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A YO-YO DE-SPIN MECHANISM

FOR SATELLITES

by
0J. V. Fedor
0

Goddard Space Flight Center

SUMMARY

Equations are developed fur the yo-yo de-spin mechanism.

Un.der conditions usually met in a de-spin appli'otion, ihc zqua-

tions can be greatly simplified. A cmputatio, sheet is !_u ,,ate

based on ;.he simplified equations. The design of a de-spin mecha-

nism is thus reduced to reference to a chart and a few simple

calculations.
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THEORY AND DESIGN CURVES FOR

A YO-YO DE-SPIN MECHANISM
FOR SATELLITES

by
J. V. Fedor

Goddard Space Flight Center

INTRODUCTION

The yo-yo de-spin mechanism is essentially two pieces of wire with weights on the

ends (Figure 1). These wires are symmetrically wrapped around the equator of the

csatellite and the weights are secured by a release mechanism (Figure 2). At a pre-
0

selctej time afte: satc!lite spin-up and separation from the launching vehicle, the weights

are roleased, thu7 icarding enough momentum to reduce the spin of the satellite to the

desired value. It is the objec't cf tiis note to l.es.ut ',-e c -c %*.--spn th-ory in eq,,atin-

and curve form so that the designer can readily apply the theory to 4-e 4_sz.i,6 o; OIc de-.spin
rm;Chanisr.

Fe'- g; 'L .kvalues of the satellite moment of inertia and radius, ,rd for a given amount

of spin reduction, the designer wants to determine the weights, ihat i;,st -. , heo

length of wie, wnd the maximum tension in the wire. In what follows, equations will be

developed for these quantities. It will also be seen that under certain conditions usually

met in de-spin applications, a great simplification of the equations is possible. With

this simplification, all of the design curves can be put onto one dimensioniess graph.

ANALYSIS

After being placed in orbit, the satellite travels at essentially constant velocity and

the centrifugal action is cancelled out by the gravity force. Since any equation of motion

written for the satellite would be independent of this constant velocity, the satellite can be

considered stationary and spinning about a fixed axis for the purposes of the present

analysis.

A
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Figure I Dc-spir. weights and wire

Figure 2 -Release mechanismn
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There are two phases to the spin reduction process considered. In Phase 1 the wire
is changing in length and is tangent to the satellite. In Phase 2 the length of the wire is
constant but its position is changing from tangent to perpendicular to the satellite. With
proper design, the wire can then be released when it is perpendicular to the satellite. It
should be noted that releasing the wires after Phase 2 is more efficient, weight-wise,
than releasing them after Phase 1.

Phase 1 Analysis

A sketch of Phase 1 with its coorlirtate system is shown in Figure 3. Only one wire
is showxi, as the system is considered symmetrical. Also, the system is considered
torque-free; small moments due to the earth's magnetic or gravitational fields are
neglected.

The total kinetic energy of the system, and also the Lagrangian, is

2 2
A

where n is the lotal mirs of both weights and T is the mr.nent of inertia nf the satellite
about the spin axis. Initially the wires are considared wcight.iss; ]acer. ? ;ro-thd wiL
be d.oveioped to tk.h the weight of the wire into account without disturbing the form of the
eakaiinns. U,:ing the transformation cquations

x acos& ". s i .  (2)

y a sill n- cos , (3)

the Lagrangian can be put into the form

T I2 + 1 m(E 2 b2 + a2, 2) ()__

The length of wire unwound at any time 2

during this phase is

E= (-). (5) 9

The equations of motion in Lagrangian
notation are

dt( _ T = Q0 = 0. (6)

dt JZT (7) 'aure 3 -Phase I coordinate system
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where 5 and 0 are considered to be generalized coordinates. Equations 5, 6, and 7
can be integrated once to yield an equation which expresses the conservation of momen-
tum. Eutlion 4, which- is enqu 1al to a cons-ant and represents the cnnservation of energy,
can be combined with the conservation of momentum equation to yield and b as a
function of the length of the wire during Phase 1:

00+E/2 (8a)= 1+ 2 2/,\2

w id

2 2 O 
(8b)

where o is the initial spin rate and X2  I/m + a2 . The above-mentioned equations

can also be integrated to give the length of wire as a function of time:

E(t) = aot. (9)

The t'oti tension in the wires is simply the product of the mass of the weights and the
Ac zeration:

F, = mAin -m(a' + E82) (lOa)

Sierc x., is tne acceleration of the mass m along the wire. Substituting Equations 8a. and
8h intn E quation 10a. yields

4m 0
2

E (1 - a2
/X

2
)

F1  (I + E2/\ 2)2  (10b)

It can easily be shown that the maimum tension during Phase 1 is

F1 ma, = 3 imX2(1 - a2 /: 2 ) (11)

or in dimensionless form

F1 m~F - 1.3(1 - a2/X 2 ) (12)

where =
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Phase 2 Analysis

A sketch of the Phase 2 arrangement is shown in Figure 4. The total kinetic energy
in this phase is

T 2 + 1 m[a2 2 + 2ae cos(0 - ') + + " (13)

where = (from Equation 5) since 2 is a constant. This phase is much more com-
plicated analytically than the previous one. Fortunately, we are mainly i:trested in the
spin at the end of Phase 2 (at the release of the wire, when, -/ = 0) and i.e -.. ;sion in
the wi.,. They b.Ah can be otalned by applying the conservation of momentum and of
energy, and an equation similar tr Equation 10.

The conservation of energy (at 0 - y = q) gives

I + m(a 5 + )2 cost. (I +,a2 (14)

and the conservation of momentum gives

Ot . I ' 1 2 r .( f + / a "I ' -) " c s t . = ( I + m a 2 ) q 0  ( 1 5 )

Combining Equations 14 and 15 we obtain

( - r)I +
F ma2 (16)

ma-

or, rearranging a bit,

(G + 1)2

(/a + 1)2 (1(7 + 1) (7)

where r = and G (1 - r)/rla 2

for conciseness oi notation and later

development. The force in the wire

just at release is

F2  m(a 2 + .p52)

= + (18 Figure 4 - Phase 2 coordinate system
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In terms of G, r and f/a, the force is

F M.f ar2 [+ * ~/ + 1)'121.
F 2  (/a + 1)f/a JJ9)

The force given by Equation 18 or 19 is a maximum for Phase 2 because the length of the

wire is coristant and the angular velocity of the wire ( ) is a maximum just before release

(the a r2/f term contributes very little to the force).

S:m-,ifI.atfi< of Equaions

The equations developed thus far are exact in that no analytical approximations have

been made in their derivations. A great simplification can be made by noting the follow-

ing: G in Equation 17 is large (in the order of 200 or more) for most practical spin weights

and spin reductions. Thus if G is replaced by G + 1 in t!e denominator of Equation 17, we

have

(G + 1)2 +)

G' (20)(,/ -.+!' 1

, angin Eqlpki 20 into a dimensionless form gives

I 1 + r -(f/a + 1) - 2 '21)
M(a + f )21 -

Now, if E/a is greater than 2w (f is one circumference length) the (e/a + 1)-
2 term in

Equation 21 is negligible. Hence, we ha-;e the very simple expression

I l+rI(22)
m(a + f )2  l-r

Equation 22 has been plotted in Figure 5.

Calculations indicate that the maximum tension in the wire occurs in Phase 1 in most
cases; hence the simple expression of Equation 12 can be used to calculate this maximum

force. Since a2/X2 is small in most de-spin designs, the maximum force is simply

=1.3 mco 2  (23)

Consistent with Equation 22, Equation 19 can be simplified to

[(r + /a 1
M6021 + _L- r21(4F2 m03 f/a (4
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Distributed Mass of Wire

We shall now develop an approxi- .

mate method to include the distributed
weight of the wires without disturbing
the form of the derived eq.uations. From
Figure 6 tle kinetic energy of ith par- a

ticle is 1 + 2 where p is
the mass density per unit length of t"e _

wire. Su, rng ovr all the particles, - x
we hale

x5 ( ) (25)

By using the transformation equations

xi =a cos + g cos , (26) Figure 6 - Coordinate system for distributed

Yi a sin 0 + f sin y (27) weight of wire

and replacing the summation by integration, the total kinetic energy -f the wire is found
to be

pi, 1. 2 + 2 a"-r c; " " •Y
K1wire +a c( y'r

p a y e2a2 + aE2 co9(9 - ) -- (28)

Since e is large just before release, -,*- is he largest term in Lqualion . la ialy ap-
proximate formula we should include all of this term. Separating Equation 28 into two
parts results in the following:

] Awre = 2 + 2a cos(0 - Y) +f2, 2l
wie 2 3L 1

+ - q + a cos( -) (29)

Just before wire release, is also small, so the seco-,r- part of Equation 29 is smali
compared to the first part. Hence,

'kire - + 2sf cos (- ' 1 + (30)

where pf1/3 is one-third the mass of the wire. Note that Equation 30 is similar to the
second term of Equation 13. Note also that when 0 - y = r/2 and = b (that is, Phase 1),
Equation 30 is similar to Equation 4. With this approximation in Phase 1, the kinetic
energy due to the change of wire length is al v neglected. The change of length of the

wire does not contribute much to the total kinetic energy of the wire. Thus we can
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include the effect of the weight (mass) of the wire by including one-third the weight of

the wire in the weight of the mass term of the derived equations. We therefore define

m in the derived equations in the following way:

rn + - (31)

where mo is the mass of the spin weights and p is twice the normal mass density of the

wire (to ta'- into account both wires). This equation should be valid for large spin
reductions (r small).

APPLICA:1ON OF DESIcH CURVES AND EQUATIONS

We shall now apply the simplified equations to a practical case. In Reference 1, the
following information is given for the S-30 Ionosphere Probe Sateilite:

I = 2.5 slug ft
2

a = 1.25 it
CID = 157 rad/sec

t'-a = 10n/3 rad/sec

A calcul-Lion for r gives

10/45 = 0.222

From Figure 5, with r = 0.222, we read the vaiue 1 57 for I/M(f + a) 2. If we let
S10C inenP:, a simple calculation for the weight of the spin weight' "nd wire gives

Ing :+ 2.5(32.2) = 0.151 lb.
1.57(t + a)2- 1.57 (221)2

A check of the assumption that G is large givs a value of 266 which is more than ade-
quate. Reference 1 reports a value of 0.150 lb. calculated from the theoretically correct

equations.

Taking into account the weight of the wire, we have for the spin xaights alonc

mog = mg -- 1.gpe

1 206
= 0.151 - 1 (0.005) T2" = 0.12! lb.

where a double weight density of 0.005 lb per foot has been assumed.

The calculated maximum tension in one wire is

1 3 m 2 X 3(2.11) (47)2 (23.12) 156.6 lbs2 -(32.2)
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The value read from a graph in Reference 1 is 155 lbs. A calculation of the maximum

force in Phase 2 (Equation 24) gives 150 lbs.

To aid in systematizing de-spin calculations, a computation sheet has been developed

(Appendix A). It has been found convenient to use in de-spin calculations. It is believed,

also, that this sheet helps to reduce human errors.

CONCLUSION

Th sir :plified equ oions derived here greaty facilitate the application of z:,-spin

me-hanism theory to a particular desig~. With the calculation sheet, the procedure

has been reduced to reading a graph and making a few routine calculations.

REFERENCE

1. Counter, Duane C., "Spin Reduction for Ionosphere Probe Satellite S-30 (19D),"

Mav 'h4i Space Flight Center Document, September 12, 1960
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Appendix A

Yo-Yo De-Spin Calculation Sheet (Radial Release)

DEFINITION OF SYMBOLS AND UNITS:

I - moment of inertia about spin axis (slug ft2 )
a - radius of satellite (ft)

- length of one yo-yo wire (t)
m- total mass of both spin weights + 1/3 mass of both wires (slugs)

F~. - maximum tension in wire (lb)
initial :,i, rate (rad/rec)

f - final spin rate (rad/sec)
r - final spin rate divided b- initial spin rate
g acceleration of gravity (ft/sec2)

TO CALCULATE THE TOTAL MASS (WEIGHT) OF SPIN WEIGHTS AND WIRE (mn):
Record

slug-it 2 w= rad/sec
a _-ft __- _ ft. rad/sec

Calculate

r - -
00co
0

With this .alue of r , read the value of IVr# + a)2 irom the desigi cur.e; . ,Al tnic value
B. 'chen calculate the following:

S + I g 32.2 = lbs.
( )( )2

TO CALCULATE MA727MUM TENSION IN ONE VI1E. Ca!kulate K by
K2  

= ---I + a_2 =

m

or

K = ft.

Also

Wo
2 

= _/sec
2
:

1.3 -2 2X = 1.3 22( ) = lbs.

CHECK OF UNDERLYING ASSUMPTION OF THE EQUATIONS: Calculate G as follows:

G (1- r)I
rm

2

If G >_ 100 and E/a > 2-n , the answers ,rA accurate to about 1-1/2 percent of the theo-
retically correct value.

NASA - Laahey FlW, Va.
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