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Quarterly Progress Report No. 7

on

Project N5ori-07856

SURVEY

During the three months since the Quarterly Progress Report of October 15, 1952, the

Group has moved into its new quarters, and the improvement in the general morale and rate

of progress has been profound. Instead of being in cramped rooms, which encouraged most

of the members of the Group to work elsewhere, there is plenty of space, and in particular a

very fine conference room, which is often used several times a day for general conferences

of "he whole Group, as well as almost constantly for private conversations, work on the

blackboard, and computing. With my own office adjacent to this conference room, the situa-

tion is ideal for real scientific work, and the rapid progress during the three months shows

strikingly the value of adequate working space. The Administration of the Institute has been

very farsighted and generous in making the space available.

Since the beginning of the term, I have been giving an advanced series of lectures,

which a number of the members of the Group, as well as a good many other students, have

been attending. My object in this course is to cover the whole application of the determinantal

method, and the self-consistent field, to the problem of the electronic energy levels of atoms,

molecules, and solids. During the first term I am handling atoms and molecules, and the

solids will follow iii the spring. I am using this course as an occasion for formulating the

whole procedure wvhich we are evolving in the Group for handling molecular and solid-state

problems, and many things have become clarified in the process. I am writing a very com-

plete set of notes for the lectures, which are being passed out in planographed form during

the te.zm. At the end of the first term the notes for this term will be collected into a Techni-

cal Report, dealing in a very broad way with the electronic structure of atoms and molecules,

and this Technical Report will be circulated to the same mailing list which receives these

Quarterly Progress Reports. Similarly the notes on the theory of solids, during the second

term, will be circulated as another Technical Report. One feature of the first Technical Re-

port will be a very complete bibliography which I have been preparing, on the electronic theo-

ry of molecu)ar structure.

The point of view to which we are coming more and more all the time is one which I

have outlined in several recent progress reports. This is to set up a considerable number of

one-electron wave functions or orbitals, make all the possible determinantal wave functions

from these by pic-king out different sets of orbitals, or different configurations, and finally to

solve the problem of configuration interaction between these configurations. This is the

method which has been used by Meckler in his study of oxygen. It is a method which, in its

straightforward form, cannot be used for very complicated problems, for the number of con-

figurations goes up almost astronomically. It then becomes of the greatest importance to

know how to treat it so that we can pick out the corfigurations whose interaction -s important,
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and disregard the rest. To get experience leading in this direction, we have been seeking ex-
amples sufficiently informing so that we can learn a great deal from them, but, simple enough

so that we can solve them. We have considered a number of problems, with surprising re-

sults. In methane, for instance, it seems that a straightforward application of the configura-
tion interaction method would involve us in a secular equation with the order of magnitude of
150 rows and columns, a clearly impracticable task. However, we find that the water mole-

cule involves only 18 combining configurations leading to the ground state, and this we feel to
be practicable, so Drs. Koster and Schweinler have joined forces in a very intensive program
of calculating this molecule by very complete and accurate methods. Though this molecule

has been treated many times during the last twenty years, the results which they should ob-

tain should have a much greater accuracy than any previous work.

Drs. Koster and Schweinler are not using the approximation which Meckler did, of
using Gaussian atomic orbitals rather than the correct type of orbitals. Thus the three-

center integrals, which are very simple with Gaussian orbitals, become a major undertaking

to compute; many of the previous workers with such problems have merely estimated such
three-center integrals. Koster and Schweinler, on the contrary, are calculating these inte-

grals exactly, so that their work should involve no approximations. The standard method of
computing these integrals involves the use of the spherical Bessel and Hankel functions of
imaginary arguments. Complete tables of these functions do not exist, and while individual

entries in the tables are not hard to compute, and are being computed by Koster and Schwein-
ler, a complete set of tables would be extremely useful for all workers in this field. Accord-

ingly, with *he corperation of Professor Morse, and of Mr. Corbato. a gcaduat student in

Professor Morse's group, WE± are starting a program of preparing such tables, using tl,1 i6;.,
equipment at the ±,istitute. The tables, when ready, should be extremely useful in all our
molecular and solid-state calculations. For instance, Parmenter's calculations on chromium
have been almost brought to a halt by the difficulty of computing the necessary three-center

integrals; his work will become much easier when the tables are ready.

A number of other molecular calculations are being made to test the method of con-
figuration interaction. One of these Ls the calculation of Mr. Merrifield, graduate student in
chemistry, on the (FHF)- ion. This is being carried out to investigate the nature of the hy-

drogen bond; his work so far deals with the preliminary problem of the HF molecule. The
configuration interaction problem of the (FHF)- ion does not involve many configurations, and

by getting a solution which reduces to the correct limiting behavior as the atoms get far apart,

which we shall do, we believe that we can find a reliable curve for the energy of the hydrogen

as a function of its position between the fluorines, for different fluorine-fluorine distances.

This curve should of course show a single minimum for small enough F-F distance, and two

minima as the F's get further apart, and the hydrogen becomes bound to one of the fluorines

or the other. The present calculations deal only with the linear configuration of the ion.

Several other molecular calculations are under way. Mr. Callen's work on configura-
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tion interaction in Hz was mentioned in the preceding progress report: its ob'ect is simply to

test the configuration interaction method in a case where we know the correct wave function.

Mr. Allen is working on the molecule of KC!, with a view to understanding how to handle the

polarization effects which are undoubtedly important in a molecule of that sort. This case is

particularly interesting on account of its value to the workers in the field of nuclear reso-

nance; nuclear data exist, from use of the nuclear quadrupole interaction, from which we can

get information about the gradient of the electric field at the nucleus, and Mr. Allen will hope

to calculate this, if the problem proves simple enough. Dr. Kaplan is looking at the problem

of S 8 . This chain molecule is one of the simplest cases of a molecule held together by satu-

rated covalent bonds. We feel that it would be a good one to study first by the molecular or-

bital method, and then to explore ways of approaching the configuration interaction problem.

The number of interacting configurations is enormous, but there may well be ways of ap-

proaching the problem which can give us a usable approximation, and we should hope to ex-

plore these. The ion C10 4 , which Dr. Koster was working on, has been temporarily dropped

in favor of the work on water; we felt that the configuration interaction in water was a more

important problem than the C10 4 ion, in which we could not hope with our present means to

do more than a molecular orbital treatment.

In addition to all these problems of molecular structure by the method of configuration

interaction, which we are undertaking mostly to gain understanding of the method, we are be-

ginning to make important progress with the magnetic problem, as handled by configuration

interaction methods. In the Quarterly Progress Report of July 15, I indicated the sort of ap-

proach which we could hope to make. In particular, on Page 3Z of that Report I pointed out

that the naive energy-band theory, equivalent to the molecular orbital theory without con-

figuration interaction, could show unequivocally that for substances with wide bands, ferro-

magnetism was impossible; but that for narrow bands it can only show that ferromagnetism

is possible, but cannot distinguish without more accurate calculations than have been made so

far whether ferromagnetism actually exists in these cases, or non-ferromagnetism, or anti-

ferromagnetism. I also pointed out, on Page 34, that for a band almost filled, with only a

few holes, these holes would tend to repel each other, and that this effect should lead to a

correlation effect whose influence on ferromagnetism should be examined, and might throw

light on such problems as nickel, with its almost filled d band.

Dr. Statz, on his arrival, became interested in this problem, and he has proceeded

with it, following a general line which I had investigated last spring, though I had not de-

scribed it in these Reports. Two holes in an almost filled band are very similar to two elec-

trons in an otherwise empty band, and we can properly ask the question, will these two elec-

trons have a lower energy if their spins are parallel or antiparailel? I was able to show last

spring that if we set up the equations of motion of these two electrons by means of Wannier

functions, we can then separate variables, separating off the motion of the center of gravity

of the two electrons rigorously from their relative motion. The wave function for their rela-

-3-
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tive motion shows distinctive symmetry properties: for the triplet states, the wave function

is antisymmetric, and for the singlet it is symmetric. These states represent states of a

continuum, not bound states, on account of the repulsive potential between the elettrons. The

lowest triplet wave function, being antisymmetric or having odd parity, corresponds to a p-
like wave function, while the lowest singlet wave function corresponds to an s-like wave func-

tion. We should therefore think it plausible that the singlet, or s-like function, would have to
have an energy below the triplet. Dr. Statz has examined this question, and has been able to

show that this is indeed the case: two electrons in an otherwise empty band will always have
their spins antiparallel in the lowest state, and it will always require energy to raise them to

a state of parallel spins.

Dr. Koster has extended this proof to the case of two holes in an otherwise full band;
and thus we conclude in a very straightforward way that the holes in an almost full band will

always arrange themselves in a non-ferromagnetic manner. The theorem holds, however,

only for a non-degenerate band; as Dr. Statz has shown, if each atom has two possible Wan-
nier functions in which the electron or hole can be located, we have the possibility, provided

the bands are not too broad, that a triplet state will lie lower, in which the two electrons,

when they find themselves on the same atom, set themselves with parallel spins in different

atomic orbitals, their energy being lower in the triplet state than in the singlet by Hund's rule

as applied to atoms. We seem therefore to be coming to the straightforward conclusion that
the origin of ferromagnetism is to be found in the effect which Van Vleck (in his contribution

to the Washington conference on magnetism) has called the intra-atomic effect. Two elec-

trons (or more often two holes) on a given atom want to set their spins parallel, on account
of the same interaction which always tends to make an atomic state of maximum spin the most

stable; and they carry their spins over to the neighboring atoms, influencing other electrons

on the neighbors to set themselves parallel too.

This of course is similar to the idea which Zener has been recently propounding.

Nevertheless we do not believe that Zener's interpretation is correct, that the electrons
which carry the memory, so to speak, of the magnetic moment of one atom to the next atom
must be 4s electrons in the iron group. We see every reason to believe that this function is

fulfilled by the 3d electrons themselves, and believe that a 3d shell with a certain number of

holes would be ferromagnetic, on account of the degeneracy or overlapping bands of the d

shell itself. These arguments do not in any way supplant the earlier conclusion that ferro-

magnetism is impossible when we are dealing with broad bands; they merely supplement it

by saying that under certain circumstances ferromagnetism is also impossible with narrow

bands. The reason why we do not believe that the 4s electrons are as important as Zener

thinks is simply that the 4s band is so broad that the Fermi energy involved in promoting 45

electrons to have parallel spin is almost certainly great enough to discourage such promotion

on a large scale, whereas as has -ust been stated we do not agree with Zener's premise that

the interaction of the d shells themselves is not ferromagnetic.

-4-
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These important conclusions, which we are carrying further, should show the power

of the energy band and configuration interaction method for handling magnetic problems,

which I stressed in the July 15 Progress Report. Two other investigations are underway

dealing with similar magnetic problems: Dr. Kikuchi is continuing the study of a one-dimen-

sional chain of atoms each containing a single electron in a Gaussian orbital, and Dr. Pratt

is studying the same problem from a different point of view. Dr. Kikuchi is starting with a

band filled with electrons of one spin, empty of electrons of the other spin, and then is in-

vestigating the problem where one electron has its spin reversed, to see if the reversal

lowers the energy (non-ferromagnetic interaction) or raises it (ferromagnetic interaction).

Dr. Pratt is comparing the energies of three configurations: first that with all spins parallel,

next that of an antiferromagnetic configuration with alternating spin, finally that with the

lower half band filled equally with electrons of both spins, using the energy-band approxima-

tion to the latter configuration. These calculations are all being made properly, using or-

thogonalized atomic orbitals, and taking ionic states properly into account. Now that we know

Statz's result, we assume that both investigations will tell us that this model is non-ferro-

magnetic; but we feel that it will be informing to carry the calculations through, so as to

check our results from several different points of view. It should be pointed out that these

calculations of the one-dimensional chain are not being carried out by the Heisenberg method,

and hence are not at all comparable to the well-known results of Hulthen, Bethe, and others:

we regard the present calculations as having much closer relation to a correct treatment of

the magnetic interaction problem.

These results of which I have spoken represent the most interesting and significant

new results of the last three months, though several other pieces of work continue in an in-

teresting way, as will be plain from the contributions to this Progress Report. In my own

contribution to this Report, I have collected together some of my thoughts on the general sub-

ject of configuration interaction, amplifying some of the remarks that have been made recent-

ly in other reports. In this connection, I have arrived at a new formulation of the method of

the self-consistent field, more general than the Hartree-Fock method in that it is not limitcd

to a problem in which we deal with only a single determinantal function, but applies equally

well to a problem with configuration interaction. It has the same advantage as the simplifica-

tion of the Hartree-Fock method, which I recently proposed, resulting in a single potential

energy function applicable for all molecular orbitals, and in fact reduces to that method for

the special case where we use only a single determinantal function. When this method is once

formulated, it seems so obvious and straightforward that one wondars why it was not thought

of years ago. I believe that it is almost the uniquely right way to look at the self-consistent

field merhod, and feel that it will replace the Hartree-Fock and other methods in the applica-

tion of the self-consistent field method to molecular and solid-state problems.

J. C. Slater



1. A GENERALIZED SELF-CONSISTENT FIELD METHOD

The Hartree-Fock method, and the simplification of it recently suggested by the
writer, rest on the assumption that we are dealing with an n-electron wave function given

by a single determinant, or antisymmetrized product, formed from n one-electron orbital

functions of coordinate and spin. Often, however, we wish to deal with a more general case,

in which the wave function is approximated by a linear combination of such determinantal

wave functions. The process of combining such determinants to ge: a better approximation

that can be secured by one alone is generally called configuration interaction. In this note

we shall examine the more general self-consistent field method to be used in such cases of

configuration interaction.

If we start with a complete orthogonal set of one-electron spin-orbital functions u.,
then the products ujx) u(x) . up(xn), where the indices j, k, p are to take on all

combinations of values, obviously formr a complete orthogonal set of n-electron functions of
coordinates and spin, and the antisymmetrized products or determinants (n! )" /2. det {uj(xl)

uk(x2) . . up(xn) form a complete orthogonal set of antisymmetric n-electron functions of

coordinates and spin. Thus the exact wave function of an n-electron problem can be expanded

as a linear combination of such determinantal functions, so that a proper treatment of con-

figurational interaction can give an exactly correct solution, and can yield a function which
takes full account of the correlation between the motion of electrons, though of course it is

well known that a single determinantal function by itself does not correctly describe this cor-

relation. The expansion of a given wave function in terms of determinantal wave functions

may be slowly convergent; studies of the problem of the ground state of helium by Taylor and

Parr,(Z) and by Green, Mulder, Ufford, Slaymaker, Krawitz, and Mertz,(3) show that in this
case the convergence is rather slow. On the other hand, the recent success of Meckler(4) in

studying the oxygen molecule suggests that in at least some imporiant cases the method of

configuration interaction may converge well enough to be of practical value. It is well known

that the Heitler-London and valence-bond methods can be regarded as examples of configura-

tion interaction between a number of different configurations set up in terms of antisymme-

trized products of molecular orbitals. Thus any advantages lying in those methods can surely
be secured by using configuration interaction, between a relatively limited number of con-

figurations. The case of oxygen studied by Meckler included enough configurations so that

his treatment is more general than a valence-bond method, and the same thing is true of

various other investigations under way in this laboratory.

Let us then consider the problem of determining the one-electron orbitals u. by a

self-consistent method. It is at once obvious that no variation method, like the Hartree-Fock
procedure, can be used in this case, for that depends on choosing those u.is ,vhich allow us

to make the best single determinantal function. In the present case, no matter what orbitals
we use, provided they form a complete orthogonal set, we can eventually get a precisely cor-
rect answer, by carrying the configuration interaction far enough. The only criterion which

we can now use to determine the ui's is that we wish that set in terms of which the process of

-6-



(A GENERALIZED SELF-CONSISTENT FIELD METHOD)

configuration interaction will give a series which converges most rapidly. This is not a cri-
terion which is readily expressed analytically. Accordingly we turn in quite a different direc-

tion for the determination of the u.Is, and go back to something much more like Hartree's

original intuitive argument for setting up the self-consistent field. We shall demand very

simply that the ut's be solutions of a Schr6dinger equation representing the motion of an elec-
tron in the field of all nuclei, and in the field of all other electrons, averaged over the mo-

tions of these other electrons.

This very simple requirement leads to a perfectly unique Schrbdinger equation. Let
the wave function of all n electrons be U(xI, x. . ). This is an antisymmetric function,

which may well be expressed as a linear combination of determinantal functions of the type

we have just been discussing. The quantity U*(x1 . * Xn) U(x1 . . xn) dx1 . . dxn measures

the probability that simultaneously electron 1 be in dx 1 , . . electron n in dxn (where we are

including the spins with the coordinates). The electrostatic interaction energy between elec-

tron I and all other electrons is I(J) e 2 /r1 ., where j goes from 2 to n, and r 1 , is the dis-

tance from electron I to the j electron. Thus

dx jU*(x• . 1n) L(J) e&/rlj U(x 1 . . x) dx 2 . . dxn

can be considered as the probability that the electron I be in dx 1 , times the average value of
the electrostatic interaction energy as averaged over all positions and spins of the electrons

2. n. Since the probability that electron I be in dxl, irrespective of the positions of other

electrons, is dx.iU*(x . ) . . Xn) dx . . dxn, we see that the average potential
energy of interaction betwee n electron I and all other electrons, when electron I has coordi-

nates and spin given by x1 , is

fU* (x x9 ) eZ/r 1r U(x1 . . xn) dx . dxVe(xl n 1 1 1 n n ( .i

fU*(x . xn) U(x• . n) dx2 . dx

If we add this to Vn(x0), the potential energy of an electron of coordinate and spin x, in the
field of the nuclei, to get V(x 1 ), then we see that V(xl) represents the average potential en-

ergy of the electron of coordinates and spin xl, averaged over the motions and spins of all
other electrons. We assume, then, that the correct generalization of the method of the self-
consistent field is to set up a one-electron Schr6dinger equation for an electron moving in
this potential V(x).

We have already mentioned (Ref. 1) the simplification of the Hartree-Fock method, by
which a single Schr6dinger equation was introduced in place of the Hartree-Fock equations,
in the case where the wave function of the many-electron problem could be written as a single
determinant. If we replace our function U by a single determinant, then it is easily shown
that our Schr6dinger equation reduces to that given in Eq. (7) of Ref. I, so that the method of

-7-
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Ref. 1 is a special case of that which is now proposed. We can give the same interpretation

to the potential Ve that was done in Ref. 1. That is, it is the potential energy of interaction

of the electron with coordinates and spin x1 , with an electronic distribution of density

(n - l)fU*(x1  y n) U(x. . xn) dx3 .dx 3 ' n0(IZ)

fU*(x1 . . x) U(x . xn) dx 2 . . dxn

with coordinates and spin given by x2 . This electronic distribution consists of a total charge

equal to (n - 11 electrons, and its density goes to zero when x 2 equals xI; that is, when elec-

trons I and 2 have the same spin, and are at the same position of space. This is just as if

the electronic distribution consisted of the whole charge of n electrons, diminished by an

exchange charge whose properties are like those discussed in Ref. 1. In other words, the

qualitative discussion given in Ref. 1 is more general than the assumption made there that

the wave function could be represented by a single determinant or a single configuration. In

particular, the simplification introduced in Section 5 of Ref. 1, replacing the exchange poten-

tial by a value calculated from a free-electron gas, is as plausible a simplification in the

general case of configuration interaction as it is for the single determinantal function, and is

not tied in any way to the Hartree-Fock case.

One way to appreciate the useful features of the expression (.. 1) for the potential V ise
to ask how to calculate the electronic repulsive interaction energy of the whole system. The

average values of each term e2/rij over the wave function are the same, on account of the

antisymmetry of the wave function, and since there are n(n - 1)/2 pairs, the total interaction

energy will be just n(n - 1)/a times the integral for one term. Now if we multiply Ve(Xl), as

giveninEq. (1. 1), bythe denominatorfU*(xI . . Xn) U(x 1 . . x.) dx 2 . . dxn, and integrate

over dxl, the result will be just the value of (n - 1) interaction terms like e 2 /rij. Thus the

total interaction energy will be n/Z times as great as this. But nJ U* U dx2 . . dxn is just

the total charge density, in units of the electronic charge. Thus we see that the total elec-

tronic interaction energy can be written as

:fp(x,) Ve(x,) dx, (1.3)

where p (xl) is the electronic charge density at the position and with the spin given by x 1 .

The expression (3. 3) is formally just like the interaction energy of a charge distribution

with itself in classical electrostatics; only in the classical case, Ve would be related to p by

Poisson's equation, whereas here it is not. The possibility of writing the electrostatic en-

ergy in this form, in the quantum theory, has been discussed by the writer, (5) using argu-

ments closely related to those of the present note. The reader should realize clearly that,

if the exact wave function of the problem is used in calculating the potential Ve(XI) of Eq. (I. 1),

and in calculating the charge density, then Eq. (1. 3) represents an exact result, including al'
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exchange terms. The total electrostatic energy of the system of course includes in addition

to (1. 3) the interactions between electrons and nuclei, which can be computed from the charge

density p (x1 ) alone, and the interactions between pairs of nuclei.

We have now seen that there is a straightforward method in principle for setting up a
self-consistent field calculation for any atomic or molecular system. We set up the potential

Ve(X) + Vn(X), usingEq. (1. l)forVe(X). We solve Schr6dinger's equation for the one-electron
orbitals in this potential field. By general properties of Schr6dinger's equation, these or-
bitals form a complete orthogonal set. We form from them a complete set of antisymme-
trized products of n one-electron functions, and set up and solve the secular problem in-
volved in finding those linear combinations of antisymmetrized products which make the en-

ergy of the n-electron system stationary. One of the resulting solutions represents the state
of the system in which we are particularly interested. We then take the antisyrnmetric wave

function U representing this state, formed as a sum of the antisymmetrized products, and

insert it in Eq. (1. 1), tofindanewV . Our condition of self-consistency implies that this final

V e should be identical with the original value.

The one-electron orbitals which we have obtained in this way are what are usually
called molecular orbitals. Most writers, for instance Lennard-Jones (6) and Roothaan, (7)

have derived molecular orbitals from the Hartree-Fock method. On account of the involved

nature of this method, their discussions are necessarily somewhat complicated. In contrast,
the present method, setting up a unique potential and Schr5dinger equation of the usual sort,

of which the molecular orbitals are eigenfunctions, makes a discussion much simpler. For
instance, the potential Ve will usually have the same symmetry as the nuclear system, so
that the application of the group theory to the discussion of the syrmetry properties of the
molecular orbitals follows very straightforwardly. Another advantage of the present method

is that it gives us an infinite set of orbitals, in a much more direct way than the Hartree-
Fock method, and the configuration interaction gives us (in principle) an infinite number of

solutions, representing excited configurations. Since the one-electron orbitals are not chosen

to make the problem self-consistent for these excited configurations, the process will pre-

sumably not converge as rapidly for these other configurations as for the ground state (if, as

usual, it is the ground state which is made self-consistent), but the calculation of these ex-

cited configurations is on as firm a theoretical basis as that of the ground state.

The procedure which we have outlined is of course an idealized one which could never
be carried through in practice, since we can neither solve the one-electron Schrbdingerprob-

lem exactly to get the one-electron orbitals, nor carry out exactly the problem of configura-
tion interaction. In an actual case, then, one must compromise, and our general discussion
has been more with the aim of suggesting an ideal toward which one may aim in the calcula-
tion, than with the hope that it can represent a practicable program. We should ordinarily

set up approximate solutions of the self-consistent problem in the form of linear combinations
of atomic orbitals. We then note the following situation. If we are using a finite and very

-9-



(A GENERALIZED SELF-CONSISTENT FIELD METHOD)

limited set of orbitals, and are solving the configuration interaction problem between all con-

figurations which can be set up from these orbitals, as Meckler did in the work referred to,
then we can equally well set the problem up in terms of any linear combinations of the or-

bitals. As Meckler has pointed out, the final results will be independent of what linear com-
binations we use. In such a case, it is useless extra labor to find those combinations of our

orbitals which best represent solutions of the self-consistent field problem. This is the spe-

cial case, for a limited number of orbitals, of the general statement that if we are completely

solving the problem of configuration interaction, it makes no difference what complete or-

thogonal set of one-electron orbitals we use.

The difficulty with Meckler's procedure, however, is that as the number of electrons
and orbitals goes up, the number of interacting configurations increases enormously. In

such a case we can obviously handle interaction only between a limited number of configura-
tions, normally those of lowest diagonal energy, and with largest non-diagonal matrix com-

ponents of energy connecting them with the ground state. We may expect that in such prob-
lems, if we are using all configurations arising from N orbitals, then our results will be

the more accurate, the more accurately we can write the N lowest molecular orbitals of the

self-consistent field problem as linear combinations of these N orbitals. Our aim in setting

up linear combinations of atomic orbitals, or other methods of setting up one-electron or-
bitals, must .hen be to have a set of unperturbed one-electron functions capable of approxi-

mating the lowest N molecular orbitals as accurately as possible.
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2. THE WATER MOLECULE

Calculations have been started on the wave functions for the water molecule including

configuration interaction. The nuclear framework of the water molecule has the symmetry

C Zv. Using Is wave functions for the hydrogen and Is, Zs, and Zp wave functions for the oxy-

gen, one is able to form 210 determinantal wave functions if the Is and 2s orbitals of the oxy-

gen are kept filled. They can be divided into systems as follows: 5 quintets, 45 triplets, and

50 singlets. The 50 singlets lead to 18 combinations of determinants that have A1 symmetry,

that is, are completely symmetric. Of these 1 can be described as 0--(H,)+, Z as 0-(H,)+,

8 as O(H,), 4 as 0+(H 2)", and 3 as O++(H 2)--. These states, i1 . . ý,8, are given in the

form of the table below. The column headings represent one-electron wave functions. The

a and P represent conventional spin functions. z is the oxygen Zpz function, where the z

axis bisects the H-O-H angle; x is the Zp x-like function; and y is the 2p y-like function, where

the plane y = 0 contains the nuclei; and s and cr are the Is and Zs oxygen functions. c is

the sum of hydrogen functions made orthogonal to s, a', and z, and ix is the difference of the

two hydrogen functions made orthogonal to x. This gives an orthonormalized set of one-elec-

tron functions. Each row in the table represents a determinant, i. e. , the first row repre-

sents a determinant whose diagonal element is y(l) a(l) y(2) A(2) z(3) a(3) z(4) P(4) x(5) C(5)

x(6) A(6) s(7) a(7) s(8) P(8) c(9) a(9) ar(i0) %(10), a state being represented by a sum of de-

terminants, the coefficients in this sum preceding the row.

In terms of these states the valence bond wave function (non-normalized) is given by

V.13.= /fI2 cos(81 2 /Z) sin(el8 /Z) a5  + sin2 (8 12 /2)(ll - 410) + cos (9 12 /2)(48  - y9 )

where 812 is the H-O-H angle. It may be interesting to compare the energy of this state with

the final solution to the problem.

Among these 18 states there are 114 non-vanishing matrix elements of the spin-free

Hamiltonian operator. These matrix elements have been expressed in terms of the orbitals

given above but will not be recorded here. They involve, besides one electron integrals,

one-, two-, and three-center integrals of the interelectronic interaction. These integrals

will be calculated by the e.ethod of L8wdin, (1) using the Hartree-Fock wave functions of oxy-

gen(2 ) for our one-electron orbitals. The convergence of this method for three-center inte-

grals was tested on the typical integral ffSA(1) S B()I/r1 2 [a(2)] 2 dr 1 d r2 for R(O-H) =

2 atomic units. This integral can be expressed as an infinite series of which the first four

terms are

c{.405 + .152 P1 (cos eiz) + .0340 P2 (cos 812) + .0144 P 3(cos 61l}2

The convergence appears to be rapid. For certain decails of the expansions necessary for

evaluating this integral, see the section of this Quarterly Progress Report by Corbato, Koster,

and Schweirnler.

Calculations on the energy of the water molecule will be carried out as a function of
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(THE WATER MOLECULE)

Table 2-1

State Coefficient ya yP za zp *j op xc. 0 x *•a x P sa sp cra crp

1ý 1 2 3 4 5 6 7 8 9 10

1z 1/r2 1 2 3 4 5 6 7 8 9 10

-I/ /z 1 2 3 4 5 6 7 8 9 10

J3  1/rz 1 2 3 4 5 6 7 8 9 10

- 4/ 1 2 3 4 5 6 7 8 9 10

+4 1/2 1 2 3 4 5 6 7 8 9 10

1/2 1 2 3 4 5 6 7 8 9 10

- 1/2 1 2 3 4 5 6 7 8 9 10

-i2/ 1 2 3 4 5 6 7 8 9 10

5 2/12 1 2 3 4 5 6 7 8 9 10

Z/1/T 1 2 3 4 5 6 7 8 9 10

l/ 1 2 3 4 5 6 7 8 9 10

-/11- I z 4 5 6 7 8 9 10

-/ 1 2 3 4 5 6 7 8 9 10

-/ / 1 2 3 4 5 6 7 8 9 10

+6 1 z 3 4 5 6 7 8 9 10

+7 1 2 3 4 5 6 7 8 9 10

+8 1 2 3 4 5 6 7 8 9 10

9 1 2 3 4 5 6 7 8 9 10

+10 1 2 3 4 5 6 7 8 9 10

S1 2 3 4 5 6 7 8 9 10

12 1/ r2-- 1, 2 3 4 5 6 7 8 9 10

S1 2 3 4 5 6 7 8 9 10

+13 l/ V/* 1 2 3 4 5 6 7 8 9 10

I/ 1 2 3 4 5 6 7 8 9 10

+14 i/v'z I Z 3 4 5 6 7 8 9 10

-/2-1 2. 3 4 5 6 7 8 9 10

+15 1 f Z 1 3 4 5 6 7 8 9 10

1 1 /2 3 4 5 6 7 8 9 10

-1141 2 3 4 5 6 7 8 9 10

+17 1 2 3 4 5 6 7 8 9 10

+18 1 2 3 4 5 6 7 8 9 10
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(THE WATER MOLECULE)

internuclear distance and bond angle. Since the integrals which appear are closely related to
"those in the OH molecule, we shall carry out a calculation of the energy of this molecule si-

multaneously.
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3. THEORY OF MOLECULAR OXYGEN

An article covering the work on molecular oxygen is being prepared for publication,

to appear most likely in the Journal of Chemical Physics. The numerical material (integrals,

matrix elements, eigenvectors) will be compiled into a Technical Report of this Group.

In the way of tying up loose ends: it will be remembered that the ground state energy

curve showed a hump. This came about from the behavior of the Morse curve which was fit-

ted to the calculated points at small internuclear distances. This Morse curve, although it

yielded splendid values for the binding energy and the vibration frequency, rose to a value of

6. 91 e. v. at infinite separation rather than zero. Our picture of the true energy curve,

therefore, was one which started from the axis at infinite separation, moved above the axis

to a maximum at about R = 4. 0 a. u., and then descended along the Morse curve. (The B =

4. 0 point was found by calculation to lie above the zero line.) We have tried to find experi-

mental evidence of this hump but there doesn't seem to be any clear-cut way of exhibiting

it -- or denying it. As we've said, the vibrational levels come in the right places but they

haven't been observed high enough so that the hump would have any unique effect. However,

it seems that other people have considered an energy curve which extrapolates to a positive

height at infinite separation -- Pauling for one.

Paulingl)" has been led to the concept of the valence-state of an atom, a hypothetical

state which is not "one of the stationary spectroscopic states of the isolated atoms, but ....

is defined as that state in which it (the atom) has the same electronic structure as it has in

the molecule. " In the paper referred to, Pauling deduces the value of the energy of this state

by four different methods all of which agree reasonably well with one another. One of the

methods is an extrapolation of the vibrational levels, the introduction of a Morse curve which

goes to 6. 69 e. v. at infinite separation. We have not been able to do more with this concept

of the valence-state but the fact that it has been introduced lends credence to the hump, or

vice versa.

Reference
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16
4. SCATTERING OF NEUTRONS BY O0

For use in interpreting diffraction experiments a calculation is under way to deter-16
mine the differential scattering cross-section of slow neutrons on pararnagnetic O1 gas in

(1, Z,3
Born approximation. 3) The neutron-0 2 interaction Harniltonian takes account of the

nuclear-type interaction between the neutron and the two oxygen nuclei, and also the interac-

tion between the neutron magnetic moment and both the magnetic moments and the charge mo-

tion(4)" of the Oz electrons. It is planned to use Meckler's ground state 02 electronic wave

function(5) in evaluating matrix elements.
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5. CONFIGURATION INTERACTION IN HYDROGEN FLUORIDE

The hydrogen fluoride molecule is being treated as a preliminary to a study of the bi-
fluoride ion (FHF)- which is the simplest system exhibiting the phenomenon of hydrogen bond-

ing. The hydrogen bond occurs very widely in chemical systems, but very little is known of

its fundamental nature.

The ground state wave functions for hydrogen fluoride are formed by assigning the ten
electrons to the hydrogen is orbital and fluorine is, Zs, 2po0, 2p+, and Zp_ orbitals in such a

manner that the resulting determinantal wave functions belong to the 1 Et (totally symme-
trical) representation of C0 V' and correspond to singlet states. In all of these configurations

the fluorine Is and Zs orbitals remain filled. These restrictions result in a total of four con-

figurations for the ground state.

Hartree-Fock wave functions have been chosen for the fluorine atomic orbitals. (1)

The only atomic orbital which is not orthogonal to all others in the molecule is the hydrogen

Is; this is orthogonalized by adding appropriate amounts of the fluorine is, Zs, and Zp func-

tions. The required integrals are being evaluated numerically, and the two-center integrals

are evaluated by expanding the hydrogen Is orbital in spherical harmonics about the fluorine

nucleus, a method due to Coulson. (2)

The electronic energy is being calculated at internuclear separations of 1. 50, 1. 65,

1. 75 (equilibrium value), 1. 85, Z. 00, 5. 00, and 7. 50 atomic units.
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6. THEORY OF THE S8 MOLECULE

An investigation of the electronic structure of the S8 molecule is in its initial stages.

Interest in the problem stems from the resemblance of the S. molecule to a linear solid with

periodic boundary conditions in which there also is valence bonding between neighboring

atoms. It is hoped that the present study will reveal some of the characteristics of valence

bonding in periodic structures and thus furnish some hints as to the treatment of diamond,

germanium and other crystals in which valence bonding is dominant.

The eight sulfur atoms of the molecule are situated at the corners of two squares of

side 3.4 A whose planes are parallel and separated by 1. 15 AS1 ) The centers of the squares

lie on a line perpendicular to their planes and corresponding sides of the squares make an-

gles of 450 with each other. Briefly, the sulfur atoms define a puckered octagon.

The initial plan of doing a configuration interaction between all states completely sym-

metric under the group of operations of the S8 molecule and having total spin equal to zero,

similar to the treatment of the H 2 0 molecule being carried out by Koster and Schweinler, (2)

was abandoned when a rough numerical estimate indicated that even if only 3p atomic states

were considered partially occupied (3s states and all states having n < 3 were left completely

filled), the resulting secular equation would have about 109 rows and columns. The further

omission of all states in which any atoms are ionized would not improve the situation signifi-

cantly.

The large number of states that must be taken into account in the straightforward so-

lution of this relatively simple problem of 8 identical atoms makes it apparent that some fur-

ther drastic approximation must be made in order that many-atom problems be tractable.

The compromise with reality that has been accepted, at least for a first treatment of the

ground state of the S. molecule, is a single determinant wave function using as one-electron

functions the "equivalent orbitals" whose virtues have recently been expounded by Lennard-

Jones and his co-workers. (3) An advantage of this scheme is that the equivalent orbitals can

be transformed into molecular orbitals without changing the value of the determinantal wave

function. We will thus be able to §ee what molecular orbital combinations occur in a state

based on the intuitive idea of localized bonds, an idea which has been used so successfully in

the interpretation of the structure of many complex molecules.

The determination of the equivalent orbitals and molecular orbitals is now under way.

The symmetry group of the S8 molecule has been analyzed and its seven irreducible repre-

sentations (four one-dimensional and three two-dimensional) have been found. The symmetry
(3)orbitals composed of atomic s and p functions have been constructed. From these the

molecular orbitals will be determined by solving secular equations (one per representation)

between sets of symmetry orbitals each of which forms a basis for the representation being

considered. Equivalent orbitals will then be constructed by the methods indicated in the

series of papers of Ref. 3.
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(THEORY OF THE S8 MOLECULE)
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7. CONFIGURATION INTERACTION APPLIED TO THE HYDROGEN MOLECULE

In the last Progress Report we discussed the solution of the hydrogen molecule prob-

lem using M. 0. constructed of L. C. A. 0. In this basis several main diagonal elements

of the final fourteen-by-fourteen secular equation have been set up,

We are now following a procedure similar to that employed by Green, Ufford et al.

to test the speed of convergence of the. finite sum of determinants to the correct wave func-

tion. Specifically, we are utilizing the very precise function found by James and Coolidge(Z)

4J. C. and performing the integrations

c i ----(Di @j. C. i= 1, 2 14

where D. are the Z x Z determinants built up of our M. 0. The completeness relation re-

quires that

c = 1c=l

By this method we can find not only the relative weights of the terms included, but the im-

portance of all those ignored.
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8. NUCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KCl MOLECULE

Calculation of the electric quadrupole interaction in the KCG molecule is in progress.

Recently, Fabricand, Carlson, Lee, and Rabl() have obtained the quadrupole coupling con-

stants for K39 and Cl35 in the KCI molecule and the present calculation is directed at evalua-

tion of that part of this constant w hich depends on the molecular charges outside the nucleus.

It is further hoped that this determination will serve to test the hypothesis of Logan, Cote,

and Kusch(?) that this part is positive for both K and C1 in KCI.

The general theory for the interaction between a nuclear quadrupole moment and mo-

lecular electric fields has been given by Casimnir. (3) The appropriate term in the Hamil-

tonian is:

HE, J) = ZeQ {X.e(3 cosZ 8- l)/r 3 }Av. FA(, (8. 1)

where

F( 3(I •y 3 +4(T. -( ) . I(I+ )J(Jj+l)
F~') = ____ .______,_____J)ZJj- 1) 21(21 - 1)

e = electronic charge

Q = quadrupole moment of nucleus

r = radius vector from nucleus to individual molecular charge

8 = angle between r and a space fixed axis

- = nuclear spins in units of h/2n

= angular momentum caused by molecular rotation in units of h/Zwr.

The average in Eq. (8. 1) is taken over the normal electronic state, the appropriate vibra-

tional state, and the rotational state for which M = J. Nordsieck has shown(4) that for a

diatomic molecule Eq. (8. 1) may be written:

Hm I-) = eq }%~ (5 ~) (8. 2)

where

q V = Ze p (r, 8') 3 cos2 2 - 1 d'r
82z R3r 3 Av. 3q = ~ U Av.(8.3)

1e 3 ':r )k dr1  .. n}
= ze1 3 - 12 Xf4(re0, r.8, .. rnX)I ( cos ' -1 d ,

V = electrostatic potential produced by all charges except those inside a small

sphere surrounding the nucleus

z = coordinate along the molecular axis

8' = angle made by the radius vector r and the internuclear axis
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(NUtCLEAR ELECTRIC QUADRUPOLE INTERACTION IN THE KCI MOLECULE)

R = internuclear distance

p = electron charge density

The average in Eq. (8. 3) is to be taken over the zero-point vibration of the molecule. The

coupling constant mentioned earlier is defined as eqQ and it is this quantity which is ob-

tained from experimental results. Kellogg, Rabi, Ramsey, and Zacharias(6) have pointed

out that unlike the atomic case there is no empirical information like fine structure splitting

from which the molecular q can be evaluated. The aim of the present investigation is the

choice of an appropriate wave function, to, and the calculation of q using this 4.
Since K+ and Cl- both have closed shells the wave function for KCI can be satisfac-

tory set up as a single determinant. This determinant is to be built up from Hartree-Fock

atomic wave functions calculated by Hartree and Hartree for the K+(7) and C1-(8) ions.

Townes and Dailey have shown that, "Bonds of most of the alkali halides show less than three

percent true covalent character and the molecules should be considered primarily ionic with

a considerable amount of polarization of each ion. ,(9) Thus aside from polarization effects

this single determinant should be a good approximation to the ground state wave function. It

is expected that later the polarization effect will be taken into account by parametric means

within the framework of the single determinant.
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9. ENERGY BANDS IN CHROMIUM

As has been reported in the previous two Progress Reports, an attempt has been

made to expand the crystal potential in terms of spherical harmonics. Completely indepenu

ent of the question of the convergence of .;uch an expansion, great difficulty has been met in

attempting to evaluate the coefficients in the expansion. This difficulty results from the very

great loss in number of significant filures, which occurs in the process of carrying out the

numerical calculations involved in evaluating the coefficients.

At present, a different approach is being made to the problem of evaluating three-

center potential energy integrals. As before, the crystal potential is taken as a spacial sum

of atomic potentials, but the atomic potential is now represented by a function which vanishes

for radial distances greater than one-half the nearest-neighbor distance in the crystal. Be-

cause of this approximation, three-center integrals (involving two atomic wave functions on

two different lattice sites and an atomic potential on a third lattice site) will vanish unless

both of the wave functions are 3d wave functions. (Here we are not considering integrals for

the 4s electrons involving orthogonalized plane waves. ) The assumption will also be made

that a 3d wave function overlaps only nearest- and next-nearest-neighbor lattice sites. It

can now easily be shown that the number of three-center integrals which need to be independ-

ently evaluated is less than 175.

The tail of a 3d wave function in chromium can be accurately represented by

rPi2  (cos 8) e e

where a = 1. 3785. In order to expand each 3d wave function in terms of spherical har-

monics about the center containing the atomic potential, we will treat the wave function as a

product of

r P 2  (cos 8) e m

(which can be expanded in closed form about another center) multiplied by e- ar/r (the ex-

pansion of which is given in Watson, Theory of Bessel Functions, p. 366). The expansion

of e- ar/r in spherical harmonics about another center is probably easier than is the case

for any other simple function involving exponentials.

R. H. Parmenter
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10. A SIMPLE MODEL OF FERROMAGNETISM(1)

The theory of ferromagnetism has been essentially based on two approximations: the

band model and the Heitler-London treatment. It is not the purpose of this report to com-

pare these two approximations. There is a comprehensive treatment by J. C. Slater(2 ) in

which the advantages and disadvantages of the two methods are clearly pointed out. It seems

obvious that the band treatment is superior in many respects to the Heitler-London approxi-

mation. But there is no question that both theories are incomplete. This results mainly

from a lack of more detailed knowledge of the solutions of the Schr5dinger equation in a

ferromagnetic crystal.

In order to get more insight into this involved problem we try to look upon the inter-

action of only two electrons. We are especially interested in the conditions under which the

two electrons set their spins parallel or antiparallel. Because of the simplicity of this case

we may hope to get more accurate solutions than in the collective treatments of the many-

body problem. Those more correct solutions may show the way to correct and integrate the

already existing theories of ferromagnetism.

Our procedure is straightforward. We start with the problem of two electrons in free

space and proceed to the case of two electrons moving in an otherwise empty energy band.

Finally one can consider a doubly degenerate band instead of a single one. By this procedure

we take into account the fact that there are always degenerate bands in ferromagnetic crys-

tals.

G. F. Koster(3) has pointed out, as one would expect, that the case of two holes is

identical with our treatment in its substantial features.

Two Electrons in Free Space

In this section we are trying to get solutions of the Schr~dinger equation for the mo-

tion of two electrons in their repulsive field. If the electrons move in the unbounded space

they will repel each other and keep an infinite distance apart; the energy spectrum will be

continuous. There will be no measurable correlation of spins of the two particles. In order

to get a discrete spectrum one has to set up some kind of boundary condition. The most na-

tural way is to put both electrons in a box. (We shall show below that there are mathemati-

cally more convenient boundary conditions, the physical interpretation of which is somewhat

more involved.)

It is very instructive to consider first the one-dimensional case. The two electrons

may move on the x-axis from - ir/Z to + ir/z. The Schr8dinger equation of their motion

S+ d2 + (E -_V z) ,= 0 (10. 1)

dx 2  dx2 Z

may be interpreted as the vibration of a membrane with variable mass confined by a square-

sided frame (see Fig. 10-I). Because of the antisymrnmetry principle we know that the wave
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(A SIMPLE MODEL OF FERROMAGNETISM)

X'A functions of coordinates only will be symmetric with respect to inter-

change of x1 and x2 in the case of the singlet and antisymmetric in the case

of the triplet. So the corresponding vibrations of the membrane must have

,x a node along the line x, = x2 for the case of the triplet and must not have
X, one for the singlet. If one is considering the case without interaction, i. e.

"V1 2 = 0, then the solutions of the problem are well known. The lowest

Fig. 10-1 singlet and triplet states are

kosinglet = cos x1 Cos xs

Esinglet = 2
(10.2)

'triplet = COS X1 sin 2x2 - Cos x2 sin 2x,

Etriplet = 5.

In this case the singlet state has lower energy. We must now ask whether the interaction

V1 2 can produce an interchange in the order of the energies of the singlet and triplet state.

With respect to such an interchange the most effective form of an interaction potential is a

8-function in the coordinates of xI - x2 . This potential raises the energy of the singlet state

only and leaves the triplet function unchanged. One can show that the energies of the two

states approach each other when the magnitude of the 6-function increases. In going to the

limit of an infinite 6-function the two energies will coincide but never cross. One can find

this by a simple geometric consideration. (4) The increasing 6 -function will make the am-

plitude of the symmetric vibration go to zero along the line x1 = x2 . We therefore have the

same solution in the singlet and triplet case except for the different sign of the amplitude in

the two triangles separated by x1 = x?. From this one may conclude that for every form of

the interaction potential the singlet will lie below the triplet.

If one rotates the framewith respect to the membrane by 450 then the differential

equation (10. 1) becomes separable in the center of gravity xI + x. and the relative coordi-

nates x1 - x2 . The singlet and triplet states are now connected with the symmetry proper-

ties of the solution of the equation in the relative coordinates. The symmetric and antisym-

metric solutions with respect to the origin correspond now to the singlet and triplet states

respectively. The solution of the whole problem is the product of the solutions of the two

separated differential equations, the total energy is the sum of the two eigenvalues. For a

fixed eigenstate of the movement of the center of gravity the whole problem reduces to find-

ing the lowest eigenvalue of the solution in the relative coordinates. In the one-dimensional

case we know from the oscillation theorem that the nodeless solution lies lowest. So in this

modified problem we get the same result as above: the singlet state has the lowest energy.

The rotated frame no longer corresponds to the simple boundary condition of two el-

ectrons moving between - r/Z and + n/2 of the x axis. We have now independent boundary
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conditions for the movement of the center of gravity and the relative movement of the two

electrons. This allows us to study separately the interaction of two electrons. By our modi-

fied boundary conditions we introduce a maximum distance between the two electrons which

they cannot exceed but below which they can move unrestrictedly. If the two electrons move

in a box, these idealistic boundary conditions become mixed up with the movement of the

center of gravity. If, for example, the center of gravity is near the wall of the box the two

electrons cannot get more than a relative small distance apart because they are hindered by

the box. That is the geometrical reason for the complexity of the or-iginal solutions. Yet it

seems obvious that the essential features of the interaction of two electrons are inherent in

the simplified treatment.

The three-dimensional Schr6dinger equation

(- 1 - E) - (r r.) 0 (10. 3)

can correspondingly be separated in equations for the center of gravity and relative coordi-

nates. Callingr 1 + r. =•u andr 1 -r = v, we get

(-• uz E"u),u) =0

(10.4)

(-v 2 2  )+ l

with (7 v = C (u) '("v) and E = Eu + Ev By using the same kind of simplified boundary

conditions in v space we are led to the problem of solving the Schradinger equation of a re-

pulsive field in a spherical box. The potential in that problem as a function of v is shown in

Fig. 10-2. Because of the antisymmetry principle the wave function of

coordinates only must again be symmetric or antisymmetric with respect

to interchange of F and 4 for the singlet and triplet respectively. NR
is always symmetric and we can therefore conclude that 4'() must be

symmetric with respect to the origin for the singlet and antisymmetric

for the triplet. Because of the spherical symmetry of the problem, the
r

Fig. 10-2 solutions +Rv) can be written as a product of a radial function and a

spherical harmonic, characterized by a lower index I . All functions

belonging to even values of I correspond to singlets, those belonging to odd values of I to

triplets. H. C. Schweinler has given a general proof that for every type of spherically sym-

metric field the lowest eigenvalue will belong to a solution with I = 0 (see Appendix). We

find here again the result that the singlet state has the lowest energy.

Two Electrons in an Otherwise Empty Band

In this section we proceed in a similar manner as in the treatment in free space.

The essential difference in the solution is that the wave function around each nucleus will
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have atomic-like character. So we make the assumption

-r( , ) = .2:.U Cfl, R-'i ) f'- "Ai a(72 - Rj) ± arr - 13) arrW1 - Rj4. (10.5)
iP 3

in which the symbol a(? - It) is used for a Wannier function(5) around atom if. The syrn-

metry or antisymmetry with respect to interchange of coordinates is taken into account by a

proper linear combination of Wannier functions. The plus sign in (10. 5) belongs to the sin-

glet and the minus sign to the triplet. One can show that U($i, R ) also has symmetry prop-

erties with respect to interchange of .i and Rh: U(Ri, R.) is symmetric for the singlet and
antisymmetric for the triplet. We shall prove this property for the triplet. Let us assume

U(RiA, R.) to be symmetric. We rewrite the sum (10.5) by collecting together the terms

multipled by Ufl, R4 ) and U(.., R.). Because the Wannier term in(l0.5) Is antisymmetric

with respect to interchange of and f these two terms cancel each other and the whole

sum will vanish. From this one can conclude U(Ri, •) must be antisymmetric for the trip-

let. A similar proof holds for the singlet.

The Hamiltonian of the problem has the form

H= + H + (10.6)1 2 r12

where H 1 and H 2 are the one-electron Hairniltonians for the movement of one electron in the

crystalline field.

We now insert the assumption (10. 5) in the Schr6dinger equation and multiply the
whole expression by a*(•'• - fm) a* 2 - •n) and integrate over r1 and r 2 . Using a theorem

derived by G. F. Koster(4 ) one gets after some algebraic manipulation the following expres-

sion.

SU(itm In- As' n)&(fs) + X U(ifm, in - its.) E•Is,)

+zUR -R.1R -R) a*(r -R )a*(r - R) (10.7)
k,1 m V n 1 1l m 2 n r1

a(7 - im + ik) a(r 2 - R' + R') d-r1 d'r2 - EU(R' R) = 02 n Im n

In this equation &(C) are the Fourier components in the expansion of the energy as a func-

tion of momentum. The energy as a function of momentum is periodic in reciprocal space.
The expansion coefficients can therefore be associated with lattice points in real space. E

is the total energy. For each value of m and n there is such an equation. The mathemati-

cal problem of solving these equations is involved. By introducing differential operators one
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can simplify the problem considerably. By proceeding in a similar way as in the paper by

J. C. Slater(7) on perturbed lattice functions we get

(E$p_'1) + Etp2̀ ))) uc47(. 1))0

+ X j (R , R R" a*(r R) a*(r n - )-2 (10.8)
k, I M-k r12

arr- r ar 2 -R R,) d-r1 d - EU(Rm). I =-- 0

In our notation E(p-')) and E(-* 2 )) are to be considered as operators. In the expression for

the energy as a function of p one has to replace p by its operator (6/i)v. The superscripts

indicate that(1) and.(Z) act on R 1 ) and Rz) respectively.

For the case of slightly overlapping Wannier functions we can replace the summation

in (10. 8) by its leading term characterized by ak = 0= . The summation has approxi-

mately the value 2/ Im - R n(oznitting a factor U(i'm, ITn))except for the case -Am = I n'
This term gives the interaction energy of two electrons on the same atom. One can show

that even for Wannier functions with greater overlap the summation in (10.8) defines a poten-

tlal which is practically the same for the singlet and triplet type solution. (If we solved the

problem of free electrons by using Wannler functions we would have maximum overlap. Yet

we know from the direct solution that even this amount of overlap will not destroy the result

derived below. ) Thus we have the following differential equation for U(R(1)," -- Z)):

{E~~r(')) +1~~)} ~ f(2)) + {v(R(l) - R( 2 )) - E} u(I(l~k<)) 0 (10. 9)

Using now a quadratic approximation for the energy as a function of p the equation (10. 9) is

Identical to (10. 3). One can then use the same kind of argument to show that the singlet

state has lower energy.

Two Electrons in a Doubl, Degenerate Band

We assume here that one electron is moving in one band and the other one in the

other band. There are now two types of Wannier functions a(i? - A-) and b(7 -r ), each be-

longing to one band. The expression (10. 5) can easily be generalized to

(R R iir 1 {a( A-.) b(r,- T) ta'.-'i (r T 1.

1 ) i, (

The plus sign in (10. 10) holds for the singlet, the minus sign for the triplet. Our proof of

the last section concerning the symmetry or antisymmetry of U( i, Rh) in the cases of the
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singlet and triplet respectively turns out to fail in (10. 10). Singlets and triplets can be both

symmetric and antisymmetric. The physical meaning of this result is obvious. In the last

section we found U(If ,f ) to be zero in the triplet case. Two electrons with the same spin
oI I

could not stay on the same atom because of the exclusion principle. In this section there

are two possible quantum states per atom so that now two electrons with the same spin can

be found on a certain atom. By using the same kind of calculation as in the preceding sec-

tion we finally arrive at the following equation

E (n+ E bk-( 2 )}) "• -((z)n

U a*(r U n k b*(r n

{a(r -m + ,)b(r 2 ) b (10. 11)r12 n Rk)

t a(ro - A + A,) b(GN - Rn + Rk)} d-r dT7

- EU(Rm, un)R = 0

The plus and minus sign in the summation holds for the singlet and triplet state respectively.

The meaning of the summation is most easily seen by assuming that we have non-overlapping

Wannier functions. The summation then reduces to 2/I m - RSnI (omitting a factor U(ifms,
except for the case i1f = Rn. This term gives for the minus and plus sign the interaction

energy of two electrons on the same atom with or without exchange respectively. So we are

left with a different interaction term V(fm - Rn ) in the singlet and triplet case. The inter-

action energy is about the same for Rm R Rn but is smaller for Rm = if in the case of the
singlet. Because both solutions can be either symmetric or antisynunetric with respect to

interchange of R and R we can conclude that the state with the lower interaction energy,m n
that is the triplet, must always lie lowest. In the case of two deganerate bands two electrons

tend to align their spins.

Conclusions

By a straightforward calculation we found that two electrons in free space or in a

single otherwise empty band will tend to set their spins antiparallel. If there are two de-

generate bands of equal width then the two electrons will align their spins. The alignment

of the spins results from the lowering of the energy when both electrons are on the same

atom according to Hund's rule. For the single band there is in the triplet case no such ionic

state. The wave function has a node for R(l) = R-fZ). Yet it turns out that the gain in Cou-

lombic energy is more than offset by the increase of kinetic energy associated with that node.
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The calculations concerning our model are not yet complete. There is, for example,

the case of two degenerate bands of different width. This case may bear the general feature

of a degenerate 4s and 3d band. There is some indication that this combination of two bands

will not give ferromagnetism. There will be more detail about this question in the next

Progress Report.

Appendix

The solution of the Schrbdinger equation (10. 4) in the relative coordinates v may be

written as a product of a radial function R (r) and a spherical_ harmonic with lower index 1.

By assuming P1 (r) = rR,(r) we are led to the following differential equation for P, (r)

P"(r) + E - V V,,(r) +l P1 (r) = 0 (AI0. 1)
2 ~r2

For r = 0, P (r) has always zero value. Furthermore the solution must vanish for r = R

where R is the maximum distance of the two electrons. We wish to show that the solution

with I = 0 has lowest energy. For the proof we assume that a certain state with I j 0 would

have an energy E which is lower than Eo. In Fig. 10-3 we plot then the functions P 0 (r) and

P (r) for E.

Consider next the differential equations for P 0 (r) and P, (r)

Po(r) + E V (r Po(r) =

R , (At0. 2)
Fig. 10-3 P'(r) + Ej I Vlv(r) +) P (r) = 0

We multiply the first by P (r), the second by - P 0 (r) and add. This sum can be written in the

form

d (Pr(r) P'(r)P(r)) + + P (r) = 0 (Aio. 3)

If we integrate this expression from r = 0 to r R we get

Pr(R) Po'(R) + f P (j) P(r) dr (Al1. 4)
0

One can see now that this equation is inconsistent with the assumptions in Fig. 10-3. There
we have P()>0, P(R) <'0 and I +r1) P (r) P, (r) dr > 0. From this one must con-

dlude that P (r) has a node in between and therefore lies lowest.
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11. THE EQUIVALENCE OF ELECTRONS AND HOLES

We wish to find out here if theorems of the type proved by Statz, in the present Prog-
ress Report are equally applicable to two holes in a full band. (4

Let us assume that we had a one-electron Hamiltonian H which was periodic with
respect to translations through R and some one-electron wave functions, from a given band,
4i, which are multipled by e iki -Nn when translated through Rns We could then define a

one-electron energy

c (ki) uiHuidr

which would describe a band as ki went over reciprocal space.

Let us now try to solve the problem of two electrons using wave functions from this
band. The Hamiltonian will now be

=H(1) + H(Z) + -,

and we shall try to find the singlet and triplet states of this two-electron system. As an ap-

proximation we shall seek solutions of the form

ix ulj {det [u i(l) a(,) Uj1(Z) p (2]± det IIu (I) P(1) u j(2) aCZ)]
ij

a and • are the conventional spin functions and the square bracket encloses the diagonal ele-
ment in the determinant. The upper sign represents the triplet state and the lower sign the

singlet. For any two terms in the summation

K = ki + kj = k + kn

since the two-electron function iK must multiply by eiK " Rn when transplanted through Rn.
From this we conclude that two terms appearing in the sum must differ in both one-electron
wave functions in the determinant. The Ui are determined by the condition

fj*(H - E) I= min.

which yield, the set of simultaneous equations

Unm[E (k + (km) + (mmjnn) (ranlmn) - EJ + Uij (mininj) (mini)]
,j M

n mn=l.. N
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Here
Hern.) = 2 fu%(1) ui(l) un*(Z) u(Z)
(r"'!n ) =2 1 z) d2 , d,rl?

Let us now set up the secular equations for two holes in a band. Suppose we had
some one-electron orbitals u! for this problem in analogy to ui for the two-electron case.

We can find an energy associated with one hole in a filled band. An approximate wave func-
tion for this case would be a ZN - I by ZN - 1 determinant with every orbital filled twice ex-

cept for the orbital un which is only filled with an electron of plus spin. We shall denote thisr n
by det [- uXp] just indicating the missing orbital in the determinant. The Hamiltonian is

ZN-- 1 2N (i)

-1- i j 'i

The energy of this state is
1%" N

fdet*[.uA]N- det[. uhP = > [4(iiiii) - 2(ijiii) + 3[cii iii) + Zgii)]
i>j iin
i, jin

+ (njn) + [2(lilnn) - (Inn)] = EZ 1- k
tin

where

(nin) = fu*,' Hu d-r

and
N N

EZN - X 4(iilnn) - 2(tjlij) + [c(iili, + 2(11 1i.'(kn= ZI [z(iiinn)- (inlin) + (nin)]
l>j il i= 1

The summation in a?(kn) represents the interaction of an electron with the entire filled band.

In complete analogy with the case of two electrons we could set up the wave functions

for the two holes.

XU{det[(u P)(- u a)] ± det[( uia)( -u2 PjJ.

where once again we only indicate the missing orbital in the determinant. The secular equa-
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tions involving the U! will be13

U Z (i[i) + (iiiii + (nln) + (mnir) + > 4(iiijj) Z(ijlij

tn

+ z [j~nniii) - (Milni) + Z(rnniii) - cmuiinj + (mininn) ;(mnimn) - E

ijn

+ u~j [(r*njin F (mimni])

Using the definitions of a'(kn) and Ezn this reduces to

U~m{EZ - (k ) - E'(k ) + (mrnlnn) (znnjznn) - E] + XL'b [miln) ; (nilni)Unm "-" - n tj

The only formal difference between this and the case of two holes outside of the additive con-
stant EZN, to the energy, is the fact that the one-electron energy appears with a negative

sign. If we assume that the major contribution to the lowest wave function for two holes

comes when the two holes are near the top of the band we can proceed as Statz does in replac-

ing e '(kn) = constant ( - k n2). We see that the - sign in the one-electron energies is just
what is needed to make the secular equation for two holes exactly analagous to the case for

two electrons.

If there were other bands full of electrons in the crystal, there would be only one

change in the foregoing argument. To the one-electron energy a (kn) and s '(kn) would be

added the interaction of the electron and the closed shell. That is, to each E (k n) and eI(kn)
would be added a term

2[z(iiinn) - (inlin)]
i=I

where i runs over a band, for each filled band.

G. F. Koster
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12. THEORY OF FERROMAGNETISM

The work on ferromagnetism has been continued following the general direction ex-

plained in the previous Progress Reports. (,2 ,3) The simultaneous equations which determ-

ine the statistical properties of the system is now being solved, but the final conclusion has

not been reached.
(3)In a previous Progress Report some properties of the density matrices were re-

ported. The relations between them will be explained in the following as a preparation for

minimizing the free energy with respect to parameters appearing in these density matrices.

We start with the wave functions for a pair of nearest neighbor points AB. As the

ionized states are included, there can exist v = 0, 1, 2, 3 or 4 electrons on the pair AB.

For v = 4 there is only one state, which is

(4(iL234A_ A t *(2)(R,_Z AA) gz2)--ý4 BB)(1.)
It(.1)72:ý3 x 4)AB = '-F6

where A is the antisymmetrizing operator, and 1(2 )(j 1 j2,; AA) is the wave function for two

electrons with antiparallel spins on the atom A, and is written as Eq. (3. 3) of the Ref. 3.

For v = 3, two electrons on the same atoza have necessarily antiparallel spins, but the one
on the other atom can have plus or minus spin. Out of the four possible functions, two are

chosen gerade and the other two ungerade, and can be written as follows:

1 x ýýý)A -=,A ['P(xl) *A(XZ)O~ t YBXl)0B(Xz.) OA(x3)] [aCL1)0cz) - P(1)a2)]()
2 (12.2)

where the upper and the lower signs correspond to 6(3) and 3 ) respectively. and t

are obtained when a( 3 ) is changed to P(3). For v = 2, we put

i ý?)('•"ZAB *; (Z)I)(-3F, AB), i = 1, 2, 3 and 4 (12.3)

where the functions on the right-hand side is listed in Eq. (3. 2) of Ref. 3, '12) with i = 1, 2,

and 3 being the triplet and 1 (2) the singlet state. For the remaining two wave functions we

choose the gerade and the ungerade combinations as follows:

0(2) - 1 (24
.5 (x =ZA T fýyxd OA(x2) ± 9ý(x) 4PA(X] [aI)A(2) - P(l)a2] (12.4)
6

*() and #)) corresponding to the upper and the lower signs respectively. For v = 1, we

have two gerade and two ungerade functions as follows:

(1) - A(X1) ± ,B(xl)] a(1)

1 (x1)AB j1Z. 5)
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*(I) and fil) are obtained when a.(1) is changed into p(I).

Using these wave functions, the reduced grand density matrix for a pair AB, Eq.

(3. 37) of Ref. 3, is written as follows:

(M)-. 4 (M 1  
(Vx j j

1 .. XMw X. *XM)AB = t ) -n ( wn n " n AAB'

V=0 P(nj. . n),)
(12.6)

where P(nI. . nV) indicates the permutation of electrons, and

n " Sn x n , ' "n )AB Z ,(v)(. * n)AB'L1 )*xn' . .ZMn )AB'V 1
k k'

(12.7)

P Ms can be written more explicitly as follows.

p(0) = Z(0) 0(0) 4 (0)* (Z8
AB AB AB

where A(02 denotes the state with no electrons on the pair AB.AB

4
P ( 1) - £41(1.9(xl.' xiPAB ( 1kk k11 (tl)AB fk l 1AB (1.9)

k=l

In this and the following it is assumed that the cross term of wave functions with different

parity oi with different component of spin does not appear.

P() i" i iAZkk *()xlZ)AB k x1

k= 1

+(2) ., + im 2  j) - . )AB ,2 )* (-•.i7 .)AB (12.10)÷~ ~ 2~Z *•)•hAB "6 ,- B 62

+ (3) (3) (- X (3 -

+ 4 5 @4~x~Bz j)54 95 4 -X )AB

in which we have four cross terms, because (2) and §3-) are both ungerade and0n ) and
"92) are both gerade, all of these four states having spin component zero.

i=l

1(4 Cx 3x x4 X3*XXX4)AB = z(4)o(-)i xi i4)AB ,C4)*(:•r-,x ? --,(12. 12)
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Eqs. (12. 8) - (12. 12) are to be inserted into Eq. (12. 6) to compose the complete reduced
density matrix. Coefficients z's appearing in the above formulas have the meaning of or are
connected closely with the probability of finding the corresponding state and are used as the
parameters with respect to which the free energy is made minimum.

In order to derive the formula of entropy we need the reduced grand density matrix
for a point A, which has the form

P(M , I i•, X. , .. X 2 X (M )) 1 MX • .A

VO S P(n1 . . n),)

(12. 13)

where j(s) is the sth v-electron wave function at a lattice point A and has the form as

i)1)A = OA(X1) a.(l)

(1) (12Z. 14)(21)(xl)A = OA(xl) ()l. )

§= j A(xl)A(x2)Fal)P(Ž) - P(lOa}2"]2

It should be noted that there is no cross term appearing in the above density matrix, because
I'1) and 411) have different spin components. The coefficients y's are derived from z's in

Eqs. (12. 8) - (12. 12) by the reduction procedure explained in the following. For example,
writing Eq. (12. 9) explicitly,

P ')il"PAB = Zfhi')il0)(xAB *(l)*fl)A1i= 1

z¶½' 1 [i( 1)A(0) + *M* [o (j), + A j(l)*ci1I

+ Z . , - .1:.'i•,B] [4,*1) - A(0) e10*4,j (12. 15)

+ 1' (x [• (YA'B + A ' 1'• B•(I E x'1 .)A "B(O A+ (° I ( o,

+ 4<2 { [')t -• *(O '-2C' IB] I A B• A

+~~~~~~ ~ ~ ~ *(0)' (,)*a)-4() ~)-I

The first term becomes

(AA.B16)

+ i)A *A(O)**B(O)*(1)*(j,) + *A(O)*(11)*fl*(l')( )(2 16) B

-36-



(THEORY OF FERROMAGNETISM)

By the reduction procedure we mean the following: (1) Wave functions for the point A are

untouched. (2) A product of two wave functions for B point is replaced by unity or zero de-

pending on whether these two functions are the same or not. Applying these rules to Eq.

(12. 16), it can be reduced into

I~ Z1 + *(0) A ( *(12. 17)

Using the similar procedure, p(1)(i 1 : x1)AB of Eq. (12. 15) can be reduced into

1, Z( 5 '+ [,(I fi)ipl0()*(-X +) (0) §(0)*]
11 ZZ 1 1i1A 1 lA A AJ (12. 18)

+ ±(5lI) + Z~l ) [41')r4l)01)*r (0+ (
2 33 44 2

This makes a part of the reduced grand density matrix. Reducing completely and comparing

with Eq. (12. 13), we obtain the following relations between y's and z's:

(0  Z (0)+ 1 + Zh"+ (z(1 + Z÷2)

(1=. 19)
(1) =- Z + Z(l)) + Z(2) + 1 ()+ Z4¾2) + I4Zf(3) + Z3

S 4'23- +23) 44' 33 -Z 2 + Z:) 2 2 44 z? 3 (29

= 1,(25 + Z)) + Z(3) + Z(4)
1=1

The normalization conditions of y's is

Trace [P(M)•*..XMX 1 .. X)AI = 1 (12. 20)

which is written as

y (0) + YM + YO) + y( 2 ) =1.(12.2Z1)

Using these reduced density matrices the entropy S of the system can be written fol-

lowing Eqs. (3. 29), (3. 31) and (3. 32) of Ref. 3. Writing explicitly,

S .N- [ws(2) _ (z2 - 1)sI)
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with

S()= - k y(0) in yI%) + (ji j In t)+y(2 Any ]2
i= 1

4 0) 4

S(Z) =- k (()0)In Z(0) + Zjj)i .+ z Zýt) In Z() (12.22)
Z ii 1i= i

+ X2) In X)+ X) In2) + 4Z) In + 54) In Z(4)]
i=l

where Zw is the coordination number. We need to say a work for S(2). Among the coeffi-

cients z(Z)'s of Eq. (1Z. 10), we can show Z4Z) and Z(?) are zero, because these do not com-
tribute to the energy. But Z tnd Z5 are different from zero. and X(2) in the above

45 54 x4a (2
formula are the solutions of the following secular equation

Z44. - X45?4 4 - 0 ((1Z. 23)
Z(2) z(2) - x

54 55

so that Z) is the diagonalized form of the matrix 44 z45 /

0~~~ X()Z(2 (2)
554 55

Next let us consider the energy. When we restrict ourselves to the nearest neighbor

interaction, the parameters appearing in the energy formulas (3. 12) and (3. 18) of Ref. 3 are

of the following type;-, (AAj AA) z(BB; AA) Pz(AB; AA) z(AB; AB) I (A: A) (A; B) with

k = 1, 2, 3, 4, and I = 1, and 2. These are derived from Z's by the following procedure.

From Eq. (3. 1) of Ref. 3,

XM) #.(x a~ I*iiz ABN. ki (1.2.24)

P (AB: a3.. aM) (M - (i . a 3 .L ki 13'2 XM 3' aM)
(a 3 .. 'M) I

using which

('M)fdi 3,. . diM! d1-1 di2, *(M)(fx, i .,#M(Z)* ,AB

fdij diRO(M)*(*i(i3 .. M)2N (a) (12. 25)
I (iAB•:AB)

S Z(AB a 3 . . AM) p(AB: a 3 . • aM)* = Z AB)

(a 3 .. aM) I
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In order to express n AB) as a function of Z(")'s, we use Eq. (3. 24) of Ref. 3 for the

expansion of 0 (M) (-" . . aN" After mathematical manipulation, we obtain

(ABAB)) + 3 z3) q q(3)* + 6 Z(4) Z q4 q (4 )* (12.26)km km tt k rss k n
t s 5

where q's are the expansion coefficient in the following

*(3)k-!x2i3)AB = q ts (AB A)
k s (12. 27)

r q (2)((2AB= s x3 4)AB k tY A
k s

Similarly,

y(A; B) =P5) + 2 (2) q2 , (2)*

k k' t
(12. 28)

+ 3 Z (3) r ,(3) (3)* 4Z(4) Z q() (4)*

+k 3 X kst st
k t t

where q(v)"s are the expansion coefficients when 0 (v) is expanded with respect to k(l)(-XI)A

Calculating q's explicitly, we obtain the following relations:

ZA;AB) = Z()+ Z43~) + zZ(3 +Z(2

Z AB;AB) = Z ()+-14Z(3) + Z42~)
22 22

i= 1

z(AB; AB) = Z(4) + Z(3) + z2Z)3333 44 3

z (AB ;AB ) = Z (4) + I. Z .3) + 1 (2) + Z (2) ) (12. 29)

44 2 , I 255 +66
1.=1

Z(A13; AA) Z3 ()_Z3 3)+ 1Z2- 22 33 44 ' - 45

7(AA; BB) _ I (Z() _ Z(-)2

44 - >55 662)

y(A.;A) = Z( Z1 ~1 )) + k(2+ + 15422) + 4fQ) + Z(2) + 4%'-)
+ z 3)+ Z(3)z + k- ,(3) + Z(3), + Z(4)
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y A: B) =I- Z - Z(')) - 1 ( (2)+ Z)
(A:) 1 11 +. 2)2 6

+ 1 3 Z(?2 ) + z(Z 2 5+'I (3) +Z()2 45 54 _ 33 44

( A :B ) = 1 ( Z l (1)) + Z 1 ( 2 .) , Z( )yl 2 33z - 4 4 ) ? 26 62)

+ z(52) + zW2 +1 'I Z(3) + (3)5
a 45 541? 2

(A? A is obtained by interchanging 1 and 3, 2 and 4 in the subscripts of the right hand side

From Eq. (3. 22) of Ref. 3, the normalization of y ki a) becomes

1 = Trace [p()_ ) (a 1; a1 = NL 2 (A;A (12.30)
a 1k=1 k 7

or2 (A.-A)M= M

which gives the density or the number of electrons per lattice point, because M is the num-
ber of electrons and N is the number of lattice points. It has simple interpretation when

one inserts Eq. (12. 29) into (12. 30X.

M 1 4 6 4 M 2
N [2 + 2 Z()7 3 7 i + 4Z )] = + y 2+ Zy *(12. 31)

in which, for instance, y ()is the probability of finding two electrons at a lattice point, and

tZ(3 is the probability of findirg three electrons at two lattice points.
ml Ii

For the case.of nearest neighbor interaction, the energy formula of Eqs. (3. 12) and
t3. 18) of Ref. 3 can be reduced to

E _El E2  2 r (A*. AB) + 2wF 4(AA;IBB) +z(ABI AB)l=: N - =ZWQ z jCA:B): w(K -J) ABZ + (014 + z.

(12. 3Z)

K55 z4A AA + 2,/i? CaK 54 [ 4A AB 4 + const.
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where

Q 0 (x, I z q _ I__)¢B(Xl) x
rA rB

K f0 A(Xl) 8B(x?) - A(xl) B(x,) dx1 dx2

f A(X1)B(X2) 1-3-- 4B(Xl) dA(xZ) dx 1 dx2  (1Z. 33)

K5 5  f A(xl)A(X2) - AOA(xl) 9.a(xz) dx1 dx2

K54  f A(X1) A(X2Y) - A(xl)9B(x2) dxIdx2

The density of electrons p is inserted in Q indicating plus electric charge of amount p is

located at each lattice point. Using the relation (12. 29), Eq. (12. 32) is written as

E = Z Z(3j) + Z -3)z 4 ]

1 Z22 3 44 45 54 1 Z? 3 44 J

4 44 (3X (4)r 2Z2 +t Z(Z 55 6(2 i+ i()t+W(K - J)aZ + 4)] + WJ[z¾+52- 3)+z

4 (12. 34)

+ K I Z 2)+ X(2 + Z(3) ) 5 4)] + K54 [ Z( 2) _ Z(3) + 5(3)
55 55 66 54 [+4(+5 + 54 11 22

The 3- + 4j(3). 1=

The free energy is composed of this E/N and the entropy (12. 22). The next step is to mini-

mize the free energy with respect to fifteen independent variables and to solve these simul-

taneous equations, but it will be explained in the next Progress Report together with some of

the results derived from these equations.

References
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M. I. T., July 15, 1952, p. 17.
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13. ANTI-FERROV ZAGNETISM

An investigaition of the quantum mechanical aspects of anti-ferromagnetism is being

carried out. The c.hject of this work is to develop an adequate and reasonable formalism and

eventually to apply. such results to a specific case such as MnO.

In order tc @gain insight into the problem, calculations are now being made on the

linear chain, a subtect which has received considerable attention in the past. The bulk of the

previous work has *been based on the Dirac vector model, and the nature of the approxima-

tions made using th.ais method have been such as to warrant a re-examination of the problem.

Slater has made extensive remarks on this subject in the July 15 Quarterly Progress Report.

A model of-the linear chain has been assumed in which there are a large number of

centers, say ZN, mad associated with each center is a single electron. One can set up ortho-

normal one-electroon orbitals such that the orbital associated with any center is orthogonal to
the orbital corres;-onding to any other center. Following Lbwdin's method for finding these

OAO's, () we obta: n

27- I S -7 11xx S S +..
CL M*** CL a CL~ P a CL MP P aa aP MCLYyH.

where 1 is the CLO corresponding to the 1th center and *U is the non-orthogonal atomic or-th
bital associated w--lh the a center. S Q is

The atomic functio -as used here are functions of both space and spin and this means that Sa

vanishes unless tbt spin of ea is the same as that of I .
Two states of the linear chain were considered, the first in which all electrons have

an equal z compcflent of spin, corresponding to the ferromagnetic case, and the second state

in which all evenraumbered centers are associated with electrons of a spin and all odd num-

bered centers are associated with electrons having P spin. One need not be concerned with

the state degener-ne with the second state obtained by reversing the spin assignment because

there are no matiax components of the energy between them. The orthogonalized orbitals

corresponding tot hese two states are given by

+361) 36 16 6 )4 +2 j-)(8

First State: tt (1 _-- + (4+ 4jl) +2 -4
4 -Y)

36 6
+ (*j+3 + *j-3) 4

6
Second State: 0;1 j - (*. +2 + *j- 2)-r
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(ANTI -FERROMAGNETISM)

61 is the overlap integral between nearest neighbors and 6z is the overlap integral between
62 2 3second nearest neighbors. Terms of the order 26, 61 62P 61 and higher order have

been neglected.

The total wave functions for the above two states were expressed as single determi-

nants of the appropriate one-electron Lbwdin space-spin orbitals, although the second state

so expressed is not an eigenfunction of total S . The expectation value of the Harniltonian

for the linear chain was set up using these states and the difference between the two results

formulated in terms of the original atomic functions. It is clear that if one had not used dif-

ferent Lowdin functions for the first and second states, that the first, or ferromagnetic,

state would necessarily be the one of lower energy due to the decrease in energy arising from

exchange interactions. The state corresponding to the alternating spin assignment gives ex-

change integrals only between second nearest neighbors. It was hoped that the use of differ-

ent QAG's might make the second state lower in energy under certain circumstances due to

a dt. .- ease in other terms contributing to the total energy.

In order to get an idea of the actual numbers involved, hydrogen Is functions written

as a single Gaussian Ae ar, with the parameter a determined by a variational calculation on

the hydrogen atom, were used for the atomic functions. The interatomic distance in the

linear chain (now of hydrogen atoms) was taken so that overlap integrals regarded above as

small could be neglected. If the Hamiltonian is written as

where H depends only on the coordinates of a single electron and G depends on the coordi-

nates of two electrons, the difference in total energy between our two states is given as

+FJIH~ -f [.~ivj2jkl-[0iOiII0j*]2
j j .

+j xk GI [OwG~ko - [ -0 kiGI@] djk

jk

Using an interatomic distance, denoted by b, of four atomic units, the following results were

obtained

x [04i kG¢j 4-k 1 - 0 .0.5049 (2N)

jk
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- x [jOk1IGI OkOj] -z= - 0.039 (Z.N)
jk

where in the above expressions ZN is the number of electrons. Therefore, in this case the

ferromagnetic case still is of lower energy. In the case of a chatn of hydrogen atoms, the

ferromagnetic state lies lower than the alternating spin state for all b greater than four. The

mathematics will allow the alternating spin state to be of lower energy if the parameter a is

greater than about 1. 5, as compared to the hydrogen value of about 0. Z83, and if b becomes

large.

A further calculation is being carried out at present on the linear chain. In this work

a comparison is to be made between the ferromagnetic state and a non-magnetic state. This

calculation is based on the formulation of the one-electron orbitals as Bloch functions, where

the Bloch functions are given by

(r) ezrkt
U

The magnetic state corresponds to the assignment of one electron to each Bloch function and

assuming that all electrons have equal z component of spin. The expectation value of the

Hamiltonian in this case is of course identical with that obtained above. The non-magnetic

case is represented by assigning two electrons to each Bloch function, one of each spin, and

filling up the bottom half of the energy band. The total wave function for both cases is ex-

pressed as a single determinant. Also the Bloch functions for the non-magnetic case are ex-

pressed in terms of the same OAO's as for the magnetic case. It is clear that the average

energy of this non-magnetic state will differ from the average energy of the alternating spin

state mentioned above. These preliminary calculations should furnish useful information for

a more rigorous treatment of the linear chain problem.

Reference
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14. THE LOCAL FIELD IN A CRYSTAL LATTICE

For the present time this study will be confined to lattices of cubic symmetry. To
find the local fields within arrays of dipoles arranged on body-centered cubic, face-centered

cubic, perovskite, or more complex cubic lattices, it is only necessary to calculate the local
field for a simple cubic array of dipoles. The more complicated arrays mentioned above can

be formed by superimposing the proper number of simple cubic arrays. (1, 2)

The basic technique for investigating the local field in a lattice is due to Ewald. (3)
His method gives the field in an infinite array of dipoles. Consider a simple cubic lattice
whose lattice points are given by a set of vectors r-n' Suppose there is a dipole moment

at each lattice point. The resulting field at any point r' n is

- bh(bh P0) eibh ( rE (r E- ' -(14. 1)1
0 h bh2

where the bh's are the reciprocal lattice vectors and v is the volume of the unit cell. The

prime on the summation indicates omission of the term corresponding to h = 0. The ex-
S-0ex

pression for the field in Eq. (14. 1) has a singularity at each point r = rIn because of the di-

pole at that lattice point. When the field due to any given dipole is subtracted from the ex-

pression in Eq. (14. 1), the remaining field is finite and well behaved at that lattice point.

Now consider the case in which the dipole moment at each lattice point is

-0 -01

P 0 = ei(k rn-wt) (14. 2)

The complex exponential form is being used here because it is easy to manipulate mathemati-
cally, but it is to be understood that the real or imaginary parts of Eq. (14. 2) and succeeding

expressions awle the significant quantities. Ewald's method gives
_b -+_ k)k b + k) Po] -k-'

E r) 1 ik r-wt h0 etb (14. 3)
0  h (b + - ke

h 0

for k k ko, where k° = and c is the velocity of light. If this theory is being applied to0 c
lattice vibrations, k is small enough so that it can be neglected in Eq. (14. 3) except in the

term with bh = 0. Then Eq. (14. 3) may be rewritten as

-0-0 _. 0 . _. - .0 -0 -

E(r) = F (r; P k. ko) + F. (r; Po0 k, k) (14.4)

where

t(-; Vo,26,' ko) I -v i(k- t) (b +k) _Vh+ . 0)] eih-r7110vh (b h +k)2
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r k(k' P -0 koa 0 i.7 0 t)F2,P , ko0 k 0 0 v kZ - k Zoe

In the functions F1 and F., the quantities Po k, and k are to be regarded as parameters.

Now it can be seen that Eq. (14. 1) can be rewritten as

E(r) = F1,(r, P o, 0, 0) (14. 5)

-4a -0* -0

As k and k approach zero, F 1 (r; Po, k, ko) will approach F 1 (r; Po, 0, 0). The difference
0 -*1

between the field given in Eq. (14. 4) as k and k approach zero and the field given in (14. 5)
• . " - 0 - 0 .9. 0

will be the limit of FZ(r; Po, k, ko) as k and k° approach zero. The value of this last limit

will depend on the exact manner in which k ana k approach zero, and it will not in general.

be zero.

The singularity of the results at the point k = k = 0 is a fault of the Ewald method I
only insofar as it must be applied to an infinite lattice. This can be illustrated by considering

a continuum of polarization. If one wishes to find the field associated with a specified dis-

tribution of polarization, the field is given by potentials which must satisfy the equations

72 1 -P (14.6)

c2 atz 'o

~24. 8 2 A-0 147

A CZa 2 ýZ at 7

The electric field is then
-a

E = - (14.8)

If the polarization is given by

-a 1 i- te -( e (14.9)
V

and k - k 0 2 0, the result is

_-P ~ ~ 1 a~ k0P i(k r-wt)

or

E = Fr; F, k, (14. 10)
- k2
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If k = ko = 0, the result is just E = 0. So there is the same discontinuity in treating a con-
tinuum of polarization as there is in treating a lattice of point dipoles by Ewald's method.

The essential points of this paradox are still contained in this problem if the polariza-

tion given in Eq. (14. 9) is specialized to the case of w = 0 and k parallel to P So let us now

consider a problem in which the polarization only extends over a finite region of space. Sup-
pose that the polarization is

- 1 ik rP -P e (14. 11)v 0

inside of a sphere of radius a located at the origin and is zero outside of this sphere. Eq.

(14. 6) and the boundary conditions of the problem can be satisfied by the potential

Po ikr + n 1 + 1)i ev k r + k n(ka).r Pn(Cos 8)
0 n 0 o vkan "

in the interior of the sphere and

c n+ 1 Ponan+l

n=0 ovk ina n+ 1 n( cose)

in the exterior of the sphe.'e. The z-axls or polar axis of the spherical coordinate system

is assumed here to be in the direction of k and P0 . The jn (u)'s are spherical Bessel functions

(Ir/Zu)1/Z Jn+ 1/ 2 (u). The electric field in the neighborhood of the center of the sphere will
have only a z-component which will be

P o eik +r + o2 j(ka) (14. 12)E 1 0 V Gov k a

As k approaches zero, the field approaches

P
Ez = 01 (14. 13)

0

which is just the answer for a uniformly polarized sphere. As k approaches infinity, the

field approaches

Po iik.7
Ez = P--- e (14. 14)a V

0

which agrees with the result for an infinite medium of polarization.

The results for this sphere problem can be summarized in the following way. For
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For wavelengths long compared with the dimensions of the sphere, the field is essentially the
same as for an infinite medium with k = 0. For wavelengths short compared with the dimen-

sions of the sphere, the field is essentially the same as for an infinite medium with k ý 0.
The discontinuity at k = 0 in the case of an infinite medium might be explained by the fact

that if k ý 0, the wavelength is always small compared to the dimensions of the medium.

But when k = 0, the wavelength is then of the same order of magnitude as the dimensions of
the medium; then the result is indeterminate.

The results of the Ewald method and this simple electrostatic sphere problem seem to

suggest that the internal field is composed of two parts. The first is the effect of the dis-
70 -4. -. -

creteness of the dipoles and is given by F1 (r; P0,' k, ko0 ). The second is due to the similari-

ty of dipoles to a continuum of polarization. This second part would be computed by consider-

ing the body as a polarized continuum and computing the field. This idea will be investigated

further.
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3. P. P. Ewald, Ann. Physik 64, 253 (1921). Also see M. Born and M. Goeppert-Mayer,
Hand. d. Phys. 24/Z (Sgpi-nger, Berlin) 1933.
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P- CONiECTION BETWEEN THE MANvY-ELECTRON INTERACTION AND
THE ONE-ELECTRON PERIODIC POTENTIAL PROBLEMS

T ýe central approximation in the energy-band treatment of solids is the assumption
that :ie eftect of all the other electrons on a given electron can be represented by a periodic
potential modifying the periodic nuclear potential, reducing the problem to a one-body from
a many-bodv one. As in the case of molecular problems, where essentially the same as-
suitpti.•;n is introduced, the effect of the correlation of the positions of the electrons due to
the inter-electron force can be taken into account by "configuration interaction" -- the inclu-

sion in the total wave function of an indefinitely large number of the many-electron, antisym-
metrized determinantal wave functions formed out of products of the one-electron wave func-
tions derivedt xrom the approximate Schr6dinger equation separable because of the one-
electron periodic potential approximation.

Rccezxtly two authors have worked on the simpler treatment of the interactions in
Fermi-Dirac assemblies of electrons in terms of the excitations of a Bose-Einstein assembly
of phonons representing the Fourier components of the electron density.(1, 2 3) Correct dis-
persion relations and other results are obtained, although no full solution of the quantum-
mechanical problem has yet been published. It seemed of interest to include in the problem
they consider the effect of a periodic potential with a view toward studying the transition be-
tween the two limiting cases of the periodic potential and electron plasma problems. In par-.
ticular, insight might be gained in this respect into the ty-pe of configuration interaction which
is of greatest importance as a correction to the one-electron problem, as well as into sev-
eral other problems.

The extension is being made on Tomonaga's paper, which is a precise, mathematically-
closed formulation of the problem in the second quantization formalism, although it applies
only to the one-dimensional case. The central problem is to find a modified canonical trans-
formation, and hence dispersion relation, from a Hamiltonain including the periodic poten-
tial term to the Hamiltonian of a system of uncoupled simple harmonic oscillators represent-

ing "sound" quanta.

References
1. D. Bohm and D. Pines, Phys. Rev. 82, 625 (1951).
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16. A STUDY OF ZZp IN ATOMS

The calculation of 2Z 1p, the effective nuclear charge for the potential in an atom, has

been continued following the method stated in the previous Progress Report. So far, ZZp for

10 neutral, 5 singly ionized, 6 doubly ionized, 4 triply ionized and 2 quadruply ionized atoms

has been calculated. These have been included on our graph of ZZp vs. the atomic number

for constantwalues of r. Although still incomplete the graph tells us much more than did our

original plot using published values of ZZP,

A. J. Freeman
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17. SPHERICAL BESSEL FUNCTIONS OF HALF INTEGRAL ORDER AND

IMAGINARY ARGUMENT

Spherical Bessel functions of imaginary argument arise in molecu-

r lar problems from the expansion of an exponential wave function about some
displaced center. (Fig. 17-1). This expansion has the following form, (1)

Fig. ;7-1 e- kr' I (r +12(a
r' ? x: (Zn + 1) Pn(COS 8) n+1 i/7z(kr) Kni/(ka)

nfa

r < a

- kr'
and a corresponding one with r and a interchanged for r > a. The expansion of e and

-Ir'r'e , etc. , can be derived from this by differentiation with respect to k. I and K are the

usual Modified Bessel functions of imaginary argument. (2) Tables of these functions exist

but are incomplete. (3) We have decided to tabulate functions closely related to these, namely

in(+) = ix)

kn(x) =•/Z Kn+ I/i(x)

which arise in spherical problems.

This work is expected to be carried out on the M. I. T. Statistical Service's I. B. M.

machines.
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18. ELECTRIC FIELD GRADIENT AT NUCLEI OF MOLECULES

To determine the electric quadrupole moment of a nucleus from measurements of the
electrostatic energy of interaction between the quadrupole moment and charges in the mole-
cule outside of the nucleus of interest requires lukowledge of the electric field gradient at that

nucleus. For diatomic molecules the interaction energy is commonly written(1 ) eqQ where
e is the proton charge, q the electric field gradient, and Q the electric quadrupole moment.

In general it is difficult to calculate an accurate value of q in the usual way using a molecu-
lar wave function. Professor Rabi of Columbia University has found that for certain diatomic
molecules the experimentally determined q is, except for a known constant factor, closely
equal to the second derivative of the experimental Morse curve, which leads one to suspect
the existence of an important theoretical relation. In fact, by using methods similar to those
used by Feynman, (2) we find the relation described below.

th
One is led to write the quadrupole interaction Harniltonian for the a nucleus of a

molecule in the form

M' = 1

In (18. 1) q is the charge of the ath nucleus; p, v range from I to 3 corresponding to x, y,
and z. The nuclear quadrupole moment interaction tensor is

Q r Ptrl)xx l r )d .r
ýL -Jr/~ V 3 4V

where p(r) is the nuclear charge density and the x denote rectangular components of the

position vector in a frame of reference fixed in the molecule;

3 2 2X xx
x= r

H is the adiabatic Hamiltonian for the electronic motion of the molecule. Ha is an abbrevia-

tion for a/ax a/at H.

The expectation value of (18. 1) with respect to the electronic wave function t', which
satisfies Hi = UV, where both 4s and U depend on the configuration of the nuclei of the
molecule as parameters, may be written

3

46HI4= -)('4 , Hla0 p) Qa (18.2)

With such aspects as vibrational and rotational effects neglected, (18. 2) evaluated at the

equilibrium nuclear configuration represents the quadrupole interaction energy and
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(ELECTRIC FIELD GRADIENT AT NUCLEI OF MOLECULES)

(4,, Hý4s Lax a I Zi,+ X Vp.1' (18.3)
Oda, xa q P}]L

the electric field gradient, where Via = - eqjria and VpL = qpqa/rpa; ria is .he distance

between the ith electron and the ath nucleus.

By simply differentiating U one finds that (4, HaL 0) is related to U by

a 19 U =(*, H" k) + a, (18.4)
3Xa ax yr

j.L V

where

&X "a x , dr (18.4')

in which the integration is over electronic coordinates.

For a diatomic molecule, with the z axis chosen along the internuclear axis,

(4 ,1 )t f) reduces to

(, )= (Q• 2/q)(, HZ 44 (18. 5)

because of the cylindrical symmetry of 4,*4. Only the components

z
) = (U , H"z*) + (18.6)

aza
of (18.4) and

z (4*} r d0. (18. 6')

of (18.4') are of interest. The left member of (18.6) may be approximated from experimental

data by the second derivative of the Morse curve, so that if (18.6') is known, one has a semi-

empirical procedure for finding the electric field gradient. (18. 6') does not vanish identically,

for at the equilibrium internuclear distance (8/Wza)Z U is always positive, but the electric

field gradient may be of either sign.

The evaluation of (18. 6') is under investigation.
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