure (q), and side slip angle are tedious and therc is no indication in the literature
that such a device has been developed and successfully used.

The moveable sensor class can be subdivided into simple westher-vane types and powered null-gseeking devices.
The two are alike in that angle of attack is read from the position of the sensor. The null-geeking device has a
pair of orifices located symmeotrically about the reference axis. The sensor is driven by a servo so that
pressuves on the two orifices are equai.

B2.4.1 Stationary Angle-of-Atlack Sensors. If a probe is provided with orifices as indicated in Figure B-14,
then one may write:

P.-P

U L
ax K o0 [ME(E)
Pr - Py

where:
g is side slip or the component of relative wind in a plane perpendicular to the plane of o
measurement.
M is free stream Mach number,
K is an appropriate constant

and PT- PS is the measure ot dynamic preesure, .
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The arrangement of Figure B-14b climinates the need for Mach number and 8 correctlon at the expense of
sensgitivity:

>
NIO

These cquations are developed in Reference B-1.

The important results, where dynamic characieristics wre concerned, is that although the need for Mach number
and A corrections may be climinated, theve remains a requirement for manipulation of ratios of differential
pressures.

P~
pL

With the probe of Figure B-14a, first order dynamie requirements apply only to the measurement of

Dynamic pressure, g, and Mach number vary slowly compared to the short period variation of . The function
of B, included in the expression for g, does have short period dynamic characleristics, however. It can be
mechanized as a change in gain of the « sensor. This requires the dynamics of a servo in g corrections. The
permissible lag will depend upon how mueih dynamic eross-talk can be allowed.

The transfer function which operates directly on o will depend upon the mechaniam of pressure-ratio sensing and
the pnecumatic characteristics of the probe, lines, and transducer volume.

The most direct appro ~ratio sensing s to drive pesition transducers directly from bellows
volume. This is the casicst way to gct good dynamic response.  Extreme accuracy cannot be atiained with
reasonable instrument voluine bectuse the measured pressive ratio must be high eacugh to overcome friction in
the system. The performance of currently available sensorvs indicates that acceuracies o £0, 2 degree (from the
pressurc gengor only) can he readily obtained, No directly applicable dynamic data are available. The devices
of simitiai construction desigred for Mach number measurement indicate that & response equivalent to a first
order time lag can be expected,  Time constints on the ovder of 0. 01 {o 0, 02 sceond Should be attainable at

moderate to high dynamic pressures.  Both response and accuracy deteriorate at low values of .

+0, 2 degree would probably require the use of a servo-driven

Accuracies in sensing o to considerably better thay
pressure ratio sensor.  Scrvo-loop dynimics are sensitive to change in ¢, but are essentially second order.

ie line lag can be closely approximated with a lirst order time constant:

‘The transfer function for

T

¢




A\
123t l’v .t

where T, .
9
£ pr D4 L 2}

B = viscosity of air,
P = average pressure in system,
V. = 7¢D : volume ol sensing line, and

V = transducer voiume,

From this example it is appavent that response is strongly affected by the length of pressuve leads and the

transducer volume as well as ihe total pressure,

WADD TR-61-93
April 1961 ;

In addition to this lag there is a transportation time delay which only becomes signilicant with long pneumatic
lines between the sensor and transducer, This delay is simply the time requirved to propagate sound in air

along the length of the tube,
In summary, for the stationary angle~of-attack sensor, one has a transfer function:

ay - K
o (r @D (s D) )

for direct-drive bellows transducers, or:

T - Z 1
« {1y (P 8 +1) [_711\ 8% ( VK.Y o811

when a servo-driven pressure ratio sensor is used, Iere:

K arbitary

a line transport time deiay (usuaiiy not significany
Tl (PT) - pneumatic line lag (a function of toiz! pressurce)
T, = time constant of bellows-transducer

Tm - 8ervo motor-time constant

‘(s @ servo gain, a function of g

K{3 servo rate feedback gain (if used).

B2.4.2 Moveable Sensors, The acrodynamic-vane ype sensor is an attractive solution {o the angle-of-attick
measurement problem beeause of its simplicity, reliability, and treedom (rom the necessity for computed cor-
rections, It has one serious drawback of requiring i moveable part usually fragile) protruding from the air-
frame, The moveable vane is subject to damage and deformation in handling which could cause errors or com-
plete malfunction. In applications where this characteristic can be tolerated and where extreme accuracy,
espeeially at ow Mach number is not vequired, the moveable vane is probably the simplest and most inexpensive

solation,

-
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Figure B-14, Stationary Angle-of-Attack Sensors

A straight-forward NASA design of this type of sensor, presenied in Reference B-2, will be used in an example
to present typical dynamies, It is sketched in Figure B-15,

This particular vane is extremely light-weight; hence it has a very high response and is heavily damped. The
ratioc C fi},—/C E:p is estimated to he about 0, 08: this ig probably conservative. Inertia is only 1074 lb—in—secz,

and Cld) is estimated at 2,9/radian, Substitution into the transfer function gives:

o B .8 8 + 1)
o 7 01871 (0.0001 5+ 1)

Reference B-2 shows accuracies of £1/4 degree or less at supersonic velocities. Subsonic operation brings
upwash errora which can be as high as one degree at a five-degree angle of attack (on a nose probe mount ahead
of a lifting surface). The latter is a position error and could be compensated for as a function of Mach number,
It is apparent from this example that if static errors in the above range can be tolerated, the vane type sensor
provides excellent dynamic response.

When greater accuracy is required the null-secking, servo-driven moveable sensor may be required. Accuracies
with less than +0, 1 degree error are claimed for models currently in use,
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Since provisions for moving tlie sensor require servo motor location near the vane, pneumatic line lags will
probably not be significant, The range of the differential pressure sensor nced not be large; hence, it can have
good dynamic response. The dynamic characteristics of this type of sensor would then be dominated by the
characteristics of the serve which drives the null-sceking head. Typleally:

T

1 2 1 )
—_—p5" k= Ty 8+ 1
Kg (Ks ¥/

0
- o -

where

Ks(q) = total loop gain

T = rate feedback time constant (if usod)
T1 = servo motor time constant.

Ks varies proportionally with dynamic pressure. Unless some automatic gain scheduling is provided within the

servo loop, the servo must be designed with adequate response set by the lowest dynamic pressure to be en-
countered, and stabllity determined by the highest.

The transfor function varies frem heavily damped, essentially first order response at low ¢ values to highly
damped, second order at high ¢ values,

B3 CONTROL ELEMENTS

‘This scetion containg a phenomenological discussion of several of the various active configurations that can be
used to provide forces for stability and control of buoster vehicles, The several properties to be considered
will be given a general treatment to familiarize the reader with certain properties of these devices.

These prime-mover devices are grouped into two general calegories: acrodynamic and reaction jet {thrust)
control,

B3.1 Aerodynamic Control, The acrodynamic forces used for control can be ohtained either by configuration

(stable aerodynamic bocsier) or by an active control systom (moveable aerodynamic surfaces). The moveablc

aerodynamic surfaces are the only ones to be considered herein, These surfaces may be further subdivided as
o the amount of surface that is moveable, the method of actuation, the position on the vehicle, ete,

The methods to be used for synthesis and analysis of the flexible booster and control system are not affected to
any greai degree by these differences in the control elements. The major differences occur in the relative im-
portance of the control force, actuation force due to position, and inertial forces. This relative importance may
affect the degree of approximation that can be used. ‘The majority of the approximations discussed in Section 4
are based on the premisc that the inertial force of the control device (a rocket engine in this case) will be iarge
and the actuation position force nil. For moveable acrodynamic surfaces this situation may be reversed, When
this occurs it may be reasonable to approximate the forces produced by the acrodynamic surface by a first-order
lag for more complex analyses than would be possible for the gimbaled engine. The force produced by any given
enrface configuration will be 2 function of the flight variables, which are dynaiuic pressure, Mach number, and
angle of atiack of the surface, This force is derived for several valucs of angle of attack at various dynamic
pressures and Mach numbers. A curve of force versus surface angle can be plotted for various flight times

(sce Figure B-16).

‘The force versus surface angle is approximately lincar in the region zround zere angle of attack. ~ The common
technique is to linearize this curve, on ihe basis of the largest anticipated angle of attack, and then use this
linear constant for stability analyscs. If this is not possible (duc to the naturc of the curve), then a describing
function analyses will be required {(Reference B-3).
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Figure B-16, Typical Plol of Force Versus Control Defleciion

83.2 Thrust Vectoring Schemes. The majority of the present booster vehicles use thrust vectoring for control,
Thrust vectoring is used beeause it allows control during flight conditions when acrodynamic control is not
possible — such as immediately ufter launch and later when the vehicle leaves the sensible atmosphere, As
ihrust vector forces are more constant than the aevodynamic forees, the synthesis and analysis of the control
system will be easier, too. This property may also allow a constant-gain aulopilot and control system to be
used. The thrust vectoring can be accomplished in several ways, such as gimbaled engines, moveable nozzles,
stream deflection, and on-off control,

B3,2.1 Gimbzaled Engines. The girabaled engine is the method which is used currently for large, liquid fueled
boost vehicles. Gimbaled engines were presumed in deriving the equations presented in the body of this report
(see Section 4). The primary control force for this scheme of control e ele in conception: thrust times the
sine of the gimbal angle. The control moment 1s this force times the lever arm between the gimbal point and
the vehicle center of gravity, Certain secondary forces* {gimbal-friction, jet~-damping, hose-restraint, thrust-
offset, and inertial forces) will have to be considered in the analysis of the control system. The equations of
motinn are not discussed at this point, as they are covered in detail elsewhere in the report (Subsection 4.3, 3
and Appendix B4-2),

B3.2.2 Moveable Nozzles. The maior usc of the moveable nozzle, as opposed to a moveable (gimbaled) engine,
is in the control of solid propellant rocket motors, The thrusi-vector deflection is obtained by allowing the
nozzle to move through an angle with respect to the rocket motor case (Figure B-17;,

* Thege forces are referred to herein as secondary because they are not the forees desived for control, This
dues not imply necessarily that they are smaller in magnitude than the primary forces,
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ROCKET MOTOR

CASE

Figure B-17, Solid Propellant Rocket Mctor With Movable Nozzle

For the solid propellanti rocket with moveable nozzle, the foreas are similar to those for the gin:baled engine.
The relative lmportance of the scveral terms (particularly in the sccondary forces) will change, and these
changes are reflected in the servo-motor load, The actuator moment necessary to deflect the exhaust stream
then becomes significant. This moment is the result of an internal aerodynamic torgue and ig a function of mv
{the mass flow and velocity), It is proportionai to the sine of the thrust deflection angle. The magnitude of the
moment coefficient is dependent upon the geometry and cannot be expressed by a simple general formula, The
configuration changes will tend to decrease the inertial forces (duc to less mass being gimbaled), while in-
creasing the friction and elastic forces, which must be overcome to move the nozzle. The resulting actuator
systam is generally satisfactorily apprdximated by a first order system, even for relatively high frequency
mode studies.

The terms "moveable” for nozzles and f'gimbaled” for engines are used because the solid propellant nozzles are
moved in ore plane only, while liquid engines are gimbaled in both the piich and yaw planes. Although this
situation still occurs in practice, there apparently are no insurmountable problems regarding deflection of the
solid propellant nozzle in both the pitch and yaw pianes,

B3.2.3 Pivoted Nozzles. Pivoted nozzles, as opposed to moveable nozzles, will be used herein to denote con-
figurations in which the entire motor case is rotated to produce thrust deflection forces (see Figure B-18 for a
typical configuration).

The forces for the pivoted nozzle are identical to those for the gimbaled engine¥, The inertial forces are larger
than those for the moveable nozzle; this may require the use of a third or higher order actuator servo simulation
for the higher mode analyses.

The pivoted nozzle installation offers some unique advantages in combining control capability, along with a per-
formance increment which may be shown to be positive (a gain) for many installations.

B3.2.4 Stream Deflection Schemes. The stream deflection schemes consitered horein are those where the
nozzle is not deflected but the exhaust stream is deflected by some other phenomena to produce a lateral force.
The stream deflection can be accomplished by various types of apparatus. These devices can be separated into
two general categories: mechanical means and fluid control,

The mechanical apparatus used for stream deflection include such devices as jet vanes, jetevators, full eyelids,
single eyelids, spoiler tabs, and split extension nozzles, In additivn o the devices for a regular nozzle, a
pivoting cowl and laterally displaced spike are used for thrust-vector control of isentropic spike nozzles. A
definition of thc above mentioned apparatus along with curves of steady state performance are given by

P. A. Hunter (Reference B-4), The general result obtained by use of such devices will be similar to thai
indicated in Figure B-19,

* The possible exception is the absense of hose restraint torques for the pivoted nozzle. This is not felt to be
significant as the hose restraint torques are usually dropped for gimbaled cngines.

B-z4
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Figure B-18. Pivoted Nozzles Used for Control

Figure B-19 compares two methods of obtaining a lateral force; viz., eagine rotation and stream deflection,

The base of comparison (the detted line of Figure B-19) is produced by an engine rotation. This base is compared
to forces produced by stream deflection. The comparison is for two engines with initial thrust, FR .

In both

=F_ cosd .

cases a lateral force, I"‘Y orF_ , is produced. For the engine rotation, FY = FR sind and FX R

F_ would result in an F! such that ¥ < F_. Restating

For the stream deflection device an identity, F‘; - Fy X X %

the preceding in words: The stream deflection will always be less efficient for producing lateral forces than an

* engine rotation,

\
\

Ab f\\
- : \
F/ \
Y|y \
= b
/\6 § "
<. ] ¥
FI F R
X X

Figure B-19. Typical Vector Diagram of Reaction Control Forces
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The stream defllection will be accomplished usually by a light-weight system, compared to the weight of the
engine. Therofore, inertial forces will be minor, Thus, the first order approximation:

1

FY o Ts v 1 1;‘Y command

may be used for most analyses,

‘The fluid stream can be deflected by injucling a secondary stream of fluid into the exhaust, see Figure B-20
{References B-4 and B-5). This secondary stream has the cffect of creating a shock wave which, in turn,
causes an effective deflection of the thrust vector, similar to that obtained by gimbaling the engine. Alihough

there are no inertial forces comeeted with this scheme, the response will be limited by fluid transport lags and
valve vesponse characteristics,

SECONDARY INJECTION
OBLIQUE SHOCK WAVE
/‘ {COMPRESSION WAVE)

3 ’/
)‘Hﬁ\fxmnmon WAVE
p— W
K P
— ,,z:»{\\i‘

I{ESULTANT T rﬂ\*
“RUST *
>

T

4 STREAMLINES

Figurc B-20. Oblique Shock Deflection by Chamber Gas Injection Principle

B2.2.5 Variable Thrust Control, An cifective thrust deflection can be produced by throttling one or more of
the engines in a multiple-engine system. The basic method of control moment is illustrated in Figure B-21.

Figure B-21, Schematic for Control by Varying Rocket Engine Thrust

B oan
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The moment produced about the center of gravity is:

IM=T 1 - T, 8,

where T1 - thrust of number 1 engine
» £ 1 moment arm of number 1 engine thrust vector aboui the missile center of gravity, Fora
command change in thrust, At, such that '1‘l = 'l‘ln + At and ’1‘2 T2n ~ At, one obfains:

Mo T, # Ty, )t AL (L ) At e, + ).

1 2n 2 2

w

Escher (Reference B-6) presents a scheme for the use of a liquid-propellant rocket engine employing several
fixed, diffcrentially throttled thrust-chambers for effecting space vehicle three-axis control.

Although schemes involving throttling of rocket engines hiave not been used, they do ¢constitute an acceptable
method if the lags involved in vbtaining the commanded moment can be reduced to a reasonable value.

B3.2.6 On=-Off Control, The last method of control to be discussed is that obtained by using auxiliary on-off
rocket engincs. This usually consists of several fixed chambers firing transverse to the vehicie, singly or in
combinations lo produce the desired control couples (sec Figure B-22), These chambers are controlled by a
logic system which usually involves a dead-zone in position and rate, A simulation of the engine thrust char-
acteristics is usually required for autopilot and control system analysis because of the large nonlinearities
present.  Figure B-23 gives a typical response of a small vn-off rocket engine, The initial delay on hoth rise
and decay is causcd, to a great exient, by circuilry, valve characteristics, and fluid transportation lags, This
lag will vary from two to 100 milliseconds, depending on the engine and control system configuration, The rise
time is a function of the propellant and will vary from 30 or more miiliseconds for & hydrogen peroxide engine
to approximately onc millisecond for some hypergolic bipropellant chambers. Because of the strong nonlinear
characteristics a limit cycle osciliation will exist, the amplitude and frequency of which must be set by system
parameter adjustnents.

Auxiliary rockets of this type range in size (thrust levels) from 0,01 pound to about 1,000 pounds, The lower
thrust level rockets use cold gas as their working flmd and are not likely to be applied in the control of large
boosters; their application is in the realm ol space vehicle and satellite control, The larger thrust level rockets
use chemical propellants (mono- or bipropellant) to generate hot working gases, These larger rockcts may
prove feagible for control of some classes of booster vehicles,

B4 POSITIONING SERVO

B4.1 Electrical Actuaiors. Two approaches lo electrical control actuation are commonly available: some form
of direct-coupled electrical servo, or a clutch-uctuated servo, With both iypes the more attractive gystems
{from a cost and weight standpeint, especially for smaller missiles) are highly nonlinear. Typical transfer
functions for the lincar (or continuous) direct coupled servos arc presented, after which the simulation of dis-
continuous direct coupled types is discussed, Finally, basic characteristies of the extremely nonlinear clutch
syslems are discussed.

B4.1.1 Birect-Coupled Linear Elcctrical Servos, Following is a development of the transfer function of the
three coinmon types of d-c electrical servos. These are the basic linearized transfer funclions of the essential
hardware. These characteristics should be taken into account even if nonlinear methods of excitation are used,
The transfer functions of the three basic types of d-¢ servos are essentially the same form -~ third order. With
a given set of torque and velocity requiremenis, the armature-controlled motor will usually give the fastest
dynamic response. The field-centrolled motor provides good economy of control power but lacks inherent
damping and is useful only when a slow response can be tolerated. It also is inefficient in overall use of clec~
irical power since high armature current must be mainiained regardless of output, for proper control, The
field-controlled servo transfer function is inciuded here for completencss. It will probably not be useful for
control system actuation,
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The servo using a series motor will probably best meet the requirements of the majority of direct--cotpled
control actuating requirements. It nrovides the highest siall and low speed torque for a given motor weight.

Transfer functions are developed using the folijowing symbols. Symbols not included in this list are defiued by
the equation or diagram in which they first appear:

3
[}

-

LT B 2

Subscripts

f

a

- output position

~ flux

- rate feedba.ck time constant {gain)

- effective load spring constan: {aerodynamic load)
- effective dainplng from friction

- effoctive inertia of load and motor

- proportionality constants

- output torque

- counter e, m,f.

- field

- armature

The typical armature- or field-controlled servo moior can be represented as in Figure B-24,

where:

T

v
e

ror armature control, V

[

\& y g et Ny |“
“FIELD T ARMATURE

Figure B-24. S3chematic of a Typical Armature- or Field-Controlled Servo Motor

T

v

d1
V. +rI1R +1, —2
e a a a dt
dl
I. R+ L !
fr f dt
K ¢ Ia
" .
K o6
f is constant {or a permancnt magnet ficld excitation can be used), ¢ i8 constant,
A
ia
K.
;b

and:




WADD TR-61-93
April 1961

For an inertial, frictional, and aercdynamic spring load:

T =J6 + Fé + Ab
. l{.‘ Xy . I'a oy e .
= Ki d t+ == (@6 + Fd + A6) + — (dd6 + Fg§ + A
a J K, ¢ ) K, ¢ )
i i
Ki
._‘?_(9} _ RaA o
LJ , ¥ K. k
Va Lad 3 J Ial 2 ( 1] i I La)
—e—— 8 ¢+ =+ + = 4+ == 834+ ]
R A A R A R A A R
a a a a

1f Lu can be considered negligible, as is usually the case, then

5
5 A
v @ K: K
a J 2 / 6 7 F)
— 8 +— - + 8 + 1
A U v A

In the servo system oi ¥Figure B-25, whore the vate feedback represented by 7 & may or may not be necessary,
the overall transfer function of the actuating system hecomes:

Ty i ]

Figure B-25. Usc of Electric Servo Motor in Position Serve Loop

.
R A
2 4
6 l‘AKI
—(8) = r K p
5 _w.-n“J 9 KiSKi ! I’\af + 'J'KAKi \)5 s = coe
RArK K ° RA 1K K
a A a A /

When aerodynamic loads are small compared to inertial and/or frictional loads:

6(\ 1
a8
K.K + +
a RJ 2 ( [ R:IF T KA Ki )
-8 + s + 1

A l\I\ Ki
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The Field control circuit is as shown in Figure B-24. This transfer function agsumes the armature current,
I;. constant. Thir {mplies either that armature resistance, R,. is large or that the source has a high output
impedance. The flux, ¢, is then proportional to the field curreat, 1.:

¢
a,

Ve L Re L R T =K1

T S S

f“xi : dt

Again
=J5 + Fb + AS
Eliminating T betwcen these last two equations gives:
K
R.A

Doy = T
vf(s) L.d R IF LF R ¢ LA

S
R.A
+ 1 .
N <K -
(e = L.g RJ + L. F RF+LAG+TK K
6 o aA(f A NI f ATY L,
RA K, K RA * KK RATK K

With inertiai and friciionai ioads only, the serve transfer function is:

]
= (8) = o -
b Lf.J 3 LiF + R[J a Rf} + 7 KAKi
R S R R

Ad Ad A

Series motors operate with pronounced nonlincarity.

In the circuit of Figure R-26:

Figure B-26. Schematic of Series dMotor
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a1

a. V = RI + L * VL8, D)

+
T

c.

b. T(I) = ké(I)1

c. Vo= (1, §) = k' ¢ ()6

for ¢(I) = k' 1 and where

then

T=xk1% and v = K, 16
i e [l

To arrive at a transfer function, both b. and ¢. must be approximated in 2 linear faghion. If both are assumed
linear in a limited range of the torque-speed and torque-current characteristics of the motor,

d,e. T = K1 I, j—z = Ko , where K1 and Kz are the constants of proportionality. Then:
R7T L dT 3 Lo
J == e — -
Lo K, * K, A2

With an inertial, frictional, and spring load:

g T =Jd6 + Fo + As + [K.,(S] .

The term Kzé in g. represgents the same physical effect as Ve (5,) in f., i.c., the change in torque due to

changing back-c. m. f. {(and hence changing current) accompanying a speed change. Obviously, they are ot
equivalent if V, (6) is assumed to be a linear function. No claim of superior accuracy iz made for the repre-

sentation of g.; it is used only becausc the constant K 9 is readily available from the torque-speed curves of the
motor. The wransier funciion is obtained by substiluting g. into f. and excluding the term Ve {5), since the

effect is now accounted for ing.:

0
[ RA .
v ©. L(F F K.} + Rd LA+ R(F * K_)
LI 3 2 2 ( 2 .1
RA RA RN RA 8
In the control leop of Figure B-27,
K KA
s RA + K K,
A = 1 T+
3 L3 5 L(F+K2):~R_J:|SZ I’LAiR(F«KZ) o
RA + K K, | RA + K K, 1 | RA + K K,
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Figure B~27. Series Motor Control Loop

When the load has a negligible spring (A—=0j},

1
Ll 3 L(F+K2)+RJ'I 2 R(F + K_)
3" o+ —| g 4 ———

3
&

1¥a K, KA i Ky I‘A

. K

Note that this linearizing process invelves extreme assumptions of proportionality. The transfer function is
good only for small disturbances sbout a specific operating point. For some applications the serics motor, like
the armature-controlled motor, can be represented by a travsfer function simplified by neglecting 1, the com-
binad inductance of field and armature. This assumption should be made with caution, as field induction is
t{kely to be large.

B4.1.2 Clutch-Actuated Systems. Clutch systems can be divided into two classes for purpeses of establishing
an equivalent transfer function: thosc designed for continuous control and those intended to be strictly an on-off
device. Both types offer the advantages »f high load acceleration capabllity with low control power.

The magnetic powder clutch servo is typical of the continuous control type. Torque transmission by the clutch
is neoar enongh to hoing linear with clutch isapaelising currvid that the inductive lag 18 the most significant
dynamic feature. Prime mover aspeed can usually be agsumed constant. Thus, this type of clutch servo can be
well represented by an inductive lag:

T K

T O T

where 7 _ is determined by the resistance-inductance characteristics of the clutch magnet and the driving
Y

gource impedance. This time constant can be made quite short. With an inertial and frictional load:
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Since the friction in the load Is likely to be low compared to the inertiz, some form of compensation is usually
necessary. The tramsfer funciion with rate feedback (Figyure B- 28) boccomes:

o + f\ 8
¢ [KA/ - (®
¥
r8+ 1
Figure B-28. Magnotic Clutch Servo in a Position Servo Loop
o _ 1
8 9T 3 J oF\ 2 F
A SRS R C N R
A A A A

With the inductive lag, 7 ¢ negligible, the transfer function becomes:

1
O = >
6 gx e (wmg 7) o
A A

A second class of clutch gervo operates as on-off devices. Performance is quite different from that of an on-off
controlied, direct coupled servo. Dynamics of the motor are not involved in the transfer function, as in the case
of the continuous clutch control servo, if the motor has sufficient effvetive inertia fhigh speed motor driving
through a high ratio reduction gear) and develops sufficient torque so that prime mover speed is essentially con-
stant. ‘This is usually the casc.

The helical spring clutch is a good example of this type of control (Figure B-29). The spring is rigidly attached
to the driven shafl and is wound with Iow clearance on the driving shaft. Undisturbed, the driving shaft spins
freely inside the helical spring. Wit uie Iree end of the spring is deflecied In the direciioe of siuft rotation,
friction between it and the driving shaft causes the spring to wrap suddenly and seize for its full length on the
drive shaft. With a high speed drive, this wrapping action takes place very suddenly and almost instantly brings
the Ioad to drive shaft speed. Speced of response can be very fast — limited only by the ability of the system to
withstand the shock loads impesed. A protective slip cluteh can be provided by using the spring clutch principle
in reverse.  Shock loads can also be reduced by providing flexibility and damping in the driven shaft. This will
not influence positioning system stability if position feedback is taken off ahead of the shaft flexibility.

This system eannnt he rasily represented in terms which are compatible with the usual mathematical description
of a system except in a picce-meal fashion.  Let it be assumed that the syslem's own internal stability and
smoothness of operation has been achieved by appropriate control over dead space, system hysteresis, drive
shaft fiexibility, and cluich actuating time lags. Thesec lags, though short compared to the response of the over-
all system, might be critical in sccondary cffects such as clutch and brake chatter. ‘The system then will have a
responge which is practically instantancous to any commind which is within the limits bounded by the maximum
rate of the sysiem (the prime mover speed) and the threshold imposed by the necessary dead space. That is, the
system will not respoad at ail to imputs below its threshold; it will possess a transfer function of unity for inputs
above the threshoid level.

-
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Figure B-25. Simplified Schematic of Spring Clutch Electio-Mechanical Servo

Figure B-30 shows twe typical position servo control loops. In one case a brake ("Back braking') is applied to

the output shaft and load whenever the spring clutch servo is not activated. Thus for error signals within the
threshold the output rates are zero and for error gignnls above the threshold the output rate is the constant servo
rate, ()c . When no back braking is applied the system response within the threshold is determined by the nature

of the lord, as the system "free wheels” (marked as "response undefined” in the figure).

B4.2 Electro-Hydraulic Positioning Servo. The clectro-hydraulic engine servo systems for thrust-vector
control are ugunlly comprised of a high pressure hydraulic supply (pump), a scrvo amplifier, a hydraulic actu-
ator, an electro-hydraulic serve valve, and a position transducer. A great many of the systems presently used
alan include an accumulutor which acts s a hydraulic capaciior in the system.

The hydraulic power supplics currently used are of two types. Onc employs the variable displacement pump
whose flow output is controlicd by means of & servo sensing the kigh pressure side of the hydraulic system. A
relief valve is also connected from the high pressure side to the tow pressure side thydraulic reservoir) of the
system to minimize pressure transients above the operating pressures of the system. For normal operation

the relief valve remains closed, opening only when pressurcs exceed a value overcoming the pre-~load on the
relief valve. The sccond type of system uscs a fixed displacement pump with a relief valve to maintain the sup-
ply pressure within get limits as well as to meet the normal flow requirements. In this sccond system the relief
valve i normally open such that supply pressure and valve spening, which is dependent on supply pressure,
maintain flow through the relief valve equal io ihe flow sutput of the fixed displacement pump. When there is a
flow demand of the gystem, this tlow 18 accomplished by the relief valve closing down and the supply pressure
therefore reducing in value. Excluding norlinearities of the relief valve, the pressure excursions usually en-
countered from no flow-to full flow may be anywhere from five to 25 percent of supply pressure depending on the
orifice geometry and spring-rate of the relief valve poppet assembly. Aiso, depending on the design of the relief
valve, the reset preasure of the valve may be as low ng 80 percent of the cracking przssure.
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Figure B-30. Typical Reaponae of 8pring Clutch Servos Having a Constant Speed Input
I
In this annlysis we shall discount the pump and relief valve dynamics since they both would exhibit a fairty flat

- frequency response with minimal nhesa qhift within the bund-width of the overall engine servo-loop. This belng

a0, supply preasurc will bo asstmed constant, heing the value of zero flow demand.  This assumption will not .
hold truv ivi situntions weach soyuicy ignitian af yines Juring flight (e.g , staxinst. During the thrust sise
transients, the hydraulic supply will vary greatly with a marked effect upon the engine serve characteristics.
The nature of the hydraulic pressure baildup accompanying engine iynition and of the varied hydruulic power
demands Is so dependent upon the peculiarities of a given installation as to defy general treatment.  Fortunately,

this period of uwff-nominal behavior is very brief and leada to no closcd-loop elastic inxtability.,

-
The clectro-hydrauiic serve gimbaling syatem le probably nne of the most lugiiy (mmwntlom\lly) nonlinear in-
g*allations In a Might control aystem. A hlock dingram of a system used as a porition servo is shmen in
TFigure B-31. The servo amplilies wan be nasumed-to be linenr, ar can the feedbnek tranaducer, since hoth are
usually designed so that their saturatina Hmits are above those of either the Now limit or actuator stops. The
clectro-hydraulic servo valh » is usunlly of two basic decizne, that of cither pressure control or f: w control.
The Now control valve ia the moat widel;, uned of the two In thrust “ector control of awivelling rocket onginen,
and tn the deuign that will he annlvred horein,  Schomatie dingrama of an i 2rantie acrva valve and » simbnled
rocket engine powitioh acrvo are shown in Figures B-32 and B-33; they are taken from Backus Meferenre B-7).
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Flgure B-33. Gimbaled Rocket Engine Position Servo - Schematic Diagram

B4.2.1 Servo Valve Flow. The basic equations for the system are developed by including the effects of a
leakage orifice across the load piston, dynamic pressurce feedback to the valve spindle, and load pressure feed-
back to the valve spindle. Later in the development, cequations for cach specialized case arc obtained by
elimination of the nonpertinent terms.  The flow of hydraulic fluid, Qv , from the servo valve into the left half

of the actuating eylinder, shown in Figure B-33, is given by:

! T m . . 5
v X, C prs ’1' Sgn (P - P)): X fo!

S8 1 8
Qv =
\ X Cy :ﬁpﬁipui Sgn (k) - Pp)s X <O
where
Xs = displacement of valve spool,
agsumed positive to the right (ft)
Cs = digcharge parameter (ftz/scc flbn/?w)
Ps = gupply pressure (lb/ftz)
Pl = presgure at point 1 (lb/ftz)
PR = reservoir (return) pressure (lb/ftz)

SgnY signofY (N.D),

The discharge parameter, Cs , ingeneral may vary with both the spool displacement and the actuator foud

pressure.

-
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It may be z:ssumcd without serious error that the flow into the left half of the actuating cylinder is equal to the

frow odt Li e 5 waii Wl eyt slee. 2Te s this weannanting it ean he concluded that:
+X C e —_—
Q = 8__8 4P-P + P ag‘nX‘ sgn(P ~P +P smX/) (B-4)
Sl 8 \ R 8
v N Y R L ] 3 L )
where
= a : 7 2
P_ = load pressure - P, -Po {b/ft7y.
i H 4

‘The valve spool displacement X is agsumed to be a linear combination of the valve current, iv’ and the

dynamic pressure feedback, P1 ;

X = - R o K I -
Cs Xs ‘v 1ver{ Ky & Kq Pia) ®-8)

where

3
it /sec
Kv = gervovalvedischarge parameter | ____

a ’/l'l;;ftz

Ks = pregsure feedback gain ( ma/ }b/ﬂz) \

The true valve current, iv' is directly proportional to the tota: input voltage to the servo amplifier which, in
turn, is cqual to the difference between the command signal and the feedback transducer signal.

i =K -6 = 6
v Ka (60 61‘) K % (B-06)

where

Kq = gervo amplifier gain (ma/rad)

Since the feedback trangducer is normally buiit integrally within the actuating cylinder, it measures the dis-
placement of the piston relative to the eylinder aidd not the actual engine displacement {due to the comnliance
of the actuator mouni aid engindd. Thus, the feedhack transducer output is:

A,k -1

I3 = - ——

F K R 1.
m
where

Km = actuator structural spring constant (1b/it)
. 2

A = piston area (ft )

R = actuating moment ari (ft)

& - actual engine pogition (rad)

6." indicated engine position by feedback

transducer (rad).

* I the mount compliance VK . is included in the vebicle flexibility when the body bending modes are compuied,
this compliance corvection is expressed as a function of the modal coordinates instead of the load pressure

{see Section 4).
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B4, 2.2 Flow Equation. The total flow is the sum of the piston displacement flow, leakage flow and
compressibility flow* such that:
A"

Qv=Axr+CL‘/IPLISgn e pL (B-8)
4B
where

x.= relative displacement hetween piston

and cylinder = ~R 6 ¥ (it)

CL = discharge parameier for leakage by~
3 2
pass orifice (ft ~/scc b/ft7)
V'l‘ = total volume of oil in actuating

cyiinder (fta)
B = bulk modulus of hydraulic fluid (lb/’ftz).

The total valve flow ig:**

= S I 5 g - i -
Qv ich Kv Wﬂ p“ vl L 8 &n iveq‘ sgn (pa PR * PL Bgnlveq)(’3 9

where
! - ha (éc N GF)+ Ks Pls
(B-10)
K A
:Ka(ﬁc -6)+.:1 P+ K P13
KR 8
m

B4. 2.3 Dynamic Pressure Feedback. The dynamic pressure feedback, P__, to the servo valve apoo] is
determined by equating the flow through the dynamic pressure feedback (DPF) orifice to the flow due to the
velocity of the washeut pistun, (see Figure B-32).

AL y o
o * =0 BT am vy, (B-11)
K v - vy dert av
¥
where
. 2
AF = area of washout piston {ft")
KF = spring constant for washout piston (Ib/ft)
. . . 38 2
CF = digeharge parameter for DPF orifice (it”/sec ‘/ h/ft")
Pyy = P - P,

* I the hydraulic compressibitity is accounted for in the body bending modes then in this equation it is omitled
by setting B ———a o (3¢ Scction 4).

** Equation B-9 represents a iypical mathemati eal expression for flow into a valve as a function of valve current
and supply, return, and load pressures. The valve gain, Kv' may itsclf be a function of thege parameters.
The reiationships must be determined empirically sr from the manufacturer's data.

B-16




/ADD TR-61-93
April 1961

B4. 2.4 Actuator Load Pressure. The actuator load pressure 18 dependent on the dynamic equiltbriurn of
the engine system, (cf. Equation 3-13).

=-P AR = + 1R6+TI+T

TL— servo L L - (B-12)

is the moment of inertia of the thrust chamber about the swivel point. T_is the torgue due to gimbal friction
and cun be expressed as n combination of both viecous (Cv) and coulomb (CB) type friction:

T, =C 6+ Cy sgnd . (B-13)

The torque, T_, consists of all incrtial load torques due to the accelerations of the various body modes (rigid
and elastic).

B4.2.5 Describing Functions for Linearized Equations. The equations above constitute a set of simultaneous
nonlinear differential equations. Since the system is very nonlinear, it is difficait to solve analytically.

The nonlinearities occur in valve gain, K_  (itsclf a function of valve current and hydraulic pressures), in the
half-power flow functions of hydraulic pressure and in the bearing friction. These nonlinearities must be
removed before suitable transfer functions can be written. The method uscd in linearizing is based on finding
equivalent lincar terms.

The assumptions which justify a describing function analysis are well met in the elastic coupling stability study
application; i. e., the siynals of interest arc almost purely harimonic, and frequencies other than the primary
are greatly attenuated. These conclusions follow becausge the significant modal roots are very lightly damped,
enjoy a suitable frequency separation, and the various modes are coupled but very weakly.

The nonlinear Equations (B-8), (B-9), (B-11) and (B~13) can be lincarized as follows:

Ax_ =C, -P_+ P, o= - K /P - P
xr L L -t L veq v ] R (B-14)
4B ’
AF 2 . _
— P - [>
Ke ( L Pls) Ce P (B-15)
T; =C, 6 (B-16)
where
EL = equivalent admittance for CL
(_JF = eqguivalent admitiance for CF
(:f = equivaicnt admitiance for gimbal friction.

The equivalent admittance,C L CF' and C,, are both amplitude - and frequency—dependent.

f

An zdditional iinearization ig implied in Fqguation B-14, whereby the valve gain, K_,, is taken to be a constant.
This is an excellent approximation for many commercial flow -~compensated values and is further justified
(if Kv should vary somewhat) by assuming a mean value for a range of operating conditions. A still more

claborate vaive low model (¢f. Equation B-3) could be used if desired.

R-41
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B4.2.6 Equivalent Admittance. Assume the input signal to a stable nonlinear element to be as follows:

X1 = A1 sin.m t.

The output signal from the nonlinear element would be periodic, and may he expressed as a Fourler geries in
the form:

X }: a gin  nwt + Zb cos8 nwl.
2 n n n on

The coefficients of the fundamoental components are:

1 T
a! =;.-frx2 gin wt dwt

1 *
b, = 7‘,-./: xz cos wt dwt.

By definition, the equivalent admittance (nonlinear gain) is

X,

GNL = -)-(:- where, for the ouiput function, all bui the fundamental frequency components
i

are omitted.

Hence,

a_ sin + 08 @t
1 wt blc [

GNL - Al sin wt
A h
A1 1

The (§) is used lo denote the quadrature component.  Since the motion is quasi-harmonic, j = &/w  and one has:

~ . bE

Onp “Bg v W F
where
Ll
N T

g =R ° Y g B0 dw ®-17)

i 1),

b, n
bp = 1 X, cos wt dwt. (B-1%)

E 7oA TA 2
1 1,

B4.2 7 Gimbal Friction. The nonlinear torque due to viscous and coulomb friction was given as

Ce

Tf _ (’v 6 *+ C B ¥ g
The object is to determine what coclficient 6( should be used at a particular amplitude and frequency if the
above equation 18 linearized as follows:
T
— f —
T = 4] ; — = - R
f Cf ! [ f NL

B-42




Assuming ¢ =8 sm «wt, then from Equation (B-17),

r R
1 S é
= 6 + C —~,~) ain wt  det
g ML(CV“ 8 T3] in w

2
) sin wt det

x

B 2/’ o g

T v % sin wt
Yo

C

= o a OF

Simtlarly, one finds:
bEc 1]
Therefore:
b
GNL=§ Eaf"’x-:*‘;:‘: s
C
=S "5):1
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®B-19)

B4.2.8 Orifice Flow. The Equivalent admittance for flow through the leakage orifice is determined as:

- .11 C
O V P
) L
where
P, = maximum sinuscidal amplitude of load pressure,

L

(B-20)

Similarly, the equivalent admittance for flow through the orifice of the dynamic pressure feedback network is:

. 1.11 CF
C, =

¥ B
13

where B._ = maximum sinusoidal amplitude of dynamic pressure feedback

13

The linearized equations can now be maniuplated as linear differential cquations.

s - )
F Pt Pt Py
where P
AL
TF - :-§ effective time constant of DPF network (seconds).
FF
N nos - C & - T PO ¥
¥ L A Cf L () Iku
N VT
+ = ~ R . P
/‘xr CI IL 4 B PL ln_q iK n'/l~ ‘R

B-21)

B-22)

B-23)

B-43
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Ka A
= 6 =8y + e P
1veq Ka(c ){KRPL\LKS 13
m
Also,
6. = - “r - s A
¥ R KR L

A general expression for § (s} can now be obtained as a function of the commanded engine position, 60 (8), and
the load torque, TL (8):
2 1 2

K ow, (-rF;HI) 60 (s)~-fl;(‘rFs +Kls+ Ko) TL(s)
() = T 3 3 p)
; Ly
(TFH i N3B * N?.S ' le c c)
where
2 i
2 (AR)
We 7 T 2
¢ v A
1 X
R \ 4B Ky :
K'l KV e
e AR ‘/_};s - Py
_ /A% AR R
s L’ Kc(?—"' K |
X, o= 1+ - \ m a
Y, a2
aB K
m
2
1 = A
Ko 2797 Gt w s 528
o, A
4B K
m
1 -
N, = — T C 1K
0 r
3 K F o 1

2 f s ¢ 1 = ( =
N, =T @ 1 co— Jb=— C.+ K 1+ —— 1_C
o £
2 I c K K AR IR i o N F £ )
N, = —-1 C. K ' w {(1: 7 K
! 7AII{ f l\() ¢ PR

A block diagram of the complete clectrohydraulic pozition servo is presented in Figure B-34. Note that in the
development of the squiations controlied damping by means of both dynamic pressure feedback in the servo valve
and a leakage orifice in the piston have been assumed. Special cases of each will be considered now.

B-dd
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Figure B-34. Block Diagram of Electrohyary alie Swivelled Rocket Engine Position Servo

a. Leakage Orifice Only. The describing function for this case is obtained by completely blocking off the
dynamic pressure fecdback retwork. That is, let TF O and the result is:

" 25
e L |K)1L{S) (B-25)
58— (s L
@ 4 [ IR [} 6(: (s)
(il : = 5 —-
e ¥ S‘;'_i,’ w s 1w st Kw?2
tnooen en ¢ e

where Ku is defined by Equation (33-24) and

A simplified first order expression for low [regquency application can be obtained by tetting wc—* [

b(8) [q
T ) ’ {B-26)
OC {s) r 1

b Dynamic Pressure Fecdback Only. The describing function for this case is chtained by blocking the leakage

orifice flow, i.z., C, [
i
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The result is:

T  {s)
2 1 2 L
K + - (7 K,8 ' K,)~5"——
e Yo (Tp &7 D mq (Fps Kye o Koy
5 (8) n c ;
5 (&) 1 3 p ) ' (B-27)
c (r.8s8 N4S 3 NSS + NGH + Kcu‘ }
where
2 9
K, [ ar®x A
K - \ (R
2 i Al Km
o)
a8 K
m
A
K c
Ky e 2
Yr A
4B K
m
1 —
N = = 1. C. 1+ K,
4 R F i 2
C.K K
1 = 2 f s ¢ = 1
N.o= == C. ¢+ 7., @ 1 v —————}+ K, (1 + 1 C. —)
! e 3 F
3 IR f 1 ¢ AK{l R T f R
1 -~ 2
N | o C K, o ow {1
N 1 r Ky ¢ TR KD
R
A {irst order approximativn valid at low frequencies iz,
K
6 (8 4
6((;) ey . (B-28)
c 1+ -3 CIK- s+ K
< R ¢ ¢
m

The describing function for this case is obtained by allowing the spring
The time constant, Tl" becomes

¢. Load Pressure Feedback Oaly.
constant, K_, in the dynamic pressure feedback network to approach zero.

infinite and Equation B-27 reduces to

T (3)
2
K w2 (s + K) e
¢ ¢ i 47 6 (s)
6 (s) R C
: - e (B-29)
6C (=) (53 DN 52 DN s K :
1 8 c
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where
R
B S S
Ka Km (4
K 4 |
Vo A% !
. DL . S, |
450 K :
m
1 -
N, = =— C_ +K
7 IR F 4
N Y e Ls _K_*’l_(_ R
§ ¢ p K A K
R a m
The first order approximation is: i
10 , %
ey T TR R R v
o R el ' % 1 PK
r Ct K A K Is e
R @ m
i
B4.2.9 Numerical Determination of Eguivalent Admitlances. Tho cquivalent admittances determined in the
foregoing scctions require a knowledge of «, 6, PL. 1)1'3 and iver for their numerical caleulation. Firvst,
- : 1 -
the amplitude, 0, at the frequency, w , of the output is specificd. This admits calculation of Cf {Eqguation B~19).
Next, it can be sgsumed that the ovtput load torgue disturbance, 'l‘l , i either zeru or i8 of minor importance in
determining the amplitude of actuator lomd pressure. (This restriction can be eliminated in digital routines
utilizing frequency response or root-locus techniques by employing an iterative procedure. )
Equation {B-23) is utilized to obtain:
Po(le) - -k (0, w? - €, jw)d (e
L AR g ¢ g i€1e Ue)
|
hence, {B-30) |
- 5 I
P = ‘/( 1 ' (C w ) i
‘The amplitude of the dynamic pressure feedback, Pﬂ, obtained from Equation (B-22) is
Tpw
- ¥ -
P, e — P e
13 2 L
’ﬂ 7w ) b1
(B-31)
. E’lz i — 9 1 o -
v ) Za )
oA
e
—
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where

2
N
F 1.11 CFK

F

The amplitude of the equivalent vuive current ivc< is obtained from Equations B-12 and B-id. Again, Tl is
{ .

neglected with the result:

- 2 . 2
. Kum 2 L L I CL
veq w .ZKC IR v, A2 IR f VT Az .
I TR B K

Finally, note that in computing thesc describing function engine coefficients, the engine amplitude, 5. used

must be the total control angle. s - 2 q ( (xt) - U’g) ) since this is the angle through which
i i 4

the bearing friction couple acts. It is also the angle whose accelevation is related to load pressure, PL , in

computing the leakage and other valve flow linearizations. Thus, in any ampiitude-dependent set of roots, the
results obtained will be for various values of this total control angle. This property is actually fortuitous, since
mosi actual flight and test data is seen as funetions of this same total angle, measured at the engire gimbal.

B4. 2,10 Comparison of Results With 'Test and Analog Simulations.  The describing functions presented above
can be appraised by comparing their frequency response functions to the correspoending "exact' functions obtained
through the solutlon of the original system of nonlinear differential equations (Equations B-8, -9, -11, -12 and
-13). The approximate frequency response can be determined from the calculated desceribing functions which
were obtained by selecting a constant output amplitude (i. e, , 5 constant), assuming the load torque, T1 =0,

and then solving for the complex ratio of output to input, [6 /6 c } Gw)-

Since the cocfficients of the polynoudnal in "s" are, in general, both amplitude- and frequency-dependent, the
function which results is a "constant output amplitude” frequercy response function. This function, in contrast
to linear transfer functions, is often heavily dependent upou the ampiitude of the output (or input) signal.

The corresponding "exact” frequency responses were obtained by solving the appropriate nonlinear differential
equation on an analog computer. Scction 6, Pavagraph 6. 1.1 presents a compavison of data calculated by the
iwo methods. These data represent "constant-output-amplitude” frequency characteristics of a rocket engine
position servo system. The servo valve used was a Moog compensated flow conirol valve. Controlled damping
was achieved by a leakage path through the actuator piston. T'he describing funclivn empioyed was, therefore,
that given by Equation B-25.
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Symbol

w

SYMBOLS USED IN APPENDIX B4.3

Definition

effective oritice area

average effective inlet area from extend (retract) side of the cylinder

average effective exhaust area {rom extend (retract) side of the cylinder

piston area vi exiend (retract) side

the negative of the partial of the nonlinear flow coefficient, N, with respect to

pressure ratio

a generalized friction representation
acceleration due to gravity

valve input

load moment of inertiz as seen by the actuator

valve input gain

mounting structure spring constant
load spring constant

mass of gus

polytropic index

absolute pressure

absolute pressurce in extend (retract) side of actuator

average pressure in extend (reteaet) side of actuator
downstream pressure
upstream pressure
load pressure (P - P )
1 2
length of lever arm

ideal gas constant (for air)
(1oir most solid propeliants)

ratio of downstream to upstream pressure o just give sonic flow in an orifice,

0.53 for most gascs

sl
<

ace operator

absolute temperature

WADD TR-61-93
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in,

in. -lbs/rad/sec
368 in./sec/sec
milliamp

2
1b-in, -sec

ihs/in.

in. -ibs/radian
2

ibs-sce” /in.

N.D.

psi

psi

psi
psi
psi
psi
in,

G40 in. /°R
900 in./°R

B=5ij
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Symbol

v

v, (Vv

107 20

-

SYMBOLS USED IN APPENDIX B4.3 (Continued)

De ﬂn!iﬂ
totai torque
time
volun:e

average volume in extend (retract) side of eylinder

weight rate of flow of gas

weight rate of flow of gas into the extend (retruct) side of the actuator
weizht rate of fiow of gas from the extend (retract) side of the valve

piston displacement

weight rate of flow of gas from supply part through exhaust part during steady state

null position of valve and actuator
ratio of specific heats of power fluid

the change in exhaust area per change in inlet area

Units

in, ~lbs

ths/8zc

ihs/sec

ibs/sec

in,
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B4.3.1 Introduction. A type of positioning scrvo that is becoming more important in missile applications is the
pneumatic positioning servo. The pneumatic positioning servo is most often referred to as the "hot gas servo”,
gince a hot gas is often used as the working fluid, The following treatment is not restricted by the temperature

of the gas and therefore applies to cold as well as hot gas systems.

Pacumatic systems most often derive thelr high pressurce working fluid from either a high pressure storage

bottle (cold gas) or from a gas generator (hot gus)., Figures B-35, -36 and -37 picture the three main configura-
tions of pneumatic systoms using hot and cold gaa. In all three designs it is common practice to exhaust the
working fluid vverbourd, since it is less costly to atore a large quantity of high pressure working fluid in the form
of solid, liquid, or gas and exhaust it overboard than to include the plumbing and pumps necessury to repressurize
and reusc the fluid,

In all of these systema ithe gas supply pressurc down-stream of the regulator may be considered constant, Also,
the controi valves have resonances which are well above the overall system band width, so one may ignore the
higher order valve dynamics,

, - . PRESSURE
SOLID-PROPELLANT PRESSU SERVO : LoAD
GAS GENERATOR "“‘;‘;\‘;‘:,i““c =1 VALVE ACTUATOR ﬁ 2

l

GASES EXBHAUSTED OVERBOARD

Figure B-35. Solid Propellant Hot Gas System

. - — 7N
DECOMPOSITION ! SERVO . LOAD
CHAMBER ) T VALVE ACTUATOR[ 7§ ~—
—d

1

SPENT GASES
SXHAUSTED OVERBOARD

CONTROL:
VALVE

L cmy——

BOOT STRAP PRESSURIZATION LINE

[

(mm———————

———— e et — e e e e edd

LIQUID PROPELLANT
GAS GENERATOR :

Figure B-36.  figuid Propellant Hot Gas Systewm
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H1-PRESSURE PRESSURE p—
GAS STORAGE REGULATING . ACTUATOR [~y - LOAD
VESSEL | VALVE VALVE |o ]

SPENT GASES
EXHAUSTED OVERBOARD

Figure B-37, Stored Gas System
B4.3.2 Analysis, inan anaylic treatment of a pneumatie servo the following basic relationships are required:
a. valve curvent to valve (spool) motion
b. orifice egquation -~ gas flow versus ovifice arca and pressures
c. piston and cylinder relationship belween volume changes, fiow und pressure
d. load pressure cquations relating piston pressurces to load (piston) responsc.,
Herein the first relation is assumed to be a simple proportionality, by neglect of valve dynamics, The second and
third relationships are, by the nature of gas laws, Lighly nunlincar, A small perturbation approach is taken to
provide a reiasonable lincarization. The final relationship follows as practicelly a definition.  Combined, these
reiationships lead to the desired (')/'iv transfer function of the scrvo actuator,

B4.3.3 Equations for a Pncumatic Orifice. The weight rate of flow of a gas through an orifice is described by

P
LI

A

Where N = N(P(l'/Pu) is the nonlinear {low cocefficienm for the compressibl> fluid, This nonlinear coefficient is

WeN

(B-32)

conumonly given for subsonic flow as:

/ l’d
(“p— > "cp)

d (B-33

(2
\ !‘u ipr
P

‘\'/ d) r

) \Pull Cys .

B-h4
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However, a simpler expression for the subsonic flow which gives exactly the same results is:

- - )
p /o M\ 2
d cp P

N ( — ) i I 1 - M-L. (B-i54)
Py w | P

{ -y

Py
Equation {8-32) is not useful for linear analysis. However, the expression can be lincarized if it iz agsuned
that the vaiiabies are limited to small excursions about their average values:

dw = — (AP AN+ A Nd P + P NJA j . (R~35)
1) h u u h

1

R p‘ r/ P
( u u
d ( v P\ 5 9\p
S T
p
u
\ (_”9,,\
AN\ PodP -P AP
T . (B-36)
9 (-4 u
( l)

When the partial of the nonlinear flow coefficient with respecet to pressure ratio is defined as - ¢, Equations
(B-35) and{B-36) combing into the following: pe

1 :\‘ C o Pd
dw o — SAC dp v ALEE D gp i A NdP a P Nd A

; h pec d s u h u u h

(N L 1

u
A ¢ p PN
h c o
d - — + N1 d ]’u - C ‘4! Py dA B-37
‘f‘—',l. p 1 pe  d A h ( )]
L}

Equation (B-i7) deseribes the change in the weight rite of gas flow through a sharp-cdged orifice as a function
of area and pressure variations perturbation cquationy.

i4.3.4 Egtation of a Piston and leindcr. The equation for the state of a volume of gas is:

PV - g R T . (13-38)

Difterentiation of Equation (B-38) and rearrangement (with W 2 d';———:g—) yiclds:
€

R -
ap 4y By AT

(R-29}
Pelt vdt PV 1"dt

B-55
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1f the thermudytamic process of the control volure of the cylinder is assumed to be polytropic, the relationship
between temperature and pressure is:

(1)

\ %

P

—

= constant, (B-40)

where n can range from 1,0 for an isothermal process Lo v for an adiabatic process. Differentiation of the
abeve yields:

Podr (1_i) an
T dt n dat (B-41)

Combining Equalions (i3~38) and (B-41) ono obtains the relationship for a variable volumic:

P av v ap
? o e —— — e -
V%7 @i ' T @ (B-42)

g E

The small perturbation approach is takon again, The cocfficients of the differential quantities are assumed to
be average values over one cycle, The average values are denoted by subscript zeros. The linear approxim:-
tion to Equation (B~42) becomes:

’ dv v P
o <¢v o _4P (B-43)
RT dt nR T di
g g

W =

If the variuble volume is that of a cyiinder and piston, Equation (B-43) becomes:

® dx v P
o o d

RT dt SR T dt .
g &

The equations which describe both sides of the piston-cylinder combination then are writien as:

AP v ip
s TR S U 8
o pr @ amT at (B-44)
g g
AP v
APar ax 20 9P
w = Jlui-i —Z
“©  RT 4 AR T dt .
¥ &

34,3.5 Combined QOrifice, Valve and Plston Equations. [t will be assumed that the system has an open-
centered valve (Figure B-38) such that there is always a flow of gas through the valve*, The open-centered
valve ig the most popular for vehicles with short mission times and is also relatively casy to analyze. A
closed-center valve will have the same type of linearized transfer function; the mijor dynamic difference
appears as a Jower damping.

# The weight rates of flow through the two sides of the system during a steady null position of the valve are:

Ae P Ai p Y Ac, P Ai
,,TUP 10 10 ch 16 s ‘op L20 20 - ycp'\lzu Ps

W - e RS
vl V[T ‘/_{ “02 ) W V’T
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Figurc B-38. Pneumatic Positioning Servo-With Open Center Control Valve

1f the valve actuating dynamics are aegligible, and both iniet and exhaust orifices are choked, the eifective flows
from the valve can be found from Eqguation (B-37) to be as follows:

r. Ki : ACIO T
w, =2 L poagp 1 - 2% p
1v '/-1— %= 10 T 1
V/ (B-45)
- rcp Ki Aez,o_i‘ﬂ’_ ”

W, = — [P+BP,]1 - - P,
Zv’/'_r— 8 20 "[T Z.

Eeuations {R-44) and (B-45), when combined, describe the response from valve input to actuator behavior.

K AP Ace dp
cp i [P s pp 1. _ 110 dx , 10 ¢p P+ 10 1
v[’l‘ 8 J RT  dt VT oRT  dt

' 5
(B-46)

-r K ~A_P dp
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It should be noted that nuincrous assumpticns have been made in oblulning Equations (B-46), The temperature
of the gas in the actuator may not be the same as the tempersiure of the valve, but this can be handled by
modifying the value of average exhaust arca or valve gain appropriately. ILeakage across the piston has been
neglected, but this is usually minor. Piston lerkago or other considerations, such as stabilizing volumes, may
be included in tho cquaticns by application of Egnations (B-37) and (B-43).

The introduction of the following additional assumptions vesults in a considerably simplified final expression.

Pro” P20

.'\l - :\2
Aoy =Aey
Vio©Vao .

Combining Fquations (B-46) and incorporating the above results In a single expression for the valve and
actuator:

2r K 2A P Ae 1 v ap
" . r
_° 1 , PS + B PIO 1= 1. 19 dx _ 10 ¢p P+ 10 L

‘/»T—— L RgT dt ‘/T_ 1 nRg'I‘ dt .

(B-4T)

B4.3.6 Actuator Load Pressure, The tolal differential foree acrosc the act
divided by the aciuater lever arm,

or must cqual the total torque

Tol\
\ > - 3 I ——
AP AP TR

(B-48)

Pressure and torque variations about average valves ure sbtained by taking the total differential of Equation
{B-48):

aT aT : 8 o

B S W' LI Tr s

AdP - A dP, - — SO R o
151 %2 B R 08 r 0% R

(B-49)

Equation (B-49) may contain other terms such as the change in torque with respect to normal aceeleration, which
may or may not be important. It is reasonable to assume that the average velocity and acceleration are zero;
so, if the average position is taken as the zero point for §, the increments of the variables become the variables
themselves. The rotational spring constant is, by definition, the partial of torque with respect to angular dis-
placement. The partial of torque with respect to rate will usually consist of a triction term which is a finction
of rate. As a rule, any viscous damping in the load is so small that it may be neglected. The partial of torque
with respect to angular acceleration is the moment of inertia of the load. When these substitniions are made,
Equation {B-49) becomes:

KR
— &
R R

: 1
f(6) . R
A - A = L —

IPI 2P2 o+ R 6

. (B-50)

The friction term, f (6). cannot be linearized for gencral inputs: it can be studied on a computer or linearized
for sinusoidal inputs by means of describing functions. The previous assumptions of a balanced actuator and the
linearizing condition of operation about steady state operating points simplifies Equation (B-50) to:

K . 1
LB feo) o R -
APL"R S TR S e

(B-51)
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If the actuator mounting can be described as a simpie spring, the load displacement differs from the piston dis-
placement as follows (see Figure B-34):
AP
X =R 4L L (B-52).

KM

Combintng (B~31) and (B-52) gives:
c , 1
R ] £ R

kM}i ‘:’LKMR + i I o ¢ "8 w & (B-53)

B4.3.7 Combined Transfer Function, The transfer function from valve Input to sither actuator position or
load pesition can now be obtained by combinlaz Equations (B-47), (B-51) and (B-53), Howaver, the resulting
oxpression is somewhat complicated, A better feel for tho various terms can be obtained by investigating the
followlng epecial cage:

) - KR:-O

K - .
M ©

The resulting expression gives the transfor function from valve input to load displacement of the open-loop servo:

O p
R, oy [Ps»«p 10]

cp |
8.6 L -
i(s) . Vil s AcmrcleREVT &+ ,1
2“'\,““21’,0 2P, szzA 12 (B-54)

Equation B-54) indicates a number of basic facts concerning gas servo behavior:
a. The open loop gain is proportional to the square root of the absolute temperature,
b, The open loop natural frequency is not a function of temperature.

¢. Some damping is available as a result of the average exhaust area, but this damping is temperature-
dependent.,

B4.3.8 Final Remarks. The most common form of gas servo has fixed inlet orifices and variable exhaust
orifices. Equation (B-54) is not directly applicable to such a valving configuration without a few minor changes.
The modification consists of redefining K, in terms of the exhaust orifice only and allowing B to approach
infinity while K. approaches zero. However, the value of K, is held constant. The net result ig that the
supply pressure drops out of the expression for gain. !

For most applications in a closed-loop position serve, the open loop natural frequency is not sufficiently high
with respect to control frequencies that it can be ignored. Some form of the derivative of position is required

in the feedback for damping. The resulting closed loop iransfer function will be at least third order ana probably
of even higher order; the principal behavior can be adequately described with a second order equation. Inthe
absence of more detailed information, a sccond order system with a natural frequency equal to the open loop
natural frequency and a damping factor of 0.3 to 0.5 may be used.

B-69
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B5 AUTOPILOT ELEMENTS

The preceding material in Appendix B discussed certain of the subsystem transfer functions which would be of
importance in tho analysis of the autopilot and control system for a floxible booster. To be complete this appen-
dix would have to include the peculiar characteristics of such items as the following: amplifiers, power supplies,
modulators, demodulators, filter networks, integrators, and various types of feedback tranaducers which could
include linear and angular position, linear rate and tachometer, etc. Of interest raight be such nonlinsar
characteristics as threshelds, limits, nonlinear gain calibration, noise generation {microphonic noise and/or
harmonics), etc.

Thia detailed information will not be presented, for the following ieasons, First, these characteristics are
usually such that they do not greaily affect the adoquacy of most linear anslyses, Thelr effects are usuully of a
second order nature; therefore, they do not constitute the more important stability effects which are of prime
consideration in determining gain and configuration. Second, they are highly specialized topics about which
much literature is available, both as to the characterisiics themselves and to their treatment analytically.

(See Referonces B-8 and B-9 for a more detailed discussion.)
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C1 'THE STABILITY AND CONTROL EFFECTS OF A SPINNING PAYLOAD

Spin stabilization is sometimes used for attitude control of space vehicles. This method of control will hold the
vehicle spin axis alignment in inertial space and also minimize the effect of such factors as engine-thrust-vector
misalignment, and center-of-gravity offset. The spin-stabilized vehicles by themselves do not fall within the
scope of this report because they do not contain actlve control systems.

In & majority of boost vehicles, the upper stages which are to be spin-stabilized sre spun by gas jets just pricr

to separation of those stages. No lower stage control problem is crcated thereby. However, for some configura-
tions, spin is applied to the upper stage(s) of multistage hooster vehicles before launch; this method of spinning

a payload will affect the boost vehicle's siabilization and control sysiem. It is this effect which will be discussed
in this section.

The effects of the spinning payload on the boosi vehicle are divided into two categories which are: 1) gyroscopic
forces and 2) mass unbalance forces.

1.1 Gyroscopic Forces. The gyroscople forces will be analyzed first. Consider the mode of motion of Figure
C-1. The normal modal equation of motion is:

oL L2 9l
LR W77 ©-1

Figure C~1. Schematic of Elastic Booster Vehicle with Spinning Paylasd

The mode shape is calculated with the "'spinning'* payload considered as an inert part of the mode; i.e.,
the mass and the incrtial and elastic properties arc used for the calcu:ation. This method of ireatment
assumes that classical normal modes can be applied with sufficient accuracy to yield a usable solution.
This assumption will be valid only for small gyroscopic coupling, i.e., a small payload spinning at a
relatively slow rate.

For this analysis, the payload is treated as if it were rotating about the vehicle longitudinal axis with an angulav
momentum, H. The mode generalized forces due to the gyroscopic moments then become:

Q == w H (C-2)
Y “‘Y "Y
H Y]
Q [ H
Z H?,' “Z

[}
]
(%)
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The guantity Wi the precession velocity, is:

w = -0
Hy H, z (C-3)
w [¢)]
H, = -¢ q
z HY Y

In the following dincussion the tndex i is dropped, being understood, The pitch plane {(x - z plane) equation then
becomes:

Q g 2
.o 2 Z HY .
g, t W q, = 5=~ = g, (C-4)
A Z )ﬁ /:,;(7 Y
The term o 2' implies a gymmetrical vehicle with pitch plane modes identical to those of the yaw plane. ¥ this
is not the case then the term, ¢ 2, becomes o o .
H H, H

Z Y

Similarly we can write for thu yaw plane:

Q, 0.2
Y HH . .5

Uy ¥ T3+ =5 4, +
Y T e
The gyroscopic forces have the effect of coupling the pitch and yaw planes, Before examining the effect of this

coupling on cloged -loop stability through the autopilot, a basic property of the system may be demonstrated from
the free-vibration forms of Equations C—4 and C-5. Sefiting QY = Qz = O one obtains:

=2
[-54 v (2w2 *—g--z)sz ¢ w4 =0 {C-6)

A/ R

ol
9y

where

« = nutural frequency original uncoupled elastic modes

2 2
= zed S =
Q generalized gyroscopic forcing function ¢ i 1 ] " Il{ B H

1

it

spin velocity.

Py
An identical result is obtained for the generalized coordinate q,

Equation C-6 yields two natural frequencies: one slightly above and one slightly below the original w (for
typical 6 / 7}7values). Clearly then, the gyroscopic cffect of the spinning payioad has been tc couple two
vartificially imcnnpled" modes to produce two new orthogonal modes whose natural frequencies are the solutions
of Equation C-6, and whose coupled equations of moticn are Equations C-4 and C-5.

To obtain a qualitative feel for the rinbility effects of the gyroscopic coupling, a simple control system will be
added to the eyuations. The generalized forces will be set equal 1o the control forces (see Figure C-2):

Q, - - T8 ¢
z z “xr, -1
Qy = - Ty %y

* Note that the units of Q are 1b/ft/sec. -

C-4
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Figure C~2. Bending Mode with Simple Control System Addea

The transfer function between madal metion and control cagine deflection will be expressed as:

5, o
T - e = K,G ) v (©-8)

In a specific case, referring to Figure C-2, G(s) would be given by:

i 1
"G“RKc(8 * KR)

G{is) = -

8+ K
[+

Equations C~4 and C-5 may now be written as:

2 2 TKAG ¢XT 6
{8 + w )qY= - _'1_,__XqY *T”quy
A /A
K G o, _
(52 + 2) . xrz q Q 8 (
w qQ, = -~ T T T = ——
Z /77 ¥4 ][,7 Y

* A symmetric conirol is assumed.

C-5
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or,

(C-9

The roots uf the stability equation (detarminant of the coefficients set equal to zerv) establish the system's
closed-loop stabiiity. As may be seen, these roots nre now functions of 6 (l.a., of 0-112 H) as well as the

- amplifier gain, K A A locus of system roots as 2 {unciion of 5 in of greal interest and can be readily contructed,
as will now be described.

1If the autopilot root locus is consiructed first without a spinning payload, the operating point roots (roots for
nominal amplifier gain K} so obtained ave the roots of the numerator of the coefficients in square brackets in
Equation C-8. The roots of the denominator of this same square bracke: coefficiont are the roots of all lag
terms in the autopilot forward path. Symbolically,

R TKAG_i’E?l R T U A | (©-10
/)/ (s + Pl) [CIR Pz). Lo (s Pj)

where the r;'s are closed loop roots (wlth’(—g - 0) and the Pj‘s are the forward

path poles (K , in the case of the example system of Figure C-2),
c

Now the stability equation trom Equation (-8 may be written as:

[

1r(slr) -

mE)

— 8 w (s + P)
I R VA | Y
[1r NERR] r_)] (C-11)
i K

A root locus may now be drawn for Equation C-~11. TFigure C-3 shows a typical result. Note that each "open
loop" (pole) and zers is doubled. “The general property depicted in Figurn C-3 is the developing of twobending roots
by the gyroscopic payload effect. Note that one of these is less stable than the closed-loop bending root without
spin. The loci departing from the double bending poie have been rotated away from a vorticul departure; this is

a function of whelhes or nol the double servo pole is outside the double servo zero. This property in turn depends
upon the sense of 0, the bending-mode slope at the gyro station. Hence, the sense of this departure rotation
could be reverssed in another case.

C1.2 Mass Unbalance. In addition to gyroscopic moments, a mass unbalance on the spinning payload will
produce transverse harmonic exciting forces. The effect of these forces can be evaluated with a single plane
analysis. This problem is similar in nature to that of the fiextble shaft critical speed problem of classical
vibraiion anulysis. Conslder a payload spinning 2t an angular velocity, . and having a mass unbalance,
ME*. The generalized fovee of Equation C-1 can now be written as;
A & b .3
R A d ““ﬂ'};ﬁ‘i (C-12)

_ V., 77
r'he mass unbalance iz written M7 where M is the spinning mass and £ is the conter ~of~gravity offset, The
term in written Mf , a5 it appears enly in Appendix Ci; both M and € are used elsewhere in the text witn
different meanings.

&

C-6
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Figure C-3. Typical Locus of Elastic Vehicle System Roots as a Function of Spinning Payload Momentum
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Figure C-4. Mass Unbalance of the Spinning Payload
A particular solution may be obtained by substituting
q  bzin pt
into Equation C-12: o
& & M
b(-g° %) i Me = 0 1 (C-13)
BT w) m 1 =, = . -
2 Y w_2~ .
2
B
A counterpart to Equation C-13 with medal damping (¢ ) included is:
o ML 2
B
b —o— : - ~ C-14)

7 2 22 2 2 2
%[i ~w 4" w” R
In either casc (C-13 or C~14), the equation serves to indicate that the mode natural freguency, w, and the spin

frequency, g, should be separated.

The effect of muss unbalance can also be analyzed inclwling a contrel system. Qualitatively, the same results areob-

tained, the closed luup system resonant frequencies and damping being but slightly differeat from the open loop properties.

The coupling which exists between the mass unbalance forces and the autopilot does not affect the system sta-
bility. The magnitudes of the vehicle oscillation, qi b <!>.\:(’), become the guantities of interest. The major ob-
gervation which can be made is that the spin frequency will have to be kept separated from the mode frequency,
and/or the payload will have to be carefuily balanced. The amplitude of oscillation can then be contained 1o
some desired value.
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Maintaining adeguate frequency scparation between the payload's spin frequency and the booster vehicle's
elastic made freguencies can present s problem. It may not be possible, particularly fer the larger boost
vehicles, to use a spin frequency below that of the first mode at launch. When this condition arises, the spin
frequency will have to be changed during flight; 1. e., usually increased to capitalize upon the increase in modal
frequency aa flight progresses.

€2 SOLID PROPELLANT GRAIN MODFS

The solid propeilant grain behaves na « visco-clastic salid.  This visco-eclastic mass must be represented in
some manner when the elastic properties of the booster are caleulated. The simplest and most straightforward
method of accomplishing this is to consider the grain as an inert inass, rigidly attached to the case.

Thir method of analysis is usuglly veed for the elnstic caicuintions on solid prepelant bossters.  Thesc
caleulations are then coupled with tests to evaluate the elastic properties of the booster. This method, while it
has several shorteomings, is in wide usc and has been found to yieid aatisfactory results. *

The visco-elastic properties of the graw could be uged to previde a more comprehensive analysis of the elastic
motion. There are several analytic models which adeguately desceribe the dynamic behavior of the visco-elastic
solid (Reference C-lor €-2). Howcever, it ig genepraliy folt that this area of analysis does noi need to be con-
gidered for study of lateral bending.

There ave several reasons why the visco-elastic properties of the solid propellant grain are not used in
calcalations of the boosler elastic propertics.  First, they are found to be relatively unimportant for bosster
vehicles having a reasonable slenderness ratio.  The grain structure, in response to stress, exhibita a com-
plicated behavior which ean be represented as instantancous elasticity, delayed elasticity, and viscous flow.
For small stresses oceurving for short times, the propertics could be approximated by considering only the
instantancous clasticity. The modulus of clasticity of solid propellant graing currently being uged is in the
range from 500 to 2000 psi at an ambicnt temperature of 70-80° ¥.  Thus, the contribution to the bending
stiffuess ig quite small conpared al that of the vehicie shell which is commonly referred to as the solid pro-
pellant rocket motor casc. ’

A second consideration is the variable nature of the grain properstics thaascives.  The nature of the approx-
imations which can be used for the model to represeat the grain would vary depending on the stress level within
the grain, frequencey of the application of stvess, snd temperature.  The modulus of elasticity is quite temper-
aturc-dependent exhibiting o change of roughly a factor of 10 for every 40 degrees F of change in grain
temperature.  This property alene makes it ergome to deseribe adequately the solid propellant grain
motion. This difficulty in analys{s along with the relative unimportance of the visco-clasgtic cifects on the mods
has prompted most analysts to omit these effecis fram the model used to describe the lateral elastic motion of
the boostier. Bending mode tests vua by various airframe manufacturers have indicated that these omigsions do
aot affect the adequacy of the caleulations.  The above should not be taken to imply that the visco-elastic behavior
of the solid propellant grain is not important in all problems. It docs become quite important under certain
conditions, particularly in the annlysis of the longitudinal modces.

C3 EFFECT OF MASS FLOW AND INTERNAL DAMPING ON DERIVATIONS OF EQUATIONS OF MOTION

The previous seciicns have given the derivation of cquations for a rocket propelled vehicle, with aerodynamic
forces. The equations used ave correct under the agsumptiong made and are as complete as is reasonable. The
preceding eguations dn not, however, include the effects of mass flow within the vehicle, such as occur when the
vehicle is expending propellant. The effect of internal damping of the siructure was also nmitted although it was
reintroduced later as an cquivalent viscous damping in each normal node. These quantities lead to veloeity-
dependent terms in the equationg of motion.  In this soction the cquations are re-derived, and an evaluation of
the importance of these additional terms is made.

* The nonlinesr propertics resulting from fasteniag the various components together to assemble the golid
propeiiant booster vehicle are ionnsd to neaduce offectg in exceoas of the grain motion for nregent configura-
tions.
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C3.1 Velocity~-Dependent Terms Due to Mass Flow, The following assumptions are uged in the analysis of mags
flow terms;

2. ‘The resulting force ucting on a system depends only on the time rate of change of 2 body's linear momentum,
b. The forces exerted by two bodies on each other are equil and oppogite and act on the line joining them,
¢. No matter is created or destroyed within the vehicle.

C3.1.1 Newton's lLaw. The linear momentun i8 defined as:

P “fvm, Vdm .,

The force i8 proportional to the rate of change of momeutum:

F- ® .

Gje

C3.1.2 Euleman Courdinates. The cguations of motion written with fixed sxes conld he uged to degeribhe the

motion of an airframe as o function of time, Due to considerations in ealenlation of inertial and foree data for
the airframe, it is expedient to uge an Eulerian, or body ~fixed, axis system. The equations of motion may then
be expressed in terms of quantities measured refative to these axis,

‘The absolute or inertial rate of change of a vector is expressed in toerms of the rates of change of the veetor
componenis as resolved in bodv coordinates and the body coordinate's rotaifon by

fire) da Vo T
dt | inertial dt | body wx M

where & is the angular veleciy of the body coordinate system.

To apply the preceding reliationshlps to a flexible vebicle with mass flowyag within the system, o very complete
derivation must be obtained. One such derivation Is given in Reference (-3, and {8 summarized below.

For a geacra! mass system the velocity of a muas particle, dm, may be expressed as the vector sum:

PRy
v C P t
where

—
l{c = position vector from an inertial origin to the instantancous mass center of the system which,
in turn, is taken as the origin of the body axes,

P =.position vector from the mass center (body axis origin) io a point fixed in the mass system,

t = velocity of the mass particle, dm, at position =+ p, relative to this {ixed point in the mass
system -~ dosignated as the transport veloeity.

-t

Since it wiil be more convenient to measure p in tho body axis system we write:

p = (di;/'dt)hudy P X

anid hence

- = dp
L + {— -V
\'L c (dt)hody*w xp i .

* Subscript “body' will be denoted by b" hereafier.

c-9
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In this equation the firat term gives the motion of the mass center (commonly called the center-of-gravily), the
second term represents both the effects of center-of-gravity shifts due to mass flows and of elastic motions
within the system, the third gives the effect of using & rotating coordinate system, and the fourth represents
the particle mass flow within the system.

Now if (d p /(1_ {). is the velocity of a point fixed in the mass system relative to the mass center, then it is the
negative of {(dv_/ dt),, the velocity of the mass center relative to the fixed point. The latter expression will be
introduced now, since it will be convenient for evaluating the effects of center-of-gravity motion (iravel) in a
rigid-vehicle body due to propellunt expenditure. Thus:

. d?c -
V=Rc- (-&T)b + w XP+V!.

We assums {d ; /dt), is constant over the system in the following discussion (rigid vehicle)*. If this velocity
is integrated over the mass system, the linear momentum becomes:

- i - ‘(i?c‘\
P=M R - (—— 'S {C-16)
d dt {
L ¢ Jy
where M = dry
vol
Vi = —1-;— Vt dm = average internal mass velocity:

vol
and use has been mads of the fact that. by duﬂnitlon.ff:dm = O,

For angular momentum the corresponding result takes the form:

H -1 we f C-1
[ vol pox vt dm { N
where Ic =~ moment of Inertiu tensor.
o = angular veleeity of body axls with respest to inevtinl space.
p = position vector from center of mass 10 elemert of mass.
V, = Iinternal transport velocity,

-

The preceding are now adapted ic a mass system representirg a vehicle from wnich mass is being expelled,

* This assumption is not necessary in practice, since the elastic modes of a system as commonly computed
satisfy the condition

f dr
(__») dm - 0O
dt 7 p

where (drc/dt)b is the velocity due to elastic motions.
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Force is aqual to the rate of change of :nomentum of a closed system of particles. In the case of the vehicle it
is converiont to write:

F o= P -D (1) (C-18)

where Dp (t) is the rate at which linear momentum is being transferrecd into the system, l.e.,

fend lim A;
Dp () = = Ateeo B

The same can be writien for angular momentum:

J, = bred Hc - DB:: (t) {C-19)
where —‘H«' {t) is the rato at which an~lar momentum is boing transferred into the system:
'I‘," iy - - lim i!ilg
He ' At-s0 At

For linear motion, the result of combining Equations (C-16) and (C-18) Is:

= - - & - - d |- dr(.
MR, Foem (T, -0 v Gxa ) m g 'L(Tﬁ‘)b -

it
[

-

whnere '\‘/e = uvernge axhaust velocity and

Po = vector from mass center Lo the center of the exhaust,

In the special case of a rigid body:
d?c _
M = a" = Vl =

and the rigid body equation becomes
M®E -F
c
For rotational motion. Equations (f-17) and (C-19) give:

d (r =\ 7 - - . (‘ll‘c
— {1 EE / - b -
at L w) e fpp X "t ds M o X ps

surface AT

-~ i — —_

- Ew -~ — v V odm . (-2
at  Jyolufne . OF (-20

-

where p = outward mass flow rate per unit area and

E = exhaust tensor defined hy:

WP x {(wxpids - Ew .
surface
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For a rigid body, ;I; =W = § = E = 0, and one has:

—

d -
= by = d .
dt “c w) [

The preceding equations may be used to evaluate the effects of fluld transfer upon the equaiions of meticn of a
vehicle It is first necessary to ostablish which ts1ms are already included by use of the engine thrust as a
force when the equations of motion aro written "conventionally". It iz ghown In Reference C-3 that the rocket
engine thrust and rocket thrust torques are given respectively by:

. - . - dVv . - drc -
TR = M (\,e - Vi) B I-‘p - M Ty bie.: X M Po ~ M a A - Mvi (C-21)
and
- - - - - (drf oy - -
J. - - [ ppxV datJ -Mp x 77-3) - (—\) f p x V. dm
B < surfnce * v N dt b dt b J vol t
I‘ '(“(‘ T -~ - -
..I_ <—zl—t--) v |k i w- @ X f px Vt dm (C~22)
b | vul

whore F_ and & P are forces uand torques due to environmental back pressure (integral of exhaust pressure

minus ambient pressure ovor the engines' exit planes).

The equation for translational motion, Equation C-1¢, may be rewritten as:

= . e /dz"\ dr,
MR = F+MF -~V 1wxp ) v M{~—=<} .+ Mz x [—=C
[4 4] i e b

2] at
(4\7; L
- x*——) - Mw x Vi,
ac/,

Using the expression for engine thruet given above and with tha shservation that

2~ N
i*_tc.) 931)
dt b d¢ b

this becomes:

. o dr dr
MR :FdTB'zwa “;:—l—' + M % - {C-23)
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Likewise, for rotation

dl
d Tyo T o+ T Ll 7 . .
g Gew) =3, 23 - dt)h @ (C-24)

in these equations of motion the applied forces and torques ave understood now {9 exclude specifically those
offects due to the difference between rocket vugine exhaust pressures and the atmospheric back prossure, since

these are included in lR and J B

Examining these last equations of motton, it is scen that certain of the effects of mass flow within the vehicle
body are reflected as terms involving the products of retes of change of body inertial properties and the body
angular rates. In general, these terms are negligibly small and may bie safely omitied irom the equations of
motion, as is done in the main text. The remaining additional term arises from the acceleration of e vehicle
mass center relative to the fixed portions of the vehicle. This tevm, too, s mos{ often salely neglected.

Although the mass flew terms do not significantly affect the motion of the vehicle, considered as a mass system,
they could have an effect on the motion of the genernlized coordinates {modes) used to represent the clastic
motion. The next section will analyze the effect of mass flow and internal damping on the motion of these eiastic

modes.

C3.2 Veloelty~Dependent ‘Terms Due to Damping (Modal Coordinates). The method which is uses o calculate

the elustic properties (nermal modes) is presented in Appendix A4, This method astumes constant coefficients,
no mass flow terms, and, also, no intersal damping within the structure itself.

The simplifying assumptions made in the derivation of the modes result in ellmination of all velocity—dependent
terms. The classes of velocity- or pseudovelocity <dependent lenas ihat result in dimnping fall into three general
clusses: viscous, ¢eulomb, and <trictural.  These classes of damping will he considered along with the mass
flow terms . ag both effects lcad to velocity-dependent terms which must be secounted for when the modes are
calculated.

For a simple spring mass system with a viscous damper the equation of motion is:

MX o ('V X + KX l‘cxwrmtl

The visvous damping used here {2 the simplest form of damping to analyze analytically.
For coulomb damping the preceding equation would be written

X
Xl

X + ¢ + KX = F .
MX (F X ]extemul

By uge of a describing function to find an cquivalent linear gain, onc arrives at:

. 4C .
MX +~ —= X+ KX -

w

o]

2l

»

¥
external

where « I8 the frequency and X 1s the peak value of X.

For structural damping the forces are usually approximated by a force that epposes the motion and is in phase
with the velocity. For slmplicity of analysis, and also from a lack of basic knowledge g8 to the exact nature of
damping present, one assumes that the magniturde of the damping is proportional to the elastic restoring force.
This force can be represented inathematically by replacing the elastic restoring force term, KX, by the terms
KX+ } gx) {cee Reference C-4). The constant g‘{ is the structural damping coefficient. Since, for modal

calculations, the motion of the modes is harmonic [a = w ), 1he offact of damping car be represented as:
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- . VERe - X
“equivatent VXM &) = an B

The above defiues a fixed relationship between amplitude and velocity, which would only hold for harmonie
eucillation al the resonant frequerncy.

3.3 Velocity-Dependent ‘erms Due to Mass Flow (Modal Coordinates). Before analyzing the effact of the
preceding terms on the calculation of normal modes, the mass flow terms wiii be anaiyzed so that the effect of
botls damping and mase flow terms can be conaldere:d.

Tho firat section of this appendix gives the velocity dependontterms for the mass flow in a rigid vehicle. These
are shown to bo negligibly amall in the aggregate over the vehicle. However, tnis cannot be projected to imply
that the masa flow forms will be negligible for each incramental scgment of the elastic vehicle. The forces at
ench segment do indewd exist and their effect must be analyzed to insvre adequacy of the assumption used in
calculating the modui parameters.

If we considor only the notion normal to the longitudinal axis, the vafe of change of momentum (RCM) is equai
to tho momentum lost, minug momentum leaving, minue the momentum entering, minus the momentum gained,
and plus the product ot mass times acceleration. Thus, for a descrete eloment of the veam we can write:

¥

- m g = F (C-25)

- m m g .
LY L1 EX

m g + m_ g ¢
L(v) k4Ym EIE
Subseripts ¥ ¢ entering
L. = leaving
Y -~ mass station

FEX is tho "externai’’ force aciipg on the beam segment (this will include elastic forces).

For a serles solution involving several discrete masses of a flexibio vehicle some distribution of velocity
betvieen two adjacent masses will have to be provided. 'The easiest method available is to distribate thess «uch
that half the force necessary to transfer the propellant from one segment to tize next will be supplied by each
segment. Thus, for the ith segment;

()

My L M

where M a is the mass flow rate and the subseript, a, refers to station a, the free surface location of the

propellant. . .
o o ta-nt Y
g 2
S,
LA Yey
ay, 2 ’
Thus, one may write;
FEXi TN e i<a
¥ q o fa -a Y/
EXa mﬂ qa ! m, (qa qﬂ . l) B i=a
x4y "’a(“‘-l'qxn)/z .................... 1>a
FFXI : ln‘tql ' ma ((li-«l i(]1)/2“ lnﬂ‘&*l .............. =t ,
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where (i) refera to the vehicle "tail" or more precisely, the rocket gimbal. The velocity, dt .1 wiil be the
transverse exhaust velocity component, written hereafter as q EX )

For multiple propellants:

= m g, + ' ; - ;
¥ (3t Gmy oy R PR

EXi i

where 2, b. . n refer to n propellants carried aboard. The combined cquations can be written aa follows in a
specific case:

ve = - \
0 0 o o) 0
may 9y
q : 0 /2 - ;
my, 1/2 1/2 o o ay
" M iey 179 .
m3q 3 + mn [¢] /2 ¢} 172 (0] q3 N
m ; / O 159 -
4{ 4 O O 1/2 172 ((4
mc o } o s} 0 1/2 1/2 4y }
S S
—
O 0 0 0 0 I F
r 4 1
0 0 o 0 o 1 o F
AP 2
. A U
+m [e] [¢] / -1/2 ( ~(m +m O ={F 26
b 1/2 1/ 0 (13? (m +m) ry (C-26)
0 2 0 -1/ : 0 ¥
(6] 1/2 1/2 (14 4
(¢} 2 /3 Y y "
_(') (¢] () /2 l_/_ (’5 QEX \15

ar in matrix notation abbreviated aa:

1 g T 1o} V- - o 1o d .0 e}
Dl S P - T A .« (C-
[mJ l_q] * omy [0 ?1/2_! qpomy {0 Fijs qs (ma 4 “b) o ‘ Fr. (C-27)
. EX
The above should be adequate for discussion. A vehicle may contain several propellant tanks; however, it is

unlikely that propellant will be consumed from more than two tanks at any given instant.

C3.4 Equations of Motion With Velocity Dependent Terms. The homogenous eguations for an N-degree-of-
freedom, lumped-parameter linear system is wriitcn as

tCJ i"f ) {:‘] %‘1( - o (©-28)

b gy
mJ jat

=

[ 97
v
%)

-
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wheve the matrix [C] s also a symmetric matrix. Assume & transformation is made which diagonalizes the

inortisl and stiffncas mateices:

such that
] dnb o L] Lo bt [x) b= o
where

b - (01 [ [e]
Rl - [ ] B

=
“—.
1

*
The system of equations is uncoupled if [ ¢-] [(‘.] [d‘] is also a diagonal matrix. Based upon the preceding,

Caughey {Keference C-5) shows that a necessary and sufficient condition for a damped system to have classical
normal modes is that the damping matrix be diagonalized by the same iwwaasformation which uncouples the
undamped sysisin. Thus, If the undamped system's normal modes are #] , the damped system will possess
these same normal modes if

le*] [c] o]
is a diagonal matrix.

Caugley goes further to show the general conditions on 'Lcj under which theze normal medes will diagonalize

it. Buiefly, these are thut in the canonical form of Equation (C~28) (the form wherein the inertial matrix is a
unit matrix) the damping matrix must be expressible as a polynomial in the elastic matrix. (This is a generaliza-
vion of Rayleigh's resull that the damping matrix bo a linear function of the stiffness matrix.) In the light of this
result, the two types of velocity~dependent terms of concern herein may be discussed.

If the structural damping is represented as Cl“ - kg / w or its equivalent for a multidegree of freedom

Q
systern 7C,,, . B k] , it is easy to see that the damping matrix will have the required property.
= Wy, *]

Those velocity—dependent terms from mass flow effects (Equations C-27 or C~28) are somewhat more trouble-~
some, a8 the contributions fo the CE Q matrix are not symmetric, lowever, the following may be used to

reduce the equation to a point where a simplified result is apparvent.

Assume for the moment that the eguations of motion are to be written from an energy viewpoirt. The folluwing
potential functivas are written.

a. Kinetic energy 1/2 L.(.g_/ [\M {q}

bh.  Potential energy 1/2 {_c'l_/ rKJ {q}

¢. Dissipation function 1/¢ L(i./ [C N ] ‘q}
LEQI

where C_,_ is the matrix contalning the mass flow terms. This nonsymmetric matrix .oay be divided Into
symmetric and aptisymmetric parts:
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Cug] = B + [

Referring to Equation € -2¢ it {8 seen that the symmetrie parts of CEQ come from the main diagonral only, and

that the matrix [S} consists of only two terms:

’

m at the free surface
3/2

and m at the gimbal* .

2

These symmetric matrix elements cannot be shown to satisfy Caughey's criterion (above) and hence will affect
the modal caleulations. However, two points of view may be adopred: they may be considered ae smalil effects
(which they are) and be neglected, or they may be treuted as additional motion-depondent external forces in
solution of the nonhomcgenous equations,

Finaily, we note that

L4 Al ta) 20

if [A] is (as postulated) an antlsgymmetric matrix with & null {zoro) main diagonal,

‘This appendix has analyzed the effect of velocity ~lependent terms on the derivation and use of classical normal
modes. The analysis indicated that the mode calcuintions can be accomplished with the velocity-dependent terms
due to structural damping and mass flow oxcluded and that their effects may be added later, during the autopilot
und control system analysis, to the mode itseif. This resvlt {s In agroement with the methods presented in the
body of the report.

C4 LONGITUDRINAL MOTION TERMS IN §YSTEM EQUATIONS

It is often assumed by those working in the fieid that, based upon the restriction of small modal deflections, the
booster masscs deflect and applied forces net only tr: a lateral direction, Subsequently, the majority of modal
calculations aixl gencralized forces applied to the mode urc arrived at by assuming rotation and lateral transia-
tion, but no longitudinal translation of either masses or applicd forces. On the surface this approximation may
appear to be a good one, but this is not always the case. It is hoped that the following example may contribute
some insight to the problem and indicate what approxfmations, {f any, may be made.

First, assume a uniform irec-free beam of constant stiifness anil mass distribution over its entire length. A
Force, T, is applied and fixed to the ond of the beam, such that the forse rotates and translates with the end
of the beam; 1. e., it has the identical slope and deflection us the ¢nd of the beam. Figure C-5 represents the
deflected beam and applied force, T.

°
£ i (i)
" 2 [”x ql] dx o %
R
2
g o "l;‘:ﬂ)
! "T{T/ y T REFERENCE

£y,
.ASI‘IC AXJs

Figure C-5. 3Schematic of Uniform Free Beam Deflecting Under a Thrust Force

¥ The other flow term involving g exhuust {s traated as a thrust term in writing the nonhomogenous system
equations of motion.

Q
-
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For small deflections, and therefore small angular rotations, the work dcne by the force, F, in a deflection,
L is to he computed.

WORK = lateral work + longitudinal work*

a4 ¢
_ W ¢} (1) g i 2
- / T %r 4 (gp da) v T2 (UXT qx) dx .

o -2

If the deflections und slopes are known only at regular intervals (Ax) over the vehicle length, the longitudinal
work may be approximated by numerical integration. For the uniform beam the work is:

i 2

o A2 |

worRk - 1727 o o 2Ty o® 8 !
xr “xr YU s i

If wo compare the longitudinal work to the lateral work by means of the ratlo, R, for varjous modal deflections,
ap it {8 found that the value of the ratio increaass from a value of one fur the rigid body pitching mode to a value

of 3. 08 for the fifth bonding mode.  Since the longituding) and lateral work are of opposite sign for all modes, they
tend to oppose each other. Thus, there is zero work done due to rigid-body pitching. The following char: gives
a vomparison of the ratio of longliudingl work to lateral work for the various modes.

L 2
Ax 3’1 o

Pitoching 1
Plunging Undefined
ist Bending 1.38

2nd Beneling .77

3rd Bending 2.24

4th Bending 2,50

5th Bending 3.08

‘There ratiog were ohtained using data from Bishep and dohnson (Reterence C-6). The numerieal integration was
periormed using intervals equal to £ percent of the overall length,

Although this is only a cursory louk at the problem, it may be deduced that the omission of the longitudinal

2 ¢ R
gencrazlized force (T A x Z rrx(i) 4, ) and the lateral generalized force (T UX('lI)‘ "’\g} qi) is a good

approximation for the lower body-bending modes of the hooster.  For the higher order bending modes, where

* pince the bewmn has ;i uniform mass distribution, the cinter of mass will be the jowgitudinal elastic center.
Alsn, this integral uses the expression

-~

ﬁ:ls - dx} =~ 1/%’(%3;—) dx .

2

-
&




WADD TR-61-93
Apvil 1961

this approximation is not geod, the bonding mode calculations themselves may be in significant error since the
inertial icads due to the longitudinal motion are not usuatly included in the calcuiation of the bending modes.

When analyses of the tﬁgher ovdor bending modes ars required at greater accuracy, it is8 desirable that the
bending mode ealculations allow for the longitudinal inertial loads and that the longitudinal generalized forces
be included in these analyses.

In deriving the equations of motion for the flexible booster vehicle (Sectior 3) the only work done by the rockei
thrust on each mode is taken as due to tae inclination of this thrust vector with respect to the elastic axis at the
(1) (1)
v f.e, - v
gimbal: f.o. { Yyve xr )Y
terms, as discussed above, are assumed to be self-cancelling and are therefore omitted.

T is the component permitted to do work. In this way, the rematning work

C5 DYNAMICS OF A NONCOMMANDED ENGINE

The arvangement on the boorter vehielo may b such as to have engines which, while fizing and capable ol
elastic metion, ars not being utilized for control, at least at the time-instant boing analyzed. As these rocket
engines have thrust, there will be nonconservative forces connected with any elastic motion that the engine
executes. Thus, the elastic motiors represented by modes may couple through these noncommanded engines, as
well ns the sutopilot and control system {sce Pavagraph 4. 3. 2. 5).

‘The analysis of the coupling through noncommanded engines will be outlined in this section. The same cyuations
are used for this coupling 2e wore used in the analysix of load torque fcedback, ’1‘I , for the commanded engine.
K

The equation of motion [or the rocket ongine, as given in Paragraph 4. 3.3, is:

‘15;:1 [(Mn‘ R * o "0))”2 . —'r(" o v 0))5]“"

N XT R " Xe 117 Xe XT i
5y 2 2 K. RZAZ
2 - AR <
PR U [CI AT (F T S -
R il ¢ L&
R ) R L

K (s . V(s % s v Q
- 3 5. P ) k i
RZ:I tWh )( WD,

f, = T 2 ; ; .2\ (C-30)
S 2¢ s
Mj ( ' ;oY) w )

where the Qj's are additional gereralized force tnputs from nonorthagontl moedes.

The block diagram, Figure C-6, shows one mode and two engines ~ one with both conmmand and load tergue
feedbiek und the other having only lond-torque fcedbuck. The engine servos must be lincarized by means of
describing functions; these relationships are amplitide-dependent.  Hence, he reiationship between the velative
motion of the different engines considered must be determined by an iterative procedure.  To establish the total
transfer function of the mode, including coupling through the nonconunanded engines, the following procedure
may be used.

a. An amplitude of commanded engine motion [61 | is chosen. For this amplitude the deseribing Tunction

coefficients for engine number i are evaluaicd for use in Eguation C-29,

b. Using Equation C-~29 {the 6(_ /qj transfer function of the autopilot is presumed known) and the equation:

6 . o _((,(j)

0 -
ko % e~ xr ) oq . (€31

-1
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4 is found. This evaluation is made for s = Jw'j. where w'j {s the open loop modal frequency.

The passive engine (number 2) amplitude, | 62[ , is next estimated from Equation C-31 by using as a first

' . )] [4))
trial 3, = O La, {5, | - - I(r e, My
m l 2 (1) ( Xe XT ) ;]

Using this trial valuo of §, the describing funciion cociticienis lor rapation <29 (as applied 1o engine
number 2) are ovaluated,

Eqguation C-29 is now solved for 6'2. using the value of qj previously obtuined (step b, above), This value
of q1 {s hold cunstant in this :nd succecding steps,

With this value of &' anew tral value of 8_ is obtained from Equation C-81 and sieps d - { are repeated

iteratively to converge on the final value of § o “The test for convergence should be applicd to both 62
and 5'2 .

‘The transior funclion can now be evaluaied az to the offeet of the loud torque feedback. The results af this
feedback have been analyzed for a particular engine and are shown in Figure C-7. This figure shows the locus

]

of the vector which represents the motion of a heniling wode’s open lcop pole due to this feedback. From this
1t can be seen that the load turque feidhack produces a destabilizing eifeet (moves poic towards rigii) fua

W LW ey and 1w stabilizing effect forw . o W' whore Wawh i8 the lamiliar "rail-Wags- Dog" [requency.
i e en
W b
Fwn M S
ROk N .

w

SILE NN
“rwn

=
o
~
8}
i3
743
1
«n
=
o)
[«
&
[}
=
[=]
X
Q

LOAD TORQUE (LB-SEC/FT)

Figure ©~7. infiuence of foad Torque Feudback on the Effective Mode Open 1oop Bending Poie
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It should b noted that the above result is not completely generel, since it depends upon sense (sign) and
relative magntizdes of elastic modal deflections at the ait and. For some very high frequency modes the
reversed effeel is occasfonally sound (see Section 5.
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